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Abstract 
This study evaluates the performance and robustness of twenty-two established and newly proposed 
glare prediction metrics. Experimental datasets of daylight-dominated workplaces in office-like test 
rooms were collected from studies by seven research groups in six different locations (Argentina, 
Germany, Denmark, Israel, Japan and USA). The variability in experimental setups, location and 
research teams allowed reliable evaluation of the performance and robustness of glare metrics for 
daylight-dominated workplaces.   
Independent statistical methods were applied to individual datasets and also to one combined dataset 
to evaluate performance and robustness of the twenty-two glare metrics. As performance and 
robustness are not established in literature, we defined performance as: 1) the ability of the metric 
value to describe the glare scale (evaluated by Spearman’s correlation), and 2) the ability of the 
metric to distinguish between disturbing and non-disturbing situations (evaluated by diagnostic 
ROC-curve-analysis-tests). Furthermore, we defined robustness as the ability of a metric to deliver 
meaningful results when applied to different datasets and to fail as few as possible statistical tests. 
Average Spearman correlations in the range of 0.55-0.60 as well as average prediction rates to 
distinguish between disturbing and non-disturbing glare of 70-75% for several of the metrics show 
that the results of the metrics are in general trustable - therefore, the poor performance reported in 
some studies cannot be confirmed. Also, the cross-validation results show that metrics considering 
the saturation-effect as a main effect in their equation perform better and more robustly in daylight-
dominated workplaces than purely contrast-based metrics or purely empirical-derived metrics. The 
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results indicate that the Daylight Glare Probability (DGP) delivers the highest performance amongst 
the tested metrics and was also found to be the most robust one.  
Future research should aim to optimize the terms of glare equations which combine contrast and 
saturation effects, for example DGP, PGSV or UGRexp, to achieve metrics performing also reliably in 
dimmer lighting conditions than the ones explored in this study.  
Keywords 
Discomfort glare, Daylight, HDR imaging techniques, glare perception, user assessments, glare 

protection 

Introduction and objectives 
The avoidance and prevention of glare is an important issue for the design and operation of buildings 
to guarantee a comfortable visual environment for occupants. The existence of reliable glare metrics 
is therefore a necessity. In the past decades façade installations have advanced in order to balance 
different and contradicting criteria1 such as, amongst others, view out, daylight provision, solar and 
glare protection, ventilation, sound protection and aesthetics. Many of the resulting façade designs 
lead to rather complex light distributions, making it challenging for glare metrics to produce reliable 
results.  Most of the existing metrics have been developed under specific, non-general boundary 
conditions with limited variations. As a result, several studies 2–4 reported poor overall performance 
of existing glare metrics. Some of these studies therefore proposed new or modified daylight glare or 
visual discomfort metrics, based on the acquired user assessment data. A common restriction of these 
studies is the limited variation of the luminous environment while developing metrics or modifying 
existing ones, as well as the limited amount of data points, something unavoidable in such 
experiments.  Often window sizes, seating position and viewing directions are not changed during 
experiments. While a metric might perform better under a certain condition, it may fail for conditions 
which are significantly different.  
Hence, the question remains: how well do glare metrics perform when the lighting conditions are 
different from the ones under which they were developed?  
The objective of this study is to evaluate the performance and robustness of established and newly 
proposed glare prediction metrics by using data-sets from six studies that were not used to develop 
the metrics themselves. An additional dataset from Germany and Denmark, which was used to 
develop the DGP metric, is also used for training the metrics (see section 1.1). The dataset used as a 
whole for this cross-validation study was acquired by different research groups in Germany, 
Switzerland (though experiments were conducted in Germany), Denmark, Japan, Israel, Argentina 
and USA. This variability in locations, climatic zones and research teams allows the evaluation of 
the performance and robustness of glare metrics much more reliably than using only a single data-set 
from one research team. To limit confounding factors to a minimum, only studies which conducted 
the experiments under daylight in controlled environments (office-like test rooms) were eligible for 
the present cross-validation effort.   
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1. Selection of glare metrics  
Having a series of large and diverse datasets available to investigate the performance and robustness 
of glare metrics, it is appealing to evaluate as many potential metrics as possible. However, statistical 
reasons limit the number of metrics that can be investigated. One of the main reasons is the risk of a 
type I error ("false alarm") which increases linearly with the number of analyses, relative to the 
number of tested independent metrics. When several, independent metrics are investigated it requires 
an adjustment of the significance level. E.g. for 2000 metrics, the significance level needs to be 
adjusted from 0.05 to 0.000025 before accepting the results (see section 2.5.2, which discusses the 
Bonferroni correction of the significance-levels). Ignoring this rule can lead to random results (type I 
error). On the other hand, if this adjustment is applied and a large number of metrics are tested, such 
a low p-value is hard to achieve for any metric – all of them would fail the significance threshold. 
For this reason, we restricted the number of metrics evaluated to the most relevant ones, which 
counts down to 22 metrics. In this selection, we have long-time established metrics like the Daylight 
Glare Index DGI, which was the first glare metric dedicated to evaluating daylit environments. We 
also selected several well-established glare metrics in the field of electric lighting, which are 
mentioned in standards and CIE-documents (UGR, CGI). Furthermore, we considered metrics that 
were recently published or mentioned in publications or that are revisions of long-term established 
metrics. DGPmod5, a recent modification of DGP to be used in cases of direct sun visible through 
shading fabrics, was discarded in the evaluation, as this metric was extracted from a dataset, which 
included the US-Fabrics dataset used in this study. Including DGPmod would thus violate the 
restriction of not using datasets used to develop the evaluated metrics (more in Section 2). Since the 
US-Fabrics dataset in itself offered unique circumstances (sun through shading fabrics), which were 
crucial to the completeness of examined conditions in this study, the authors decided to include the 
dataset, but not the DGPmod metric for the statistical evaluations. However, in the discussion section 
4.3 we compare the core performance values of DGPmod with the unmodified DGP metric to evaluate 
differences between the metrics. 
 
The complete list of evaluated glare metrics and their related main publication can be found Table 1, 
their equations and/or definitions are listed in the supplementary material. 
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Table 1: Overview of the investigated metrics (22 in number) including references, where the metrics were either 
developed, suggested or discussed. The equations and/or definitions of the metrics are listed in the supplementary 
material.   
 
# Name Variable 

Name ref. # Name Variable 
Name ref. 

1 CIE Glare Index CGI 6,7 12 
Median Luminance of Lower Window 

(<2m height) 
Lmed_lowerwin 3 

2 Daylight Glare Index DGI 8,9 13 Median Luminance of Window Lmed_win 3 

3 Modified Daylight Glare Index DGImod 10 14 
Position Index Weighted Average 

Luminance of Image 
Lpos_avg  

4 Daylight Glare Probability DGP 11,12 15 
Standard Deviation of the Luminance of 

the Window 
Lstd_win 3 

5 Direct Illuminance Edir 5 16 Perceived Glare Level for typing task PGL 13 
6 Illuminance at Eye Level Ev 11,14 17 Predicted Glare Sensation Vote PGSV 15,16 

7 Glare Sensation Vote GSV  17  18 
Predicted Glare Sensation Vote 

(saturation glare) 
PGSVsat 15 

8 Average Luminance in 40° Band L40band_avg 3 19 Unified Glare Probability UGP 4 

9 Average luminance in Image Lavg 2 20 Unified Glare Rating UGR 7 
10 Average Luminance of Window Lavg_win 3,11 21 Experimental Unified Glare Rating UGRexp 10 
11 Median Luminance of Image Lmed 3 22 Visual Comfort Probability VCP 18 

 

2. Methodology 
The data from seven different previously published studies were collected, screened, cleaned and 
evaluated following a common procedure. The studies were conducted in six different countries in 
different continents and climatic zones.  All of them were conducted in controlled office-like 
environments where daylight was the main light source. In all studies, user assessments were 
accompanied by the acquisition of HDR images, which were taken either at the position of the 
subject’s head or very close to it. All HDR images were screened for validity (e.g. pixel overflow) 
for this study. In few cases where pixel overflow occurred, the images were either corrected or 
deleted from the data (see 2.2). Five of the datasets used the same 4-point rating scale. The rating 
scales of the other two datasets were transformed to the 4-point scale of the other five datasets (see 
2.4). 
Testing performance and robustness of glare metrics requires various steps of data preparation and 
application of statistical tests. As a general rule and to avoid any biasing of the results by model 
training or metric-development-data, the statistical tests within this study were only applied to 
datasets that were neither used for the development of the metrics nor for the derivation of any 
borderline value (a borderline is the value separating two categories of a subjective ordinal rating 
scale, e.g. the borderline between noticeable and disturbing glare).  
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For the evaluation of the performance of the metrics, Spearman correlation and AUC were used.  
The robustness was tested by the squared distance and the True Positive Rate (TPR) and True 
Negative Rate (TNR). The overall methodology is illustrated in Figure 6 and described in detail in 
the following paragraphs 2.1 - 2.5. 
2.1. Overview of test locations 
Experimental data from seven different studies are used for this research. The studies were selected 
to have a high variability of tested shading systems and a high variability on climate/cultural 
background. In addition, the studies fulfilled following quality criteria: High control over 
experimental conditions, high reliability of the underlying data (e.g. no systematic error in images), 
and avoidance of reflections on computer screens. 
All experiments were conducted under daylight in controlled office-like test rooms. A summary of 
the test locations is given in Table 2. For more detailed descriptions, please refer to the 
supplementary materials or to the original published studies. 
 
Table 2: Overview of the studies, their experimental setup, equipment and examined subjects. The no. of cases specifies 
the total number of situations evaluated per study. The maximum amount evaluated by one test person was restricted to 
six per day for this study and varied between one (DE-Gaze), three (AR-DEO, DE-DK-Ecco, JP-Office and IL-DayViCE), 
four (DE-Quanta) and six (US-fabric). Data which was used to develop DGP is not used for any evaluation of the metrics. 
It is only used for the training of the metrics (see 1.1). 
 
Study Research team ref. place Window 

size 
Shading/ 
Daylight system 

Test-
persons       

Cases   
  

Cases   
 Non-development 

AR-DEO Yamin Garretón 
Rodriguez 

19 Mendoza, Argentina S Glazing without shading 27 55 55  

DE-DK-Ecco Wienold 
Christoffersen 

11 Freiburg, Germany 
Copenhagen, Denmark 

S 
M 
L 

White Venetian blinds 
Specular Venetian blinds 
Transparent foil system 

59 
24 

229 
130 

14 
0 

 

DE-Gaze Sarey Khanie 20 Freiburg, Germany L Glazing without shading 95 95 95 
 

DE-Quanta Wienold 21 Freiburg, Germany L White Venetian blinds 
2 types fabric roller shades 49 196 196 

 

IL-DayViCE Erell 
Kaftan 

22 Sde Boqer, Israel L 

Light shelf 
Transparent foil system 
Glazing without shading 
Venetian blinds 

59 151 151 

 

JP-Office Iwata 15 Tokyo, Japan L White Venetian blinds 72 162 162 
 

US-Fabric Tzempelikos 
Konstantzos 

5 West Lafayette, USA L 14 types fabric roller 
shades 35 141 141 

 

Total data      420 1159   

Total non-development data     337  814  

 
With: 
Window size S: Small (glazing fraction: <40% of facade)   
Window size M: Medium (glazing fraction: >=40% and <70% of facade) 
Window size L: Large (glazing fraction: >=70% of facade) 
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2.2. Quality and consistency of experimental data 
To ensure reliable basis-data for the analysis, the entire HDR image-dataset was screened and 
checked. One major and possibly biasing issue in HDR-imaging and glare evaluation is the risk of 
pixel overflow when trying to measure high luminances (e.g. sun, reflections of sun, sun seen 
through fabric shadings). Another potential issue is, in cases where the camera is not at the subject’s 
eye position, that the camera “sees” a significantly different situation than the subject (e.g. the sun 
disk is hidden by a frame of the window, where the user can see the sun or vice versa). All images 
from these studies were manually checked and the respective cases removed from the dataset. The 
pixel overflow was checked by comparing the illuminance measured besides the lens with the 
illuminance derived from the HDR image. As quality criterion, deviations of more than 25% between 
the measured and derived illuminance were considered unacceptable. Details of the selection, 
correction and quality process can be found in the supplementary material. The studies DE-Gaze and 
JP-Office had no illuminance-sensor installed besides the camera, therefore another procedure was 
applied to these images which is described in the supplementary material. The overall quality of the 
HDR-cameras used can be seen in Figure 1.  For the unchanged images we calculated bias, 
normalized bias, root mean squared error RMSE and normalised root mean squared error NRMSE 
(for equations see supplementary material).  For all studies the normalised bias was less than 5% - 
respectively less than 10% for the NRMSE - indicating that the quality of the images is good enough 
to conduct a validation study.  
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Figure 1: Comparison of measured and image-derived illuminance for the different datasets 
 
2.3. Data overview 
The individual studies were conducted with different façade settings ranging from no shading with 
sun in the field of view to small window shaded with venetian blinds, leading to a large variability of 
light distributions in the overall dataset from less than 100 lux to more than 80000 lux. This 
variability is illustrated in Figure 2, where the distributions of the illuminance levels at the eye and 
the average luminance of the window are shown in a violin plot for all the underlying studies. As the 
average illuminance values at eye level for all studies are above 1800 lux, it means all the 
experimental setups can be considered as daylight-dominated workplaces. Dimmer lighting 
conditions, as they occur e.g. in open-plan offices or position further away from the façade, are only 
marginally represented in the datasets and therefore the results may be extrapolated to these 
conditions only with caution.  
 

  
Figure 2: Violin plot showing the distribution of the illuminance at eye level Ev (left) and the average luminance of the 
window Lwin_avg (right) for the studies. The dots in the figure are showing the median values, the vertical line the 50% 
percentile.  
 
 
2.4. Subjective assessments – scales and mapping 
The underlying glare-studies and their experiments were independently designed and, as a result, the 
subjective assessments were conducted with different procedures and scales.  While the validity of 
the application of glare scales such as de Boer’s scale 23,24  is under discussion, the current 
differences in scales might influence the glare prediction results 25. More importantly, it makes a 
common evaluation such as the one being performed in this study difficult. In order to overcome this 
limitation, we needed to map the data to a single basis scale.  
Out of the seven studies, five use the same four-point scale introduced by 26, which was found to be 
consistent 27 when compared to a linear glare scale (Cronbach alpha = 0.90). Moreover, the simple 
structure of the itemized four-point scale using “imperceptible”, “noticeable”, “disturbing” and 



 8 

“intolerable” as a degree of glare descriptor reduces the confusion when the questionnaires are being 
initially filled out. We hence used this four-point Likert scale as basis-scale. The two studies, JP-
office and IL-DayViCE, needed to be mapped to the basis scale in order to have a common data 
basis. The JP-office study used a linear scale with marks at the borderline between perceptible, 
acceptable, uncomfortable and intolerable glare. The IL-DayViCE study used a 5-point Likert scale 
from “not at all” to “very much” as responses. Table 3 shows the glare- perception questions asked 
in each study and also illustrates how these two scales were mapped to the four-point scale. 
 
 
Table 3: Glare questions, used subjective scales and mapping of the scales for the IL-DayViCE and JP-office study.   
 

 
 
An overview about the relative occurrence of the subjective ratings can be seen in Figure 3. 
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Figure 3: Relative distribution of the subjective responses for the underlying data 
 
2.5. Statistical methods 
The main goal of this study is to investigate performance and robustness of glare metrics. As of yet, 
there is no globally accepted statistical method available to evaluate the performance or robustness of 
glare metrics. But what does “performance” mean and how can we define robustness – both in 
relation to the evaluation of glare metrics?  
To approach a reliable performance-evaluation, we can formulate two important questions:  

1. How well does the metric describe the glare scale?  
2. How well can the metric distinguish between disturbing and non-disturbing situations? Or in 

other words: Can a metric describe the probability that building occupants are disturbed by 
glare? 

To answer the first question, the Pearson correlation has been used in some studies (e.g.  2,3) for the 
evaluation of glare metrics. The Pearson correlation, however, only delivers reliable results for 
numerical or equidistant ordinal data, which is not typical of the subjective rating scales for glare. 
Here, since our data is of ordinal nature, we apply Spearman’s correlation, which is accepted as an 
appropriate statistical approach for such data 32.  
The second question can be answered by diagnostic tests, which are well known mainly in the field 
of medical research and have been introduced to the glare analysis by 33. In our study, we applied the 
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Area Under the Curve (AUC, see 2.5.3.1) and the ROC Square Distance SqD (see 2.5.3.2) to 
evaluate the overall performance.  
 
Robustness of the glare metrics and how to measure it in the context of glare metrics has not yet been 
defined in literature. In a general sense, we can define robustness as the ability of a metric to deliver 
meaningful results when applied to different datasets and to fail as few as possible statistical tests. To 
be more specific, this can be approached by answering the following questions: 

a) Do glare metrics fail statistical tests when applied to multiple/different datasets? If yes, how 
often? Fewer failings indicate a more robust metric. 

b) What is the minimum “detection-rate” delivered by the different metrics when applied on 
different datasets? A detection rate is defined here as the rate of correct predictions 
distinguishing between noticeable and disturbing glare for a universally derived disturbing-
borderline-value.  

c) Does the disturbing-borderline value vary when derived from the different studies, and by 
how much? The smaller the difference, the more robust a metric can be considered in 
identifying a disturbing situation caused by daylight glare. This evaluation also answers 
whether different stimuli among studies (which is the case here with the very different set-ups 
and locations) lead to similar borderline-values. 

Details of the applied methods are described in 2.5.1-2.5.5.  
2.5.1. Spearman rank correlation 
The Spearman rank correlation ρ is a non-parametric test to measure the strength of the relationship 
between paired variables, in our case between the subjective ratings on the 4-point scale and the 
numerical metric values. The underlying independent variables don’t need to be of numerical or 
equidistant-ordinal nature32. For the interpretation of the values, Cohen considers a ρ of > 0.5 as 
large effect size and > 0.3 as medium effect size 34. Ferguson suggests more strict effect size-
thresholds in 35. However, comparing the effect size thresholds from Cohen and Ferguson applied on 
the Spearman correlation for the underlying data with the AUC-evaluation (see 2.5.3.1) and its 
interpretation of Hosmer-Lemeshow36, the interpretation of Cohen is more consistent and is therefore 
used for this study. The significance levels for rejecting the 0-hypothesis is corrected according to 
Bonferroni (see 2.5.2). 
2.5.2. Bonferroni correction of the significance-levels 
A Bonferroni correction of significance values should be applied when multiple statistical tests of a 
hypothesis are performed to keep the risk of a type I error on the same level as if there would be only 
one test applied 37. Multiple applications of tests increase the probability of a random result linearly, 
at least when the tested variables are independent from each other. To account for this, the 
Bonferroni correction is applied where significance levels (α) are divided by the amount of repeated 
tests (the amount of metrics). Thus, we consider a α-value of α = 0.05/22 = 0.00227. 
2.5.3.  Diagnostic statistics 
Diagnostic statistics are well established in medical research and are, in that field, often applied to 
evaluate if a diagnostic method is able to predict a certain medical disease. These statistical tests can 
also be applied to other disciplines and were introduced to glare evaluations in 33. The main basis for 
these kinds of evaluations are datasets with binary dependent variables. For our data, the categorical 
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variable (=glare sensation vote) is converted into a binary variable, for example non-disturbing 
(imperceptible and noticeable glare) ⇔ disturbing (or stronger glare). These binary variables are 
then analysed using the receiver operating characteristic curve (ROC curve), where the true positive 
rate TPR (also called sensitivity) is plotted against the true negative rate TNR (also called 
specificity) for different critical values of the respective glare metric. TPR corresponds in our study 
to the prediction rate of disturbing glare and TNR corresponds to the prediction rate of no or non-
disturbing glare. 
 
In Figure 4, sample ROC-curves are shown to illustrate this diagnostic analysis. The curves illustrate 
the ability of the glare metrics to discriminate between disturbing and non-disturbing glare. The 
curves can be analysed in various ways and will be explained in 2.5.3.1-2.5.3.3. 

      
Figure 4: Example ROC curves for DGP and DGI for the combined dataset. Important critical values / borderline values of 
the metrics are displayed as triangles and dots. An ideal metric would touch the upper left corner (TPR=TNR=1) for ideally 
chosen critical values, which would mean a perfect prediction. The analysis of the squared distance SqD can be used to 
evaluate how well a metric can predict glare situations for a given borderline value. The SqD can also be used as basis for 
the determination of meaningful borderline values. The Area Under the Curve AUC describes the general ability of a 
metric to discriminate between disturbing and non-disturbing glare.  
2.5.3.1. Area under the curve AUC 
The area under the curve AUC describes the general ability of a metric to discriminate between 
disturbing and non-disturbing glare. It is a summary measure of the accuracy and is used in this study 
as a performance test. For the interpretation of the values, Hosmer-Lemeshow 36 describes an 
AUC ≥ 0.7 as an acceptable discrimination and an AUC ≥ 0.8 as an excellent discrimination for the 
binary data. Further, 38 interprets an AUC < 0.6 as fail and 0.7 > AUC ≥ 0.6 as poor. 
2.5.3.2. Squared Distance SqD 
The squared distance value SqD is used to analyse the ROC curve and is the squared distance from 
the curve to the upper-left corner, where the True Positive Rate TPR and True Negative Rate TNR 
are equal to 1 (see Figure 4). The smaller the SqD value, the better a metric is performing, with an 
ideal value at 0. In that case, the metric, together with the corresponding critical value / borderline 
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value, would reliably predict 100% of the disturbing glare situations and also 100% of the non-
disturbing glare situations.   
Typically, this distance is used to determine the borderline value, which is the best compromise 
between disturbing and non-disturbing glare. But this value can also be used as a performance 
indicator, when applied to a pre-determined borderline value (e.g. borderline value determined by 
another dataset or study). If this method is applied to different studies, the maximum value indicates 
the robustness of a metric.  
2.5.3.3. True Positive Rate TPR and True Negative Rate TNR 
While the True Positive Rate TPR and True Negative Rate TNR are very intuitive (TPR corresponds 
the prediction rate of disturbing glare situations and TNR corresponds to the prediction rate of no or 
non-disturbing glare situations), their combined evaluation is essential for meaningful interpretation 
of performance. A very high TPR could be reached by having a very low borderline value, causing a 
low TNR, which means the metric is over-predicting glare. The opposite happens when the 
borderline value is too high: TNR is very high then and glare under predicted. This characteristic 
behaviour can be used to evaluate the robustness of the metrics. Also, reporting an average TPR and 
TNR across studies could lead to wrong interpretations when the ratio between TPR and TNR is 
changing across studies. In that case a poor prediction rate in one study could be compensated by a 
high one in another. And this would happen in reverse order for the second prediction rate. 
Therefore, we use these average values only as robustness indicators by evaluating the minimum 
prediction rates across the studies. The higher this rate is, the more robust is the metric. Also, we 
classify values below a minimum level of 50% (equals random level) as a failing of a test in our 
“failing analysis” in section 2.5.5. 
2.5.3.4. Definition and determination of borderline values 
Borderline values are metric values discriminating the (binary) dependent variable (user’s 
perception). In non-lighting related research, typically the borderline-values calculated by diagnostic 
tests are also called “cut-off-values”. An often-used borderline value in lighting research is the BCD, 
which is the borderline between comfort and discomfort. The BCD originated from the experiments 
by Luckiesh and Guth 39 and is mostly related to a semantic scale, which differs from the scale used 
for this study. For that reason, the borderline-values in this study are named differently. We used the 
following naming convention:  

• BIN:   Borderline between imperceptible glare ⇔ noticeable glare  
• BND:  Borderline between noticeable glare ⇔ disturbing glare  
• BDI:   Borderline between disturbing glare ⇔ intolerable glare.    

In general, the relation between semantic scales and metric values is not consistent in literature 
7,9,33,39–42. Comparison of semantic scales used in the different metrics is beyond the scope of this 
study. Therefore, a direct comparison between “well accepted” BCD-values and the calculated 
borderline values of this cross-validation study should only be done with caution – especially for 
metrics mostly used for electric lighting (like CGI, UGR), which were developed using the de Boer’s 
scale, which is different to the scale used for this cross-validation study. 
There are several methods to determine an optimal borderline value, but none of these are perfect 43, 
so researchers typically select one of the methods for their study.  For our study, we decided to apply 
the three most used approaches and use the average value of the three. The first method minimizes 
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the distance of the ROC-curve to the upper left corner (minimization of SqD). The second method 
maximizes the Youden index, which is defined as TPR+TNR-1. Graphically this corresponds to a 
maximum vertical distance between the diagonal and the ROC-curve. The third method is fitting a 
maximum sized square under the curve which results in the point TPR = TNR on the ROC-curve. 
The three methods are illustrated in Figure 5. 

 
Figure 5: Three methods to determine the optimal borderline value: Minimizing the SqD, maximizing Youden index or 
Point on the curve, where TPR equals TNR. All methods are implemented in the evaluation and the average value of 
these 3 methods is used. 
2.5.4. Logistic-regression 
The logistic regression is a probabilistic prediction method, which is applied to dichotomous 
dependent variables.  It is based on the hypothesis that the probability P is continuously increasing 
with a rising independent value following an S-shape. The regression fits the coefficients a and b of 
the equation (1) to the data. The p-value is used for the robustness analysis, comparing it to the 
Bonferroni adjusted significance level.     

      𝑃𝑃 = 𝑒𝑒𝑎𝑎+𝑏𝑏𝑏𝑏

1+𝑒𝑒𝑎𝑎+𝑏𝑏𝑏𝑏
 ( 1 ) 

 
2.5.5. Robustness based on failure rate  
The failing of significance tests is used in this study to evaluate the robustness of the already trained 
(see 2.7) metrics. The following tests are applied: 

1. Spearman: The p-value of the Spearman-rank-correlation is compared with the Bonferroni-
corrected significance value. Applied to each study separately. 

2. Logistic regression: The p-value of the logistic-regression is compared with the Bonferroni-
corrected significance value. Applied to each study separately. 

3. TPR and TNR: The average TPR and TNR for each study is compared to a threshold of 0.5. 
A value of 0.5 or lower equals to a random result.  

4. AUC: The AUC value is compared to a threshold of 0.6, which is interpreted as “fail” 38. 
Applied to each study separately. 
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2.6. Dataset preparation 
Following the principle of not using any development data, it was necessary to treat the data in two 
ways, depending on the statistical tests applied: 

i. For statistical tests not using borderline values in the evaluation: 
Here, all the data except development data is used. Each study results in one dataset, six in 
total. A seventh combined dataset is created containing all data from the six studies in order 
to have one dataset with a larger bandwidth of lighting situations. 

ii. For statistical tests using borderline values in the evaluation:  
The derivation of borderline values is treated as “training” of the glare models. The 
application of statistical tests is defined as “testing”. For these two different phases 
(“training” and “testing”) two different datasets are generated, which are called “training 
dataset” and “testing dataset”. 
The training dataset is generated by splitting up randomly 1/3 of the full dataset (all available 
data, including development data in order to use an as broad as possible set of training 
conditions). For generating the “testing dataset”, the development data was removed from 
remaining 2/3 of the data). With this procedure the testing dataset does not contain any 
development or training data.  The testing dataset is, similarly to the full dataset procedure, 
arranged into seven sub-datasets (one for each study + one combined dataset). To avoid any 
biasing by the random split of the data, the entire data splitting procedure (between training 
and testing data) is repeated 2000 times (following Carpenter and Bithel 28), so that 2000 
random sampled datasets are generated (bootstrapping), each of them consisting of one 
combined training sub-dataset and seven sub-datasets for the testing.   
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Figure 6: Schema of the overall data processing  
 
 
The metrics were calculated using evalglare 29,30 (versions 1.20 – 2.03), a RADIANCE 31 based tool 
to evaluate HDR-images. Five different runs with different parameter settings were needed to extract 
all the information to calculate all metrics investigated for this study (for details, see supplementary 
material). 
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3. Results 
3.1. Performance of the metrics 
In this section the performance of the glare metrics is evaluated. We defined “performance” in 
section 3 as the:  

1. Ability of the metric to correlate with the perception of glare of the subjects, evaluated with 
the Spearman-Ranking correlation ρ. 

2. Ability to discriminate between disturbing and non-disturbing glare, evaluated with the Area 
Under the Curve (AUC-value) of the diagnostic test.  

Both types of tests are applied to the untrained metrics and therefore do not consider any pre-defined 
borderline thresholds: they only evaluate if the metric can predict the glare perception in general. The 
higher the values for both tests - the better the performance. Details about the test can be found in 
section 2.5. 
In Table 4, the Spearman-rank correlation ρ for the glare metrics and different datasets are shown, as 
well as the ranking of the metrics according to ρ. One can see that the average correlation for 
fourteen of the metrics are within the “large effect size” (ρ > 0.5), while the remaining ones are in 
the “medium effect size” (0.3 < ρ ≤ 0.5). Considering all the study datasets separately, only CGI, 
DGI, DGImod, DGP and Lstd_win consistently stay in the “medium effect size” range. All the other 
metrics fall at least once into the category of “low effect size”.  
For the second performance evaluation, i.e. the area under the curve (AUC), most of the values lie 
very close to each other. The average values of the best 15 ranked metrics are between 0.80 and 0.82, 
which means most of the metrics show an excellent  discrimination between disturbing and non-
disturbing glare or are very close to it. However, only two metrics (DGP and Edir) are in the 
acceptable discrimination range for all the investigated datasets. For all the other metrics, the AUC 
falls for at least one dataset into the “poor” range or even fails (failing for CGI, DGI, DGImod, PGL, 
Lmed_lowerwin, UGP, UGR and UGRexp). 
Another important outcome of the performance evaluation is that on average the metrics perform 
reasonably well – for both of the applied performance tests. On the other hand, datasets containing 
slightly more extreme situations like “USA-fabrics” or “DE-gaze” result in very low Spearman 
correlations or low AUC-values for most metrics, so for these datasets, the performance of metrics 
falls either into the categories of “low effect size” and/or of “poor discrimination”. DGP is the only 
metrics that falls into the “medium effect size” range and has “acceptable discrimination” for all 
datasets.  
The outcome of the performance evaluation tests does not provide any information about the 
robustness of the metrics. A high correlation and a high AUC do not automatically imply a high 
robustness. In case the regression coefficients or borderline-values are changing significantly using 
different datasets, a metric would not be robust and the applicability would be very restricted, since 
universal valid thresholds could not be derived. For that reason, the robustness has to be evaluated in 
addition to the performance.   
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Table 4: Spearman ranking correlation ρ for the different datasets and metrics. None of the DGP-development-data is 
used. The dark grey marked values are non-significant. The ranking is based on the average ρ-value. Correlations are 
within the  “large effect size” when ρ > 0.5 and in “medium effect size” when 0.3 < ρ ≤ 0.5.  
 

 
 
 
### I propose to highlight large and medium effect size like this. @Jan, I can do it for you, Tilmann 

 

.... values with white text are non-significant.  Values in light or dark grey boxes are "medium effect size" or "below medium effect 
size" respectively. 
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Table 5: Area Under the Curve-values (AUC) for the different datasets and metrics. None of the DGP-development-data is 
used. For the grey marked cases the AUC values indicate a random behaviour and are thus considered as failing a test. 
AUC-values ≥ 0.8 or ≥ 0.7 or ≥ 0.6 are considered as excellent, acceptable or poor respectively. AUC < 0.6 is interpreted 
as fail. 
 

 
 
### I propose to highlight excellent, acceptable and  poor (no fail detected) similar to table 4. @Jan, I can do it for you, Tilmann 

 
 
3.2. Robustness of the metrics 
We defined robustness in 2.5 in general terms as the ability of a metric to deliver meaningful results 
when applied to different datasets. We investigated this in this study by applying diagnostic tests to 
the metrics for different datasets, using the same borderline values for all tests and datasets. These 
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borderline values were derived from training datasets, which are not used for testing the metrics 
regarding robustness. Two different methods for training and robustness evaluation have been used. 
Also, the number of failed statistical tests, and the sensitivity with respect to chaning borderline 
values were treated as a measure for robustness when they are derived from each dataset separately. 
The applied robustness tests are described in section 2.5.  
3.2.1. Analysis of the squared Distance SqD 
The squared distance value SqD is a diagnostic test and can be interpreted as both performance and 
robustness indicator. A small value indicates a high ability to discriminate between “disturbed” and 
“not disturbed” for a given borderline value. The SqD is a trade-off between the rate of predicting 
glare situations (“true positive rate TPR”) and the rate of predicting non-glare situations (“true 
negative rate TNR”), giving both the same weight (see 2.5.3.2). The smaller the value the better the 
metric performs for the used borderline-value. In Table 6 the average SqD values for the different 
datasets and metrics are shown. The average SqD for each dataset is derived from the 2000 randomly 
sampled testing-data and uses borderline-values determined by the respective “training dataset” (see 
also section 2) in order to ensure that no training data is used to evaluate the performance or 
robustness of the metrics.  
A value larger than 0.5 indicates that the data cannot be discriminated reliably. If the SqD varies 
between the different datasets for a metric, then this indicates a sensitivity to the borderline-value 
and is a measure for the (non-)robustness of the metric. An example for this can be found in the 
results of the direct Illuminance Edir. For the datasets DE-Quanta, DE-Gaze, IL-DayVice and AR-
DEO, it shows a good performance when looking at the AUC value (between 0.79 and 0.84). 
However, the SqD value for the AR-DEO dataset (0.39) is significantly higher than for the other 
three datasets (0.11-0.15). This means that for this dataset, the borderline-value is leading to a poor 
discrimination, although the metric itself would perform well as indicated by the AUC-value. 
Therefore, the metric is less robust than others. Following this, the evaluation of the maximum SqD 
amongst the data-sets within the metrics gives an indication about the robustness of the metric. From 
all the investigated metrics DGP has the lowest maximum value (0.30), followed by PGSVsat (0.36), 
Ev (0.36), Lavg_win (0.40), Edir (0.41) and Lavg (0.42). Only those seven metrics stay below the 
threshold of 0.5 for all datasets. Furthermore, one can see from Table 6 that DGP, Ev and PGSVsat 
show the lowest average SqD-values amongst the metrics, which indicates a better performance of 
these metrics compared to others.    
 
Table 6: Average Squared Distance values of the metrics, derived from the 2000 random-sampled testing- datasets. The 
cut-off value for each testing-dataset is determined by the respective training-data-set to guarantee that no training data is 
used to evaluate the performance of the metrics. The dark grey marked cells show values which are larger or equal than 
0.5 and indicate therefore that for this case data cannot be discriminated reliably.  
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3.2.2. Analysis of results for True Positive Rate TPR and True Negative Rate TNR  
As mentioned in 2.5.3.3, the interpretation of TPR and TNR has to be done for both at the same time 
as a high value for one of the two values could be caused by a very low one for the other, originally 
caused by a non-optimal borderline value.  Table 7 gives an overview of the calculated TPR and 
TNR values for the metrics and the datasets. An example of non-robustness for one dataset is the 
DGImod. Whereas it performs well in general, indicated by a high average AUC value (0.81), and 
reasonably well for most of the datasets looking at the TPR and TNR values, it has a very high TPR 
(0.96) for the US-Fabric dataset but at the same time a TNR of only 0.10. In that case there would be 
an over-prediction of 85% of non-glare situations and therefore, for this dataset, the results of the 
diagnostic test become meaningless even though the AUC value (0.69 for the US-Fabric dataset) 
indicates a reasonable performance. The reason for this is that the metric is not robust using the same 
borderline-value for all the datasets, which is an important requirement for the application of a 
metric. Our evaluations show (see Table 7) that most of the metrics fail such a robustness 
requirement. The DGP is the only metric not failing this requirement for any of the datasets. 
Another important result of the TPR and TNR analysis is that the prediction rate (for both TPR and 
TNR) for five of the metrics (DGP, Ev, Lpos_avg and PGSVsat) are larger or equal to 0.70. This means 
that these four metrics have an average prediction-rate of 70-75% for the discrimination between 
“disturbing glare” and “non-disturbing glare” for the investigated studies. Considering the fact that 
the metrics are predicting subjective perceptions and that the data were collected with different 
protocols in different countries and continents, this prediction rate can be considered as reasonably 
high.  
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Table 7: Average TPR and TNR values of the metrics, derived from the 2000 random-sampled testing- datasets. The cut-
off value for each testing-dataset is determined by the respective training-data-set to guarantee that no training data is 
used to evaluate the performance of the metrics. The dark grey cells show a failed test where a value less than 0.5 
indicates a meaningless prediction rate. The ranking is based on the sum of failed tests. 
 

 
 
 
 
3.2.3. Failing statistical tests  
A similar result for the robustness as for the TPR/TNR evaluation can be derived from the number of 
failing statistical tests, described in section 2.5.5 (see Table 8). In this table, the failings of all 
statistical tests are summarized for all the metrics. DGP is the only metric that is not failing any of 
the applied statistical tests. Ev and PGSVsat are failing only one test; Lavg and PGSV are failing two 
tests. All the other metrics are failing three or more tests, which indicates a very low robustness. 
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Table 8: Summary table of the number of statistical tests failed for the metrics. The shown number corresponds to the 
number of datasets for which a statistical test is failed. For the Spearman correlation and the logistic regression, a test 
treated as failed, if the respective p-value is larger than 0.00227 (Bonferroni-corrected significance level of 0.05 for 22 
evaluations, see section 2.5.2). For TPR and TNR, a test is treated as failed if the respective value is less or equal than 
0.5. The SqD test is failed, if the value is larger than 0.5. For AUC, a test is treated as failed if the value is less than 0.6.  
 

  
 
3.3. Average borderline values 
In Table 9 the borderline-values for the investigated metrics are presented as result of the diagnostic 
tests of the 2000 random-sampled training- datasets. The values distinguish between the four 
categories of the subjective response scale (details see 2.5.3.4), serve as documentation for this study 
and help in the interpretation of results from other experiments or simulation results.  
 
 
 
 
 
 
 
 
Table 9: Average borderline (“cut-off”) values of the metrics, derived from diagnostic tests of the 2000 random-sampled 
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training datasets.   
 

 
 

 
For most of the metrics a direct comparison of the borderline values of Table 9 with previously 
published values is difficult since different semantic scales are used (see 2.5.3.4). Therefore, we 
compare them only for DGP since it was developed with the same semantic scale (Table 10). The 
calculated borderline values are very close to the originally published ones 41 and the ones used in 
the European standard EN17037 : 
 
Table 10: Comparison of the average calculated borderline (“cut-off”) values of DGP and the originally published values 41 
and the values used in the European standard EN17037.  
 

Borderline Calculated cross-validation study EN17037 and 41 
BIN 0.34 0.35 
BND 0.38 0.40 
BDI 0.45 0.45 

 
3.4. Variation of borderline values 
If the borderline values are derived from each dataset separately, the variation of the values can serve 
as a robustness indicator as well. The result of this analysis can be found in Table 11, where we used 
the normalized RMSE (NRMSE) to quantify the variation of the borderlines between the different 
datasets using the average borderline values as reference. Five of the metrics show a NRMSE lower 
than 10% (DGP, DGImod, DGI, and CGI), which indicates a high robustness. On the opposite side, 
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seven metrics (Lstd_window, Lavg_window, Edir, Lmed_win, Lmed_lower_win, and PGL) exhibit very high 
deviations (NRMSE > 50%), indicating a low robustness. 
 
Table 11: Borderline (“cut-off”) values of the metrics, derived from the six datasets in comparison with the average borderline value, 
derived from the training dataset. The normalized RSME is calculated by using the training-data derived value as reference.  

 
 
 

4. Discussion 
A quick overview the ranking results of the performance and robustness evaluations of section 3 is 
shown in Table 12. 
The ranking for the average AUC was not considered, since the differences between the various 
metrics were so small that a ranking could be misleading. Instead we used the results from the 
average squared distance analysis (together with the Spearman analysis) for the performance 
ranking.  The six highest ranked metrics for both the performance and the robustness evaluation end 
up being metrics that consider the saturation effect as a main effect in the equation (DGP, PGSVsat, 
Ev, Lavg, Lpos_avg, PGSV). Metrics based only on contrast or masked areas of the image, as well as 
purely empirical equations, do not perform as well and are less robust. In the following section, the 
metrics are discussed in detail. 
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Table 12: Summary of the rankings of the performance and robustness evaluations of section 3. The metrics are sorted 
according to the total ranking, which is the average of the overall ranking of performance and robustness. 
 

 
 
 
4.1. Metrics based on contrast effect only 
Established glare metrics such as CGI, DGI, UGR, VCP as well as modifications of them (DGImod, 
UGP) are based only on the contrast effect. In our cross-validation study, the contrast-based metrics 
perform less well and are also less robust than metrics using the saturation effect in their equation. 
This might be because all of our studies used workplace positions which were daylight-dominated 
and exposed to higher light levels (and therefore higher adaptation levels) than during the 
experiments where these metrics were originally developed. In addition, the exclusion of the 
saturation effect seems to be an intrinsic disadvantage of these metrics when dealing with large sized 
glare sources, as is often the case when dealing with daylight. This can be illustrated by the 
following example, comparing results from a large window façade with a small window façade using 
white Venetian blinds (images acquired in the DE-Ecco project). For similar conditions (sky type, 
time of day etc.), increasing the window size to an increase of the overall brightness of the scene 
(manifested by an increase of the average vertical illuminance in that experiment from 2494 lux to 
4468 lux). While the average luminance of the window was almost the same (3032 cd/m2 for the 
small window and 2815 cd/m2 for the large one), 29% of the subjects were disturbed by glare for the 
small window versus 49% for the large one (see also Table 13). This increase of disturbance-rate is 
not reproduced by any of the contrast-based metrics, which are calculated using equations where the 
luminance of the glare source is divided by the background luminance. Since the effect of the 
increase in size of the glare source (expressed by the solid angle) is not enough to compensate for the 
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increase of the background luminance, the values of the contrast-based metrics decrease when the 
window size is increased.  
Table 13: Influence of window size on saturation-effect-based and contrast-based metrics. 
 

 
 

  
Figure 7: Example images from the DE-Ecco dataset to illustrate the saturation effect. On the left side the large window 
façade setting is shown, on the right the small window façade setting. Both experimental conditions use the same room 
and the same white Venetian blind system and the luminance in the window-area is almost the same. For the small 
window, 29% of the subjects were bothered by disturbing glare whereas for the large one 49%. This increase of 
disturbing-rate cannot be reproduced by metrics which are only based on the contrast-effect. 
 
In our cross-validation study and amongst the contrast-based metrics, the CGI performs best and is 
also more robust than the other metrics of this category. We assume that this is because the CGI uses 
the direct illuminance Edir (illuminance induced only by the glare source) to enlarge the effect of the 
product of Ls2 •ω. 
The DGImod performs slightly better than the DGI, but the improvement is not significant. The 
performance of the UGR and UGP is very similar, because they have the same equation structure. 
Both of them fail the significance test for the US-fabric dataset and three times the 0.5 threshold of a 
diagnostic test (for AR-DEO, US-Fabric and JP-Office). Since UGP was especially developed for 
open-plan offices with assumed lower light levels, the low performance in this study can be 
explained by the aforementioned neglect of the saturation effect for daylight-dominated workplaces. 
The visual comfort probability VCP performs at the lowest end of all the metrics and for five 
datasets the logistic regression is not significant (in total it fails eight tests on five datasets).  
 
4.2. Metrics based on saturation effect only 
Metrics based on the saturation effect use the amount of light at the eye as a main variable in their 
equation. This effect was first mentioned as “‘grand total effect” in 44. From this category of metrics, 
in our study we investigated Ev, PGSVsat, Lavg and Lavg_pos and Edir. Except Edir they all performed 
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reasonably - and better than the metrics based only on the contrast effect.  Of the five metrics based 
purely on the saturation effect, Ev and PGSVsat seem to be more robust than the others. Ev and 
PGSVsat perform quite similarly in all respects. They both fail only one of the tests, and the failures 
are observed only for the US-Fabrics dataset.  
This is to some extent expected due to the presence of the extreme luminance source of the sun in 
every data point of this particular dataset, the impact of which can never be captured by the total Ev 
due to the low solid angle of the sun. The intrinsic disadvantage of this category of glare metrics 
neglecting the contrast effect can be also observed in dim environments. An example for this 
problematic is shown in following image, where the façade is equipped with a low-transmittance 
shading system (in that case 2%). This low transmittance leads to a low illuminance (Ev=514 lux), 
but the sun disk is visible with a luminance of several million cd/m2. This potential glare source is 
totally neglected by metrics which are based only on the saturation effect – whereas the contrast-
based will show an impact. 
 
The weighting of the luminance by the position index Lavg_pos does not appear to be an improvement 
to the non-weighted average luminance Lavg – their results are nearly identical.  The direct 
illuminance Edir, which considers only the glare sources and omits the background luminance for the 
calculation of its value, performs more poorly than the other metrics based on the saturation effect, 
and is also slightly less robust (it fails three tests for three datasets).  
 

 
Figure 8: Example image from the DE-Ecco dataset of a situation, where the saturation-effect-based metrics would fail. 
The image shows a low transmittance shading system, applied as transparent vertical blind behind the glazing.  
 

4.3. Metrics based on both contrast and saturation effects 
In this category of metrics, we investigated three metrics: DGP, PGSV and UGRexp. The 
performance and robustness of these metrics differ significantly, so they will be discussed separately. 
The DGP combines the contrast and saturation effect in an additive manner: it was found to be the 
most robust and best-performing metric in our study. It is the only metric that did not fail any of the 
tests. In average across the seven datasets, the Spearman correlation ρ of the DGP is 0.57.  The 
average prediction rate for disturbing glare (True Positive Rate TPR and True Negative Rate TNR) 
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was about 75%, which means that ¾ of the scenes are predicted correctly and the metric can 
differentiate between disturbing glare and non-disturbing glare (resp. no glare).  
Hirning 4 showed  that DGP underestimates glare in open plan office situations, a finding not 
supported by our study. Given the fact that in open-plan offices, as Hiring was investigating, daylight 
typically contributes only partly to the total amount of light at the workplace and given the fact of the 
low sensitivity in the contrast-part in the DGP equation, Hirning’s results can be expected. For 
scenes where overall light levels are rather low and very bright surfaces are visible relatively far 
from the person (e.g. a window on the other side of the room) and induce a high contrast to the visual 
task (e.g. computer screen), the DGP might underestimate the perceived glare by the occupants 
which is the consequence of the limitations of the underlying dataset DGP was developed from. This 
is also the case for other saturation-effect-driven metrics. However, such scenes were not part of any 
of the datasets in this cross-validation study: all experiments were conducted with workplace 
positions close to the window where daylight is the main light source. Future studies should 
explicitly address these kinds of situations in their design of the experiments.    
In Table 14 a recent modification of the daylight glare probability (DGPmod5) is compared to the 
original DGP using Spearman ρ and the AUC. The DGPmod was developed for cases of direct sun 
visible through shading fabrics. From the results shown in Table 14 no significant improvement can 
be concluded. Surprisingly the performance of DGPmod for the USA-Fabric dataset is slightly lower 
than of the original DGP even though this dataset contains only situations with fabric shading 
devices and was used to develop the metric. The reasons for this should be investigated in a follow-
up study.   
 
Table 14: Comparison of the performance (AUC and ρSpearman) for DGP and the modified DGPmod.  
 

 
 
The PGSV considers saturation and contrast effects by two separate equations (PGSVcon and 
PGSVsat 15 ) which are applied conditionally. The contrast equation is applied only when the ratio 
between glare source luminance Ls and background luminance Lb is larger than the ratio between 
average luminance of the scene Lavg and the adaptation luminance La (which corresponds to the task 
luminance). For our datasets PGSV is ranked slightly below than PGSVsat . This behaviour is 
surprising - considering the separation between saturation and contrast situations should improve the 
performance as well as robustness. The lower performance is illustrated in Table 15, where the 
Spearman correlations and AUC were compared between the three PGSV equations. We conclude 
from this that the “condition” function to decide between the two equations could be optimized (e.g. 
needs additional scaling parameters to decide more appropriately) or should be transformed into a 
summation. Another interesting finding about the PGSV equations is that all of them perform pretty 
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well for the Japanese dataset, although there were not developed with that data. We hypothesise that 
the PGSV is adapted to Japanese users.  This should be investigated more in depth in a follow-up 
study.   
Table 15: Comparison of the performance (AUC and ρSpearman) for the three PGSV equations.  

 
  
 
The UGRexp also combines additively the saturation and contrast effects. Unlike the DGP, it uses the 
logarithm of the average luminance for the saturation effect and uses the glare source luminance only 
by the power of 1 in the contrast term 10. UGRexp performs at the lower end of the investigated 
metrics and also seems to be not robust (six failings in four datasets). We assume that this behaviour 
is caused by the smaller influence of the glare sources, which are proportional to log(Ls/Lb*ω/P2) 
while typical glare equations are proportional to log(Ls2/Lb*ω/P2). In 12 it was shown that the 
logarithmic function applied to Ev ends up in a lower correlation to the ratio of people disturbed by 
glare than the linear Ev, . We thus conclude that the logarithmic function applied to the average 
luminance Lavg is disadvantageous.   
 
4.4. Equations based on the contrast effect and absolute thresholds  
Two recently published equations are based on the summation of the contrast between glare source 
and task luminance Ls:Lt and the glare source luminance. The PGL considers neither the size of a 
glare source nor the saturation effect in its equation and uses the contrast effect in a linear approach. 
This may be why this equation is not robust (failing six tests for three datasets) and performs poorly 
compared to the other metrics.  
The GSV also uses the contrast as a linear function, but it uses as absolute threshold the area-ratio of 
luminance-values larger than 2000 cd/m2 in Guth’s field of view. The size of the glare source is thus 
accounted for, but not its luminance (because it is just an area ratio). We conclude that the linear 
contrast approach and the missing luminance value in the absolute-threshold term leads to the weak 
robustness (failing nine tests on four datasets) and low performance. However, one should note that 
GSV is addressing in particular sun-spots in or close to the task area, though it was applied to the 
entire dataset, which consists in large fraction of very different lighting scenes. Therefore, further 
investigation would be needed before drawing any firm conclusion.   
4.5. Empirical equations 
In this section we discuss empirically derived equations, which neither use the saturation nor the 
contrast effect. L40band_avg uses only average luminance from a band of 40° around a horizontal axis 
of the image. Obviously, any glare source outside this band is not considered by this metric. Such a 
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situation is shown Figure 9. We assume that this is why this metric performs rather poorly and is also 
not as robust (5 failings for 3 datasets) as many other metrics.  

   
Figure 9:  Example images of situations, where the 40° band would miss potential glare sources, taken from the IL-
DayViCE dataset.  
 
The average luminance of the window, Lavg_win, is less sensitive to this afore mentioned problem 
since the main glare source in daylit scenes can typically be found in the window. We assume that 
this is why it performs better. However, this metric does not account for either the contrast effect or 
for different window sizes (respectively any solid angle of the window). Also, it neglects reflections 
on internal surfaces or disturbing sun-patches inside the room. We assume this is why the metric is 
less robust than others and a universally-applicable borderline-value is not reliable. Consequently, it 
would treat both scenes shown in Figure 7 the same.  
The three metrics that use a median-value of the image or parts of the image (Lmed, Lmed_lowerwin and 
Lmed_win) as well as the standard deviation of the luminance of the window Lstd_win were derived 
empirically and have nothing in common to accepted influence-factors of glare perception (e.g. 
luminance of glare source, solid angle of glare source)45. However, the median luminance of the 
image Lmed performs reasonably well in our study and fails only three tests for two datasets. An 
intrinsic problem of all median-based metrics is that they do not account per se for the high 
luminances in the image, despite that it is common knowledge that the high luminances in the field 
of view have a major influence on glare perception. This is a problem for a very inhomogeneous 
scene (e.g. with the sun disk visible behind a screen), since this potential glare risk will not be 
addressed by any median value. Even more critical is the situation for median-based metrics using 
only parts of the image like the two other investigated metrics Lmed_lowerwin and Lmed_win since the 
masking might miss potential glare sources when calculating the median value.  We assume that this 
is also the reason, why these two metrics perform worse and less robust than Lmed . The results show 
that the smaller the remaining area of the masking is, the lower is the performance of the median-
based metric.  
The intrinsic disadvantage of purely empirical derived glare metrics is the neglect of perception 
mechanisms in their equation. This causes a large uncertainty when the lighting conditions differ 
significantly to the conditions of development. Therefore, we cannot recommend to use them for 
glare analysis. We did not evaluate the overall visual discomfort or satisfaction in our analysis and 
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therefore we cannot make conclusions for these kinds of evaluations. Overall visual discomfort, 
which these metrics are aiming for 3, include more influencing factors such as view, light levels, 
inhomogeneity, colour and glare is therefore only one out of several variables influencing the overall 
visual perception.  
 
4.6. Stimuli range bias 
Fotios 23 pointed out that stimuli range bias is a common problem in glare research. The low 
variation of the borderlines (see 3.4) in our study means we cannot observe a stimuli range bias, 
although we use data based on different stimuli ranges, setups, research groups and climatic/cultural 
conditions. We assume that the applied 4-point Likert scale 26 is less sensitive to get biased than for 
example, a linear scale from 0-10. We also assume that a more realistic (and unbiased) choice of the 
subjects on the rating scale was possible, because all the experiments were executed in office like 
test rooms, where the subjects can relate to their normal working environment easily. Therefore, we 
conclude that the application of the 4-point scale (imperceptible, noticeable, disturbing and 
intolerable) in combination with the use of office-like test-room can avoid a stimuli range bias. 
 
4.7. Limitations 
Experimental setup 
Although the data were acquired from several different groups in different countries and continents 
and are therefore very broad, the experimental setup was restricted in all participating studies to a 
daylight-dominated workplace position, similar to a small office configuration where people sit close 
to the window. Therefore, the results cannot be extrapolated per se to lighting scenarios which differ 
significantly (e.g. dim and large open-plan spaces equipped with solar control glazing or spaces 
mainly lit by rooflights).  
Working environment 
In addition, all experiments were conducted in controlled environments, where the subjects were 
invited to participate to the experiment. Therefore, the subjects were exposed to a new environment, 
which might differ to their normal workplace, although all setups tried to simulate a real office as 
close as possible. This exposure to another environment might lead to a different perception and 
acceptance than if the experiments had been conducted in a real environment. However, the 
advantages having a controlled environment, where the experimental conditions can be set according 
to the research question and potentially influencing factors can be kept constant, compensates the 
afore mentioned disadvantage by far. 
Glare source detection  
For that study we applied the task-driven glare source detection algorithm (see 1.1 and 
supplementary material), which is supposed to be the most robust and effective method as of yet 46. 
However, not all the images were checked, if the detection algorithm was indeed the “best” for the 
specific scene. The authors randomly checked images for reliable glare source detection. But it must 
be said that there is no commonly accepted rule to define a glare source in an image and this check of 
correct glare source detection relies on experience and intuition of the researchers. In general a 
change of detection parameters can lead to different results47. However, we assume that a change in 
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parameter settings for scenes, where the parameters were not optimal, will not change the overall 
outcome of the study since there might be only few cases where this would have to be applied.    

5. Conclusion and Outlook 
The results of this cross-validation study show that metrics that consider the saturation-effect as a 
main glare effect in their equation perform better and more robustly than purely contrast-based 
metrics or purely empirical derived metrics. This outcome is valid for daylight-dominated 
workplaces, though the results might not be 100% transferrable to scenarios which differ 
significantly (e.g. open-plan offices with overall low light levels).  
Spearman correlations in the range of 0.55-0.60 as well as average prediction rates to distinguish 
between disturbing and non-disturbing glare of 70-75% for several metrics show that their results are 
trustable. Therefore, a poor performance of glare metrics cannot be observed from this cross-
validation study.    
In this study, DGP performed best amongst the tested metrics and was found to be the most robust 
one, since it was the only one not failing any of the applied tests for any dataset. Amongst the 
contrast-based metrics, the CGI performs best and is also more robust than the other metrics of this 
category and might be a good choice for evaluating scenes where it is known that saturation does not 
play any role (e.g open-plan offices with low daylight contribution), though this assumption would 
have to be confirmed by experiments. The purely empirical derived glare metrics like Lmed_lowerwin, 
Lmed_win or L40band_avg were found not to be robust against lighting conditions which differ 
significantly to their developing lighting conditions and cannot be recommended to be used for glare 
analysis. 
Overall it remains a challenge to have a glare metric perform reliably in all possible lighting 
scenarios, architectural or cultural contexts. It is expected that mainly saturation-effect-driven 
metrics like DGP will perform poorly in dim lighting environments, as it was shown by Hirning 4. 
Therefore, upcoming research studies should aim to optimize the combination of contrast-driven and 
saturation-effect-driven terms in the metric’s equations, for example in DGP, PGSV or UGRexp, as 
their structure already includes these terms. Also, it can be expected that an inclusion of other 
influencing factors45 (like culture, contrast sensitivity etc.) in the equations of the glare metrics are 
likely to improve their performance and robustness. 
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