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Abstract

Using energy principles, a thin-walled beam element is introduced for the analysis of beams with deformable cross-
sections that are prone to distortion. The beam element is based on previously attained semi-analytical displacement
solution modes of an advanced thin-walled beam model. The first-order beam element for linear analysis handles shear
deformations related to both Timoshenko and Mindlin-Reissner type deformations, warping effects of torsion, cross-
section distortion including associated warping effects, as well as the transverse displacement effect from normal stress.
The formulation can handle both open and closed cross-sections without special attention. The formulation of the
displacement solution modes and the stiffness integration of the products of the advanced displacement modes using the
Hadamard product are described. The paper also presents the transformations between modal degrees of freedom and
element displacement degrees of freedom. Four examples show the beam element capabilities and good agreement with
results obtained using the shell and solid elements of a commercial finite element program. The kinematic assumptions
that the thin-walled beam model accommodates leads to local shear stress transfer at corners. This transfer of shear
stresses is not normally seen in thin-walled beam formulations or shell models. However, the shear transfer is verified
through examination of a finite element model using solid elements.

Keywords: Thin-walled beams, beam element, distortional beam theory, shear deformations, corner shear

1. Introduction

Since the industrialisation of steel production in the
late nineteenth-century thin-walled metal members have
been utilised in structures such as bridges, buildings, aero-
planes and ships, see [1]. The main reason for this is the
high stiffness-to-weight ratio of the thin-walled members.
This led to the development of theories enabling analysis
and the assessment of such members since it was realised
that during flexure and torsion, the beams generated non-
negligible normal stresses due to warping displacements
of the cross-section. Vlasov introduced the well-known
one-dimensional thin-walled beam theory, [2]. With this
theory, the torsional warping effects of open thin-walled
beams were included. Kollbrunner & Hajdin [3] expanded
the theory to include cross-sections with closed cells. In
line with the development of the finite element method,
thin-walled beam elements were introduced having a total
of 14 degrees of freedom, see for example [4, 5]. The inclu-
sion of extra degrees of freedom was to handle the torque
and bimoment acting upon the member. However, such fi-
nite beam elements do not include the distortional effects
of the cross-section. Consequently, a thin-walled beam
formulation incorporating cross-sectional distortion is the
Generalised Beam Theory (GBT), which was introduced
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by Schardt in 1966 under the name "Verallgemeinerte
Technische Biegetheorie" (VTB) [6, 7]. Kollbrunner and
Hajdin describe a similar approach to the introduction of
a consistent distortional beam theory in [8]. Nonetheless,
with the research performed by Davies and co-workers,
GBT was spread outside the German-speaking academic
society [9, 10]. Since then, different academic groups have
contributed to its development – e.g. Simão & da Silva
[11], the group around Camotim [12, 13, 14, 15, 16, 17], or
by Ranzi and his colleges [18, 19] just to mention some of
the many contributors. The general idea of GBT is to rep-
resent and discretise the cross-section along the wall cen-
tre line to find distortional transverse displacement modes
that have orthogonal warping modes. The approximate
displacement modes are achieved solving specific eigen-
value problems related to the beam equilibrium equations.
Besides, each mode is affiliated to an axial amplitude func-
tion. Therefore, considering standard beam finite element
formulations, the axial variations affiliated to each cross-
sectional displacement field is assumed to be Hermite cubic
polynomials.

Alongside the development of GBT, other thin-walled
beam analysis methods were developed too. One of these
methods is the Finite Strip Method (FSM), Cheung [20].
Several versions of the original FSM formulation have been
presented, for example the constrained Finite Strip Method
(cFSM), by Ádány & Schafer [21, 22, 23]. The constraints
introduced, enables a subdivision of the displacements into
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specific displacement modes, which allows a modal decom-
position as in GBT. Both Ádány et al. [24] and Silvestre
et al. [15] give detailed comparisons of cFSM and GBT.
The approach toGeneralised Eigenvectors (GE), presented
by Genoese and co-workers [25, 26], was recently com-
pared to the GBT method by Garcea et al. [27]. The
GE method is very versatile due to the discretisation of
the cross-section using finite shell elements. On the other
hand, this discretisation increases the number of elements
compared to the method presented in this paper as well
as the GBT method. Besides, the GE method is oriented
towards anisotropic members, whereas the present theory
concerns isotropic material behaviour.

In the last decade, semi-analytical methods, which are
closely related to GBT, have been presented. In these
methods, the cross-section is discretised into wall elements
with local displacement interpolation. The beam solution
modes are found through an analytic solution of the equi-
librium equations related to the cross-sections. Among
others, this has been done by Jönsson & Andreassen [28],
and Vieira et al. [29, 30] who adapt the strong analyt-
ical approach of solving the beam differential equations.
Solutions to the coupled beam equilibrium equations are
deduced through the solution of a related quadratic eigen-
value problem. Both Jönsson & Andreassen [28] and Vieira
et al. [29, 30] introduce a wall element with nodal degrees
of freedom and displacements being interpolated by use of
standard "beam" type shape functions when they discre-
tise the cross-section. Hence, the cross-sectional displace-
ment fields are directly found as eigenvectors. Vieira et
al. [29, 30] use a spectral transformation to transform the
complex eigenvectors, whereas Jönsson & Andreassen [28]
as well as the method presented in this paper, directly use
the complex solution vectors with the associated complex
attenuation functions as beam displacement modes.

The present paper presents a novel formulation of a
beam element based on the semi-analytical thin-walled
beam theory introduced by the authors in [31]. The fun-
damental modes deduced in this paper are not identical,
but similar to the semi-analytical beam modes presented
by Vieira [32], they are, however, derived using a differ-
ent orthogonalisation approach. Using the theory pro-
posed by the authors, a coupled system of beam differen-
tial equilibrium equations is derived by taking variations
in the strain energy. The theory approximates the cross-
sectional displacement field by use of discrete wall elements
and uses exact analytical solution functions to express the
axial variation along the beam, which are deduced from
the related differential equilibrium equations. The so-
lution of the differential equations involves a decoupling
that leads to cross-sectional displacement fields with asso-
ciated solution functions that correspond to the amplitude
functions. The essential idea of this beam model is that
the formulation is based on approximated cross-sectional
displacement fields that have associated axial amplitude
functions, which are the exact analytical solutions of the
homogeneous beam differential equations. While knowing

the cross-sectional displacement fields and their associated
amplitude functions, it is possible to formulate a beam ele-
ment adopting these exact solution modes as interpolation
functions. In fact, with a linear combination of these pre-
established displacement modes, it is possible to develop a
beam element. The main and very important feature of the
presented method, when compared to GBT, is that GBT
uses Hermite polynomial functions to describe the axial
variation, whereas the present theory uses the exact solu-
tion functions and therefore a further discretisation with
multiple elements along the beam axis is not necessary.

Another essential feature of the beam model presented
here, is the use of generic wall elements having six de-
grees of freedom at each node. Consequently, it is pos-
sible to connect the beam end cross-section to other fi-
nite elements, e.g. finite shell elements. Accordingly, the
wall elements used to discretise the cross-section are dis-
crete straight wall elements. Both displacement degrees
of freedom, as well as rotational degrees of freedom, are
taken into account. Therefore, even with a coarse mesh
both global and local distortional modes become a part
of the solution space – a space containing cross-sectional
displacement fields that are found as solutions to the equi-
librium equations. These solutions are found through
the solution of the related polynomial eigenvalue problem.
From the eigenvalue problem, eigenvectors are extracted
as cross-sectional displacement fields with associated exact
axial amplitude functions depending on the eigenvalues. In
combination, a displacement field and an axial amplitude
function describe a beam displacement mode. The modes
are grouped into two families: those having eigenvalues
equal zero, and those having eigenvalues different from
zero. The former include global modes with polynomial
amplitudes of maximum third-order reflecting the twelve
fundamental beam displacement fields. In the latter case,
beam displacement modes with amplitudes having expo-
nential decays are considered. In these cases, the eigenval-
ues represent an inverse length scale parameter related to
the St. Venant principle through an axial decay effect.

2. The beam model

An arbitrary thin-walled beam element is located in a
global Cartesian coordinate system spanned by the axes
(X,Y, Z). The beam axis is assumed to be straight and
parallel to the Z-axis with the cross-sectional plane being
orthogonal to this, as illustrated in Figure 1. Furthermore,
a local, right-handed orthogonal coordinate system is in-
troduced in the cross-section with (n, s, z) as the normal,
tangential and axial directions.

2.1. Kinematics

The displacement of a material point within a beam el-
ement is given as a sum of cross-sectional displacement
fields multiplied by amplitude functions, which vary along
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Figure 1: Global and local Cartesian coordinate systems re-
garding a thin-walled beam

the longitudinal beam axis. The intensities of the ampli-
tude functions are determined by the constants of inte-
gration, which become the modal degrees of freedom of
the beam model. In other words, the displacements are
formulated in the three local coordinate directions un, us
and uz as a sum of m displacement fields where each dis-
placement field is referred to by index i. Hence, the three
displacements are given as:

un(s, z) =
m∑
i=1

win(s) ψi(z) ci

us(n, s, z) =
m∑
i=1

[
wis(s)− n win,s(s)

]
ψi(z) ci

uz(n, s, z) =
m∑
i=1

[
Ωi(s) + n αi(s)

]
ηi(z) ci

(1)

where win(s), wis(s), Ωi(s) and αi(s) are displacement
components of the interpolated cross-section displacement
mode i with reference to the mid-line of the wall elements.
The displacement formulation at hand uses a Kirchhoff
like displacement behaviour in the n, s-plane, a Mindlin-
Reissner like shear behaviour through the wall-thickness in
the n, z-plane combined with a Timoshenko like shear be-
haviour in the s, z-plane. For illustration purpose, Figure 2
illustrates the meaning of the different displacement com-
ponents. Derivatives with respect to n- and s-coordinates
are given as subscripts following a comma whereas axial
derivatives are denoted by a prime. The axial amplitude
functions that describe the axial variation of a given cross-
section displacement field are denoted ψi(z) and ηi(z).
The transverse displacements of a cross-section are asso-
ciated with the amplitude function ψ(z), whereas the am-
plitude function η(z) is related to the warping displace-
ments, which are displacements that are orthogonal to the
cross-sectional plane. This distinction between amplitude
functions has been chosen in order to keep a clearer rela-
tion of the kinematics in Equation (1) to the kinematics

of conventional beam theories. Therefore, the two inde-
pendent amplitude functions are used. Nonetheless, later,
during the solution of the differential equilibrium equa-
tions, the assumption: ψi(z) = ηi(z) from [31] is adopted.
A comment to the deformation formulations in Equation
(1) is that the intensity of each mode i is controlled by
the constant ci. These constants correspond to the modal
degrees of freedom and reflect the intensities of the am-
plitude functions belonging to each displacement mode in
the summation of modal displacements in Equation (1).

In order to determine natural cross-sectional displace-
ment fields, this theory discretises the cross-section into
straight wall elements. Each wall element has two nodes
with three translational degrees of freedom and three ro-
tational degrees of freedom. Accordingly, the twelve nodal
degrees of freedom related to a wall element are collected
in the column vectors velw

i and velΩ
i, respectively, with six

degrees of freedom in velw
i related to translational defor-

mations whereas the remaining six degrees of freedom are
collected in velΩ

i since they are related to warping deforma-
tions. Here and in the following, vectors and matrices will
be denoted by non-slanted, boldfaced, letters. The wall
element deformations are determined by use of linear in-
terpolation functions given in the row interpolation vectors
Ns(s) and Nα(s), and also cubic interpolation functions
given in the row vectors Nn(s) and NΩ(s) (see also [33]).
Now, considering a cross-sectional displacement field i, the
displacement vector components of a wall element may be
written in terms of interpolation vectors and nodal degrees
of freedom vectors as follows:

wis(s) = Ns(s) velw
i
, αi(s) = Nα(s) velΩ

i

win(s) = Nn(s) velw
i
, Ωi(s) = NΩ(s) velΩ

i
(2)

Due to the mode formulation, it is convenient to introduce
two wall element deformation vectors uelw(z) and uelΩ(z) as
the sum of all m displacement modes including the nodal
degrees of freedom vectors, the axial amplitude functions,
and the constants controlling the mode intensities. Hence,
the deformation vectors of a single wall element are com-
puted as the sum of m displacement modes as follows:

uelw(z) =
m∑
i=1

velw
i
ψi(z) ci

uelΩ(z) =
m∑
i=1

velΩ
i
ψi(z) ci

(3)

The interpolation vectors in Equation (2) are independent
of the specific displacement fields. Therefore, the inter-
polation vectors are the same for all modes with respect
to the same wall element. Consequently, for a single wall
element, the displacements in Equation (1) may be inter-
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Figure 2: Allowable deformation patterns regarding a beam element plate for a single mode i

polated as:

un(s, z) = Nn(s) uelw(z)

us(n, s, z) =
[

Ns(s)− nNn,s(s)
]

uelw(z)

uz(n, s, z) =
[

NΩ(s) + nNα(s)
]

uelΩ(z)

(4)

in which uelw and uelΩ are column vectors containing the
nodal deformations related to a single wall element as il-
lustrated in Figure 3. To ease the notation, we will in the
following omit the function handle (z) that shows the ex-
plicit dependency on the beam axis coordinate, except a
few places where there is a specific need for it.

As in [31] the strains are based on the linear small dis-
placement hypothesis and the deformation formulations
from Equation (1). This renders the following strain for-
mulations where the normal strain becomes zero (εnn = 0),
but the transverse distortional normal strain and the axial
normal strain are given as:

εss = us,s and εzz = u′z (5)

The non-null engineering shear strains are found as:

γsz = u′s + uz,s and γnz = u′n + uz,n (6)

·

uelw1

uelw2
uelw3

uelΩ1

uelΩ2

uelΩ3

· uelw4
uelw5

uelw6

uelΩ4

uelΩ5

uelΩ6

s

n

z
·

bel

tel

Figure 3: Wall element, which is used to discretise the cross-
section also illustrating the deformation components from uelw
and uelΩ , respectively

whilst γns = 0.

2.2. Strain energy and cross-sectional stiffness matrices
Since a linear elastic first-order analysis is considered,

the constitutive equations follow from the assumption of
zero normal stress σnn = 0 as given in the following Equa-
tion (7). Here, the stresses are directly found from the
strains. The material properties are assumed to be elas-
tic and isotropic with a modulus of elasticity E, a shear
modulus: G = E/(2(1 + ν)), and a plate elasticity mod-
ulus: Es = E/(1 − ν2) in which ν is the Poisson ratio.
The non-null stresses are then found using the linear con-
stitutive relations including coupling terms between axial
and transverse stresses related to deformations within the
cross-sectional plane due to the Poisson effect. Hence,

σss
σzz
τsz
τnz

 =


Es νEs 0 0
νEs Es 0 0

0 0 G 0
0 0 0 G



εss
εzz
γsz
γnz

 (7)

The stresses σss, σzz and τsz depend on all three local co-
ordinates (n, s, z) whereas τnz only depends on the (s, z)
coordinates, since it is constant through the plate thick-
ness (well-knowing the true variation is parabolic). Figure
4 illustrates the included stresses and their distribution
through the thickness. Due to the difference between shear
formulations in the two plate directions of a wall element
and due to the very limited influence of plate shear, a

τzn

σzz
τzs

σssτsz
z

s

n

Figure 4: Allowable stress variations at the wall cut-out from
Figure 1, with σnn = 0 and τns = 0
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specific shear correction factor has not been implemented.
This is done even though Timoshenko [34] already in 1921
introduced a correction factor to adjust the influence of
shear. Through time, several considerations have been
made on this correction, see for example Cowper [35] or
finite element textbooks [36]. However, well-knowing the
shear variation through a wall is incorrect, its influence is
assumed to be small and a correction would be out of the
scope of this paper.

The linear elastic strain energy is formulated by inte-
grating the strain energy density over the full continuum
and by substituting stress terms using Equation (7). Ac-
cordingly, the linear elastic strain energy becomes:

U = 1
2

∫
V

(
Esε

2
ss + Esε

2
zz + 2Esεssεzzν

+ Gγ2
nz + Gγ2

sz

)
dV

(8)

The strain energy is partly integrated by performing inte-
gration over the cross-section area. The total strain energy
expression is found by adding up the cross-sectional inte-
grations of each wall element, i.e. integrating over both
wall width and wall thickness and assembling the cross-
sectional wall elements into the strain energy using stan-
dard finite element methods.

The strain energy is formulated by use of cross-sectional
stiffness matrices. Table 1 presents local wall element stiff-
ness matrices deduced by substitution of the strains from
Equation (5) and (6) as well as the displacements from
Equation (4) into the energy in Equation (8). Accord-
ingly, by considering standard transformations and assem-
bling procedures, global cross-sectional stiffness matrices
are derived, see also Cook et al. [36]. The assembling pro-
cedure leads to the following strain energy formulation:

U= 1
2

∫ `

0


uw
uΩ

u′w
u′Ω


T

Ks
ww · · Ksσ

wΩ

· Kγ
ΩΩ Kγ

Ωw ·
· Kγ

wΩ Kγ
ww ·

Kσs
Ωw · · Kσ

ΩΩ




uw
uΩ

u′w
u′Ω

dz (9)

Hence, the cross-sectional deformation vectors uw and uΩ
contain all wall element deformation vectors from Equa-
tion (3) as a result of the assembling procedure. Addition-
ally, in Equation (9) and throughout the paper a dot [ · ]
represents a suitable null matrix. The superscripts s, σ
and γ indicate terms related to transverse, axial or shear
stresses and strains, respectively.

It is convenient in the following to introduce a com-
mon deformation vector containing both translational and
warping deformations:

u(z) =
[

uw(z)
uΩ(z)

]
(10)

At the same time, the cross-sectional stiffness matrices are

Table 1: Local wall element stiffness matrices

ksww=
∫ bel

0

(
telEsNT

s,sNs,s + t3
el
12 EsN

T
n,ssNn,ss

)
ds

kσΩΩ =
∫ bel

0

(
telEsNT

ΩNΩ + t3
el
12 EsN

T
αNα

)
ds

ksσwΩ =
∫ bel

0

(
telνEsNT

s,sNΩ − t3
el
12 νEsN

T
n,ssNα

)
ds

kσsΩw=
∫ bel

0

(
telνEsNT

ΩNs,s − t3
el
12 νEsN

T
αNn,ss

)
ds

kγΩΩ =
∫ bel

0

(
telGNT

αNα + telGNT
Ω,sNΩ,s + t3

el
12 GNT

α,sNα,s

)
ds

kγww=
∫ bel

0

(
telGNT

nNn + telGNT
sNs + t3

el
12 GNT

n,sNn,s

)
ds

kγΩw=
∫ bel

0

(
telGNT

αNn + telGNT
Ω,sNs − t3

el
12 GNT

α,sNn,s

)
ds

kγwΩ =
∫ bel

0

(
telGNT

nNα + telGNT
sNΩ,s − t3

el
12 GNT

n,sNα,s

)
ds

grouped in blocks as follows:

Kaa =
[

Ks
ww ·
· Kγ

ΩΩ

]
, Kab =

[
· Ksσ

wΩ

Kγ
Ωw ·

]
,

Kba = KT
ab and Kbb =

[
Kγ
ww ·
· Kσ

ΩΩ

] (11)

in which each block matrix is n×n, where n is six times the
number of nodes used to discretise the cross-section. Thus,
with this block notation, the strain energy from Equation
(9) is written as:

U = 1
2

∫ `

0

[
u
u′

]T [
Kaa Kab

Kba Kbb

][
u
u′

]
dz (12)

2.3. Modal displacement field and solution space
From the strain energy, in Equation (12), beam equi-

librium equations are deduced using variational principles,
i.e. virtual work principle and partial integration as in [31].
This leads to:

K2u′′ + K1u′ + K0u = 0 (13)

where the stiffness matrices K0, K1 and K2 are defined as
blocks of cross-sectional stiffness matrices as follows:

K0 =
[

Ks
ww ·
· −Kγ

ΩΩ

]
,

K1 =
[

· Ksσ
wΩ −Kγ

wΩ
Kσs

Ωw −Kγ
Ωw ·

]
,

K2 =
[
−Kγ

ww ·
· Kσ

ΩΩ

]
(14)

The full homogeneous solution space of the second-order
differential equation, i.e. Equation (13), contains two parts
– one related to fundamental modes having a polynomial
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amplitude function, and the second one related to modes
with exponential amplitude functions. Hence, the two so-
lution spaces are found as:

• a set of twelve fundamental displacement modes
with polynomial amplitude variations collected in up.
Hence, up contains nz = 12 modes.

• a set of displacement modes having exponential ampli-
tude functions collected in ue. The number of modes
in ue depends on the discretisation of the cross-section
such that ue contains ne = 2n − nz modes. Fur-
thermore, these modes might include pairs of complex
conjugated modes.

Let us detail the formulation of these modes in the follow-
ing.

2.3.1. Fundamental modes
The twelve solutions that are categorised as fundamental

modes having a polynomial amplitude function are explic-
itly written as:

up(z) = Vp Ψp(z) Tp cp (15)

where the cross-sectional nodal degrees of freedom vec-
tors are collected as columns in four block matrices in
Vp = [ V3 V2 V1 V0 ]. The blocks act as coefficients
to the polynomial functions z3, z2, z, and 1, respectively.
However, the derivation of these cross-sectional nodal de-
grees of freedom vectors will not be shown here but can
be found in the paper [31]. The amplitude matrix, the
constant-transformation matrix, and the column vector
with the intensity-constants of each mode (modal con-
stants) have the following format:

Ψp=


z3

6 Ip · · ·
· z2

2 Ip · ·
· · zIp ·
· · · Ip

, Tp=


Ip
Ip
Ip
Ip

, cp=


cp1

cp2
...

cpnz

 (16)

in which Ip is an identity matrix of size nz × nz that is
12× 12 reflecting the number of fundamental modes.

Now, seeking the first derivative of up(z) in Equa-
tion (15) is traditionally performed by differentiating the
amplitude matrix Ψp(z), which is dependent on the z-
variable. However, in this (polynomial) case a state-space
vector formulation will be used as in the coming exponen-
tial solution formulation. Therefore, it is realised that by
keeping the amplitude matrix as it is and instead shifting
the nodal degree of freedom block vectors in Vp one place
to the right the first derivative of the displacement vector
u′p(z) can be written as: u′p(z)=u̇p(z), where the state-
space formulation of the displacement-vector-derivative is
given as:

u̇p(z) = V̇p Ψp(z) Tp cp (17)
In which V̇p = [ 0 V3 V2 V1] is the result of the differen-
tiation operation of up(z). Thus, we have introduced the

notation u̇p in this special formulation of the derivative.
With this refinement, the polynomial solution and its first
derivative, Equation (15) and (17), is conveniently written
in state-space vector format as:[

up
u̇p

]
=
[

Vp

V̇p

]
Ψp(z) Tp cp (18)

where differentiation of the amplitude functions has been
avoided by just shifting the mode vectors and keeping the
amplitude matrix Ψp.

2.3.2. Exponential modes
In performing the task of solving the second-order differ-

ential equation system, it is common to rewrite the equa-
tions into a first-order equation system by introducing a
state-vector using a special notation for the derivative of
a vector, see for example Tisseur and Meerbergen in [37].
However, this correctly and as mathematically expected
expands the number of solutions and the size of the prob-
lem and ruins the conventional notion of orthogonal solu-
tion modes. Nonetheless, the variable u̇ defined as the first
derivative of the displacement field is introduced. Hence,

u̇(z) ≡ u′(z) (19)

Following the procedure outlined by Tisseur and Meer-
bergen [37] by substituting u̇(z) into Equation (13) for
the first derivatives, the second-order differential equation
system can be equivalently written as:[

K0 ·
· −K2

][
u
u̇

]
+
[

K1 K2

K2 ·

][
u
u̇

]′
=
[

0
0

]
(20)

using the state-vector notation. This first-ordered differ-
ential equation system is solved as a generalised eigen-
value problem by assuming exponential solutions where
each eigenvector corresponds to a vector with the nodal
degrees of freedom and its derivative for a single mode, and
the corresponding eigenvalue gives the exponential ampli-
tude. Consequently, the exponential solution space ue and
its first derivative u̇e can be written as:[

ue
u̇e

]
=
[

Ve

V̇e

]
Ψe(z) ce (21)

in which the nodal degrees of freedom vectors are the eigen-
vectors given as:[

Ve

V̇e

]
=
[

v1 v2 . . . vne
v̇1 v̇1 . . . v̇ne

]
(22)

The amplitude matrix and mode intensity constant vector
(modal degrees of freedom) in Equation (21) are:

Ψe=


eλ1z

eλ2z

. . .
eλnez

 , ce =


ce1

ce2
...

cene

 (23)
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Here, λ represents the non-null eigenvalue of each mode,
which may be complex.

2.3.3. Homogeneous solution space
The polynomial and exponential solutions are given as

Equations (18) and (21), respectively. Thus, the full ho-
mogeneous solution can be written as follows:[

u
u̇

]
=
[

up
u̇p

]
+
[

ue
u̇e

]

=
[

Vp Ve

V̇p V̇e

][
Ψp ·
· Ψe

][
Tp ·
· Ie

][
cp
ce

]

=
[

V
V̇

]
Ψ Tc c (24)

where V is the full mode matrix, Ψ is a common amplitude
diagonal matrix containing Ψp and Ψe from Equation (16)
and (23), respectively; and Tc is a constant-transformation
matrix containing Tp from Equation (16) and an identity
matrix, Ie of size ne × ne. Furthermore c is a column
vector containing all the mode intensity constants cp and
ce (being modal degrees of freedom).

3. Beam element formulation

Having found the displacement modes of the thin-walled
beam element in the previous section, based on the chosen
discretisation of the cross-section, this section formulates
the beam element using these exact displacement modes
as axial interpolation functions between beam end cross-
sections.

The theory developed here takes only nodal forces at
boundaries into account, as well as nodal deformations.
This has been chosen in order to keep a simple formu-
lation. Nevertheless, distributed loads acting along the
beam member axis can be implemented using a similar
method as the one reported by Andreassen & Jönsson [38].

To derive the beam element formulation, the potential
energy is formulated as the sum of the strain energy and
the potential from applied loads:

V = U + Π (25)

The strain energy U is given in Equation (12) and the
potential Π of external nodal forces at each end of the
beam element is given as:

Π = −
[

u(0)
u(`)

]T[
f0

f`

]
(26)

where f0 and f` are load vectors. Each load vector refers to
one of the two beam ends as indicated by the subscripts.
Furthermore, a single load vector contains a load parame-
ter for each nodal degree of freedom in the cross-section.

3.1. Modal beam stiffness matrix

To formulate a beam element, we must derive its stiff-
ness matrix. To do so, we consider the strain energy from
Equation (12).

As interpolation functions, the natural beam displace-
ment modes found as solutions in the previous section,
i.e. Equation (24), will be used. Thus, considering the
full homogeneous solution space, a formulation of a modal
beam stiffness matrix is presented letting the vectors of
constants be perceived as the temporary modal degree of
freedom vectors. Later, these temporary modal degrees
of freedom vectors are transformed into a nodal degree
of freedom space containing the classic deformations and
rotations at each node. Consequently, we have a beam
element with a number of displacement modes that re-
flect the exact deformation modes derived for this specific
beam element. Thus, substituting the homogeneous solu-
tion space and its first derivatives from Equation (24) into
the elastic strain energy in Equation (12) we have:

U = 1
2

∫ `

0
cTTT

cΨT

[
V
V̇

]T[
Kaa Kab

Kba Kbb

][
V
V̇

]
Ψ Tc c dz

(27)
and in integrated form it follows as:

U = 1
2 cT K̃ c (28)

The modal stiffness matrix K̃ is found by computing the
matrix multiplications and performing the integration.
However, in order to substantially ease and reduce the
number of computations, a reformulation is introduced.
The fact that only the (diagonal) matrix Ψ depends on z is
utilised and therefore, only these matrices have to be inte-
grated. We rearange the order of the terms in K̃ to isolate
the Ψ-matrices within the integration. This is achieved
by introducing the mathematical Hadamard product: ◦,
which allows us to separate the matrices Ψ in the inte-
gration from the rest of the expression. Furthermore, to
utilise the fact that Ψ contains values in its diagonal only,
the Kronecker product: ⊗ is introduced. Hence, a combi-
nation of the Kronecker product and a re-formulation of Ψ
into a column vector containing the diagonal components
only, denoted Ψ̂, (see also [31]), the modal stiffness matrix
is written as:

K̃ = TT
c

[ V
V̇

]T [
Kaa Kab

KT
ba Kbb

][
V
V̇

]

◦
∫ `

0
Ψ̂T ⊗ Ψ̂ dz

)
Tc

(29)

With this formulation of K̃, the integration is easily per-
formed analytically due to the fairly simple amplitude
functions by first computing the indefinite integral, and
then using the fundamental theorem of calculus.
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As stated previously, the energy formulation in Equation
(28) considers the vector of modal constants as variables
or temporary modal degree of freedom vectors. In the
next subsection, a transformation is introduced where the
temporary modal degrees of freedom vectors are written in
terms of nodal beam element degrees of freedom vectors
at the boundaries, i.e. at each end of the beam.

3.2. Beam element formulation
This subsection formulates the beam element by consid-

ering the potential energy from Equation (25), the load
contributions from Equation (26), and the strain energy
written in modal form in Equation (28). At first, the strain
energy shall be written in terms of beam element bound-
ary degrees of freedom instead of the temporary modal
degrees of freedom. Then, substituting into the potential
energy, taking variation and by requiring the first varia-
tion of the energy to be stationary, we achieve the beam
element formulation.

3.2.1. Beam element degrees of freedom
The beam element degrees of freedom are directly linked

to the cross-sectional degrees of freedom at the boundaries.
Therefore, considering the deformation vector u(z) and
letting the position variable z adopt the boundary values
of the beam element, i.e. z = 0 and z = `, where ` is the
beam length, the deformations at the boundaries in the
beam element degree of freedom vector ub are expressed
as:

ub =
[

u(0)
u(`)

]
(30)

Substituting: u(z) = VΨ(z)Tcc, a part of Equation (24),
we may write Equation (30) as:

ub =
[

u(0)
u(`)

]
=
[

V Ψ(0) Tc

V Ψ(`) Tc

]
c (31)

From this equation it can be seen that there is a relation
between the deformations at the boundaries in ub and the
temporary modal degrees of freedom in c. This relation
was in fact used in Equation (28). Consequently, a trans-
formation matrix A is introduced and Equation (31) is
re-written into:

ub = A c where A =
[

V Ψ(0) Tc

V Ψ(`) Tc

]
(32)

With this formulation, A is defined as a squared, positive
definite and invertible matrix that allows c to be written
as:

c = A−1 ub (33)

3.2.2. Beam element stiffness matrix
If Equation (33) is substituted into the modal strain

energy formulation in Equation (28) we are able to express

the beam element strain energy in terms of displacements
at the boundaries. This is:

U = 1
2 uT

b

[
A−1]T K̃ A−1ub

= 1
2 uT

b K ub (34)

in which the beam element stiffness matrix K is introduced
as:

K =
[
A−1]T K̃ A−1 (35)

3.2.3. The beam element
Substituting the strain energy from Equation (34) into

the potential energy Equation (25) and the potential from
the applied load in Equation (26) the full potential energy
takes the form:

V = U + Π = 1
2 uT

b K ub − uT
b f

Then, taking the first variation in the displacement field,
δub, the potential energy becomes:

δV = δuT
b K ub − δuT

b f (36)

and by requiring stationarity of the energy, it must equal
zero for all variations (δV = 0 where δuT

b 6= 0) whereby
the well-known linear elastic beam formulation is derived:

K ub = f (37)
With the formulation in Equation (37) a linear relation
between the boundary loads f, and the boundary defor-
mations ub is given – the beam element formulation.
The trivial solution procedure of the equation system in

Equation (37) will not be expressed here, but reference is
made to literature, such as Cook et al. [36]. In this liter-
ature, it is also described how aligned beam elements can
be assembled. However, bear in mind that the presented
formulation relies on exact longitudinal amplitude (shape)
functions whereas traditional finite element formulations
rely on approximations between end nodes through inter-
polation functions. Therefore, the presented beam element
can adopt any length without further approximation.

3.3. Boundary conditions
The boundary conditions of a beam element are defined

by the use of standard methods and operate on the de-
formation vector ub. In this deformation vector each de-
gree of freedom within the two beam end cross-sections
are represented. Therefore, it is possible to add bound-
ary conditions related to each degree of freedom within an
end cross-section. Furthermore, this allows the modelling
of many kinds of supports, e.g. simple support conditions
and clamped support conditions. However, support and
load conditions should, if possible, be distributed to several
nodes avoiding singularities and local stress concentration.

Advanced boundary conditions such as partially re-
strained cross-sections will not be described here, but spe-
cial cross-section restraints can be added at the cross-
section level, which however, is beyond the scope of this
paper.
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4. Element deformations, strains and stresses

Having solved Equation (37), this section describes how
to find displacements, deformation derivatives, strains,
and stresses in an arbitrary point within a wall element
of any cross-section within the thin-walled beam element.

4.1. Deformation field

The deformations at the beam boundaries are given by
the beam element deformation vector ub corresponding to
the cross-sectional degrees of freedom at the beam element
ends. Knowing these, the modal content can be deter-
mined using Equation (33). This enables us to determine
the deformation vector and the axial derivative of the de-
formation vector of a cross-section at a given axial position
z using Equation (24). Thus, the cross-section deforma-
tion vector at the axial position z can be found as:[

u(z)
u̇(z)

]
=
[

V
V̇

]
Ψ(z) Tc A−1ub (38)

From these cross-section deformation vectors the local wall
element degrees of freedom uelw and uelΩ as well as the cor-
responding axial derivatives u̇elw and u̇elΩ can be extracted.
The local deformations in any point (n, s) of a wall ele-

ment in the cross-section at the axial position z may now
be found using Equation (4).

4.2. Strain field

Using the element wall deformations and axial deforma-
tion derivatives of a cross-section at the axial position z,
the local strains at any point of a wall element is found as
follows:

εelss(n, s, z) = [Ns,s − nNn,ss] uelw
εelzz(n, s, z) = [NΩ + nNα] u̇elΩ
γelnz(s, z) = Nnu̇elw + NαuelΩ
γelsz(n, s, z) = [Ns − nNn,s] u̇elw

+ [NΩ,s + nNα,s] uelΩ

(39)

in which only the element wall deformation vectors uelw and
uelΩ and their axial derivative u̇elw and u̇elΩ are dependent on
the axial position coordinate z.

4.3. Stress field

Knowing the cross-sectional strain field for a given z-
value, the corresponding stresses can be computed using
the linear elastic constitutive relations for isotropic materi-
als presented in Equation (7). Substituting the strains into
the constitutive relations gives us the stresses in each wall

element as a function of the local coordinates as follows:

σelss(n, s, z) = Es
(

[Ns,s − nNn,ss] uelw
+ ν [NΩ + nNα] u̇elΩ

)
σelzz(n, s, z) = Es

(
[NΩ + nNα] u̇elΩ

+ ν [Ns,s − nNn,ss] uelw
)

τelnz(s, z) = G
(

Nnu̇elw + NαuelΩ
)

τelsz(n, s, z) = G
(

[Ns − nNn,s] u̇elw
+ [NΩ,s + nNα,s] uelΩ

)
(40)

Distinguishing between membrane and bending stresses is
common. However, this will not be incorporated directly,
but could easily be achieved from Equation (40) by sep-
arating into terms that are dependent or independent of
the n-coordinate.

4.4. Exponential decay

A characteristic of those modes having an exponential
amplitude function is that they are either derived as real
couples or complex quadruples. A real couple represents
a displacement mode with an increasing amplitude along
the beam axis peaking at the one end, and a mode with a
decaying amplitude peaking at the other end. In case of
a complex set of eigenvalues, there will be a real and an
imaginary cross-section mode vector with an increasing or
decreasing harmonic oscillation. This corresponds to two
mode shapes with a decaying amplitude function and two
modes with an increasing amplitude function, respectively.

Due to this characteristic feature related to the exponen-
tial modes and their axial decay behaviour, it becomes in-
teresting to assess their attenuation length. The real part
of the eigenvalue determines the attenuation length. The
higher the eigenvalue, the shorter the attenuation length
is. Hence, an attenuation length can be defined as:

La = ε

|Re(λ)| (41)

in which ε defines a lower level of interest where the decay
has lead to a diminished displacement, which could be
taken as 5% of the peak value. This results in ε being
around three. Jönsson [39] introduces a value of ε = π
giving a lower level of: e−π ≈ 4%. Giavotto et al. [40] use
a value of ε = 3, which results in: e−3 = 5% as the lower
level. The use of ε = π is relevant due to the equivalence
to half the harmonic wavelength or a buckling length.

Depending on the attenuation length, the displacement
modes found in Equation (21) can be characterised as
global distortional modes or local distortional plate modes.
The latter has an attenuation length typically less than the
main cross-section dimension, whereas the former often
has an attenuation length being several times the cross-
section dimension.
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5. Examples

In this section, four examples are used to illustrate and
assess the results of the presented thin-walled beam el-
ement formulation. Both the geometry and the type of
load vary in the four examples:

1. A cantilever having a hollow rectangular box section
loaded in shear. This example illustrates the deforma-
tion behaviour, the normal stresses and shear stresses,
as well as the shear stress transition at cross-section
corners.

2. An open channel section with a non-symmetric trans-
verse load, which induces torsional deformations, tor-
sional warping stresses and bending stresses.

3. A short simply supported box section loaded in bend-
ing and exhibiting shear lag with non-linear normal
stresses in the flanges.

4. The final example is a longitudinal assembly of three
similar channel elements with a distortional load.
The attenuation length related to exponential modes,
mode intensities, and transverse bending stresses are
assessed.

For each example, both stresses and nodal displacements
will be compared to results obtained with the commercial
finite element program Abaqus [41]. The finite element
analysis is performed on a model with isotropic material
and four node shell elements (S4-shell element in Abaqus
syntax) using full integration. Furthermore, the linear
elastic finite element calculations are based on a structured
rectangular mesh with a side length of 5 mm.

5.1. Ex. 1 – Tip loaded cantilever box section
The first example considers a cantilevered beam with a

closed rectangular cross-section as shown in Figure 5, in
which the parameters of the example also are listed. The
load at the tip is applied as evenly distributed line loads
along the two webs of the end cross-section in Abaqus and
as nodal loads in the theory presented here. Solving the
beam element formulation from Equation (37) and then
determining the deformation using Equation (38) renders
a deformation as illustrated to the left in Figure 6 mainly
having flexural bending deformation. In Table 2 nodal dis-
placements are listed, which are extracted from the present
theory and from the analysis using the commercial finite
element program. Furthermore, a comparison between the
nodal displacements and their relative deviation is given
in Table 2. The values are extracted from the nodes at
the free end (Z = `) in the upper and lower right corners
of the cross-section. In the vertical direction, a relative
derivation of 0.10 % is seen. If the horizontal displace-
ments in ux are compared, given in the table, a relatively
high deviation is seen but at the same time the displace-
ments are small, and therefore this deviation corresponds
to 0.1 · 10−3 mm which is equal to three millions of the

Properties
h
b
t
`
◦
p
E
ν

100 mm
40 mm
3.0 mm
500 mm
node
50 N/mm
210 GPa
0.3b

h

p

X

Y

Z ·

s
P

`

Z

Y

Figure 5: Ex. 1 – discretisation and geometrical properties of
the cantilever beam with a closed box section including local
set-up and general load/support configurations

width only. The ux-deformations represent a contraction
of the top flange and a widening of the lower flange. This
is a result of the Poisson effect since the top flange is ex-
posed to axial tension and the bottom flange is in axial
compression.

The stresses will be analysed next and for this purpose,
the cross-section at mid-span (Z = `/2) is assessed in order
to alleviate the local effects that may occur near loaded
or supported nodes. To the right in Figure 6, a three-
dimensional illustration of the normal stresses is shown
and in Figure 7, the values found at mid-span are seen.
The axial stresses are obtained along the centre line of
the cross-sectional wall elements. A good agreement is
seen between the two models with a maximum relative
deviation of −0.54 % found at the corners.
To be assessed next are the shear stresses. Due to the

kinematics and the constitutive relations in Equation (7),
we have τsz-stresses as well as τnz-stresses. On the other
hand, the shell model in Abaqus considers τsz-stresses only.
Comparing the τsz-stresses yields overall, good similari-
ties and the relative deviation of the largest τsz-stresses is

400

−400
−300

−200
−100
0

300
200

100

[MPa]

Figure 6: Ex. 1 – Deformation and σzz-stresses. Deformations
are scale by a factor 20
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Table 2: Ex. 1 – Nodal deformations at the upper and lower
right corners comparing the two models. Measurements in
[mm]

( b2 ,±
h
2 , `) Present Abaqus Relative

(n = 0) theory deviation

ux ±0.0013 ±0.0012 −8.33 %

uy −1.9060 −1.9080 0.10 %

uz ±0.2711 ±0.2712 −0.04 %

around 0.15 % depending on the mesh density. Figure 8
illustrates the shear stresses at Z = `/2 and for n = 0mm,
i.e. the middle surface of the wall. The different mesh
densities illustrated in Figure 8 have been considered to
investigate the local shear effects near the corners. Thus,
in the upper flange, two, four, six and eight elements are
used as shown from the left to the right in the figure. Es-
pecially the τnz-plots indicate that the stresses are locally
peaking near the corners. Additionally, if comparing the
τsz-stresses obtained to those from Abaqus, deviations are
significant at corners. However, with an increased mesh
density this effect becomes more isolated near the corners.
This local effect has inspired us to perform a detailed inves-
tigation of the stress transmission around corners. There-
fore, a solid finite element model is created in Abaqus as
well. In this model, an eight-node linear brick element
(C3D8 in Abaqus syntax) has been used to discretise the
beam in a structured mesh. A section cut-out of the upper
right corner at mid-span is illustrated in Figure 9 and the
stress variations along the middle of the walls are likewise
shown here. From Figure 9, it can be seen how the stress
variations follows the same pattern as the one obtained
considering the present theory (Figure 8). However, Fig-
ure 9 also indicates that the decay of the τnz-stresses is less
than two times the wall thickness. Therefore, the results
from this solid finite element model indicate exactly what

115.3

−115.3

Y

XZ

115.3

Abaqus

−115.3

Figure 7: Ex. 1 – Axial stresses, σzz , in [MPa] at Z = `/2
and n = 0 mm. To the left stresses found from the theory
presented here, to the right stresses extracted from Abaqus

was seen in the stress distributions in Figure 8. This result
supports that small elements near the corners should be
considered when adapting the present theory in combina-
tion with this type of wall element. An example of this is
illustrated in Figure 10 showing the results of an analysis
with an element mesh having small wall elements at the
corners only.
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−3.35

τsz

τnz

−3.01 −2.90 −2.78
2.31 2.20 2.15 2.08

−3.35 −3.01 −2.90 −2.78
−2.31 −2.20 −2.15 −2.08

−10.08
−7.84

−20.06 −20.43 −20.44 −20.45 −20.41Abaqus

Y

XZ

17.06*
5.45*

14.00*
7.82*

12.78*
8.68*

12.19*
9.11*

Wall elements
in flange: 2 4 6 8 8

Figure 8: Ex. 1 – Shear stresses at n = 0 mm and Z = `/2 with an increasing mesh density. Also including stresses
subtracted from the finite element analysis in Abaqus. Stresses given in [MPa]. The τsz-stresses marked with an asterisk
indicates the highest stress value obtained in the wall element closest to the corner either in the web or flange (the stress
is computed at teen points along each wall element)

12



0.3mm

0.3-1.0mm
1.0mm

C3D8-element

0.3mm

0.3-1.5mm

1.0mm

C3D8-element

S
tresses in the w

eb along the centre line
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Y
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τsz τnz

τsz at middle web: −20.430 MPa

−3.331

−3.950

−7.638

3.331

−3.950

Stresses in the top flange along the centre line

Figure 9: Ex. 1 – Results from the Abaqus model using solid elements
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τsz τnz

Y

XZ

−2.28
2.25−2.28

−2.25

−20.39

11.74*
9.32*

Figure 10: Ex. 1 – Shear stresses using a special mesh with
small elements near corners. Stresses in [MPa] at Z = `/2
and n = 0 mm

5.2. Ex. 2 – Shear loaded cantilevered channel section

This example examines a mono-symmetric cantilever
channel section exposed to a load which induces flexural
and torsional displacements. The load configurations, as
well as the geometrical properties, are shown in Figure 11.
In the present implementation, the end cross-section load
is applied as point loads distributed to each node in the
web and in the finite element program Abaqus as a line
load acting on the web. The clamped boundary condition
is modelled by restraining all degrees of freedom within the
end cross-section. Due to the load configuration, the beam
element deforms partly in bending and partly in torsion as
illustrated in Figure 12.

This example is chosen such that it includes the added
effects of classic flexure, torsion and torsional warping.
The channel section is loaded along the web and thus, the
beam is expected to flexure about the strong principle axis
and twists about the shear centre. Furthermore, since the
beam is cantilevered with a completely clamped bound-
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25 mm
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Figure 11: Ex. 2 – Geometric properties, discretisation, and
load properties of the shear loaded channel section

Y
XZ

Figure 12: Ex. 2 – Three-dimensional deformation of the can-
tilever drawn with a scaling factor equal 20

ary condition at one end, the beam will exhibit torsional
warping. Therefore, it is chosen to compare the resulting
displacements at the free end and the stresses close to the
clamped end of the beam with those found using finite
shell elements.

Let us first compare the displacement of the beam end
at the central node point A in the web to an Abaqus shell
model. The points A, B and C are shown in Figure 11.
First of all, the displacements in ux and uz of point A van-
ish in both models. The present theory results in a vertical
displacement of uy = −1.8392 mm and Abaqus results in
uy = −1.8473mm giving a relative deviation of the present
theory compared to Abaqus of 0.44%. The influence of tor-
sion and the related warping can be illustrated by simply
comparing the nodal displacements of the outer most free
edge point of the lip, i.e. at point B. In Table 3, the three
displacements of the upper lip are given. It can be seen
that the maximum relative deviation of the displacements
at this nodal point B is 0.87 % and it is related to the ax-
ial warping displacements of warping and flexure. Similar
displacements are of course found at point C in the lower
lip, however, ux and uz change signs.

Next, the normal stress and shear stresses of the model
are compared to those found using an Abaqus shell model.

Table 3: Ex. 2 – The nodal displacements in [mm] of the free
end of the upper lip at point B, i.e. at Z = 500 mm.

Present Abaqus Relative
theory deviation

ux 1.1055 1.1107 0.47 %

uy −2.9155 −2.9324 0.58 %

uz −0.1488 −0.1501 0.87 %
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Figure 13: Ex. 2 – A comparison of normal stresses, σzz in
[MPa], measured 10mm from the fixed end, i.e. at Z = 10mm,
and n = 0 mm

20.67

3.18

10.36

21.20

10.18

Abaqus

τsz τszτnz

−1.45

Y

XZ

Figure 14: Ex. 2 – The shear stresses are shown in [MPa]
at a cross-section 10 mm from the support, i.e. Z = 10 mm,
moreover, n = 0 mm

Since the modelling of displacements and therefore also
shear stresses are quite different at section corners and
therefore difficult to compare, especially at the fixed end,
we have chosen to compare stresses that occur quite close
to the fixed end, having Z = 10mm. The mid surface nor-
mal stresses measured 10mm from the fixed end are shown
in Figure 13 and the stress values are given at the cross-
section corners, at the lip end, at the web quarter point,
and at the centre of the flange. This clearly shows that
there are torsional warping stresses and bending stresses
of the beam. Comparing the stresses obtained using Equa-
tion (40) and those from Abaqus it is seen that there is
some difference, which is maximised at the upper right
corner with a relative deviation of −17.4 %.
The shear stresses that occur 10mm from the fixed end

are shown in Figure 14. In general, the τsz-stresses have a
similar distribution in both models.

Overall, the results obtained using the two different
models agree. This despite the fact that the theory pre-
sented includes 564 degrees of freedom only, whereas the
shell finite element model in Abaqus includes 28482 de-
grees of freedom. Indeed, this is due to the use of exact
axial beam interpolation functions since the discretisation
of the cross-section in the two models coincide.

5.3. Ex. 3 – Box section exposed to shear lag
This example assesses the effect of shear lag, which, for

example, can be seen in relatively short thin-walled mem-
bers with relative wide flanges. Consequently, this exam-
ple examines a simply supported closed box beam with
wide flanges.

The effect of shear lag is typically seen in box bridge
sections with wide flanges and short spans. The shear lag
effect is often of importance near supports (for example for
uniformly loaded multi span members) and also near other
large local transverse loads. This is because the shear with
the associated shear deformation (warping) has to "trans-
fer" the effects of the shear force (local transverse load) out
into the flanges in order to build up the normal stresses
needed for equilibrium. This effect is not included in clas-
sic theories of torsional beam theories, but it is included
in the present model.

In this example, the beam is exposed to bending about
the weak axis by a central transverse load. The load is ap-
plied on the central cross-section as line loads acting along
the webs as shown in Figure 15. The figure also illustrates
the cross-section and gives the necessary parametric val-
ues.

The boundary conditions are introduced as a restriction
of the in-plane translations at the two end cross-sections,
and as an axial restraint to a single node within the cross-
section at Z = 0 mm. The rotational degrees of freedom
are not restrained, and the load is distributed and applied
as concentrated nodal loads in both models.

The vertical displacement of the lower left corner node at
mid-span of the present model is compared to the results
of an Abaqus shell model. Using the presented model a
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Figure 15: Ex. 3 – General configurations used in this example
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Figure 16: Ex. 3 – Normal stresses in [MPa] measured 10mm
from the middle of the beam, i.e. at Z = 190 mm

vertical displacement of uy = 0.7325mm is found and using
Abaqus a vertical displacement of uy = 0.7408mm is found
with a relative deviation of 1.12 %.
The normal stress variation in a cross-section situated

10 mm from the centre of the beam is used to assess
whether the present theory will cover shear lag. Hence,
the stress variations in Figure 16 shows that the present
theory covers shear lag. A relative reduction in the nor-
mal stresses between the flange middle and the corner is
32.3%. If the results are compared to those obtained from
the commercial finite element software Abaqus the maxi-
mum relative deviation is found to be 1.28% at the corners.

5.4. Ex. 4 – Open lipped channel section
This final example considers a simply supported beam

with an open channel section. The beam is assembled by
three similar beam elements each of length `. The beam
is loaded at: Z = 2` with a point load at the end of each
lip. The cross-section parameters, cross-section discretisa-
tion, and load set-up are shown in Figure 17. The support
conditions are achieved by prohibiting any transverse de-
formations at each end. Furthermore, at the one end, a
single node is restricted to have no axial deformation. The
rotational degrees of freedom at the two ends are kept as
free variables.

The overall deformation is illustrated in Figure 18. It
corresponds to a global bending behaviour combined with
a local deformation close to the loaded nodes. A cut-out
side-view near the loaded nodes is illustrated in Figure
19. This figure shows clearly how a global bending and
local deformations influence the deformed shape. Besides,
the figure highlights how local deformations decay over a
certain distance.

Let us in the following look into the behaviour of the cen-
tral beam element. First of all, the constants computed by
Equation (33) are found. They determine how the cross-
sectional displacement modes are linearly combined based
on the intensities given by the components of c. The con-
stants are illustrated in Figure 20 where the absolute real
values are given above the horizontal axis, and the abso-
lute imaginary parts are given below the horizontal axis,
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Figure 18: Ex. 4 – Three-dimensional visualisation of the de-
formation corresponding to the simply supported beam with
two single loads attached to its lips. The deformation is scaled
by a factor of 20

80mm

X
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Z=1000mm Z=950mm

Figure 19: Ex. 4 – Decay length seen in the Y, Z-plane

respectively. The first twelve constants correspond to the
fundamental modes and should always be considered. In
Table 4, the most pronounced constants are listed with
respect to the exponential modes.

To assess those modes contributing to the deflected
shape, focus will be on the cross-section where the loads
are applied (Z = 1000 mm). In addition, only the trans-
verse displacement part of the modes will be considered.
The total transverse deformation of the cross-section is
given in Figure 21a, which is found computing: u(z) =
VΨ(z)Tcc. Figure 21b and 21c illustrates the contribu-
tions from the polynomial and exponential modes, respec-
tively. Hence, the polynomial modes contribute with a
rigid vertical deformation whereas the exponential modes
gives the distortional deformations.

From the graph in Figure 20, it was indicated that not
all modes were activated and Table 4 listed the eight most
pronounced exponential modes. If these eight modes are

Table 4: Ex. 4 – The eight highest constants with respect to
the exponential modes regarding beam segment two (written
in a decreasing order)

mode i ci La [mm]
23 0.655 84.28
15 0.214 + 0.267i 540.90
16 0.214 − 0.267i 540.90
45 −0.173 + 0.109i 38.13
46 −0.173 − 0.109i 38.13
31 0.141 − 0.057i 79.75
32 0.141 + 0.057i 79.75
53 0.123 31.52

added together the shape shown in Figure 21d is achieved
and it is very close to the one including all 288 exponential
modes in Figure 21c. Now, a further assessment of these
eight exponential modes are illustrated in Figure 22a to
22e. In these figures the light grey deformed cross-section
represents the combined shape from Figure 21d. The de-
formation in Figure 22f is a combination of all remain-
ing exponential modes showing a very small contribution.
This confirms that the primary exponential deformation is
a result of the eight selected modes. Figure 22b, 22c and
22d are contributions from three pairs of complex modes,
which becomes real when they are added together in pairs.

For each of the exponential modes, an axial attenua-
tion length may be found considering Equation (41) let-
ting ε = π. These attenuation lengths are listed in Table 4.
Hence, mode 23 has an attenuation length: La = 84.28mm
that corresponds very well with the observed deformation
pattern seen in Figure 19. The modes 15 and 16 are those
having the largest decay length, which harmonise well with
the cross-sectional deformation seen in Figure 22b.

Next, let us perform a comparison between the obtained
stresses using Equation (40) and those obtained from the
shell model in Abaqus. To avoid effects from singularities,
a cross-section located 50 mm from the loaded nodes is
analysed, which is at Z = 950mm. The axial stresses along
the cross-sectional wall centre lines are shown in Figure 23.
A maximum relative deviation of 0.30% is found at the up-
per right corner whereas the relative deviation at the web
middle is only −0.08 %. Due to the load configurations,
transverse bending stresses will occur. Figure 24 illus-
trates the distribution of these obtained at the outer sur-
face. Since the transverse stresses are interpolated linearly
within each element, the found stress distribution is dis-
continuous between elements. The stresses obtained from
Abaqus are extrapolated averaged nodal stresses, which
therefore are continuous. Nonetheless, the overall shapes
are similar, and the stresses deduced from the two models
coincide with a relative deviation between −0.37 % and
−4.66 %.

6. Discussion

The formulation of an advanced thin-walled beam ele-
ment has been presented. The beam element facilitates not
only classic displacement patterns with rigid cross-section
movements but also in-plane displacements related to the
Poisson effect as well as distortional deformations with as-
sociated warping modes.

One of the main advantages obtained with this thin-
walled beam theory is the use of exact beam interpolation
functions in the axial direction. This allows the beam el-
ement to be used for any lengths. Consequently, a beam
element is not limited to a finite length, which is the case
in GBT since polynomial shape functions govern the axial
variation.

Thus, the presented beam theory only has nodes and
degrees of freedom at its end cross-sections and therefore,
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Figure 20: Ex. 4 – The absolute values of the real and imaginary part of the constants in c, respectively
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Figure 21: Ex. 4 – The transverse cross-sectional deformation at the point where the loads are acting (this is at
Z = 1000 mm). The deformations are scaled 20 times

a) Mode 23 b) Mode 15+16 c) Mode 45+46

d) Mode 31+32 e) Mode 53 f) Remaining modes

Figure 22: Ex. 4 – Transverse exponential displacement modes at Z = 1000 mm. The light grey cross-section is the one
from Figure 21d. The displacement modes are scaled by a factor of 20

only include a limited number of degrees of freedom com-
pared to, for example, a similar analysis using finite shell
elements in the framework of the finite element method.
Again, this is a result of the exact beam interpolation func-
tions. Hence, the derivation of these axial interpolation
functions is a result of the procedure deducing the beam
element stiffness matrix, which is based on the novel semi-
analytic cross-section analysis presented by the authors in
[31]. Straight wall elements is used to discretise the thin-
walled cross-section centre line, and with a strain energy
formulation, a system of cross-sectional equilibrium equa-
tions is deduced. This formulation is purely based on linear
elastic constitutive relations and isotropic material prop-

erties. The system of equilibrium equations is solved as
a polynomial eigenvalue problem, and cross-sectional dis-
placement fields are computed as eigenvectors with the as-
sociated eigenvalues being related to axial amplitude func-
tions. The derivation of beam displacement modes is de-
composed into two parts. One is related to fundamental
beam modes and the other to distortional beam modes.
The former part of the modes is belonging to the zero
eigenvalues, which is found through a systematic decom-
position and combination of the related eigenvectors. This
is a procedure which is used by Morandini et al. [42] and
Genoese et al. [25, 26]. The latter part of the modes is
based on the non-zero eigensolutions.
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Figure 23: Ex. 4 – Axial stresses, σzz , in [MPa] at Z = 950mm
and n = 0 mm
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Figure 24: Ex. 4 – Transverse bending stresses, σss, in [MPa]
at Z = 950 mm and n = t/2. The star indicates to which
element or node a given stress corresponds

Through examples, usability of the beam element is il-
lustrated and reasonable agreement with results obtained
with a commercial finite element program is achieved.
However, near corners, in the cross-section, local shear ef-
fects occur due to the transmission of shear stresses around
corners. This leads to a shear stress distribution that devi-
ates from those shear stresses obtained in more classic shell
models obeying the Kirchhoff plate hypothesis. Nonethe-
less, considering detailed solid finite element models, a sim-
ilar transmission of shear stresses is seen confirming the re-
sults obtained in this theory. As a consequence, this theory
results in a detailed assessment of shear stress transmis-
sion between non-aligned wall elements. However, a fine
discretisation with wall elements is to be preferred close to
these regions to get improved results. This is due to the
attenuation of the shear stresses being no more than twice
the wall thickness.

It has been shown in one of the examples how deforma-
tion of a cross-section can be decomposed into displace-
ment modes. This mode decomposition is directly found
from the solutions as the displacement mode intensity fac-
tors, which indicates the influence of each mode. Thus, in-
depth knowledge of the beam deformation can be obtained
right away and is an integrated part of the solution. This

is one of the main advantages of this theory in comparison
with for example cFSM where constraint equations are to
be added to the kinematic equations to obtain a similar
mode decomposition.

During a mode decomposition, the attenuation of the
exponential distortion modes can be found since this is di-
rectly related to the eigenvalues, which were deduced com-
puting the cross-sectional beam displacement modes. This
is exemplified and verified in one of the examples. Fur-
thermore, this mode decomposition may be utilised in fu-
ture formulations of efficient beam elements with a reduced
number of modal degrees of freedom based on a subset of
modes. Besides, the identification of displacement modes
becomes essential extending the theory to include buckling
and post-buckling analysis of the beam members as well.
Indeed, higher-order exponential displacement modes play
a crucial role here, which is also highlighted in [27].
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