Optimal planning of Transfer Instructure in a Multimodal Transport Network: Bi-level Modeling and Paradoxes

Ye, Jiao; Jiang, Yu; Chen, Jun; Nielsen, Otto Anker; Liu, Zhiyuan

Publication date: 2019

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
ABSTRACT (in approximately 800 words):

OPTIMAL PLANNING OF TRANSFER INSTRUCTURE IN A MULTIMODAL TRANSPORT NETWORK: BI-LEVEL MODELING AND PARADOXES

YE JIAO¹, YU JIANG², JUN CHEN¹,³, OTTO ANKER NIELSEN²

¹ School of Transportation, Southeast University, Nanjing, Jiangsu
² DTU Transport, Department of Technology, Management and Economics, Technical University of Denmark, Denmark
³ Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing, Jiangsu

With the growing attention towards developing multimodal transport system to enhance urban mobility, there is an increasing need to construct new, rebuild or expand existing infrastructure to facilitate current and accommodate newly generated travel demand.

Many researchers have been working on the approaches to integrate the multimodal transport services. In general, existing studies can be classified into three approaches. In the first approach, the decision variables associated with each transport mode, i.e., bus route, frequency, or link capacity, are exclusive to each transport mode. The second approach designs the allocation of exclusive lanes to specific transportation modes. The third approach designs the transfer location in a multimodal transport network, where intermodal trips are considered in the route choices. However, the studies within this approach are limited and there is no existing study on designing the location and capacity of transfer infrastructure simultaneously. Irrespective of the modelling approaches, a common framework for formulating the multimodal network design problem is the bilevel programming.

Therefore, this paper proposes a bilevel multimodal network design model that simultaneously determines the location, type, and capacity of the infrastructure that should be built. Road, transit, bike and walk networks are all considered as sub-networks in this study. The upper level problem is to determine the type of transfer infrastructure and its corresponding capacity would be built at a candidate transfer location. The lower level problem is the combined trip distribution and assignment model subjected to capacity constraints. The upper-level problem is a mixed integer linear programming problem, while the lower level problem depicts both destination and route choices of travelers by multinominal logit formula. As a well-known NP-hard problem, most existing studies adopt
heuristic algorithms to solve it. Thus, this paper develops a math-heuristic algorithm that integrates a Genetic Algorithm and a successive linear programming solution approach.

Numerical studies are conducted to demonstrate the optimal design of transfer capacity in a multimodal transport network and the existence of two paradox phenomena. One is a Braess-like paradox in the context of multimodal transport network under fixed demand, stating that constructing parking space to stimulate the usage of Park-and-Ride service could deteriorate the system performance, measured by the total passengers’ travel time. Effects of θ and transfer capacity constraints on the occurrence of the Braess-like Paradox are examined. The result indicates that when the route choice behavior tends to follow user equilibrium (i.e., θ is large), it is more likely that the Braess-like paradox would happen. It is also interesting to notice that the Paradox could occur either at a low capacity (below 115) or a high capacity (above 1824). The second one reveals that increasing the parking capacity for the Park-and-Ride to attract the usage of metro service may fail, represented by the decline in the modal share. Effect of θ under variable demand is examined. By comparing the results under different θ, it is easy to know: 1) The larger the value of θ is, the larger the maximum probability of using park and ride; 2) the gap among the three paths share rates becomes narrow with the increasing in the value of θ. The last experiment indicates some transfer node design recommendations: 1) It is better to build two nearby small transfer nodes rather than a large one with the fixed budget constraint; 2) the two nearby transfer nodes should be different types and next to different metro stations.

Keywords: multimodal network design, bilevel programming, genetic algorithm, paradox.
The 3rd International Symposium on Multimodal Transportation

Preferred Session/Topic (You can check more than one box):

- [] Intermodal Transportation Planning, Operations and Management
- [] Autonomous and Connected Vehicles
- [] Sharing Economy in Transportation
- [] Electrification of Transportation and Infrastructure Design
- [] Intelligent Transportation Systems

- [] Transportation Network Modelling and Optimization
- [] Transportation Data Analytics and Applications
- [] Traffic Safety and Emergency Responses
- [] Road Traffic Operations, Management and Control
- [] Public Transit Systems
- [] Rail Operations and Management
- [] Air Transportation Strategy, Operations and Management
- [] Maritime Transportation and Port Operations
- [] Logistics and Supply Chain Management
- [] Freight Transport Modelling
- [] Intermodal Freight Transport
- [] Urban Goods Movement
- [] Transportation, Land Use and Sustainability
- [] Transportation Economics and Finance

Are you submitting a full paper? (You can check more than one box):

- Participants are required to submit the abstract in this template AND a full paper (for consideration for TRE special issue submission, Journal of Intelligent and Connected Vehicles (JICV) submission or Best Student Paper Award).
- Participants are required to submit only the abstract if they seek only for the consideration of presentation.
- The full paper should be combined with the Submission Template for Abstracts. The combined file must be in PDF format.
- A few best student paper awards will be selected among the full paper submissions. The paper awards are given to students who are both the first author and the presenter of the paper.
- Papers must be submitted and presented for consideration for TRE, JICV, or/and Student Paper Awards.

- [] Yes, I would like to submit a full paper (consideration for TRE special issue).
- [] Yes, I would like to submit a full paper (consideration for Best Student Paper Award).
- [] Yes, I would like to submit a full paper (consideration for JICV).
- [] No, I do not submit a full paper and present only.

- If the paper is submitted for consideration for both TRE special issue and JICV, please indicate your preferred journal

- [] TRE
- [] JICV