Wide Band Gap Cu$_2$SrSnS$_4$ Solar Cells from Oxide Precursors

Crovetto, Andrea; Nielsen, Rasmus; Stamate, Eugen; Hansen, Ole; Seger, Brian; Chorkendorff, Ib; Vesborg, Peter C. K.

Published in: Applied Energy Materials

Link to article, DOI: 10.1021/acsaem.9b01322

Publication date: 2019

Document Version Peer reviewed version

Link back to DTU Orbit

Determination of femtogram level plutonium isotopes in environmental and forensic samples with high-level uranium using chemical separation and ICP-MS/MS measurement

Xiaolin Hou, Weichao Zhang, and Yanyun Wang

Anal. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.analchem.9b01347 • Publication Date (Web): 16 Aug 2019
Downloaded from pubs.acs.org on August 19, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Determination of femtogram level plutonium isotopes in environmental and forensic samples with high-level uranium using chemical separation and ICP-MS/MS measurement

Xiaolin Hou¹,²,³,⁵ *, Weichao Zhang¹,⁴, Yanyun Wang¹,⁴

¹ State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi’an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China

² Center for Nuclear Technologies, Technical University of Denmark, DTU Nutech, Roskilde DK-4000, Denmark

³ CAS Center of Excellence in Quaternary Science and Global Change, Xi’an 710061, China

⁴ University of Chinese Academy of Sciences, Beijing 100049, China

⁵ Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China

* Corresponding author at: DTU Nutech, E-mail: xihou@dtu.dk (Xiaolin Hou). Fax:45 46775357
Abstract: ICP-MS is becoming a competitive technique for the measurement of plutonium isotopes. However, the abundance sensitivity (tailing of ^{238}U to m/z=239 and 240), isobaric and polyatomic ions interferences (e.g. $^{238}\text{U}^1\text{H}^+$) are the most critical challenges for determination of low-level plutonium in high uranium samples. This work presents a new method to solve this problem using ICP-MS with two tandem quadrupole separators and dynamic collision/reaction cell combined with chemical separation. The interference of uranium hydrides ($^{238}\text{U}^1\text{H}^+$ and $^{238}\text{U}^1\text{H}_2^+$) was effectively eliminated using CO$_2$ as reaction gas by converting hydrides to oxides of uranium ions (UO$^+$/UO$_2^+$), but still keep the intensity of Pu$^+$ signal. The tailing interference of $^{238}\text{U}^+$ (abundance sensitivity) was intensively eliminated by significantly suppressing the $^{238}\text{U}^+$ signal using CO$_2$ as reaction gas and using two tandem quadrupole mass separators in the ICP-MS/MS. With these approaches, the overall interference of uranium was reduced to $<1 \times 10^{-8}$, which is 3 orders of magnitude better than the conventional ICP-MS. Combined with chemical separation with a decontamination factor of 10^5 for uranium, an overall factor of 10^{12} for elimination of uranium interference was achieved. The developed method was demonstrated to enable accurate determination of $<10^{-15}$ g/g level plutonium isotopes in environmental samples even in uranium debris sample with a U/Pu atomic ratio up to 10^{12}. The developed method was validated by the analysis of spiked solution and certified reference materials of soil.

Keyword: ICP-MS/MS, Collision/Reaction cell, reaction gas, CO$_2$-He, Plutonium isotopes, Uranium interference
INTRODUCTION

Plutonium is one of the most important transuranic elements in the environment due to its widely utilization and production in nuclear weapons and nuclear power reactors. Among plutonium isotopes, 239Pu ($t_{1/2}=2.41 \times 10^4$ y) and 240Pu ($t_{1/2}=6.56 \times 10^3$ y) are long-lived alpha-emitting radionuclides and the most important ones in the nuclear fuel and environment due to their high production and releases. Plutonium is a critical hazardous environmental pollutant due to its highly radiological toxicities and long-term persistent in the environment. Plutonium in the environment mainly originates from atmospheric nuclear weapons tests, nuclear fuel reprocessing plants and nuclear accidents 1. The atmospheric nuclear weapons tests in 1945-1980 had released 6.5×10^{15} Bq of 239Pu and 4.4×10^{15} Bq of 240Pu into the environment, making it the major source of plutonium in the environment 1,2. It is important to monitor it for evaluation of environmental impact of nuclear activities and possible radiological attack. The atomic ratios of 240Pu/239Pu vary with its sources depending on the production and release model, a ratio of 0.18 in the global fallout was observed all over the world 3, while, much lower ratios of 0.02-0.07 in nuclear weapons 4,5 and higher ratios of 0.23-0.47 in the releases from the nuclear accidents in Chernobyl and...
Fukushima and reprocessing plants of nuclear spent fuel of power reactors6-8 were measured. The $^{240}\text{Pu}/^{239}\text{Pu}$ atomic ratio can therefore be used as a fingerprint to identify the source term of the plutonium and estimate the contribution of different nuclear activities to the environment9, as well as for nuclear forensic investigation10. For these purposes, an analytical method for accurate determination of low level ^{239}Pu and ^{240}Pu is necessary and very critical.

^{239}Pu and ^{240}Pu are conventionally measured by α-spectrometry, but it is unable to provide $^{240}\text{Pu}/^{239}\text{Pu}$ atomic ratio, because alpha spectrometry could not distinguish the alpha rays of ^{239}Pu (5.15 MeV) and ^{240}Pu (5.16 MeV)11. Meanwhile, it cannot measure ultra-low level ^{239}Pu and ^{240}Pu of less than 0.1 mBq (or 5×10^{-14} g $^{239}\text{Pu}+^{240}\text{Pu}$). With the rapid development of mass spectrometry, it has become an attractive technique for determination of long-lived radionuclides including plutonium isotope in the past decades. Among them, AMS and TIMS have high sensitivity and low detection limit, but they are not easily accessible and high cost10-13. ICP-MS has become a widely used technique for the measurement of plutonium isotopes in environmental samples with a comparable or better sensitivity compared with alpha spectrometry, low cost and ability to measure $^{240}\text{Pu}/^{239}\text{Pu}$ atomic ratio2,9,11,14,15.

The concentrations of plutonium isotopes ($^{239,240}\text{Pu}$) in environmental samples are normally very low, to be $(0.04-400)\times10^{-16}$ g/m3 in the atmosphere16,17, $(1-900)\times10^{-15}$ g/g in soil and sediment9,18-21, and $(0.5-22)\times10^{-16}$ g/L in seawater samples22,23. The accurate determination of trace amount of plutonium isotopes requires a high enrichment of plutonium from a large size of sample and separation from matrices and interfering substances, as well as a sensitive measurement method. The matrix elements (salt), peak tailing and hydrides of ^{238}U and the polyatomic ions2,24 are the major interference in the measurement of plutonium isotopes using ICP-MS. Among them, the interference of uranium including peak tailing and hydride ions of $^{238}\text{U} (^{238}\text{U}^1\text{H}^+ \text{and} ^{238}\text{U}^1\text{H}_2^+)$ is
the most critical one limiting the accurate measurement of 239Pu and 240Pu. Co-precipitation, ion exchange chromatography and extraction chromatography are often applied for separation and purification of plutonium in environmental samples, especially for removal of uranium15. Multi-steps separation, e.g. combination of ion exchange and extraction chromatography using different resins, such as TEVA+AG1×4 20, UTEVA+TRU 25, TRU+ AG1×4 26 and TEVA+UTEVA+DGA 18 has been used, and a decontamination factors of 10^5-10^7 for uranium have been achieved. However, this is still not sufficient for the determination of ultra-trace level of plutonium in high uranium samples (with U/Pu atomic ratio $>$1010), e.g. deep seawater, deep soil and sediment, uranium debris and scrap sample of nuclear fuel for forensics (238U/239Pu $>$1×1010). In addition, the multi-columns combination also make the chemical separation more complicated and time consuming.

HR-ICP-MS and ICP-MS-MC have been used for determination of plutonium isotopes and other actinides18,45. The most attractive feature of these instruments for measurement of plutonium isotope is its high sensitivity, a count rate of 6×10^7 cps/ppb U was reported by using Apex-ICP-SF-MS in low resolution model18, which is nearly one order of magnitude higher than ICP-MS or ICP-MS/MS instrument. Although an improved abundance sensitivity (up to 10^{-6}- 10^{-7}) can be reached in high resolution model, but still much lower than ICP-MS/MS instrument. Due to the small difference of mass between 238U and 239Pu ($\Delta m/m = 2.7\times10^{-5}$), the HR-ICP-MS instrument could not effectively remove the interference of uranium hydrides in the measurement of plutonium isotopes. The dynamic collision/reaction cell (DRC) technology in the ICP-MS has shown a powerful feature to eliminate polyatomic ions. Different reaction gasses, such as He, O$_2$, N$_2$O, NH$_3$ and CO$_2$ have been proposed for removing uranium hydride $^{27-31}$. We had investigated the application of NH$_3$-He as reaction gas in the ICP-MS measurement of plutonium isotopes, and
found that the elimination efficiency of uranium hydrides was improved by a factor of 15 compared to the ordinary method without reaction gas14, which is still not sufficient for the determination of ultra-low level plutonium in the presence of high uranium. No detailed report on the application of other reaction gases for ICP-MS measurement of femtogram level plutonium isotopes in samples containing high-level uranium is available. Desolvation technique (e.g. APEX) was often applied for reduced uranium hydride and improve the counting efficiency in the ICP-MS measurement of plutonium and other actinides 6, 18, 45. It was found that this system can significantly improve the counting sensitivity by a factor of 7-10. Although an improvement on removal of uranium hydrides was observed in our experiment, but only 2-3 times suppression of UH+ ions signal, which is not sufficient for the determination of plutonium isotopes in high uranium samples. ICP-MS/MS with two quadruple mass separators has been applied for determination of plutonium isotopes 14, 31. With this instrument, a better abundance sensitivity of up to 10-10 can be achieved, which can significantly remove the interference of the 238U peak tailing in the measurement of 239Pu and 240Pu 14.

This work aims to develop a rapid and accurate analytical method for determination of ultra-trace level plutonium isotopes in high-level uranium samples by using a simple chemical separation combined with ICP-MS/MS equipped with DRC, in order to determine femtogram level 239Pu and 240Pu in high uranium samples such as seawater, soil, sediment and nuclear fuel debris. The most effort is dedicated to effectively eliminate interference of uranium using DRC with different reaction/collision gases.

EXPERIMENTAL SECTION

Instrument and setup. Triple quadrupole ICP-MS (Agilent 8800, Agilent Technologies, Japan)
was used for the measurement, it equips with an octopole DRC between two quadrupole mass separators. The first quadrupole (Q1) acts as an ion-guide to select the target ions (isotopes). The collision/reaction gas is introduced into the DRC, to reacts with the entered ions for eliminating the interfering ions by forming new ions. The second quadrupole (Q2) acts as another mass-filter for selecting the target ions after the reactions in the DRC for their measurement in the followed detector (Figure S1). The instrument was tuned using ^{238}U (1.0 ppb natural uranium) and plutonium (^{239}Pu, 1.0 ppt) standard solutions, the optimized parameters are shown in Table S1. The standard, simulated solution (isotope spiked) and separated plutonium samples were prepared in 0.5 mol/L HNO$_3$ for measurement, In$^{3+}$ (InCl$_3$, 1.0 ppb) solution was used as an internal standard which was injected to the nebulizer using a T-valve. The sample and internal standard solution were introduced using peristaltic pump at 0.5 mL/min. Pt skimmer cone, s-lens, MicroMist Micro Flow 200 nebulizer and hot plasma were used in the measurement of plutonium isotopes. Four gas lines (CO$_2$, He, NH$_3$-He (9.88% NH$_3$), and O$_2$ gas, 99.999% purities) to the DRC were used in this work.

Chemical reagents and samples. ^{242}Pu standard solution (70.0 pg/mL in 2.0 mol/L HNO$_3$) was prepared from ^{242}Pu standard reference materials of NIST-SRM-34431 (National Institute of Standard Technology, Gaithersburg, Maryland, USA). ^{239}Pu working solution (398 pg/mL in 2 mol/L HNO$_3$) was prepared from a calibrated ^{239}Pu solution supplied by DTU Nutech (Denmark), and the standard solution of uranium was prepared from IRMM-184 uranium standard solution (Institute for reference materials and managements, Geel, Belgium). AG 1-\times4 anion exchange resin (100–200 mesh, chloride form, Bio-Rad Laboratories Inc., California, USA) was used for separation of plutonium. All chemical reagents used in this work were high pure analytical grade reagents and prepared using deionized water (18.2 MΩ·cm).

To investigate the possible reactions in the reaction cell with different reaction gasses and to
optimize parameters for effectively eliminating interference of $^{238}\text{U}\text{H}^+$ for measurement of $^{239}\text{Pu}^+$, uranium (20 and 1000 ng/mL) and ^{239}Pu (10 pg/mL) standard solutions were prepared, some m/z values were selected in Q1 and Q2 as shown in Table S2 for ICP-MS measurement.

Two standard reference materials, Irish Sea sediment (IAEA-385) and soil (IAEA-327) were analyzed for verification of the method. Meanwhile, 4 surface soil samples (0–5 cm) and 2 deep soil samples (25–30 cm) collected from background areas in China were analyzed in this work.

Chemical separation of plutonium from environmental samples. A chemical separation procedure using acid leaching, co-precipitation and chromatographic separation (Figure S2) was used for separation of plutonium from the sample matrix and interfering radionuclides, the detailed method has been reported elsewhere \(^{14}\) and presented in the Supporting Information. In brief, a known amount of ^{242}Pu (3.4 pg) was spiked as chemical yield tracer to soil or sediment sample, the sample was leached with *aqua regia*. Ammonium was added to the leachate precipitate plutonium with iron and other metals as hydroxides. Plutonium in the precipitate was dissolved, converted to Pu^{4+} and prepared in 1.0 mol/l HNO$_3$ solution, which was loaded to a TEVA column. After rinsed the column with 1.0 mol/L HNO$_3$ and 6 mol/L HCl, plutonium on the column was eluted with 40 mL of 0.1 mol/L NH$_2$OH·HCl in 2 mol/L HCl. After decomposed NH$_2$OH·HCl and prepared in 3.0 ml of 0.5 mol/L HNO$_3$ solution, plutonium isotopes were measured using ICP-MS/MS.

RESULTS AND DISCUSSION

The collision/reaction gasses including He, NH$_3$-He, O$_2$ and CO$_2$ were investigated for elimination of uranium hydride ($^{238}\text{U}\text{H}^+$ and $^{238}\text{U}\text{H}_2^+$). The results (Figure 1) show that injection of helium gas into the DRC could not suppress the intensities of $^{238}\text{U}^+$ and $^{238}\text{U}\text{H}^+$ signal, but even
increased $^{238}\text{U}^+$ and $^{238}\text{U}^1\text{H}^+$ signal intensities with the increased flow rate of helium (Figure 1).

This indicates that UH^+ ion could not be destroyed through collision reaction with helium.

Figure 1 Variation of the intensities of Pu^+, PuO^+, U^+, UH^+, UO^+ ion with the flow rate of helium injected to the DRC. For Pu^+ and PuO^+, the m/z =239 was selected in the Q1 (first quadrupole) and m/z=239 and 255 in the Q2 (second quadrupole), respectively; for U^+ and UO^+, the m/z=238 was selected in the Q1 and m/z=238 and 254 in the Q2, respectively; for UH^+, m/z=239 was selected in both Q1 and Q2.

The results using O_2 as a reaction gas (Figure S3) show that the intensity of $^{238}\text{U}^+$ signal was significantly reduced with the increased flow rate of O_2. Meanwhile, intensive signals of $^{238}\text{U}^{16}\text{O}^+$ (m/z=254) was measured when the flow rate of O_2 was increased to 0.5 ml/ml, and then decreased.
with an increased flow rate of O₂. This implies that \(^{238}\text{U}^{16}\text{O}_2^+\) was formed with increased O₂ flow rate \(^{29}\). The intensity of \(^{238}\text{U}^{1}\text{H}^+\) ion also significantly reduced with the increased flow rate of O₂. The remarkably increased intensity of \(^{238}\text{U}^{16}\text{O}^+\) was observed when m/z = 239 \((^{238}\text{U}^{1}\text{H})\) was selected in Q1, but UHO\(^+\) ions (Q1(238)/Q2(255)) was still measurable (Table S3). This indicates that U\(^+\) and UH\(^+\) ions react with O₂ to form UO\(^+\) and UO\(_2^+\), and a small fraction of UH\(^+\) ion was converted to UHO\(^+\). However, the intensity of Pu\(^+\) ion also decreased in the same order of magnitude as \(^{238}\text{U}^+\) with the injection of O₂. Meanwhile, the intensities of PuO\(^+\) signal increased with the increased flow rate of O₂ (Figure S3). This indicates that Pu\(^+\) can also react with O₂ to form PuO\(^+\). In this case, the peak tailing of \(^{238}\text{U}^{16}\text{O}^+\) and \(^{238}\text{U}^{16}\text{O}^{1}\text{H}^+\) and \(^{238}\text{U}^{16}\text{O}^{1}\text{H}_2^+\) become the dominant interferences for measurement of \(^{239}\text{Pu}^{16}\text{O}^+\) and \(^{240}\text{Pu}^{16}\text{O}^+\) ions, causing a less efficient elimination of the uranium interference.

Ammonia as a reaction gas has been investigated for the elimination of uranium interference\(^{14}\). It was observed that the intensity of UH\(^+\) signal decreased with the flow rate of NH\(_3\) (Figure S4) due to the formation of UNH\(_2^+\) ions (m/z=255) (Table S3)\(^{14}\). While, the intensity of Pu\(^+\) was not significantly reduced with the increased flow rate of NH\(_3\) (Figure S4, Table S4) due to no reaction of Pu\(^+\) with NH\(_3\). Therefore, NH\(_3\) was successfully used to eliminate uranium interference\(^{14}\). However, UH\(^+\) could not be completely removed, makes it not sufficient for the determination of low-level \(^{239}\text{Pu}\) in high uranium samples.

CO\(_2\) has also been proposed as a reaction gas for the elimination of the uranium interference\(^{27,28,30}\). The results show that CO\(_2\) highly suppressed the signals of \(^{238}\text{U}^+\) and \(^{238}\text{U}^{1}\text{H}^+\), while only part of Pu\(^+\) reacted with CO\(_2\) to form PuO\(^+\) ions (Figure 2).

Elimination of uranium interference using CO\(_2\)-He as reaction/collision gasses. It was observed that the intensities of U\(^+\) ions decreased exponentially with the increased flow rate of
CO$_2$ injected to the DRC by 3 orders of magnitude when the flow rate of CO$_2$ was increased to 1.2 ml/min (Figure 2). Meanwhile, extensive UO$^+$ signal was observed (Figure 2, Table S3), indicating U$^+$ and UH$^+$ react with CO$_2$ to form UO$^+$. Following a rapidly increased intensity of UO$^+$ signal with the injection of CO$_2$, the intensity of UO$^+$ signal gradually decreased with the increased flow rate of CO$_2$ from 0.5 ml/min (Figure 2), this should be attributed to the formation of UO$_2^+$ ions, and the intensity of UO$_2^+$ ion increased with the increased flow rate of CO$_2^{27}$.

![Figure 2 Variation of the intensities of U$^+$, UH$^+$, UO$^+$, Pu$^+$ and PuO$^+$ ions with the flow rate of CO$_2$ with 8 ml/min helium injected to the DCR. For U$^+$ and UO$^+$ ions, m/z=238 was selected in Q1 (the first quadrupole) and m/z = 238 and 254 in the Q2 (second quadrupole), respectively; For UH$^+$, Pu$^+$ and PuO$^+$, m/z=239 was selected in Q1 and m/z=239, 239, and 255, respectively. 239Pu standard solution of 2.0 pg/ml and Uranium standard solution of 20 ng/mL and 1000 ng/mL (for UH$^+$/UH$^+$) were used in this measurement.](image-url)
It is interesting that the intensity of UH\(^+\) ion shows the same exponentially decreased trend as U\(^+\) ion with the increased flow rate of CO\(_2\) (Figure 2), indicating that UH\(^+\) can be destroyed \(^+\) by reaction with CO\(_2\) in the DRC through the formation of UO\(^+\) and UO\(_2^+\). About \(10^4\) reduction of UH\(^+\) signal was achieved at 1.3 ml/min. CO\(_2\) injection, further increasing flow rate of CO\(_2\) does not significantly reduce the UH\(^+\) signal.

It was observed that the intensity of Pu\(^+\) signal decreases slowly with the increased flow rates of CO\(_2\), and reach to about 1/3 intensity of the original one (without CO\(_2\) but only 8 ml/min He) at 1.2 ml/ml CO\(_2\) (Figure 2). Meanwhile, the increased signal of \(^{239}\)Pu\(^{16}O^+\) (at m/z=255) was observed with the injection of CO\(_2\). However, with the increased flow rate of CO\(_2\), the intensity of PuO\(^+\) signal showed a similar declining trend as Pu\(^-\) signal (Figure 2). This should be attributed to the enhanced formation of PuO\(_2^+\) at a high flow rate of CO\(_2\) in the DRC\(^{27}\).

It was found that the flow rate of helium has a significate influence on the intensity of Pu\(^+\) signal (Figure 3). With 1.2 ml/min CO\(_2\), the intensity of Pu\(^+\) signal increased with the increased flow rate of helium and reaches to a maximum value at 8 ml/min, and then decreases. Therefore, the flow rate of 8 ml/min for helium was selected as assistant/second gas. Meanwhile, the intensity of PuO\(^+\) ions decreases significantly with the increased flow rate of helium. This might be attributed to the reduced reactivity of CO\(_2\) with Pu\(^+\) ion to form PuO\(^+\) in the increased flow rate of helium, and consequently causing the increased Pu\(^+\) signal intensity. It was also observed that the intensities of Pu\(^+\) and U\(^+\) signals increased for about 3 times when only helium was injected from 0 to 8.0 ml/min and then keep relative constant when further increasing the flow rate of He (Figure 1). Therefore, the increased intensity of Pu\(^+\) with the increased flow rate of helium in the presence of CO\(_2\) should be attributed to the helium injected to the DRC. Pu\(^+\) ions from the plasma through the first quadrupole has a relatively high and large expanded kinetic energy (0-20 eV), elastic
collision of these ions with helium atoms reduced their kinetic energy to about 2 eV and narrowed distribution of the ion kinetic energy (0-3 eV), which significantly improved ion focusing, and consequently increased the numbers of ions counted in the detector, i.e. measurement sensitivity.8,31. The improved intensity of Pu\(^+\) by collision focusing of the injected helium gas compensate the loss of Pu\(^+\) signal intensity by partly forming PuO\(^+\) in the DRC, and makes the intensity of Pu\(^+\) signal in the same level (about 3.4×10\(^5\) cps/ppb) at the reaction gasses of 1.2 mL/min CO\(_2\)-8 mL/min He as that in no gas mode. It was also observed that the intensities of UH\(^+\) signal significantly decreased with the increased flow rate of helium (Figure 3), which helps the elimination of uranium hydride interference. Based on the above experimental results, 1.2 mL/min CO\(_2\) – 8.0 mL/min He was selected as the optimal condition for the elimination of uranium interference and sensitive measurement of plutonium isotopes.

Figure 3 Influence of flow rate of helium injected to the DRC with 1.2 ml/min CO\(_2\) on the intensities of the Pu\(^+\), PuO\(^+\), U\(^+\), UH\(^+\) and UO\(^+\) ions. \(^{238}\)UH\(^+\)/\(^{238}\)UO\(^+\) in the legend means that m/z=239 (\(^{238}\)UH\(^+\)) was selected for the first Quadrupole (Q1) and m/z=255 (\(^{238}\)U\(^{16}\)O\(^+\)) was
selected in the second quadrupole (Q2) mass separator, others are the similar meaning. The left figure is the measurement of a uranium standard solution, and the right figure is the measurement of a 239Pu standard solution. Note: the uncertainties presented in some data points are too small to be clearly visible.

These observations also indicate that CO$_2$ has high reactivity with U$^+$ and UH$^+$ compared to Pu$^+$, this can be explained by the thermodynamics of oxidation reaction of U$^+$ and Pu$^+$ with oxidizing reagents (i.e. NH$_3$, CO$_2$ and O$_2$). The reported efficiencies of the reactions of Pu$^+$ (related to the bond dissociation energy of PuO$^+$ and the oxidizing reagents of CO$_2$ and O$_2$) are 0.003 for CO$_2$ and 0.27 for O$_2$. While the efficiencies of reactions of U$^+$ with CO$_2$ and O$_2$ are 0.29 and 0.72, respectively32. The higher of the reaction efficiency is the stronger of the reactivity, this explains why only fraction of Pu$^+$ was oxidized to PuO$^+$ by CO$_2$, but almost all U$^+$ was oxidized to UO$^+$ and UO$_2^+$ by CO$_2$ and O$_2$. The relative high reaction of CO$_2$ with U$^+$ compared to Pu$^+$ could be also explained by the reaction kinetics32. The oxidation of U$^+$ and Pu$^+$ requires to promote the ground-state ions to a reactive configuration containing two unpaired non-f-orbital electrons. U$^+$ requires only 0.04 eV energy to promote a 7s electron to 6d orbit, while Pu$^+$ needs to promote a 5f electron to 6d orbit, which requires higher energy of 1.08 eV, and shows an activation energy barrier to the reaction. Therefore, only a fraction of Pu$^+$ could be oxidized to PuO$^+$ by CO$_2$ and the formation of PuO$^+$ increases with the increased flow rate of CO$_2$.

Both peak tailing of 238U and the uranium hydride ion (238U$^+$H$^+$) contribute to the signal at m/z =239 in ICP-MS measurement of 239Pu. But it is impossible to discriminate and directly measure these two contributions. Since the 238U peak causes tailings to both low (m-1) and high (m+1) sides in the mass spectrum (abundance sensitivity), and the low side (m-1) normally receives a higher
tailing contribution compared to the high (m+1) side. Monitoring the signal intensity at m/z=237 can estimate the contribution of 238U tailing to the m/z=239. Table 1 shows the measured abundance sensitivities of 238U to m/z=237 in single quadrupole mode (the Q1 was closed and only Q2 was used) and tandem quadrupoles modes (m/z=237 was selected in both quadrupoles) and using different collision/reaction gasses in the DRC. The best abundance sensitivity of 4×10^{-7} in the single quadrupole mode was achieved by using CO$_2$-He as reaction gas. This is mainly attributed to the highly removal of 238U$^+$ ions by oxidizing it to UO$^+$ and UO$_2^+$, collision focusing of 238U$^+$ by helium atoms in the DRC also helps to reduce the tailing contribution to m/z=237 and 239. An extensive suppression of tailing effect (abundance sensitivity) down to $<1.6 \times 10^{-11}$ was achieved by using two tandem quadrupole mode and 1.2 mL/min CO$_2$-8.0 mL/min He as the reaction/collision gas. The intensity of signal at m/z=237 was reduced to undetectable (not significant difference compared to the procedure blank) when measuring a 1×10^{-6} g/mL uranium solution. It means that the interference of 238U$^+$ tailing to the measurement of 239Pu and 240Pu is negligible, and the major interference should be the hydrides of uranium (238U1H$^+$ and 238U1H$_2^+$).

The level of elimination of uranium hydride (238U1H$^+$ and 238U1H$_2^+$) using ICP-MS/MS with different reaction gas was estimated by measurement of a 1×10^{-6} g/mL uranium standard solution and monitoring the intensity of signals at m/z=239 and 240. The signal intensities at m/z=239 and 240 were compared with the highest intensity of 238U$^+$ in the corresponding condition, i.e. the 238U$^+$ ion intensity in no gas was used for the modes of no gas and O$_2$, and the 238U$^+$ ion intensity in 8.0 ml/min helium gas was used for the modes of He, NH$_3$-He and CO$_2$-He. The results (Table 2) shows that both O$_2$ and NH$_3$-He mode can reach to 238U1H$^+$/238U$^+$ ratio of 1×10^{-6}, and the best elimination of uranium hydride was achieved by using 1.2 ml/min CO$_2$-8.0 ml/min He as reaction gas in ICP-MS/MS measurement, reach to 1.2×10^{-8} for 238U1H$^+$/238U$^+$ ratio and $< 2 \times 10^{-11}$ for
$^{238}\text{U}^1\text{H}_2^+/^{238}\text{U}^+$. They are 50-1000 times improvement compared to the previously reported values in the ICP-MS measurement of ^{239}Pu using different instruments and setups (Table 2). This value is also 100 times better than the newly reported ICP-MS/MS using NH$_3$-He as reaction gas. This result suggests that this method can measure ^{239}Pu in a sample solution containing at least 10^7 times higher uranium. In summary, the developed method for determination of ^{239}Pu and ^{240}Pu using ICP-MS/MS is more than 10^4 times better than the ordinary single quadrupole mass separator in view of elimination of the $^{238}\text{U}^+$ tailing and more than 1000 times better in view of the elimination of uranium hydrides interference by employing CO$_2$-He as reaction gas in the DRC, which is also effective for removal of interference of other polyatomic ions.

Verification of the developed method for determination of low-level ^{239}Pu and ^{240}Pu in high uranium solution. Simulated solution containing 1×10^{-14} g/mL of ^{239}Pu and $(0.010-988)\times10^{-9}$ g/mL of uranium was analyzed using the developed ICP-MS/MS method. The results (Table 3) show that the ^{239}Pu in a concentration as low as 1×10^{-14} g/mL can be accurately measured in a solution containing 1×10^{-7} g/mL uranium (i.e. Pu/U atomic ratio of 1×10^{-7}) using 1.2 mL/min CO$_2$-8.0 ml/min He as reaction gas. This confirms that the developed method can be successfully used to measure ultra-low level ^{239}Pu in more than 10^7 times higher uranium solution. Even for a solution with Pu/U atomic ratio down to 1×10^{-8}, ^{239}Pu was measured to be $(13.0\pm2.4)\times10^{-15}$ g/mL after a correction by subtraction of the contribution of uranium hydride ($^{238}\text{U}^1\text{H}^+$), which is reasonably good agreement compared with the spiked ^{239}Pu of 10.1×10^{-15} g/mL. While, for the ICP-MS/MS methods using other reaction gas, ^{239}Pu of 10×10^{-15} g/mL can be only accurately measured in the sample with less than 1×10^{-9} g/mL uranium, i.e. with Pu/U atomic ratio higher than 1×10^{-5}. This demonstrated that the elimination efficiency of uranium hydride was improved.
by a factor of more than 100 in the developed method compared to the previously reported methods.

In ICP-MS measurement, other polyatomic ions with m/z=239 and 240 also interfere with the measurement of 239Pu and 240Pu. The most important ones are those polyatomic ions of Hg, Tl and Pb with Ar, Cl, S and O, such as 206Pb33S$^+$, 207Pb16O$^+$, 208Pb31P$^+$, 205Tl34S$^+$, 205Hg35Cl$^+$, 202Hg37Cl$^+$, 199Hg40Ar$^+$, 203Tl36Ar$^+$, 204Pb35Cl$^+$ for 239Pu, and 204Pb36Ar$^+$, 206Pb34S$^+$, 207Pb33S$^+$, 208Pb32S$^+$, 203Tl36Ar$^+$, 205Tl35Cl$^+$, 203Tl37Cl$^+$, 200Hg40Ar, 208Pb16O$^+$ for 240Pu24. The analysis of 5×10^{-7} g/mL Pb and Tl in 0.1 mol/L HCl and 0.5 mol/L HNO$_3$ solution showed that the signal intensities observed at m/z=239 are less than 0.07 cps and 0.03 cps for HCl and HNO$_3$ media, respectively, which is not significantly higher than that observed in the blank of only 0.5 mol/L HNO$_3$ solution (Table S5). This indicates that the developed ICP-MS/MS method can also sufficiently eliminate the interferences of these polyatomic ions of Pb and Tl. However, a remarkable interference of polyatomic ions of Hg was observed when no reaction gas or helium gas was applied. A significant elimination of this interference for the measurement of 239Pu and 240Pu was achieved when CO$_2$-He and NH$_3$-He were applied as reaction gas. The measurement of 5×10^{-7} g/mL Hg in 0.1 mol/L HCl - 0.5 mol/L HNO$_3$ solution showed an signal intensity of 1.9±0.3 cps at m/z=239, but not significant increased signal at m/z=239 for Hg-3% HNO$_3$ compared to the 3% HNO$_3$ blank was observed. Meanwhile, no significantly increased signal at m/z=240 was observed for Hg-0.1 M HCl-3%HNO$_3$ and Hg-3% HNO$_3$, compared to 3% HNO$_3$ blank solution was observed. The 27 times higher signal intensity at m/z=239 observed in Hg-0.1M HCl-3% HNO$_3$ solution compared to that in Hg-3% HNO$_3$ and 3% HNO$_3$ blank (0.07 cps) indicates that 202Hg37Cl$^+$ polyatomic ion cannot be completely eliminated in the reaction cell using CO$_2$-He gas. The measurement results also showed that Hg does not form HgO$^+$ in the presence of CO$_2$ in the reaction cell, implying a less efficiency to decompose the HgCl$^+$ ions in the reaction cell by oxidation reaction. Therefore,
Cl⁻ or HCl should be avoided/eliminated in the finally prepared plutonium solution for ICP-MS measurement. In the HNO₃ media, no measurable interference of Hg, Tl and Pb to the measurement of plutonium isotopes was observed in the developed method.

Chemical separation was applied to pre-concentrate plutonium from big samples and remove matrix and interfering elements. In this work, plutonium was first leached by acids followed by separation of plutonium using co-precipitation and extraction chromatography using TEVA resin (Figure S2), and finally prepared in a small volume (3 mL) of HNO₃ solution without salt (< 1 mg) for ICP-MS measurement. Meanwhile, uranium and other interfering elements (Pb, Hg, Tl, Cl) can also highly removed. A decontamination factor of (1-2)×10⁵ for uranium was achieved.

A simulated solution containing 4 mg/mL 238U and 4×10⁻¹⁵ g/mL 239Pu (239Pu/238U = 1×10⁻¹²) was analyzed using the developed method employing chemical separation for determination of 239Pu and 240Pu. The analytical results (Table S6) show that the measured 239Pu value ((4.12±0.31)×10⁻¹⁵, (4.23±0.32)× 10⁻¹⁵ g/mL and (4.16±0.35)× 10⁻¹⁵ g/mL) agree well with the spiked value ((4.10±0.05)×10⁻¹⁵ g/mL), confirmed that the developed analytical method including chemical separation and ICP-MS/MS measurement is reliable for determination of femtogram level 239Pu in an extremely high uranium samples (with a U/Pu ratio up to 1×10¹²).

Two certified reference materials (soil IAEA-327 and sediment IAEA-385) were analyzed for 239Pu and 240Pu using the developed method. The analytical results (Table 4) show that the measured concentrations of 239Pu and 240Pu agree well with the reference values and the reported values in IAEA-385 (p<0.01). 239Pu and 240Pu were not certified in IAEA-327, but the analytical results in this work agree very well with the reported values in the literature for IAEA-327 (p<0.01). These analytical results confirmed that the analytical method presented in this paper is reliable for the determination of low-level 239Pu and 240Pu in environmental and forensic samples.
with high-level uranium.

Procedure blanks were prepared and analyzed using the same method as the samples, the analytical results (Table 4) show constantly small signals of 0.15±0.03 cps at m/z=239 and 0.04±0.02 cps at m/z=240 (n=3, procedure blanks), only 2 times higher than those measured in 0.5 mol/L HNO₃ solution (used for preparing samples). The signal at m/z=239 and 240 might be attributed to trace amount of plutonium contamination in the laboratory environment and chemical reagents, instrumental memory of plutonium as well as the contribution of hydride of uranium in the blanks. The analytical results of plutonium in the samples were always corrected by subtraction of the procedure blanks prepared and measured in the same batch as the samples.

Using the measured sensitivity of 340 cps/ppt for plutonium isotopes by the developed ICP-MS/MS method and the chemical yield of plutonium (average 85%) in the entire separation procedure, the limit of detection of the method can be calculated as 3 times of standard deviation of the signal intensity of the procedure blanks to be 0.93 fg for 239Pu and 0.62 fg for 240Pu (for 3.0 mL sample solution), which are corresponding to 2.1 µBq for 239Pu and 5.2 µBq for 240Pu. The limit of detection was further improved by employing a high efficiency introduction system of APEX Ω for about 5 times to 0.2 fg for 239Pu and 0.1 fg for 240Pu, because the counting efficiency of plutonium was increased by a factor of 8 (2650 cps/ppt 239Pu) and uranium hydrides was further suppressed by a factor of 2. Although the count rates of 239Pu⁺ (0.65±0.15 cps) and 240Pu⁺ (0.25 ±0.08 cps) in the procedure blank also enhanced, but the variations/relative standard deviations of signal intensities of blanks were improved.

Application of the developed method for determination of 239Pu and 240Pu in environmental samples. Two deep (25-30 cm) and four surface (0-5 cm) soil samples collected from the
background areas at sites without visible disturbance in China were analyzed using the developed method for ^{239}Pu and ^{240}Pu. The analytical results (Table 4) show a big variation of concentrations of ^{239}Pu and ^{240}Pu in the surface soil ranging from 0.07 to 0.13 mBq/g for ^{239}Pu and 0.048-0.087 mBq/g for ^{240}Pu, corresponding to a range of 0.12-0.22 mBq/g for $^{239,240}\text{Pu}$, which fall into the reported range of $^{239,240}\text{Pu}$ concentrations in the surface soil in the background areas in China (0.07-0.85 mBq/g for $^{239,240}\text{Pu}$) 35,36. The concentrations of ^{239}Pu and ^{240}Pu in the deep soil are more than 50 times lower than that determined in the surface soil in the same site. Exponentially decreased plutonium concentrations with the depth in soil core and much low concentrations of $^{239,240}\text{Pu}$ (<0.01 mBq/g) in the deep soil (> 25 cm) in undisturbed soil profiles have reported in many locations 19,37,38. This is attributed to the high association of fallout plutonium with organic substance and minerals, causing a low vertical migration of fallout plutonium in soil core 39. The measured $^{240}\text{Pu}/^{239}\text{Pu}$ atomic ratios in these samples are around 0.18, which agree well with the reported ratio of the global fallout plutonium3, indicating the dominant global fallout source of plutonium in these samples.

For accurate determination of low-level plutonium isotopes in deep soil samples, 30 g soil sample was analyzed. In this case, a large amount of uranium presents in the samples. The uranium concentrations in the deep soil samples were measured to be 3.0-3.5 µg/g, meaning more than 90 µg uranium presents in these samples with ultra-low level plutonium ($\left(1-5\right) \times 10^{-3}$ mBq/g ^{239}Pu, corresponding to 0.4-2 fg/g ^{239}Pu), with $^{238}\text{U}/^{239}\text{Pu}$ atomic ratios up to 10^{10}. This demonstrates that the developed method enables to accurately determine as low as 1 µBq ^{239}Pu and ^{240}Pu in such a 10^{10} folds higher uranium samples.
Conclusions

An analytical method based on chemical separation and ICP-MS measurement was developed for accurate determination of ultra-low level plutonium isotopes in high uranium samples. The most critical interference of uranium to the measurement of 239Pu and 240Pu was effectively eliminated by using an ICP-MS/MS instrument and 1.2 mL/min CO$_2$-8.0 mL/min helium as reaction gas. The interference of uranium to the measurement of 239Pu (238U/H$^+$/238U$^+$ ratio) was reduced to 10^{-8}, which is more than 2 orders of magnitude better than the previously reported ICP-MS methods. Combined with the chemical separation using extraction chromatography with TEVA resin, an overall elimination efficiency of uranium interference reaches 10^{12}, making it enable to accurate determine femtogram level plutonium isotopes in samples containing milligram uranium. Uranium hydride interference was efficiently eliminated by reaction with CO$_2$ in the DRC to completely convert U$^+$ and UH$^+$ to UO$^+$ and UO$_2^+$ ions. While, plutonium reacts only partly with CO$_2$, enable it to be measured as Pu$^+$ ion. The abundance sensitivity (tailing of 238U at m/z=239) was improved to $<2\times10^{-11}$, which is 10^6 times better than the conventional ICP-MS method. The measurement sensitivity for plutonium isotopes was improved by a factor 3 by collision focusing using high flow rate of helium into the DRC. Analysis of spiked samples demonstrated the reliability of the developed method for accurate determination of femtogram of 239Pu in high uranium samples with U/Pu atomic ratio up to 10^{12}. The developed method has been verified by the analysis of certified reference materials, and successfully applied for the determination of environmental samples with femtogram level plutonium isotopes.
ASSOCIATED CONTENT

Supporting Information

The Supporting Information, which is available free of charge on the ACS Publications website. A
detailed analytical method, 6 tables and 4 figures are presented.

AUTHOR INFORMATION

Corresponding Author

* Xiaolin Hou, Phone: +45-21325129, E-mail: xiho@dtu.dk.

Notes

The authors declare no competing financial interest.

Author Contributions

The manuscript was written through contributions of all authors. XH designed the experiment,
drafted and revised the manuscript, WZ and YW implemented the experiment, and WZ also
participated in draft preparation and prepared all figures. All authors have given approval to the
final version of the manuscript.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (11605206,
11875261, 41603125 and 91643206), the Ministry of Science and Technology of China
(2015FY110800) and Chinese Academy of Sciences (132B61KYSB20180003) and National
Research Program for Key Issues in Air Pollution Control (DQGG0105-02).
Reference

(9) Wang, J.; Baskaran, M.; Hou, X.; Du, J.; Zhang, J. Historical changes in 239Pu and 240Pu sources

(25) Varga, Z.; Surányi, G.; Vajda, N.; Stefánka, Z. Determination of plutonium and americium in environmental samples by inductively coupled plasma sector field mass spectrometry and alpha

(31) Amr, M. A.; Helal, A.-F. I.; Al-Kinani, A. T.; Balakrishnan, P. Ultra-trace determination of 90Sr, 137Cs, 238Pu, 239Pu, and 240Pu by triple quadrupole collision/reaction cell-ICP-MS/MS: Establishing a baseline for global fallout in Qatar soil and sediments. *J. Environ. Radioact.* 2016, 153, 73-87.

(41) Crain, J. S.; Alvarado, J. Hydride interference on the determination of minor actinide isotopes

Table 1 Results of abundance sensitivity of ^{238}U at m/z=237 in different mode of ICP-MS

<table>
<thead>
<tr>
<th>Mode</th>
<th>ICP-MS (single quadrupole)</th>
<th>ICP-MS/MS (tandem quadrupoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Gas</td>
<td>2.36×10^{-4}</td>
<td>3.47×10^{-8}</td>
</tr>
<tr>
<td>He</td>
<td>8.08×10^{-5}</td>
<td>8.19×10^{-9}</td>
</tr>
<tr>
<td>NH$_3$-He</td>
<td>6.88×10^{-6}</td>
<td>5.50×10^{-10}</td>
</tr>
<tr>
<td>O$_2$</td>
<td>1.76×10^{-5}</td>
<td>2.29×10^{-11}</td>
</tr>
<tr>
<td>CO$_2$-He</td>
<td>4.14×10^{-7}</td>
<td>$< 2 \times 10^{-11}$</td>
</tr>
</tbody>
</table>

No gas: no collision/reaction gas was applied; He: 8.0 mL/min helium as collision gas; NH$_3$/He: 1.2 mL/min NH$_3$ – 8 mL/min He; O$_2$: 2.0 mL/min O$_2$; CO$_2$-He: 1.2 mL/min – 8.0 mL/min He.
Table 2 Efficiency of uranium hydrides elimination (238UH$^+$/238U$^+$ and 238UH$_2^+$/238U$^+$ ratios) and 239Pu sensitivity in ICP-MS/MS measurement with the different reaction gas and comparison with the reported data of other methods

<table>
<thead>
<tr>
<th>ICP-MS mode</th>
<th>238UH$^+$/238U$^+$ ratio #</th>
<th>238UH$_2^+$/238U$^+$ ratio #</th>
<th>239Pu sensitivity (Mcps/ppm)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Gas</td>
<td>3.09×10^{-5}</td>
<td>8.50×10^{-9}</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>1.88×10^{-5}</td>
<td>4.05×10^{-9}</td>
<td>1030</td>
<td></td>
</tr>
<tr>
<td>NH$_3$/He</td>
<td>1.29×10^{-6}</td>
<td>2.78×10^{-10}</td>
<td>1170</td>
<td>This study</td>
</tr>
<tr>
<td>O$_2$</td>
<td>1.09×10^{-6}</td>
<td>1.54×10^{-10}</td>
<td>200 (239PuO)</td>
<td></td>
</tr>
<tr>
<td>CO$_2$/He</td>
<td>1.15×10^{-8}</td>
<td><2.00×10^{-11}</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>Q-ICP-MS</td>
<td>(1.4-3.2)×10^{-5}</td>
<td></td>
<td>80-250</td>
<td>40,41</td>
</tr>
<tr>
<td>HR-ICP-MS</td>
<td>4×10^{-5}</td>
<td></td>
<td>~350</td>
<td>42</td>
</tr>
<tr>
<td>ID-HR-ICP-MS</td>
<td>(1.35-1.78)×10^{-5}</td>
<td></td>
<td>~500</td>
<td>43</td>
</tr>
<tr>
<td>MC-ICP-MS</td>
<td>1.8×10^{-5}</td>
<td>(1.4-3.1)×10^{-7}</td>
<td>1.8×10^{4}</td>
<td>44</td>
</tr>
<tr>
<td>SF-ICP-MS</td>
<td>(1.1-19.5)×10^{-6}</td>
<td></td>
<td>280-2800</td>
<td>45,46</td>
</tr>
</tbody>
</table>

The ratios were estimated using the measured signal intensities at m/z=239 and 240 as the contribution of 238U$^+$ and 238U$^{1+}$ ions in comparison with the intensity of 238U$^+$ in the corresponding condition; For modes of no gas and helium as reaction gas, the intensity of 238U$^+$ signal was used; for CO$_2$-He and NH$_3$-He modes, the intensity of 238U$^+$ signal at 8 ml/min He as collision gas, and for O$_2$ mode, the intensity of 238U$^+$ signal of no gas mode was used.
Table 3 Determination of 239Pu in simulated high uranium solution using ICP-MS/MS with different reaction gases

<table>
<thead>
<tr>
<th>Sample solution</th>
<th>Measurement results of 239Pu</th>
</tr>
</thead>
<tbody>
<tr>
<td>238Pu conc.</td>
<td>239Pu conc.</td>
</tr>
<tr>
<td>10^{-9} g/mL</td>
<td>10^{-15} g/mL</td>
</tr>
<tr>
<td>239Pu conc.</td>
<td>Division</td>
</tr>
<tr>
<td>10^{-15} g/mL</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>0.010</td>
<td>10.1</td>
</tr>
<tr>
<td>0.10</td>
<td>10.1</td>
</tr>
<tr>
<td>1.00</td>
<td>10.1</td>
</tr>
<tr>
<td>10.0</td>
<td>10.1</td>
</tr>
<tr>
<td>100.0</td>
<td>10.1</td>
</tr>
<tr>
<td>988.0</td>
<td>10.1</td>
</tr>
</tbody>
</table>

1) 8.0 mL/min helium gas as reaction gas; 2) 1.2 mL/min NH$_3$-8.0 mL/min helium; 3) 1.2 mL/min CO$_2$-8.0 mL/min He.
<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Sampling location/depth</th>
<th>Sample mass, g</th>
<th>Chemical yield</th>
<th>239Pu counts (cps)</th>
<th>240Pu counts (cps)</th>
<th>239Pu concentration (mBq/g)</th>
<th>240Pu concentration (mBq/g)</th>
<th>240Pu/239Pu atomic ratio</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3% HNO$_3$</td>
<td>Instrument blank</td>
<td></td>
<td></td>
<td>0.072±0.023</td>
<td>0.021±0.012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank</td>
<td>Procedure blank</td>
<td></td>
<td></td>
<td>0.153±0.033</td>
<td>0.042±0.023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAEA-327 soil</td>
<td>Certified reference material</td>
<td>1.9-2.0</td>
<td>85-90%</td>
<td>23.7±0.9</td>
<td>4.54±0.21</td>
<td>0.333±0.019</td>
<td>0.232±0.017</td>
<td>0.191±0.018</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35±0.02</td>
<td>25±0.02</td>
<td>19±0.02</td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>IAEA-385 sediment</td>
<td>Certified reference materials</td>
<td>1.7-1.8</td>
<td>85-90%</td>
<td>92.6±2.5</td>
<td>16.6±0.5</td>
<td>1.77±0.09</td>
<td>1.13±0.08</td>
<td>0.175±0.015</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.92</td>
<td>1.18</td>
<td>0.174±0.032</td>
<td></td>
<td></td>
<td>Reference value</td>
</tr>
<tr>
<td>GDHY-1 Guangdong (25-30 cm)</td>
<td>20.0-20.5</td>
<td>85-90%</td>
<td>1.10±0.11</td>
<td>0.193±0.022</td>
<td>(1.30±0.22)×103</td>
<td>(0.852±0.145)×103</td>
<td>0.178±0.043</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>GDHY-2 Guangdong (0-5 cm)</td>
<td>2.0-2.1</td>
<td>85-90%</td>
<td>5.75±0.23</td>
<td>0.923±0.111</td>
<td>0.074±0.005</td>
<td>0.048±0.007</td>
<td>0.177±0.028</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>NMTL Inner Mongolia (25-30 cm)</td>
<td>10.0-10.1</td>
<td>82-87%</td>
<td>2.05±0.12</td>
<td>0.172±0.018</td>
<td>(5.10±0.71)×103</td>
<td>(3.42±0.52)×103</td>
<td>0.183±0.038</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>SXXA Shaanxi (0-5 cm)</td>
<td>3.5-3.6</td>
<td>82-87%</td>
<td>11.4±0.5</td>
<td>2.17±0.21</td>
<td>0.090±0.009</td>
<td>0.061±0.009</td>
<td>0.184±0.033</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>FJND Fujian (0-5 cm)</td>
<td>4.0-4.1</td>
<td>82-87%</td>
<td>15.7±0.8</td>
<td>2.35±0.25</td>
<td>0.109±0.009</td>
<td>0.075±0.012</td>
<td>0.187±0.034</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>ZJWZ Zhejiang (0-5 cm)</td>
<td>2.0-2.1</td>
<td>85-90%</td>
<td>10.3±0.7</td>
<td>1.87±0.19</td>
<td>0.132±0.018</td>
<td>0.087±0.014</td>
<td>0.180±0.038</td>
<td></td>
<td>This study</td>
</tr>
</tbody>
</table>

Note: the results presented here are average of three replicates of each certified reference material, and the uncertainties are estimated from the all analytical process with coverage factor of k=1.
TOC

222x121mm (150 x 150 DPI)
Figure 1 Variation of the intensities of Pu+, PuO+, U+, UH+, UO+ ion with the flow rate of helium injected to the DRC. For Pu+ and PuO+, the m/z =239 was selected in the Q1 (first quadrupole) and m/z=239 and 255 in the Q2 (second quadrupole), respectively; for U+ and UO+, the m/z=238 was selected in the Q1 and m/z=238 and 254 in the Q2, respectively; for UH+, m/z=239 was selected in both Q1 and Q2.
Figure 2 Variation of the intensities of U+, UH+, UO+, Pu+ and PuO+ ions with the flow rate of CO2 with 8 ml/min helium injected to the DCR. For U+ and UO+ ions, m/z=238 was selected in Q1 (the first quadrupole) and m/z = 238 and 254 in the Q2 (second quadrupole), respectively; For UH+, Pu+ and PuO+, m/z=239 was selected in Q1 and m/z=239, 239, and 255, respectively. 239Pu standard solution of 2.0 pg/ml and Uranium standard solution of 20 ng/mL and 1000 ng/mL (for UH+/UH+) were used in this measurement.
Figure 3 Influence of flow rate of helium injected to the DRC with 1.2 ml/min CO2 on the intensities of the Pu+, PuO+, U+, UH+ and UO+ ions. 238UH+/238UO+ in the legend means that m/z=239 (238UH+) was selected for the first Quadrupole (Q1) and m/z=255 (238U16O+) was selected in the second quadrupole (Q2) mass separator, others are the similar meaning. The left figure is the measurement of a uranium standard solution, and the right figure is the measurement of a 239Pu standard solution. Note: the uncertainties presented in some data points are too small to be clearly visible.

264x178mm (300 x 300 DPI)