Mundingsudsatte smolt i Kolding Å – betydningen for havørredbestand og lystfiskeri
- betydningen for havørredbestand og lystfiskeri

Ravn, Henrik Dalby; Sivebæk, Finn; Pedersen, Stig; Aarestrup, Kim; Koed, Anders

Publication date:
2019

Document Version
Også kaldet Forlagets PDF

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Mundingsudsatte smolt i Kolding Å
- betydningen for havørredbestand og lystfiskeri

Af Henrik Dalby Ravn, Finn Sivebæk, Stig Pedersen, Kim Aarestrup og Anders Koed

DTU Aqua-rapport nr. 349-2019
Mundingsudsatte smolt i Kolding Å
– betydningen for havørredbestand og lystfiskeri

DTU Aqua-rapport nr. 349-2019

Af Henrik Dalby Ravn, Finn Sivebæk, Stig Pedersen, Kim Aarestrup og Anders Koed
Indholdsfortegnelse

Resume .. 4
1. Indledning .. 6
2. Formål .. 10
3. Lokalitetsbeskrivelse ... 11
4. Metoder .. 13
 4.1 Overordnet studie-design .. 13
 4.2 Mærkning af mundingsudsatte smolt ... 13
 4.3 Mærkning af gydevandrende havørred ... 14
 4.4 Databehandling ... 15
 4.4.1 Havørredbestandens sammensætning .. 15
 4.4.2 Relativ overlevelse ... 15
 4.4.3 Flergangs-gydere ... 16
 4.4.4 Lystfiskeri og vandringsruter ... 17
5. Resultater .. 18
 5.1 Havørredbestandens sammensætning ... 18
 5.2 Relativ overlevelse .. 19
 5.3 Flergangs-gydere .. 21
 5.4 Lystfiskeri og vandringsruter ... 22
 5.5 Effekten af mærkning .. 26
6. Diskussion .. 27
 6.1 Effekten af mærkning .. 27
 6.2 Smoltoverlevelse .. 28
 6.3 Flergangs-gydere .. 30
 6.4 Lystfiskeri og vandringsruter ... 31
7. Tak til ... 34
8. Referencer .. 35
Bilag A – Længdefordeling af Carlin-mærkede smolt .. 40
Bilag B – Længdefordelingen af Carlin-mærkede havørred .. 41
Bilag C - Længdefordeling for havørredbestanden .. 44
Bilag D – Flergangs-gydere ... 48
Bilag E – Vækstrate ... 50
Bilag F – Relativ overlevelse ... 51
Resume

Der er lang tradition for udsætning af ørred i Danmark. Det skyldes, at store habitatforringelser af vores vandløb, hvor ørredens gydeoer findes, har forårsaget, at ørreden mange steder ikke selv kan opret-holde en bestand. For at ophøjølpe ørredbestandene udsætter man ørreder i vandløbene. Tidligere var formålet med udsætningerne at forbedre fiskeriet, men i dag er fokus i højere grad på at sikre selvreproduce-rende ørredbestande. Trods en tydelig fremgang i den naturlige produktion af ørreder i vandløbene er der stadig et behov for udsætninger, og der bliver årligt udsat ørreder for ca. 5 millioner kroner i Danmark.

Det er derfor relevant at vurdere effekten af de mange udsætninger. I 2001-2005 blev effekten af mundings-udsatte smolt i Kolding Å undersøgt. Formålet med undersøgelsen var at sammenligne overlevelsen for udsatte smolt med overlevelsen for naturligt producerede smolt. Desuden blev det vurderet, hvor stor betydning de udsatte smolt havde for havørredbestanden, samt i hvor høj grad og i hvilke geografiske områder de bi-drog til lystfiskeriet.

Resultaterne viser, at return-raten for naturligt producerede ørreder var 2,5 gange højere end for udsatte ørredsmolt. Dette på trods af at de udsatte smolt var afkom fra vildfisk fanget i Kolding Å og opdrættet på Hvilested Dambrug, som havde sit vandindtag fra Kolding Å. Resultaterne viste desuden, at antallet af hav-ørreder, der vendte tilbage som flergangs-gy dere, var 55 % højere for vildfisk sammenlignet med udsatte ørreder. De udsatte ørreder, der klarede den første kritiske periode efter udsætning og overlevede frem til voksenstadiet, klarede sig altså også ringere end wilde ørreder i den efterfølgende periode. Trods en for-holdsvvis stor udsætning var gydebestanden af havørred i Kolding Å i høj grad domineret af vildfisk, og kun ca. 10 % kom fra udsætningerne.

Der blev i alt indrapporteret 680 genfangster fra lystfiskeriet. Af 4.936 havørreder Carlin-mærket som gyde-fisk blev 6,7 % senere genfanget ved lystfiskeri, hvorimod kun 3,9 % af ca. 9.000 Carlin-mærkede ørred udsat som smolt blev genfanget. Hovedparten af de genfangede Carlin-mærkede smolt blev fanget som undermaløsfisk i ferskvand kort efter udsætning. Frasorteres disse blev der genfanget under 1 % af de mundingudsatte smolt ved lystfiskeri. De mærkede fisk blev primært genfanget sydøst for udløbet af Kolding Å, hvilket indikerer at ørrederne vandrer mod sydøst når de forlader åen.
1. Indledning

I det seneste århundrede er over 90 % af alle danske vandløb blevet påvirket af menneskelige aktiviteter, herunder kanalisering, uddybning og for flere mindre vandløb rørføring (Brookes, 1988). Desuden forhinder spæringer mange steder ørreder og andre vandrefisk i at vandre op- og nedstrøms til deres gydepladser (Aarestrup & Jepsen, 1998; Aarestrup et al., 2003). Disse habitatforringelser har forårsaget en kraftig tilbagegang for ørredens udbredelse i Danmark og har resulteret i, at ørred de fleste steder ikke har kunnet opretholde selvreproducerende bestande (Rasmussen & Geertz-Hansen, 2001). Da ørrederne de fleste steder ikke selv kunne opretholde en bestand, førte det til en lang tradition for udsætning i vandløbene (Johansen & Løfting, 1919; Rasmussen & Geertz-Hansen, 2001). Den første udsætning fandt sted i 1858 (Rasmussen, 2009), og siden er der foretaget adskillige udsætninger i en lang række vandløb og direkte på kysten.

I første omgang blev der udelukkende udsat yngel i vandløbene (Rasmussen & Geertz-Hansen, 2001). Senere begyndte man at holde fiskene på dambrug i længere tid, og udsætninger af både ½-års, 1-års og 2-års fisk samt smolt blev hurtigt udbredt, men også "fangstklare" ørreder på 30-35 cm blev opdrættet og udsat i åerne (Læs om ørredens livscyklus i Boks 1.1). Smoltudsætningerne fandt ikke blot sted i vandløbene, men også direkte på kysten, hvor der blev udsat store mængder af smolt. Dette var problematisk, da de kystudsatte ørreder ikke blev præget af et vandløb og derfor kunne strejfe til andre vandsystemer for at gyde, hvor de potentielt kunne forurene den oprindelige genetiske bestand. For at undgå dette ophørte kystudsætningerne i 2002. Efterfølgende er smolt alltid udsat i den nedre del af vandløbene, for at sikre at de får et tilhørsforhold og bliver præget af vandet i det vandløb, hvor de bliver udsat og derved i højere grad vender tilbage ("homer").

Fælles for langt de fleste udsætninger er, at fiskene før hen ofte var afkom fra "rene" dambrugsstammer, der over flere generationer var avlet og opfostret på dambrug. Op igennem 1990’erne og 2000’erne viste genetiske undersøgelser, at dambrugsstammer kan true den wilde bestands genpulje og derved udgøre en fare for at udrydde naturlige gener (Cowx, 1994; Rasmussen & Geertz-Hansen, 1997; Hansen et al., 2009). Det skyldes, at dambrugsfiskene over generationer er tilpasset livet i dambrug og derfor er mindre egnet til livet i naturen (Mclean et al., 2003; Ruzzante et al., 2004; Caroffino et al., 2008). Dambrugsørrederne kan således, hvis der udsættes en betydelig mængde, påvirke og i værste fald ødelægge de genetiske egenskaber, som wilde ørreder har tilhørt sig gennem mange generationer for at kunne klare sig under de unike forhold, der findes i deres vandsystem (såkaldt lokal tilpasning). Anvendelsen af ørredudsætninger med afkom fra rene dambrugsstammer ophørte derfor i 2006, og siden har det været et krav, at alle udsætninger er baseret på første generations afkom fra vildfisk (F1 afkom). Desuden er de biologiske anbefalinger fra DTU Aqua, at fiskene til udsætning så vidt muligt stammer fra moderfisk fanget i samme vandsystem, som udsætningen er planlagt (Berg & Hansen, 1998).

Udsætningerne foretages med hensyn til, hvor mange ørreder det enkelte vandløb kan bære – vandløbets bærekapacitet. Bærekapaciteten er begrænset af det enkelte vandløbs fysiske forhold (Kalleberg, 1958;

Da målet er at opnå selvreproducerende bestande, er der i høj grad fokus på at lave vandløbsforbedringer, der kan understøtte naturlig reproduktion. Ved udarbejdelsen af "Planer for fiskepleje" vurderes det derfor, om vandløbenes fysiske tilstand egner sig som opvækst- og gydeområder for ørreden, eller om de bør forbedres.

Boks 1.1 – Ørredens livscyklus

I Danmark er ørreden en af landets mest udbredte fiskearter. Det skyldes bl.a., at den tolererer både saltvand og ferskvand og derfor findes i både vandløb, sø og hav, hvor den har adgang til gydeområder, og der er en god vandkvalitet (Klemetsen et al., 2003). Afhængig af om den lever i et vandløb, en sø eller til havs kaldes den henholdsvis bæk-, sø- eller havørred.

Ørreden er en ferskvandsgyder, og alle tre livsformer gyder i vandløb. Frem mod gydningen vandrer ørreden derfor fra sit fødesøgningsområde til gydeområderne i vandløbene, hvor både bæk-, sø- og havørred bruger de samme gydeplad-

Æggene ligger i gydebanken til april-maj, hvor de klækker, og den lille ørredlarve kommer frem. Larven lever de første ca. tre uger af blommesækken beskyttet i gydebanken. Når blommesækken er ved at være opbrugt, kommer ynglen op fra gydebanken for at søge føde. Efterhånden som ynglen vokser sig større og får et øget fødebekvem og ændrede habitatkrav, vil den sprede sig til andre områder i vandløbet (Klemetsen et al., 2003). Nogle af ungfiskene vil blive i strøm-vand hele deres liv og leve som bækørrøder (Klemetsen et al., 2003; Ferguson et al., 2019). Andre vil, når de er 10 – 25 cm lange efter et-flere år i ferskvand smoltificere. Ved smoltificering undergår ungfiskene en fysiologisk ændring, der forbereder dem til et liv i saltvand. Ungfiskene ændrer sig ligeledes morfologisk fra at være gyldne og buttede til at blive sølvblanke med en mere aflang kropsform (Økland et al. 1993; Ferguson et al., 2019).

Habitatforbedrende tiltag har resulteret i en positiv fremgang af den naturlige smoltproduktion, således at danske vandløb i dag producerer betydeligt flere naturlige smolt årligt sammenlignet med tidligere (Sivebæk, 2012). Trods mange vandløbsforbedringer er der dog fortsat lang vej til at nå den oprindelige smoltproduktio- on, der var før vandløbene blev påvirket af menneskelig aktivitet (Sivebæk, 2012). Bestandsopphøjende tiltag med årlige udsætninger af yngel, ½-års fisk, 1-års fisk og smolt (Figur 1.1) bidrager i dag til, at opret-holde bestande i vandløb, hvor de fysiske forhold endnu ikke understøtter selvreproducerende bestande (Sivebæk, 2018).

Der bruges af fiskeplejen ca. 5 millioner kr. årligt på udsætning af ørred. Derfor er det relevant at undersøge, hvor godt de udsatte ørreder klarer sig under naturlige forhold. Denne rapport beskriver et studie fra Kolding Å, hvor udsatte øredsmolt sammenlignes med naturligt producerede smolt.
2. Formål

Formålet med undersøgelsen var at bestemme overlevelsen af mundingsudsatte ørredsmolt sammenlignet med naturligt producerede smolt, samt i hvor høj grad de mundingsudsatte smolt bidrog til havørredbestanden.

Desuden blev det forsøgt at kortlægge skæbnen for både de mundingsudsatte smolt og åens voksne havørreder, herunder i hvor høj grad og i hvilke geografiske områder de bidrog til lystfiskeriet.
3. Lokalitetsbeskrivelse

Kolding Å-systemet afvander et areal på 277 km² og har sit udspring nær Veerst, hvor Åkær Å starter sit forløb. Åkær Å løber herfra syd på og modtager ved Lunderskov vand fra Drabæks Mølleå fra sydvest. 2,5 km længere nedstrøms ved Truds Bakke nær Ejstrup mødes Åkær Å med Vester Nebel Å og danner Kolding Å. Kolding Å er forholdsvis kort og strækker sig fra sammenløbet af Åkær Å og Vester Nebel Å til udløbet i Kolding Fjord blot over 12,3 km (Figur 3.1). Kolding Å modtager undervejs vand fra en række mindre tilløb med det største, Seest Mølleå, kort opstrøms motorvejen ved Seest. Nedstrøms motorvejsbroen kort før Kolding by modtager åen vandet fra Harteværkets afløbskanal. Nærværende undersøgelse blev foretaget på en ca. 10 km lang strækning i Kolding Å fra Vester Ringgade i Kolding by op til sammenløbet mellem Åkær Å og Vester Nebel Å. Undersøgelsesstrækningen fortsatte herfra ca. 2,9 km op i Åkær Å og ca. 1,8 km op i Vester Nebel Å (Figur 3.1).

4. Metoder

4.1 Overordnet studie-design

Studiet blev designet med det formål at vurdere effekten af mundingsudsatte smolt for gydebestanden i Kolding Å og for lystfiskeriet i åen og ved kysten. Designet bestod i at mærke mundingsudsatte smolt, hvorved antallet der vendte tilbage som gydefisk (return-rate) af henholdsvis naturligt producerede og mundingsudsatte smolt kunne sammenlignes ved elektrofiskeri af opgangsfisk i de følgende år i efterårsmånederne. Alle opgangsfisk fanget ved efterårets elektrofiskeri blev endvidere Carlin-mærket for at få viden om fiskenes adfærd (vandring) og videre skæbne, specielt hvor og hvornår de blev genfanget af lystfiskere.

4.2 Mærkning af mundingsudsatte smolt

<table>
<thead>
<tr>
<th>År</th>
<th>Udsat total</th>
<th>Fedtfinneklippet</th>
<th>Carlin-mærket</th>
<th>Umærket</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>13000</td>
<td>8000</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>13000</td>
<td>13000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>13000</td>
<td>13000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>13000</td>
<td>13000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>12997</td>
<td>8500</td>
<td>2997</td>
<td>1500</td>
</tr>
<tr>
<td>2003</td>
<td>16395</td>
<td>13400</td>
<td>2995</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>12996</td>
<td>10000</td>
<td>2996</td>
<td>0</td>
</tr>
</tbody>
</table>

Inden mærkningen, der foregik på Hvilested Dambrug, blev fiskene bedøvet i en Chlorbutol-opløsning. For at minimere dødeligheden blev fiskene ikke fodret i to dage op til mærkning. Efter mærkning blev fiskene opbevaret tre uger i damme, inden de blev udsat. Der blev fra 2002-2004 årligt mærket ca. 3.000 af smoltene med Carlin-mærker, hvoraf kun enkelte ikke overlevede mærkningen. Carlin-mærkede smolt, der ikke over-

Figur 4.1: Til venstre ses nederst den type af Carlin-mærker, der blev anvendt ved undersøgelsen. Til højre ses et nærbillede af et Carlin-mærke monteret i ryggen på en havørred fra Kolding Å.

I 2002 blev 1.500 ud af de 13.000 smolt hverken fedtfinneklipped eller Carlin-mærket, men blot bedøvet og efterfølgende observeret i dammene i tre uger, hvor også de mærkede fisk blev fulgt. Formålet var at vurdere betydningen af mærkningen de første tre uger efter selve mærkningen.

4.3 Mærkning af gydevandrende havørred

Inden mærkningen blev fangsterne målt, vejret og kønsbestemt samt kontrolleret for, om de i forvejen var fedtfinneklipped eller Carlin-mærket, og dermed stammede fra smoltudsætningerne eller var registreret ved tidligere års befiskninger. I alt blev der mærket 4.936 havørred med Carlin-mærker ved efterårets befiskninger (Tabel 4.2).
Tabel 4.2: Antal havørreder mærket med Carlin-mærker ved efterårets befiskninger. Der er i Bilag B vist en tabeloversigt for længdefordeling.

<table>
<thead>
<tr>
<th>År</th>
<th>Antal mærket</th>
<th>Gennemsnitslængde (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>865</td>
<td>55,2</td>
</tr>
<tr>
<td>2002</td>
<td>897</td>
<td>56,2</td>
</tr>
<tr>
<td>2003</td>
<td>980</td>
<td>52,8</td>
</tr>
<tr>
<td>2004</td>
<td>1.001</td>
<td>54,6</td>
</tr>
<tr>
<td>2005</td>
<td>1.193</td>
<td>53,8</td>
</tr>
<tr>
<td>Samlet</td>
<td>4.936</td>
<td>54,4</td>
</tr>
</tbody>
</table>

4.4 Databehandling

4.4.1 Havørredbestandens sammensætning

Baseret på fangsterne fra efterårets elfiskeri er længdefordelingen opgjort for udsatte og vilde individuelt. Længdefordelingen for de to grupper er sammenlignet ved en Kolmogorov-Smirnov test.

4.4.2 Relativ overlevelse

Den relative overlevelse af vilde smolt sammenlignet med mundingsudsatte smolt er beregnet ud fra den relative andel af mundingsudsatte henholdsvis naturligt producerede fisk, der under efterårets elfiskeri blev registreret tilbage i vandløbet som gydefisk. Elfiskeriet er ikke 100 % effektivt, og det totale antal smolt, der vender tilbage for at gyde, kan derfor ikke beregnes. Men da elfiskeriet formentlig har den samme effektivitet for de to grupper (vilde og udsatte), afspejler fangsten den relative tilbagevendings rate (return-rate) for de to grupper. Den relative return-rate kan således bruges som et index for den forholdsmæssige overlevelse (relative overlevelse) mellem de to grupper af smolt (Jonsson & Jonsson, 2014). Fremgangsmåden for beregningen af den relative overlevelse er beskrevet nedenfor.

Først bestemmes return-rate baseret på fangsterne under elfiskeriet efter (1):

\[
R = \frac{C}{N_{smolt}}
\]

hvor R er return-rate, C antal havørred (enten vilde eller udsatte) fanget ved efterårets elfiskeri og \(N_{smolt}\) den årlige smoltproduktion fra naturlig gydning eller den årlige mundingsudsætning. Beregningen er foretaget individuelt for vilde (RV) og udsatte (RU) ørred. Forholdet mellem de to return-rater er bestemt efter (2):

\[
S_{rel} = \frac{R_V}{R_U}
\]

hvor \(S_{rel}\) angiver den relative værdi af vilde sammenlignet med udsatte smolt målt ved relative overlevelse.
Beregningerne er baseret på en naturlig produktion af smolt på 43.898 (95 % konfidensinterval 34.463-53.333) årligt, som blev bestemt ved opsætning af en smoltfælde nederst i Kolding Å i 2006 (Baktoft upublicerede data). Smoltudtrækket antages altså at have været konstant i hele undersøgelsesperioden. Der kan dog være udsving i smoltudtrækket fra år til år (se afsnit 6.2 under diskussion). Smoltfælden var i funktion fra 2. april 2006 til 10. juni 2006 og var placeret få meter opstrøms motorvejen, ca. 6 km fra mundingen (Figur 3.1). Med baggrund i habitatforholdene vurderes det, at smoltproduktionen nedstrøms smoltfældens placering har været ikke eksisterende eller uden betydning, og det antages derfor, at hele vandsystemets smoltproduktion er registreret i smoltfælden (Jørgensen, 2002; Mikkelsen, 2018).

Baseret på konfidensintervallet for det naturlige smoltudtræk og antallet af udsatte smolt er der beregnet en usikkerhed for den relative overlevelse (Srel). Den nedre grænse for Srel er således baseret på 53.333 vilde smolt og 10.844 udsatte smolt. Omvendt er den øvre grænse for Srel baseret på 34.463 vilde smolt og 14.270 udsatte smolt.

4.4.3 Flergangs-gydere

Andelen af havørred fra henholdsvis vilde og naturligt producerede smolt, der vender tilbage som flergangs-gyder er sammenlignet efter samme fremgangsmåde som smoltoverlevelsen efter (3):

\[S_{rel} = \frac{R_v}{R_u} \]

hvor S_{rel} angiver den relative overlevelse af havørred fra naturligt producerede henholdsvis udsatte smolt, R_v den registrerede andel af flergangs-gydere for vilde havørreder og R_u den registrerede andel af flergangs-gydere for havørreder fra smoltudsætningerne.

4.4.4 Lystfiskeri og vandringsruter
5. Resultater

5.1 Havørredbestandens sammensætning

Fangsterne fra efterårets befiskninger viser, at havørredbestanden i Kolding Å er domineret af vilde fisk (Figur 5.1). Mundingsudsatte smolt udgjorde samlet for perioden 2001-2005 ca. 10 % af fangsten, men varierede mellem 7-15 % fra år til år.

Figur 5.1: Oversigt over antallet af henholdsvis naturligt producerede og udsatte (fedtfinneklikppede) havørred fanget ved efterårets elfiskeri i Kolding Å-systemet.

Længdefordelingen af alle havørred fanget ved efterårets befiskninger fordelt på vilde og udsatte er vist i Figur 5.2. Langt de fleste havørreder var 45-60 cm, en mindre andel var 30-45 cm og 60-80 cm, og kun få var større eller mindre end dette. Den mindste målte 23 cm og den længste 100 cm. Længdefordelingen for wilde og udsatte er signifikant forskellig (KS-test (D)=0,21; P<0,05). Dette kommer til udtryk ved, at der blandt de vilde havørred var en større andel af fiskene, der var under 50 cm, hvorimod der hos de udsatte ørreder var en større andel mellem 60-85 cm. For de store "trofæfisk" større end 85 blev der blot registreret to fra udsætningerne, hvorimod der blev registreret 35 fra naturlig produktion. Blandt de vilde havørred udgjorde fisk større end 85 cm 0,8 % af fangsterne, hvorimod de hos de udsatte kun udgjorde 0,4 % af fangsterne.

Havørrederne blev ved elfiskeriet kønsbestemt. For vilde havørred var fordelingen mellem hanner og hunner 1:3,3. Det vil sige, at der for hver han var over tre hunner. For havørred fra mundingsudsætningerne var kønsration 1:2,7 mellem hanner og hunner. Der kunne ikke påvises en signifikant forskel i kønsrationen mellem de to grupper ($\chi^2=3,6; df=1; P=0,056$). Ses der på de enkelte år alene, kunne der påvises en signifikant forskel i 2003 ($\chi^2=9,8; df=1; P=0,002$) og 2004 ($\chi^2=4,59; df=1; P=0,030$).
5.2 Relativ overlevelse

Den relative return-rate for udsatte og vilde smolt, samt forholdet i mellem disse, er vist i Figur 5.3. Generelt blev der under efterårets elfiskeri efter gydevandrende havørred genfanget meget få af de udsatte smolt, og der er i alle årene registreret en signifikant højere relativ return-rate for vilde smolt (Tabel 5.1). Forholdet mellem den relative return-rate for vilde og udsatte angiver den relative overlevelse (S_{rel}). Den relative overlevelse viser hvor meget højere overlevelsen har været for vilde ørreder sammenlignet med udsatte (Figur 5.3).
Tabel 5.1: Den relative return-rate fra smolt til gydemoden havørred er sammenlignet for vilde og udsatte smolt ved en χ^2-test. Tabellen viser smoltudtrækket af henholdsvis vilde (estimeret) og udsatte smolt, samt fangsten af gydemodne havørreder ved elfiskeriet for hvert år 2001-2005, relativ return-rate (%) og testresultatet fra χ^2-testen. Den relative return-rate er beregnet som beskrevet i afsnit 4.4.2.

<table>
<thead>
<tr>
<th>År</th>
<th>Naturlige</th>
<th></th>
<th></th>
<th>Udsatte</th>
<th></th>
<th></th>
<th>χ^2-test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Smolt</td>
<td>Fangst</td>
<td>Relativ return-rate (%)</td>
<td>Smolt</td>
<td>Fangst</td>
<td>Relativ return-rate (%)</td>
<td>χ^2-værdi</td>
</tr>
<tr>
<td>2001</td>
<td>43.898</td>
<td>792</td>
<td>1,80 %</td>
<td>12.557</td>
<td>73</td>
<td>0,58 %</td>
<td>95,5</td>
</tr>
<tr>
<td>2002</td>
<td>43.898</td>
<td>872</td>
<td>1,99 %</td>
<td>12.557</td>
<td>78</td>
<td>0,62 %</td>
<td>108,6</td>
</tr>
<tr>
<td>2003</td>
<td>43.898</td>
<td>995</td>
<td>2,27 %</td>
<td>12.557</td>
<td>80</td>
<td>0,64 %</td>
<td>137,1</td>
</tr>
<tr>
<td>2004</td>
<td>43.898</td>
<td>902</td>
<td>2,05 %</td>
<td>12.557</td>
<td>162</td>
<td>1,29 %</td>
<td>30</td>
</tr>
<tr>
<td>2005</td>
<td>43.898</td>
<td>1108</td>
<td>2,52 %</td>
<td>12.557</td>
<td>150</td>
<td>1,19 %</td>
<td>77,7</td>
</tr>
<tr>
<td>Sum</td>
<td>219.490</td>
<td>4.669</td>
<td>2,13 %</td>
<td>62.785</td>
<td>543</td>
<td>0,86 %</td>
<td>429,3</td>
</tr>
</tbody>
</table>

1: Det gennemsnitlige antal smolt udsat i perioden 1998-2004 er anvendt i beregningen, se afsnit 4.4.2

I 2004, hvor det laveste forhold blev registreret, var overlevelsen for vilde smolt 1,6 gange højere end for udsatte smolt og i 2003, hvor det højeste forhold blev registreret, var den 3,6 (Figur 5.3). Baseret på fangsterne fra hele undersøgelsesperioden 2001-2005 er forholdet 2,5 (2,3-2,7). Sandsynligheden for, at en vild smolt overlevede opholdet i saltvand og vendte tilbage som gydefisk, var således 2,5 gange højere end for udsatte smolt.

Figur 5.3: Oversigt over den relative return-rate (95 % konfidensinterval angivet) for henholdsvis naturligt producerede (vilde) og mundingsudsatte smolt (udsatte). Den relative overlevelse er angivet under søjlerne med usikkerheder i parentes. Værdierne i figuren er baseret på en naturlig smoltproduktion på 43.898 årligt (se afsnit 4.4.2).
5.3 Flergangs-gydere

Den unikke kode på Carlin-mærkerne gør det muligt at genkende gydefisk, der tidligere har været oppe for at gyde (flergangs-gydere). Ud af de 4.936 Carlin-mærkede havørred blev der registreret 229 flergangs-gydere. Af disse blev 27 registreret på gydevandring tre gange og heraf 2 fire gange (Tabel 5.2). Det skal bemærkes, at det ikke vides om havørrederne ved mærkning var på deres første gydevandring, hvorfor antallet af registrerede gydevandringer er et minimumestimat. Antallet af flergangs-gydere for de enkelte år er vist i Bilag D.

<table>
<thead>
<tr>
<th>Gydevandring</th>
<th>Wilde</th>
<th>Udsatte</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.427</td>
<td>509</td>
<td>4.936</td>
</tr>
<tr>
<td>2</td>
<td>215</td>
<td>14</td>
<td>229</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Den procentmæssige andel af de mærkede havørred, der blev registreret som flergangs-gydere for henholdsvis vilde og udsatte samt forholdet i mellem disse for de fire mærkeår 2001-2004, er vist i Figur 5.4. Andelen af flergangs-gydere varierede for vilde havørreder mellem 4,4 % - 9,2 % og for havørred fra udsættninger mellem 0,0 % - 5,5 %.

Det mest retvisende billede fås for mærkeårene 2001-2002, da havørrederne, der blev mærket ved befiskningerne i 2001-2002, i en længere periode (minimum 3 år), har haft mulighed for at blive registreret som flergangs-gydere. En sammenligning af vilde og udsatte for årene 2001 og 2002 viser, at henholdsvis 1,4 og 1,7 gange flere vilde ørreder blev genfanget som flergangs-gydere under befiskningerne. Gennemsnitligt var der således for fiskene mærket som havørred i perioden 2001-2002 1,55 gange flere vilde ørreder end udsatte, der blev registreret som flergangs-gyder frem til den sidste befiskning i 2005. Med andre ord returnerede 55 % flere vilde havørred som flergangs-gydere. Der kan dog ikke påvises en signifikant forskel i andelen af flergangs-gyder mellem udsatte og vilde for 2001 ($\chi^2=0,49; df=1; P=0,5$) og 2002 ($\chi^2=1,2; df=1; P=0,27$) individuelt eller kombineret ($\chi^2=1,65; df=1; P=0,2$).

5.4 Lystfiskeri og vandringsruter

Der er samlet indrapporteret 992 genfangster eller fund af Carlin-mærker. 69 % af de indrapporterede Carlinmærker er fanget ved lystfiskeri. En mindre del af ørrederne blev fanget i faststående redskaber, nogle få fundet døde og én enkelt fanget ved undervands jagt (UV-jagt) (Figur 5.5). For 177 (18 %) af de indrapporterede fangster var det ikke været muligt at kortlægge skæbnen.

![Figur 5.5: Skæbne for de Carlin-mærkede havørred og smolt, hvor Carlin-mærket ved senere genfangst eller -fund er indrapporteret til DTU Aqua.](image-url)

I det følgende afsnit vil de indrapporterede lystfiskerfangster blive gennemgået. Der blev ved lystfiskeri til dels praktiseret catch & release (genudsættning efter fangst), og af 672 lystfiskerfangede havørred blev 105 genudsat. Syv af disse blev genfanget ved lystfiskeri senere igen, den ene to gange. Der er således i alt indrapporteret 680 lystfiskerfanger fordelt på 672 individuelle ørredindivider frem til 2008.
Af 4.936 havørreder Carlin-mærket som voksne havørred under gydevandring i Kolding Å, blev 331 (6,7 %) senere genfanget og indrapporteret af lystfiskere. En stor andel (minimum 75 %) af genfangsterne fandt sted allerede inden for 12 måneder og 95 % af genfangsterne fandt sted indenfor 30 måneder (Figur 5.6). I ferskvand blev 135 (ca. 40 %) fanget, herunder 126 i Kolding Å, syv i Vejle Å, en i Bygholm Å og en i Dalby Mølle Bæk. De resterende 194 (ca. 60 %) blev fanget i saltvand, de fleste i en sydlig retning for udløbet af Kolding Å ned til den sydlige del af Lillebælt (Figur 5.7).

Af ca. 9.000 Carlin-mærkede smolt fra mundingsudsætningerne blev der fanget og indrapporteret 349 (3,9 %) af lystfiskere. Den tidsmæssige fordeling af fangsterne efter mærkning ses i Figur 5.8. 286 (ca. 82 %) blev fanget i ferskvand, heraf næsten alle (bortset fra 10) som undermålere få måneder efter smoltudsætningerne. Der blev for smoltudsætningerne også registreret enkelte strejfere til andre vandløb (3 i Vejle Å og 1 i Fuglebæk Kanal på Sjælland). Blot 63 (ca. 18 %) blev fanget i saltvand. Frasorteres fangsterne fra ferskvand de første måneder efter udsætning, blev der af alle de Carlin-mærkede smolt fra mundingsudsætningerne blot genfanget 73 (< 1 %) ved lystfiskeri. Trods de forholdsvis få fangster i saltvand, viser resultaterne tydeligt, at de mundingsudsatte smolt i saltvand genfanges længere væk fra hjemvandløbet end havørrederne, der i højere grad genfanges i nærområdet af deres gydevandløb, Kolding Å-systemet (Figur 5.7).
Figur 5.7: Geografisk lokalitet for lystfiskerfangster af Carlin-mærkede havørred og smolt.

Figur 5.8: Kumulativ månedsopgørelse over fangsttidspunktet for Carlin-mærkede mundingsudsatte smolt. X-aksen viser antal måneder efter mærkning og Y-aksen hvor stor en andel af genfangsterne, der er fanget i den pågældende måned.
Der var stor variation mellem årene i antallet af de Carlin-mærkede smolt, der blev fanget i ferskvand. I 2003 blev der således indrapporteret betydelig flere fangster fra Kolding Å (Figur 5.9). Henover sommeren 2003 blev det tydeligt, at der, kort efter mundingsudsætningen af smolt, blev udøvet et målrettet fiskeri efter smoltene med de dusør-givende Carlin-mærker. For eksempel indsendte én lystfisker alene 87 mærker, og der var allerede inden udgangen af april indrapporteret 216 genfangster svarende til 90 % af alle fangster indrapporteret i 2003 (Figur 5.8). Af ca. 3.000 Carlin-mærkede smolt udgik således 7 % af de udsatte smolt fra forsøget i 2003 kort efter udsætning.

I 2002 blev der inden udgangen af april indrapporteret 41 genfangster svarende til 56 % af alle genfangster fra udsætningen i dette år. De 41 fangster udgør dog kun en lille andel af de ca. 3.000 mærkede i 2002, hvorfor blot 1,4 % udgik af forsøget kort efter udsætning.

I 2004 blev der informeret om, at kun fisk fanget og indrapporter efter 1. juni var dusør-givende, hvilket medvirked til, at den første genfangst blev indrapporteret i juni, og blot 9 genfangster var indrapporteret ved udgangen af september.

Trods den store variation i antallet af fangster fra ferskvand er der alle tre år genfanget under 1 % af de Carlin-mærkede smolt i saltvand (Figur 5.9).

![Diagram](image)

Figur 5.9: Andelen af Carlin-mærkede smolt fra mundingsudsætningerne, der efterfølgende er genfanget og indrapporteret af lystfiskere. Figuren angiver hvor stor en del, af de 3.000 Carlin-mærkede smolt fra hvert mærkeår, der efterfølgende er fanget i henholdsvis ferskvand og saltvand.

Ses der bort fra fangster under mindstemålet på 40 cm, er lystfiskerfangsterne fra mundingsudsætningerne meget begrænset (Figur 5.10). Det samme gælder ved efterårets elfiskeri, hvor kun 18 af de ca. 9.000 Carlin-mærkede smolt fra mundingsudsætningerne blev genfanget som gydevandrende havørred (Bilag D).
Figur 5.10: Antallet af mundingsudsatte smolt med Carlin-mærker (ca. 3.000 hvert år), der efterfølgende ved en størrelse på 40 cm eller derover blev genfanget og indrapporteret ved lystfiskeri.

5.5 Effekten af mærkning

<table>
<thead>
<tr>
<th></th>
<th>Kun bedøvet</th>
<th>Fedtfinneklip af KSF</th>
<th>Fedtfinneklip af DFU</th>
<th>Fedtfinneklip + Carlin-mærke</th>
<th>Carlin-mærke</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mærket</td>
<td>1.500</td>
<td>7.000</td>
<td>1.500</td>
<td>1.498</td>
<td>1.499</td>
<td>12.997</td>
</tr>
<tr>
<td>Døde (N)</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Døde (%)</td>
<td>0,13 %</td>
<td>0,13 %</td>
<td>0,13 %</td>
<td>0,13 %</td>
<td>0,07 %</td>
<td>0,12 %</td>
</tr>
</tbody>
</table>
6. Diskussion

6.1 Effekten af mærkning

Foruden effekten af en øget naturlig dødelighed blev der, for de Carlin-mærkede smolt, registreret en merdødelighed i ferskvand som følge af målrettet fiskeri kort efter udsætning. Det målrettede fiskeri fandt sted i 2003 og forårsagede en forholdsvis beskeden merdødelighed på 7 % for dette års smoltudsætning. Baseret på længdevæksten (Bilag E) og længdefordelingen (Figur 5.2) tyder det på, at havørredbestanden i Kolding Å er baseret på minimum fem årgange. Da Carlin-mærkningen kun er foretaget i en periode på tre år, og det målrettede fiskeri blot fandt sted i 2003, antages effekten af det målrettede fiskeri derfor at være uden betydning for det samlede resultat.

Både fedtfinkeklipning og Carlin-mærkning blev foretaget af erfarne medarbejdere fra DTU Aqua, og selve processen antages derfor ikke at have ledt til en øget dødelighed efter udsætning.
6.2 Smoltoverlevelse

Resultaterne fra undersøgelsen viser, at smoltudsætningen i Kolding Å har haft en relativ beskeden betydning for havørredbestanden, der i høj grad er domineret af naturligt producerede fisk. Dette må dels tilskrives den store naturlige smoltproduktion, men også at de wilde smolt overlever væsentlig bedre end de udsatte.

Resultatet er ikke enestående; en række andre studier, der har sammenlignet overlevelsen mellem udsatte F1 smolt (opdrættede fisk udklækket fra vildfisk) og naturligt producerede smolt fra laks og ørred, viser at overlevelsen er mellem 3 og 7,5 gange højere for naturligt producerede smolt (Jonsson et al., 2003; Saloniemi et al., 2004; Schwinn et al., 2017), og at forskellen i overlevelsen både gælder opholdet i ferskvand (Serrano et al., 2009; Aarestrup et al., 2014) og i det marine miljø (Jonsson & Jonsson, 2014).

Den betydeligt højere overlevelse for vilde smolt kan forklares med en større erfaring i at begå sig i naturlige omgivelser. Foto: Bernt René Voss Grimm.

Årsagen til den lavere overlevelse for udsatte ørreder kan primært forklares med en ændret adfærd. Ørredens adfærd er stærkt påvirket af dens livserfaring i de tidlige livsfaser (Shumway, 1999; Huntingford, 2004). På dambrug er forholdene meget konstante og langt fra naturlige; der er begrænset fysisk variation, en uanvendlig høj tæthed af fisk, fravær af prædatorer og næsten ingen naturlig føde (Johnsson et al., 2014). Forholdene på dambrugene forhinder derfor ørreden i at tilpasse sig livet ude i de naturlige vandløb. I vandløbene skal ørrederne undgå prædatorer, interagere med andre fisk, finde føde og finde de bedst egne standpladser i et fysisk varieret miljø. I dambrugene får ørreden således ikke samme mulighed for at lære disse færdigheder, og det forringer evnen til at overleve i naturen (Olla et al., 1998; Johnsson et al., 2014).

Foruden de adfærdsmæssige betingelser kan udsatte smolt adskille sig fra vilde ved forringet svømmeperformance (Pedersen et al., 2008), højere fedtkoncentration i muskelvævet (Larsson et al., 2012), evnen til at undergå fysiologisk tilpasning til livet i saltvand (Sundell et al., 1998) og evnen til at "home" til udsætningsvandløbet. Jonsson & Jonsson (2014) har vist, at return-raten for udsatte smolt sammenlignet med vilde er lavere, hvis smoltene bliver udsat i et andet vandløb end deres oprindelsesvandløb, og at denne tendens er tydeligere jo længere væk fra oprindelsesvandløbet smoltene bliver udsat. De udsatte smolt fra Kolding Å var ikke alene fra gydefisk indfanget i Kolding Å, de var også opdrættet på Hvilested Dambrug, der havde sit vandindtag i Kolding Å. Af denne grund antages det, at evnen til at "home" har været ens for de udsatte og
vilde smolt. Der er for begge grupper indrapporteret få strejfere, hvilket indikerer at evnen til at "home" formeltlig har været ens for de to grupper i Kolding Å.

6.3 Flergangs-gydere

<table>
<thead>
<tr>
<th>Vilde smolt</th>
<th>Mundingsudsatte F1 smolt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Saltvand</td>
<td>Saltvand</td>
</tr>
<tr>
<td>Return-rate 20%</td>
<td>Return-rate 8%</td>
</tr>
<tr>
<td>200</td>
<td>80</td>
</tr>
<tr>
<td>Saltvand</td>
<td>Saltvand</td>
</tr>
<tr>
<td>Return-rate 30%</td>
<td>Return-rate 19%</td>
</tr>
<tr>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>Saltvand</td>
<td>Saltvand</td>
</tr>
<tr>
<td>Return-rate 30%</td>
<td>Return-rate 19%</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
</tr>
</tbody>
</table>

Figur 6.1: Figur er en model til sammenligning af, hvor mange gydefisk 1000 vilde smolt henholdsvis 1000 udsatte F1 smolt vil producere. Der bliver forholdsvis færre af de udsatte ørreder blandt flergangs-gydere således, at gydefiskene og særligt de store flergangs-gydere er domineret af vildefisk. Tallene i figur er baseret på return-rate på op til 20% for vilde smolt (Birnie-Gauvin & Aarestrup, 2019) og en return-rate på 30% for vilde nedfaldfisk (Aarestrup et al., 2015) samt resultaterne fra nærværende undersøgelse.

6.4 Lystfiskeri og vandringsruter

Kompenseres der med denne omregningsfaktor var den reelle genfangst i stedet 11 % for havørreder mærket i Kolding Å og 6,4 % for udsatte smolt. En stor andel af de udsatte smolt blev dog fanger ved målrettet fiskeri i Kolding Å, hvorfor det antages at 100 % af disse blev indrapporteret. Den faktiske genfangst af smoltene var derfor sandsynligvis lavere end 6,4 %. Pedersen et al. (2006) fandt ved en tilsvarende undersøgelse i Karup Å ligeledes, at der blev genfanget en større andel af mærkede voksne havørreder end mærkede udsatte smolt, og at der kun blev genfanget få af de udsatte smolt i saltvand. Den højere genfangst af voksne havørreder kan sandsynligvis forklares ved, at de sammenlignet med smolt har lettere ved at undgå prædatorer (Jepsen et al., 2006; Koed et al., 2006), og at de allerede fra starten har en størrelse, der gør dem til mål for fiskeriet. Herudover vil dødeligheden ved håndtering og Carlin-mærkningen alt andet lige være mindre (Berg & Berg, 1987).
Den tilgængelige viden om havørreders vandring i saltvand er meget begrænset, men studier fra Limfjorden har vist, at havørreder fra Karup Å og Simested Å i lighed med havørrederne fra Kolding Å vandrer mod syd og sydøst til Lillebælt og den vestlige del af Østersøen (Kristiansen & Rasmussen, 1993; Pedersen et al., 2006; Kristensen et al., 2018). Genetiske analyser bekræfter, at der blandt havørreder i Bælthavet og den vestlige del af Østersøen er en relativ høj tilstedeværelse af havørreder fra Limfjorden (Bekkevold, upublicerede data). Nye resultater viser desuden, at havørrederne fra Karup Å i løbet af forholdsvis få dage kan svømme den lange tur fra Limfjorden til Sjælland. Således fandt Kristensen et al. (2019) at to havørreder på 51 og 65 cm svømmende fra den østlige udmunding af Limfjorden til Roskilde Fjord på henholdsvis 16 og 6 dage.

Havørrederne fra Kolding Å vandrer langt til glæde for lystfiskere på både Fyn og Sjælland, men også i Tyskland, Sverige og på Bornhold er der gjort fangster af havørreder fra Kolding Å.

Resultaterne fra Kolding Å indikerer, at de udsatte smolt vandrer længere væk fra deres hjemvandløb, Kolding Å, end de voksne havørreder. Der er ikke gjort de samme observationer ved undersøgelserne i Limfjorden. Her blev smolt og voksne havørreder indrapporteret over den samme afstand fra mundingen (Pedersen et al., 2006). Det samme gælder en norsk undersøgelse, men her var vandringshastigheden dog højere for smolt end voksne individer (Berg & Berg, 1987b). Nye resultater fra Limfjorden med akustiske sendere viser, at smoltene vandrede mod Limfjordens munding så snart de nåede saltvand, hvorimod de voksne ørreder...
opholdt sig i området uden for mundingen nogle uger inden de vandrede (Kristensen et al., 2019). Det er sandsynligt, at det samme er tilfældet for ørrederne fra Kolding Å. At smoltene vandrer længere væk fra hjemvandløbet kan skyldes, at de voksne havørreder kun opholder sig kort tid i havet inden de igen vandrer ind i vandløbet for at gyde, mens smoltene, for de flestes vedkommende, vil forblive i havet overmindst to vækstsæsoner og dermed har mere tid til at spredes.

Der er fortsat meget begrænset kendskab til havørredens vandring i saltvand, hvorfor der er brug for meget mere viden omkring de østjyske havørredbestandes vandringsmønstre, for at kunne forklare hvorfor nogle af bestandene vandrer mod sydøst til mere fersk vand.
7. Tak til

Særlig stor tak til alle de frivillige fra Kolding Sportsfiskerforening, der i stort antal mødte op for at hjælpe med fangst og mærkning af fiskene under efterårets elfiskeri, samt som forberedelse til undersøgelsen hjalp med mærkning af smolt inden udsætning. Der skal også lyde et stort tak til personalet på Hvilested Dambrug, alle lodsejere og Kolding Kommune.
8. Referencer

Brookes, A. (1988). The distribution and management of channelled streams in Denmark. Regulated Rivers Research and Management 1, 3-16

Bilag A – Længdefordeling af Carlin-mærkede smolt

Bilag A viser længdefordelingen for alle Carlin-mærkede smolt. Den nedre grænse for smolt til Carlin-
mærkning blev fastsat til 15 cm. Smoltene til udsætning var dog generelt store og der forekom kun enkelte
under 15 cm. Længdefordelingen afspejler derfor ikke blot længdefordelingen for de Carlin-mærkede smolt,
men i høj grad også længdefordelingen for de resterende smolt af den årlige udsætning på 13.000 styk.

<table>
<thead>
<tr>
<th>Længde (cm)</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2</td>
<td>9</td>
<td>49</td>
</tr>
<tr>
<td>15,5</td>
<td>8</td>
<td>118</td>
<td>114</td>
</tr>
<tr>
<td>16</td>
<td>23</td>
<td>302</td>
<td>201</td>
</tr>
<tr>
<td>16,5</td>
<td>46</td>
<td>402</td>
<td>263</td>
</tr>
<tr>
<td>17</td>
<td>144</td>
<td>581</td>
<td>377</td>
</tr>
<tr>
<td>17,5</td>
<td>264</td>
<td>498</td>
<td>428</td>
</tr>
<tr>
<td>18</td>
<td>439</td>
<td>434</td>
<td>470</td>
</tr>
<tr>
<td>18,5</td>
<td>433</td>
<td>275</td>
<td>315</td>
</tr>
<tr>
<td>19</td>
<td>491</td>
<td>206</td>
<td>273</td>
</tr>
<tr>
<td>19,5</td>
<td>352</td>
<td>91</td>
<td>220</td>
</tr>
<tr>
<td>20</td>
<td>285</td>
<td>54</td>
<td>150</td>
</tr>
<tr>
<td>20,5</td>
<td>199</td>
<td>16</td>
<td>72</td>
</tr>
<tr>
<td>21</td>
<td>149</td>
<td>8</td>
<td>41</td>
</tr>
<tr>
<td>21,5</td>
<td>67</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>22</td>
<td>49</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>22,5</td>
<td>22</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>23,5</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24,5</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sum</td>
<td>2995</td>
<td>2994</td>
<td>2998</td>
</tr>
</tbody>
</table>
Bilag B – Længdefordelingen af Carlin-mærkede havørred

Bilag B viser længdefordeling for alle havørred, der blev fanget og Carlin-mærket ved efterårets elfiskeri.

<table>
<thead>
<tr>
<th>Længde (cm)</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>29</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>30</td>
<td>7</td>
<td>13</td>
<td>4</td>
<td>12</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>31</td>
<td>13</td>
<td>13</td>
<td>8</td>
<td>18</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>32</td>
<td>9</td>
<td>19</td>
<td>8</td>
<td>20</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>33</td>
<td>13</td>
<td>18</td>
<td>4</td>
<td></td>
<td>14</td>
<td>54</td>
</tr>
<tr>
<td>34</td>
<td>19</td>
<td>1</td>
<td>16</td>
<td>10</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>35</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>25</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>36</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>37</td>
<td>17</td>
<td>10</td>
<td>9</td>
<td>13</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>38</td>
<td>7</td>
<td>17</td>
<td>8</td>
<td>16</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>39</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>13</td>
<td>16</td>
<td>48</td>
</tr>
<tr>
<td>40</td>
<td>9</td>
<td>15</td>
<td>16</td>
<td>6</td>
<td>14</td>
<td>60</td>
</tr>
<tr>
<td>41</td>
<td>5</td>
<td>8</td>
<td>15</td>
<td>16</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>42</td>
<td>10</td>
<td>24</td>
<td>15</td>
<td>20</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>43</td>
<td>17</td>
<td>25</td>
<td>19</td>
<td>30</td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>44</td>
<td>19</td>
<td>35</td>
<td>26</td>
<td>18</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>45</td>
<td>23</td>
<td>39</td>
<td>41</td>
<td>33</td>
<td></td>
<td>157</td>
</tr>
<tr>
<td>46</td>
<td>24</td>
<td>45</td>
<td>45</td>
<td>36</td>
<td></td>
<td>184</td>
</tr>
<tr>
<td>47</td>
<td>26</td>
<td>35</td>
<td>37</td>
<td>24</td>
<td></td>
<td>149</td>
</tr>
<tr>
<td>48</td>
<td>31</td>
<td>25</td>
<td>34</td>
<td>41</td>
<td></td>
<td>165</td>
</tr>
<tr>
<td>49</td>
<td>32</td>
<td>36</td>
<td>39</td>
<td>43</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>50</td>
<td>13</td>
<td>39</td>
<td>39</td>
<td>38</td>
<td></td>
<td>156</td>
</tr>
<tr>
<td>51</td>
<td>22</td>
<td>32</td>
<td>38</td>
<td>38</td>
<td></td>
<td>158</td>
</tr>
<tr>
<td>52</td>
<td>20</td>
<td>25</td>
<td>40</td>
<td>35</td>
<td></td>
<td>161</td>
</tr>
<tr>
<td>53</td>
<td>29</td>
<td>33</td>
<td>37</td>
<td>32</td>
<td></td>
<td>167</td>
</tr>
<tr>
<td>54</td>
<td>35</td>
<td>33</td>
<td>34</td>
<td>46</td>
<td></td>
<td>186</td>
</tr>
<tr>
<td>55</td>
<td>18</td>
<td>22</td>
<td>38</td>
<td>37</td>
<td></td>
<td>157</td>
</tr>
<tr>
<td>56</td>
<td>34</td>
<td>19</td>
<td>35</td>
<td>38</td>
<td></td>
<td>164</td>
</tr>
<tr>
<td>57</td>
<td>25</td>
<td>19</td>
<td>31</td>
<td>46</td>
<td></td>
<td>146</td>
</tr>
<tr>
<td>58</td>
<td>27</td>
<td>15</td>
<td>35</td>
<td>47</td>
<td></td>
<td>155</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>59</td>
<td>17</td>
<td>45</td>
<td>15</td>
<td>21</td>
<td>31</td>
<td>129</td>
</tr>
<tr>
<td>60</td>
<td>22</td>
<td>31</td>
<td>14</td>
<td>17</td>
<td>28</td>
<td>112</td>
</tr>
<tr>
<td>61</td>
<td>18</td>
<td>12</td>
<td>16</td>
<td>13</td>
<td>22</td>
<td>81</td>
</tr>
<tr>
<td>62</td>
<td>17</td>
<td>8</td>
<td>18</td>
<td>9</td>
<td>18</td>
<td>70</td>
</tr>
<tr>
<td>63</td>
<td>17</td>
<td>15</td>
<td>7</td>
<td>6</td>
<td>14</td>
<td>59</td>
</tr>
<tr>
<td>64</td>
<td>12</td>
<td>8</td>
<td>10</td>
<td>18</td>
<td>21</td>
<td>69</td>
</tr>
<tr>
<td>65</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>13</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>66</td>
<td>13</td>
<td>7</td>
<td>6</td>
<td>11</td>
<td>22</td>
<td>59</td>
</tr>
<tr>
<td>67</td>
<td>15</td>
<td>10</td>
<td>7</td>
<td>12</td>
<td>15</td>
<td>59</td>
</tr>
<tr>
<td>68</td>
<td>11</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>10</td>
<td>63</td>
</tr>
<tr>
<td>69</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>14</td>
<td>9</td>
<td>49</td>
</tr>
<tr>
<td>70</td>
<td>14</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>66</td>
</tr>
<tr>
<td>71</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>15</td>
<td>56</td>
</tr>
<tr>
<td>72</td>
<td>18</td>
<td>10</td>
<td>13</td>
<td>13</td>
<td>19</td>
<td>73</td>
</tr>
<tr>
<td>73</td>
<td>5</td>
<td>14</td>
<td>8</td>
<td>12</td>
<td>7</td>
<td>46</td>
</tr>
<tr>
<td>74</td>
<td>8</td>
<td>14</td>
<td>18</td>
<td>9</td>
<td>16</td>
<td>65</td>
</tr>
<tr>
<td>75</td>
<td>15</td>
<td>19</td>
<td>17</td>
<td>16</td>
<td>14</td>
<td>81</td>
</tr>
<tr>
<td>76</td>
<td>11</td>
<td>6</td>
<td>12</td>
<td>14</td>
<td>9</td>
<td>52</td>
</tr>
<tr>
<td>77</td>
<td>11</td>
<td>10</td>
<td>20</td>
<td>15</td>
<td>16</td>
<td>72</td>
</tr>
<tr>
<td>78</td>
<td>12</td>
<td>11</td>
<td>13</td>
<td>10</td>
<td>13</td>
<td>59</td>
</tr>
<tr>
<td>79</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>15</td>
<td>46</td>
</tr>
<tr>
<td>80</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>37</td>
</tr>
<tr>
<td>81</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>82</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>83</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>84</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>85</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>86</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>87</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>5</td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ukendt længde</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>865</td>
<td>897</td>
<td>980</td>
<td>1001</td>
<td>1193</td>
<td>4936</td>
</tr>
</tbody>
</table>
Bilag C - Længdefordeling for havørredbestanden

Længdefordeling for alle havørred fanget ved efterårets elfiskeri 2001-2005 fordelt på havørred fra naturlig gydning (vilde) og fra smoltudsætningerne (udsatte).

Længdefordeling vilde havørred 2001

Længdefordeling vilde havørred 2002
Længdefordeling udsatte havørred 2004

Længdefordeling udsatte havørred 2005
Bilag D – Flergangs-gydere

Bilag D viser hvor mange gydevandringer der er registreret for henholdsvis wilde og udsatte ørred og hvor mange af disse, der senere blev registreret som flergangs-gydere. Tabel d.1 viser antal gydevandringer for fisk Carlin-mærket som voksne havørreder ved efterårets elfiskeri. Tabel d.2 viser antallet af gydevandringer for fiskene Carlin-mærket som smolt ved udsætning.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>1</td>
<td>792</td>
<td>73</td>
<td>865</td>
<td>12</td>
<td>1</td>
<td>13</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>823</td>
<td>74</td>
<td>897</td>
<td>69</td>
<td>4</td>
<td>73</td>
<td>7</td>
<td>7</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>907</td>
<td>73</td>
<td>980</td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>37</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>847</td>
<td>154</td>
<td>1001</td>
<td></td>
<td></td>
<td></td>
<td>1001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>6</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>1</td>
<td></td>
<td>1058</td>
<td>135</td>
<td>1193</td>
<td>1193</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>792</td>
<td>73</td>
<td>865</td>
<td>872</td>
<td>77</td>
<td>949</td>
<td>995</td>
<td>79</td>
<td>1074</td>
<td>902</td>
<td>155</td>
<td>1057</td>
<td>1108</td>
<td>141</td>
<td>1249</td>
<td>5194</td>
<td></td>
</tr>
</tbody>
</table>

48

<table>
<thead>
<tr>
<th>Udsætningsår</th>
<th>Gydevandring nr.</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vild</td>
<td>Udsat</td>
<td>Total</td>
<td>Vild</td>
<td>Udsat</td>
</tr>
<tr>
<td>2002</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2003</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2004</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

49
Bilag E – Vækstrate

De mange genfangster har gjort det muligt at beregne den årlige vækstrate for gydevandrende havørreder i Kolding Å.

Den specifikke vækstrate (G) er beregnet for alle flergangs-gydere, der er fanget to på hinanden følgende år. Den beregnede vækst beskriver således væksten mellem to gydninger for kønsmodne havørreder. Væksten er beregnet for perioden mellem to efterårsbefiskninger (295-428 dage) efter følgende formel:

\[
G = \frac{\ln(L_{t+1}) - \ln(L_t)}{\Delta t}
\]

hvor G angiver den daglige længdevækst, \(L_t\) er længden ved mærkning (eller genfangst hvis fisken efterfølgende er fanget igen), \(L_{t+1}\) længden ved genfangst det efterfølgende år og \(\Delta t\) antal dage mellem de to befiskninger. Væksten er efterfølgende omregnet til en årlig vækstrate (365 dage) og delt i længdegrupper af 10-centimeters intervaller. Længdegruppen er tildelt ud fra \(L_t\).

Figur e.1: Længdevækst (95% konfidensinterval) for flergangs-gydere mellem to på hinanden følgende gydninger. 30-40 cm n=11, 40-50 cm n=53, 50-60 cm n=72, 60-70 cm n=59, 70-80 cm n=34, 80-90 cm n=8.

Figur e.1 viser, at længdetilvæksten for mindre individer mellem 30-40 cm er ca. 10 cm pr. år efter gydningen, hvorefter længdevæksten aftager for større fisk.
Bilag F – Relativ overlevelse

Bilag F sammenligner den relative return-rate for udsatte og vilde smolt under antagelse af, at den naturlige smoltproduktion har været 21.809 i undersøgelsesperioden.

Figur f.1 viser de samme beregningerne som i afsnit 5.2, blot baseret på en naturlig smoltproduktion på 21.809 individer. Dette antal er baseret på bestandsanalyser udført i Kolding Å-systemet i 2001 under udarbejdelse af Planer for fiskepleje, dengang kaldet udsætningsplaner (Jørgensen, 2002). Beregningen forudsætter at 10 % af ½-års ørrederne overlever til smolt-stadiet.

Under antagelse af denne lavere naturlige smoltproduktion varierer forholdet mellem den relative overlevelse for vilde og udsatte fra 3,2 i 2004 op til 7,2 i 2003. Baseret på fangsterne fra hele perioden er forholdet 5,0. Værdien af vilde smolt er således fem gange højere end udsatte smolt, målt i relativ overlevelse.

![Figur f.1: Oversigt over den relative return-rate for henholdsvis naturligt producerede (vilde) og mundingsudsatte smolt (udsatte). 95 % konfidensintervaller er angivet på grafen for mundingsudsatte smolt. Forholdet mellem de to grupper (vilde/udsatte) er angivet under søjlerne med usikkerheder i parentes. Værdierne i grafen er baseret på en naturlig smoltproduktion på 21.809 årligt (se afsnit 3.6).]