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Abstract Flexural vibrations of a fluid-conveying pipe are investigated theoretically, with special consideration 
to the spatial shift in vibration phase caused by fluid flow and various imperfections. The latter includes small 
nonuniformity or asymmetry in stiffness, mass, or damping, and weak stiffness and damping nonlinearity. Be-
sides contributing general understanding of wave propagation in elastic media with gyroscopic forces, this is 
relevant for the design, control, and trouble-shooting of phase-shift measuring devices like Coriolis mass flow-
meters. A multiple time scaling perturbation analysis is employed with a simple model of a fluid-conveying pipe 
with relevant imperfections, resulting in simple analytical expressions for the prediction of phase shift. For ap-
plications like Coriolis flowmetering this allows for readily examining effects of a variety of relevant features, 
like small sensors and actuators, production inaccuracies, mounting conditions, wear, contamination, and corro-
sion. To second order of accuracy, only mass flow and asymmetrically distributed damping are predicted to 
introduce spatial phase shift, while nonuniformly distributed linear mass and stiffness, symmetrically distributed 
linear damping, and uniformly nonlinear stiffness and damping are all negligible in comparison. The analytical 
predictions are illustrated by examples, and validated with excellent agreement against numerical analysis for 
realistic magnitudes of parameters. 

Keywords mechanical nonlinearity, perturbation analysis, fluid-conveying pipes, spatial phase shift, structural 
imperfection, Coriolis flowmeter 
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1 Introduction 
The phase shift in oscillation between two points of a vibrating elastic beam or pipe is im-
portant for some applications. For a linear beam with mass- or stiffness-proportional damping 
standing waves can exist, with all points vibrating in either phase or antiphase. However, sev-
eral factors can introduce nontrivial spatial phase dependencies, and thus non-standing, trav-
elling waves. Non-proportional damping is one such factor. Fluid flow another, as utilized in 
Coriolis flowmeters, where the phase change between two points at a vibrated pipe is measured 
and related to mass flow through the pipe. Ideally, for such a flowmeter, the phase shift de-
pends only on mass flow. But many other factors could potentially be a source of phase shift, 
and thus mistaken for mass flow. This work seeks to clarify how typical linear and nonlinear 
mechanical effects can possibly lead to phase shifts for a vibrating pipe with fluid flow. 
In [1] a systematic perturbation approach was presented for deriving analytical expressions 
that relate phase shift to parameters characterizing vibrating pipes conveying fluid flow and 
possible small imperfections. Here we simplify the procedure, and include more types of im-
perfections, in particular axially nonuniform distribution of mass, stiffness, and damping, and 
nonlinear stiffness and damping. The result is a simple approximate analytical prediction (Eq. 
(52)), accurate to second order in the small parameter characterizing imperfection magnitude, 
for calculating how phase shift depends on the imperfections considered. The expression is 
validated against numerical simulation for some relevant and illustrative cases, and against 
some existing reported experimental results. 
Aspects of vibrations and stability of fluid-conveying pipes have been investigated for a long 
time [2-8], apparently with the first reported derivations of the correct equations of motion and 
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analysis reported by F.-J. Bourriêres in 1939 [4]. Some of these works were motivated by 
Coriolis flowmetering applications, providing valuable insights into how mass flow and also 
certain imperfections influence phase shift, see e.g. the overviews [9-11]. Several studies de-
rive analytical or semi-analytical predictions for phase shifts in the context relevant here. Typ-
ically the analytical expressions are for the ideal case [12], or require numerical solution of an 
eigenvalue problem [13,14], or the results are not validated against numerical simulation or 
experimentally. Raszillier and Durst [12] used a perturbation-like approach to derive analytical 
expressions for the phase shift for fluid-conveying pipes, but did not consider imperfections 
other than mass flow. Effects of imperfect supports on phase shift was considered in [1], using 
perturbation analysis in a manner similar to what is used in the present work. Effects of me-
chanical vibrations on measurement accuracy has been considered [15], as has effects of pul-
sating flow speed [16-19], sensor and actuator mass [10], temperature [10,20], and multi-phase 
flow [21]. Kutin & Bajsic [22,23] employed Taylor-expanded (in fluid velocity) Galerkin-
solutions to calculate analytical predictions for Coriolis flowmeter stability boundaries, and 
for phase shifts in the ideal and some non-ideal cases (nonlinear flow, axial force, and added 
mass). 
The effect of structural nonlinearity on phase shift for pipes with fluid flow seems not to have 
received much attention in the literature. This may be partly due the theoretical difficulties that 
comes with nonlinearity, and partly due to unawareness of the potential practical importance. 
One might think the very small displacement amplitudes typical in Coriolis flowmetering 
would imply that nonlinearity can safely be ignored. However, some of the strongest sources 
of nonlinearity in real structures can become significant even at very small displacement am-
plitude. This concerns e.g. the stiffness nonlinearity associated with midplane stretching (rel-
evant for pipes with fixed ends) or mechanical clearance (pipe rattling against rigid obstacle), 
and also with certain types of nonlinear damping (e.g. dry friction at pipe clamps or connec-
tions). Also, it is well-known that even weak nonlinearity can have a strong effect on vibration 
response, to an extent where linear theory does not even qualitatively capture the response 
correctly, as e.g. with nonlinear modal interaction [24-26], when one vibration mode is reso-
nantly excited (as with Coriolis flowmetering), and the natural frequency of this mode is re-
lated by a specific ratio of small integers to the natural frequency of another mode. Thus con-
sideration of nonlinearity is relevant. 
Stiffness nonlinearity from midplane stretching was considered with Coriolis flowmetering in 
[27], however without considering the effect on phase shift (but only the additional frequency 
components). The same study also considers nonlinear damping, though only in an unphysical 
form proportional to squared velocity (i.e. without multiplying with the sign of the velocity 
like with physically meaningful “quadratic damping”), and without considering phase shift 
effects. In the present work we consider the effect on phase shift of quadratic-cubic nonlinear 
stiffness (generically representative as the dominating nonlinear terms for most smooth stiff-
ness nonlinearities), and general velocity-dependent nonlinear damping. 
Recently [28] investigated several aspects of nonlinear vibrations and stability for a mathe-
matical model of a curved micro Coriolis flowmeter, taking into account geometrical nonlin-
earity in form of cubic stiffness terms. Using Galerkin discretization in terms of mode shapes 
for fixed boundaries, the spatial phase shift was calculated numerically for a specific example, 
along with system natural frequencies and flow stability thresholds. For the numerical example 
a linear dependency between phase shift and mass flow was observed, even in the presence of 
nonlinear stiffness. The present work puts more general theoretical support to this specific 
observation. 
Below we present and exemplify a systematic approach for calculating simple approximate 
analytical expression for spatial phase shifts of pipe vibrations, caused by fluid flow and var-
ious small linear and nonlinear imperfections, using a greatly simplified generic model of real 
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flowmeters. The mathematical model for transverse vibrations of the pipe takes the form of a 
nonlinear partial integro-differential equation of motion, with non-constant coefficients and 
external time-harmonic excitation. Spatial discretization into a finite set of approximating or-
dinary nonlinear differential equations is obtained using Galerkin expansion in terms of “per-
fect-pipe” mode shapes. The resulting set of ordinary nonlinear differential equations is then 
solved using multiple scales perturbation analysis, considering all imperfections as small per-
turbations to the perfect pipe. For the main case of practical interest in Coriolis flowmetering, 
i.e. sharply resonant excitation of the lowest mode, using just the two lowest vibration modes 
proves sufficient for reliably predicting frequency response as well as phase shift for the pipe: 
The lowest mode is directly excited, and thus strongly present, while the second mode is indi-
rectly and much more weakly excited by weak Coriolis forces from the flowing fluid and 
possibly other imperfections; As is confirmed by numerical simulation, all higher modes affect 
the response at a level several orders of magnitude lower. 
The modeling and solution procedure employed is similar to what was used in [1,29], except 
that in the present work more and other kinds of imperfections are considered, and that the 
analysis is further simplified as compared to [1]: The perturbation analysis was there applied 
directly to the partial differential equation of motion, whereafter Galerkin expansion is em-
ployed, while in the present work Galerkin expansion is employed first, as in also [10]. 
The simple model and approximate analysis is targeted towards the study of general effects, 
which may carry over to real flowmeters, not towards specific flowmeter design. For example, 
the conclusion, for the simple model, that “only the spatially asymmetric part of distributed 
damping contributes to measured phase shift” may well carry over to real flowmeters of com-
plicated geometry; at least the simple model allows such a hypothesis to be suggested, which 
is testable experimentally or with detailed numerical simulation for specific, real flowmeters. 
All of the simplifying assumptions made in this study hold approximately for applications such 
as Coriolis flowmetering under typical operating conditions. Many real industrial flowmeters 
have two curved measurement pipes, and so the straight single-pipe model employed here may 
appear somewhat academic. This is by intention, since the simplified geometry allows for 
simple, transparent analytical expressions for the quantities of primary interest. These allow 
for deducing conclusions on various effects of interest, which can then be used for posing 
hypotheses for real flowmeters, to be tested experimentally or by detailed numerical simula-
tion of coupled fluid-structure interaction models [17,30-35]. 
Section 2 defines the system and the “perfect” and "imperfect" (i.e. nonuniform and nonlinear) 
pipe, and sets up and discusses the fundamental equation of motion. Section 3 derives and 
interprets the primary resonant response mostly relevant for applications, based on a multiple 
scales perturbation analysis of an approximating set of equations of motion for the nonlinear 
and nonuniform pipe. Based on the approximate response calculation, Section 4 derives rather 
simple analytical expressions for predicting spatial phase shift in pipe vibrations in depend-
ency of the parameters describing pipe imperfection, and discusses implications in terms of 
sources of measurement errors for Coriolis flowmeter applications. Section 5 validates the 
simplified analytical predictions of phase shift effects, by comparing against results of numer-
ical simulation of the underlying full (i.e. unapproximated) system for cases corresponding to, 
respectively nonuniform linear damping, mass, and stiffness, and nonlinear damping and stiff-
ness. Finally Section 6 concludes on how the considered imperfections, besides fluid flow, 
affect spatial shifts in vibration phase. 
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2 Mathematical model 

2.1 The system 

Fig. 1(a) shows an infinitesimal element of the elastic beam in Fig. 1(b,c), modeling a single, 
straight Coriolis flowmeter pipe. At time t and longitudinal coordinate x , the transverse and 
longitudinal deformation of the pipe axis is u  and w , respectively. The pipe element is af-
fected by reaction forces Π from the fluid, and transverse external forces ( , )P x t  , e.g. from 
flowmeter actuators; in particular we consider time-harmonic pipe actuation at = px x   having 
frequency Ω  and force amplitude p . The fluid is assumed to have constant mass mf per unit 
pipe length, and to (plug-) flow through the pipe at a speed v which is everywhere the same 
inside the pipe, and changing only negligibly during each pipe vibration cycle (in [18] effects 
of pulsating flow speed v = v(t) are analyzed similarly as below). 
The pipe is either hinged or clamped at both ends, cf. Fig. 1(b,c). The supports can be axially 
fixed, introducing midplane stretching and thus a nonlinear coupling between axial forces and 
transverse deformation, as could be significant with a straight or slightly curved flowmeter 
pipe in a stiff frame. The pipe has undeformed length l, with its end pre-tensioned or -com-
pressed axially a distance ηl, 1,η   within axially fixed supports, where η is positive for 
tension and negative for compression. Hinged supports are included for their convenience (due 
to the simple linear mode shapes for a uniform pipe) in illustrating and interpreting analytical 
results, whereas clamped supports may be more realistic for applications. The equation of mo-
tion is solved for both types of boundary conditions, and other types of boundary conditions 
could be analyzed similarly ( [1,36] investigate effects of imperfect boundary conditions).  
Imperfections considered in this study include slight axial variations in pipe mass per unit 
length 0( ) ( )p p pm x m xm= + Δ  , in bending stiffness 0( ) ( )EI x EI EI x= + Δ  , and in axial stiff-
ness 0( ) ( )EA x EA EA x= + Δ  , where here subscript zero indicates the constant part of each 
property (e.g. it's mean value over [ ]0, ,x l∈  or a value typical for most of the pipe length), 
and Δ denotes property variation. The constant or uniform part of the mass per unit fluid-filled 
pipe is 0 0p fm m m= + . Also, there can be weak distributed transverse and rotational linear 
viscous damping with coefficients ( ) and ( )uc x c xθ    , and linear external stiffness (additional to 
pipe bending stiffness) ( )  and ( )uk x k xθ

   . All these functions of x  can be discontinuous, al-
lowing for examining effects of e.g. mounted sensors and actuators, production inaccuracies, 
 

 
Fig. 1 (a) Infinitesimal pipe element of a (b) hinged or (c) clamped pre-tensioned or -compressed pipe 
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mounting conditions, and wear, contamination, and corrosion. The addition of small and uni-
formly distributed generalized damping (d /d )f u tβ    allows for examining effects of nonlinear 
velocity-dependent dissipation, e.g. quadratic damping; the function f  is assumed to be es-
sentially nonlinear (i.e. vanishing along with its first derivative at 0u = ), and must be contin-
uous in u  for the relevant range of velocities. 

2.2 Equation of motion 

The equation of motion governing finitely small transverse pipe vibrations ( , )u x t   can be de-
rived using Newton’s second law or Hamilton's principle, see e.g. [5,12,37] for details. The 
result can be written in the following nondimensional form, which is an extension of what can 
be found in [1,18,23,37]: 

 
( ) ( )( )1 22 2 1

2 0

2

( ) ( ) (2 ) ( , )

( ) = ( )cos( ),k c p

u u m x u e x u vu v u u t d u

u L u L u f u p x x t

ε α μ η ξ ξ

γ β ε δ

′′′′′′ ′′ ′ ′′ ′ ′′+ + Δ + Δ + + − +

+ + + + − Ω

  

 
 (1) 

where ( , )u u x t=  is the transverse deflection at time t, [0,1]x ∈  is the axial coordinate, 
δ(x) Dirac's delta function, Lk and Lc are linear spatial differential operators describing addi-
tional/external linear stiffness and distributed linear damping, respectively: 

 
d d d d= ( ) ( ) , = ( ) ( ) ,
d d d dk u c uL k x k x L c x c x
x x x xθ θ
   − −   
   

 (2) 

the boundary conditions for hinged supports are: 

 (0, ) (1, ) (0, ) (1, ) 0,u t u t u t u t′′ ′′= = = =  (3) 
while for clamped supports: 

 (0, ) (1, ) (0, ) (1, ) 0,u t u t u t u t′ ′= = = =  (4) 
and all parameters, variables, and functions are nondimensional: 
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 (5) 

In (1)-(5) dots and primes denote differentiation w.r.t. to t and x, respectively, ε is a “bookkeep-
ing” parameter marking terms of smaller order of magnitude, subscripts p, f, u, θ denote "pipe", 
"fluid", "transverse", "rotational", respectively, and 11

0
1 ( ( )) d

l

m lEA EA x x−=     is the mean axial 
pipe flexibility. Time t is nondimensionalized by the characteristic frequency 
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4
0 0 0 ,EI m lω =  the axial coordinate x and transverse deflection u by the pipe length l, and 

flow speed v by the characteristic wave speed 0 .lω  
Equation (1) is a time-harmonically excited partial differential equation of motion, nonlinear 
(for nonzero μ, γ, or β), and with spatially non-constant coefficients (for non-constant Δm, Δe, 
Lk, or Lc).  

2.3 Physical meaning of nondimensional parameters and terms 

The external pipe actuation is described by the normalized amplitude p and frequency Ω of a 
time-harmonic force at x = xp ∈]0,1[. The function Δe(x) describes the normalized nonuni-
formity in pipe bending stiffness, i.e. the relative deviation along the axis from the constant 
part of the bending stiffness. Any physically conceivable variation Δe(x) can be chosen, even 
discontinuous (as with abrupt changes in cross section or material, and along with suitable 
interface conditions of deflection and slope continuity), as long as its magnitude is small com-
pared to unity. Similarly, the function Δm(x) describes the nonuniformity in distribution of 
(fluid-empty) pipe mass, normalized by the constant part m0 of the mass of the fluid-filled 
pipe; the same value is used to normalize the fluid mass α per unit length, so that α ∈ [0,1[, 
with α → 0 for a light gas, while α → 1 for a very heavy fluid or light pipe. A nonuniform pipe 
can have any variation Δm(x), even discontinuous (as with abrupt changes in cross section or 
material) or singular (as with added point masses), provided Δm is small in regular intervals, 
and integrates over x at any singularity to a small value (e.g. a point mass should be small 
compared to the total fluid-filled pipe mass).  
Nonlinear midplane stretching is expressed by the parameter > 0μ . The denominator in the 
definition of μ equals the pipe (mean or effective) radius of gyration 0 0 / ,mr I A=  and thus 

0= /l rμ  is the pipe's slenderness ratio; the Bernoulli-Euler assumptions employed for (1) 

holds for "slender pipes", e.g. 200lμλ >  where λ  is the wavelength of the highest active 
vibration mode. More slender pipes have larger values of μ, implying that relatively more of 
the transverse stiffness comes from midplane stretching and pre-tension, and less from bending 
stiffness. 
Linear translational and rotational stiffness and damping is described by the operators Lk and 
Lc, respectively. They are defined in terms of functions ku,θ(x) and cu,θ(x), describing the axial 
distribution of, respectively, stiffness (additional to the pipe bending stiffness) and viscous 
damping per unit length. These distributions can be nonuniform and even discontinuous, or 
possess singularities, but should be small compared to unity in x-integrated magnitude. For 
example, ku(x) = ku0 + ku1δ(x–xku), |ku0,1|1, models a particular distributed transverse stiffness, 
the first term describing the uniform part, and the second a transverse spring localized x = xku. 
The first two terms in (1) represent, respectively, the uniform transverse inertia of the pipe and 
fluid, and the uniform bending stiffness of the pipe. All remaining terms are small, as indicated 
by the factor ε. The first and second term within the bracket represents, respectively, correc-
tions to transverse inertia and stiffness associated with nonuniformity in pipe mass and bend-
ing stiffness distribution. Inertial fluid forces are represented by a Coriolis acceleration term 
2 'vuα  , arising due to pipe segments rotating at angular velocity 'u , and a centripetal acceler-
ation term 2v uα ′′ , accounting for the fluid with speed v following a path with instantaneous 
curvature radius 1/ u′′≈ ; Similar terms occur in many pipe-flow studies (e.g. [1,5,10,12]). 
Initial pipe stretching and axially fixed supports introduces the two terms multiplied by μ2: 
The first one, 2μ η , is the axial tension force required to initially stretch the pipe, while the 
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second one, with μ2 multiplying a nonlinear integrand, represents the additional axial force 
needed to stretch the pipe between immovable supports, at a given transverse pipe deformation 
u. 
The nonlinear term 2uγ  represents asymmetric (w.r.t. u = 0) stiffness, i.e. an elastic restoring 
force acting in the same direction regardless of the sign of the deformation; it could arise, e.g., 
from initial pipe curvature, or bias effects from pipe actuator magnetic coils, or from an open-
ing and closing crack. Generalized velocity-dependent and uniformly distributed damping is 
included by the term ( )f uβ  , where f is an arbitrary nonlinear function, and β a magnitude 
parameter. 
The two stiffness type nonlinearities included are those supposed to be most influential for 
real Coriolis flowmeters. In the general case stiffness nonlinearities could arise from other 
sources, e.g. from a nonlinear curvature measure at large deflection slopes. However, Coriolis 
flowmeters are typically restrained at both pipe ends so as to prevent large curvatures; thus 
nonlinearity from midplane stretching limits the response so strongly that curvature nonline-
arity remains insignificant in comparison. Furthermore, in the analysis to follow the nonlinear 
terms in the reduced system takes the form of just quadratic and cubical polynomial terms, 
thus rendering the analysis results applicable for any kind of nonlinearity that results in such 
terms, including e.g. curvature nonlinearity. 
The smallness parameter ε has no physical interpretation, but serves the purpose of magnitude 
bookkeeping through the different stages of analysis, explicitly quantifying the assumed order 
of magnitude of terms. In the final application of analysis results we just substitute for an ε-
marked quantity (e.g. εμ2) its specific value (μ2), being reminded that for the results to be 
accurate the term with this parameter should be small compared to other terms in the equation. 
Note that an ε in front of a parameter not necessarily indicates this parameter is small compared 
to unity, but that the entire term is small compared to other terms in the same equation. For 
example, the term in (1) with μ2 is multiplied by ε and is thus assumed small, even if μ itself 
is assumed to exceed 200 (for a slender pipe). In this case the term is assumed small anyway, 
meaning that the total pipe stiffness is dominated by another term (here the bending stiffness 
u′′′′ ); in realistic examples this turns out as a large value of μ2 multiplying a very small integral 
with 2( )u′ , resulting in a small number. 

2.4 Physical assumptions detailed 

All system parameters are constant in time, or slowly varying so that any parameter P changes 
only insignificantly during a period 2π/Ω of excitation, i.e. 2 1P P π Ω  . 
Transverse deflections in the plane of the excitation force are the dominating motions, with 
deflection slopes during vibrations being small, 2 2( ) ( ) 1,u x u′∂ ∂ =    and the axial inertia 
small enough to be ignored. The pipe can be considered a slender beam structure ( 200,lμλ >

where λ  is the shortest active vibration wavelength), so that shear deformations and rotary 
inertia can be ignored and Bernoulli-Euler beam theory employed. The pipe has only small 
axial variations in cross section, (integrated) density, and bending stiffness, and uniformly 
small mid-plane stretching. The transverse pipe stiffness is dominated by bending stiffness, 
with changes in transverse stiffness provided by pre-tension being small in comparison.  
Longitudinal deformations w w l=   satisfy the boundary conditions w(0,t) = w(1,t) – η = 0, 
and are second in order as compared to transverse deflections, w = O(u2). Also, Hooke's law 
and a Cauchy measure of strain can be used when deriving an approximate expression for the 
effect of mid-plane stretching [24,26]. 
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The damping terms with coefficients cu and cθ are small, as are the terms with coefficients ku 
and kθ defining additional nonuniform stiffness, the asymmetric stiffness γ, the uniform gen-
eralized damping ( )f uβ  , and the external forcing amplitude p. The system is driven at reso-
nance, but is not internally resonant; in particular the linear natural frequencies for the two 
lowest vibration modes are not close to being in ratio two or three. 
Fluid flows inside the pipe from x = 0 towards x = 1 with a flat (''plug flow'') velocity profile  
defined by a single constant velocity parameter v, and is assumed to be incompressible (meas-
urement effects of non-flat profiles and flow compressibility were considered in [38,39]); this 
is justified when the local flow speed |v| is everywhere much smaller than the local speed of 
transverse elastic waves in the pipe material [40], and implies ( ) = 0fvm ′  so that = 0v′ , and 
0 < 1v . Together with the assumption of small or no pipe pre-compression, this implies u 
= 0 is the only stable equilibrium for the un-actuated pipe (p = 0), and that axial loads are well 
below buckling values. 
Consideration to gravity of a pipe hanging vertically in gravity would lead to additional terms 
in the equation of motion (see e.g. ( [4]); one can show that this corresponds to letting 

2( ) (1 )k x g xθ = − in the linear stiffness operator Lk in (2), where 0/ /g g l ω=   is a nondimen-
sional measure of gravity g. This parameter can be interpreted as the ratio of two natural fre-
quencies: / ,g l describing the order of magnitude of the frequency of rigid body pendulum-
like oscillations of a fluid-filled pipe freely hanging in gravity, and 0 ,ω  describing the order 
of magnitude of structural bending vibrations of the pipe. For the applications of interest here 
this ratio is naturally very small, and gravity is thus ignored in comparison with other forces 
present. 
All of the above assumptions hold approximately for applications such as Coriolis flowmeter-
ing under typical operating conditions. The major factor ignored as compared to real industrial 
flowmeters is their more complicated geometry (many have two curved pipes rather than one 
straight). This allows for simple analytical expressions giving direct insight into the various 
effects under study, and may form the basis for posing testable hypotheses for real flowmeters. 

2.5 Pipe perfectness 

For this study we define a perfect pipe as being undamped, with axially uniform cross section, 
density, and linear bending stiffness, zero mass flow, and no additional transverse stiffness (by 
pre-tension, midplane stretching, or other). This implies that for a perfect pipe Δm = αv = Δe 

= μ = η = γ = Lk = Lc = β = 0, so that in the left-hand side of (1) the entire bracketed term 
vanishes. (Actually μ is not zero for the perfect pipe, but the parenthesis it multiplies in (1) is; 
letting μ = 0 has the same effect and is notationally more convenient.) Thus an imperfect pipe 
is considered and treated mathematically as a small perturbation of a perfect pipe, in that one 
or more of the imperfection parameters or functions are nonzero, and their corresponding term 
in (1) is nonzero, but small. 
Next we employ perturbation analysis to calculate the dynamic response of the imperfect pipe, 
aiming at insight into how each imperfection affects Coriolis flowmeter (model) performance. 
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3 Primary resonant response: Analytical prediction using perturbation 
analysis 

3.1 Method 

The equation of motion (1) with (2)–(4), describing the continuous fluid conveying pipe, is a 
nonlinear partial differential equation with homogeneous boundary conditions. The following 
analysis method was suggested in [1] for a similar problem, and used subsequently also in 
[18,29]; here it will be employed in a slightly simpler version, by introducing Galerkin-expan-
sion at an earlier stage of analysis, like in [10]. A solution u(x,t) is sought that is approximately 
valid under the assumptions stated in Sect. 2.4, and which can be used for setting up a simple 
analytical prediction for the difference Δψ in vibration phase measured between two pipe 
points symmetrically situated about 1

2 .x =  This phase shift, or the corresponding time shift in 
velocity zero-crossing, is the quantity actually measured in Coriolis flowmetering. For manu-
facturers it is important to be able to predict how the measured phase shift depends on factors 
other than mass flow, e.g. parameters describing nonuniformity, asymmetry, and other imper-
fections. 
The aim is here at transparent analytical expressions, allowing for direct insight into the effects 
of primary physical parameters on amplitude, phase and especially phase shift. Solutions of 
the equation of motion are approximated by a Galerkin expansion in the first (symmetric) and 
the second (antisymmetric) linear pipe mode, which are those of primary importance for Cor-
iolis flowmetering. Time dependent modal amplitude functions are then approximated using 
a systematic perturbation approach, and used to calculate corresponding approximate analyti-
cal predictions for vibration amplitudes and phase shift. Important results can be inferred di-
rectly by inspecting the analytical expressions. Their mathematical accuracy is tracked using 
order symbols, and checked later (Sect. 5) by comparing to results of direct numerical simu-
lation of (1). 

3.2 Galerkin discretization and approximation 

With pipe imperfections assumed small, it is reasonable to use mode shapes for the perfect 
pipe as expansion functions. These are obtained by solving (1) in its unperturbed form (ε = 0). 
Inserting a solution ( , ) = ( )sin( )u x t x tϕ ω ψ+  gives 2=ϕ ω ϕ′′′′ , which with boundary condi-
tions (3) or (4) constitutes a standard differential eigenvalue problem. Its solution gives the 
natural frequencies [26] , 1, 2, ,j jω ω= =  : 

 2 = , (hinged pipe)
= ,

{4.730, 7.853, 11.00, } (clamped pipe),
j

j j
j

jλ π
ω λ

λ

 ≈ 

 (6) 

and corresponding mode shapes: 

 ( )
2 sin( ), (hinged)

( ) = cosh cos
cosh( ) cos( ) sinh( ) sin( ) (clamped),

sinh sin

j

j j j
j j j j

j j

x
x

x x x x

λ
ϕ λ λ

λ λ λ λ
λ λ




− − − − −

 (7) 

which are orthogonal on x∈[0,1], and unit-normalized so that 

 
1 1 12 2

0 0 0
d = d d ,i j j i j j i j ijx x xϕ ϕ ω ϕ ϕ ω ϕ ϕ δ− −′′′′ ′′ ′′= =     (8) 
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where δij is the Kronecker delta. For the hinged-hinged and clamped-clamped supports con-
sidered in this study, the odd modes are symmetric w.r.t. 1

2 ,x =  while the even modes are 
antisymmetric, i.e. ϕ2j–1(x) = ϕ2j–1(1 – x) and ϕ2j(x) = –ϕ2j(1 – x) for j = 1,2,…. 
As an N-term Galerkin-expansion [41] for the solution to (1) in the presence of imperfections 
(ε ≠ 0) we then take: 

 
=1

( , ) = ( ) ( ),
N

j j
j

u x t q t xϕ  (9) 

approaching the exact solution as N→∞, where qj(t) are the time-varying modal amplitudes to 
be determined. Inserting (9) into (1), multiplying by ϕi, and integrating over the pipe length 
gives a set of modal equations of motion:  

 

( )( )2 2

1

12 1
2 0

, 1 1 , 1 1

( ) 2

d

= cos( ) ( ), = 1,2, , .

N

i i i ij j ij j ij ij j ij j ij j
j

N N N N

rs r s ij j ijk j k i j j
r s j j k j

i p

q q m q c q k n q v B q vC q

B q q B q H q q f q x

p t x i N

ω ε

μ η γ β ϕ ϕ

α

ε ϕ

=

= = = =


+ + + + + + +


   − − + +   
    

Ω



   

   





 (10) 

where the orthogonality properties (8) of the normalized modes shapes (7) has been employed, 
constants in uppercase define integrals depending only on mode shapes: 

 
1 1 1 1

0 0 0 0
= d d , = d , = d ,ij i j i j ij i j ijk i j kB x x C x H xϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ′′ ′′ ′= −     (11) 

constants in lowercase define mode shape integrals weighted by imperfection functions: 

 
( )

1

0

1 1

0 0
1 1 1

0 0 0
1 1 1

0 0 0

= ( ) d ,

= ( ) d = ( ) d ,

= [ ]d ( ) d ( ) d ,

= [ ]d ( ) d ( ) d ,

ij i j

ij i j i j

ij i k j u i j i j

ij i c j u i j i j

m m x x

n e x x e x x

k L x k x x k x x

c L x c x x c x x

θ

θ

ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

Δ

′′′′ ′′ ′′Δ Δ

′ ′= +

′ ′= +



 
  
  

 (12) 

and for the hinged-hinged or clamped-clamped supports considered in this study: 
  0 for odd,  0 for even,  0  for  even.ij ij ijkB i j C i j H i j k= + = + = + +  (13) 

The pipe is assumed to be resonantly excited at the fundamental symmetric mode ϕ1 by exter-
nal actuation at frequency Ω ≈ ω1; the fluid flow then induces asymmetric (w.r.t. 1

2x = ) Cori-
olis forces, which excite the second, antisymmetric pipe mode ϕ2, though still (mainly) at the 
frequency ω1. The result is a traveling elastic wave of transverse pipe motion, whose phase 
shift along the pipe in Coriolis flowmeters is picked up by motion sensors and used to estimate 
masse flow. The main effect can thus be expected to be well estimated by including just the 
first two terms of the Galerkin expansion (9). 
The corresponding pair of coupled ordinary differential equations governing the modal ampli-
tudes q1(t) and q2(t) are obtained by letting N = 2 in (10) and rearranging into:  
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{
( )

( )
( ) }

2
1 1 2 2 1 1 2 2 1 1 2 2

2 2
11 1 22 2 12 1 2

2 2 3 2 3 2 21
1 1 2 2 1 22 1 2 11 2 1 22

1

1 1 2 20

ˆ ˆ

2

d = cos( ) ( ), = 1,2,

i i i i i i i i i

i i i

i i i i

i i p

q q m q m q c q c q K q K q

H q H q H q q

B q B q B B q q B B q q

f q q x p t x i

ω ε

γ

μ

β ϕ ϕ ϕ ε ϕ

+ + + + + + +

+ + +

+ + + +

+ + Ω

    

 

 (14) 

where new stiffness and damping parameters have been introduced, respectively:  

 
2 2= ( ) ,

ˆ = 2 .
ij ij ij ij

ij ij ij

K k n v B
c c vC

α μ η
α

+ + −

+
 (15) 

Here the mass flow αv appears also in the damping-like terms ˆ ,jk kc q  but these are not purely 
dissipative: Since in general Cij ≠ Cji (cf. (11)), the corresponding linear damping matrix with 
components ˆijc  has an antisymmetric part with components 1

2 ˆ ˆ( ),ij jic c−  corresponding to the 
gyroscopic forces [42] associated with the Coriolis term 2 'vuα   in (1); these forces are con-
servative. (This holds only with identical boundary conditions at the pipe ends; with e.g. 
clamped-free boundaries the matrix with components Cij will have also symmetric compo-
nents, implying the Coriolis forces would be nonconservative. The effect of this on vibration 
phase shifts could be of technical interest for certain applications, though maybe less so for 
Coriolis flowmetering.) 
The two-mode approximation for transverse motions u(x,t) of the pipe is then given by (9) 
with N = 2, ϕ1(x) and ϕ2(x) given by (7), and q1(t) and q2(t) by the solutions to (14), to be 
calculated next. 

3.3 Approximate solution using perturbation analysis 

With ε1 perturbation analysis can be used to calculate approximate solutions to (14). Using 
the method of multiple scales [24,43,44] we seek a solution in the form:  

 
2

1 10 0 1 11 0 1
2

2 21 0 1

= ( , ) ( , ) ( )
= ( , ) ( ),

q q T T q T T O
q q T T O

ε ε
ε ε

+ +

+
 (16) 

where T0 = t, T1 = εt is the slow timescale, and O(ε n) denotes terms of order of magnitude ε n 
and smaller. The omission of an ε 0-term in the expansion for q2 simplifies the calculation, and 
is readily justified by a known property of the solutions sought: In Coriolis flowmetering the 
fundamental mode ϕ1 is resonantly excited and thus its amplitude q1 dominates the modal 
response; the second mode ϕ2 is not resonantly excited, but activated only by the small non-
idealities of the system (e.g. Coriolis forces from the flow), thus |q2||q1|, as is reflected in 
(16). 
Inserting (16) into the two equations in (14) and balancing terms of like powers of ε, one 
obtains from the ε0-terms an equation for the dominating amplitude component q10 of the fun-
damental modal amplitude q1:  

 2 2
0 10 1 10D = 0,q qω+  (17) 

where D .j j j
i iT≡ ∂ ∂  Similarly, the ε1-terms give for j = 1 an equation for the small amplitude 

correction q11 to the fundamental mode:  
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( )

2 2 2 2 2 31
0 11 1 11 0 1 10 11 0 10 11 10 11 0 10 11 102

12
111 10 1 0 10 1 1 00

ˆD = 2D D D D

D d ( ) cos( ),p

q q q m q K q c q B q

H q f q x p x T

ω μ

γ β ϕ ϕ ϕ

+ − − − − −

− − + Ω
 (18) 

and for j = 2 an equation for the small amplitude q21 of the second mode: 

 
( )

2 2 2
0 21 2 21 21 0 10 21 10 21 0 10

1

2 0 10 1 2 00

ˆD = D D

D d ( ) cos( ),p

q q m q K q c q

f q x p x T

ω

β ϕ ϕ ϕ

+ − − −

− + Ω
 (19) 

where, according to (15): 

 2 2
11 11 11 11 21 21 21 11 11 21 21 21ˆ ˆ( ) , , , 2 ,K k n v B K k n c c c c vCα μ η α= + + − = + = = +  (20) 

and (13) has been employed in (18)–(20). 
Equation (17) is a second order linear partial differential equation with a solution:  

 i 1 0
10 1= ( )e c.c.Tq A T ω +  (21) 

where A(T1) is a complex-valued function of the slow timescale only, i is the imaginary unit 
and c.c. here and below denotes complex conjugates of all preceding terms. 
As appears from (21) the function q10 is 2π-periodic in ω1T0, and so will be the argument to 
the general damping function f in (18)-(19). Then f is also 2π-periodic in ω1T0, and can thus 
be Fourier-expanded, with (21) substituted into the argument of f: 

 ( )i i11 0 1 0
1 1 02

=1
i e c.c. e c.c.,T n T

n
n

f A g gω ωω ϕ
∞

+ = + +  (22) 

where gn is the n’th Fourier coefficient: 

 ( ) ( )2 / i i11 1 0 1 0
1 1 1 1 00

( ), ( ) = i e c.c. e d , = 0,1, .
2

T n T
ng A T x f A T n

π ω ω ωωϕ ω ϕ
π

−+   (23) 

Inserting (21)-(22) into (18)-(19) then gives:  

 ( )

i2 i32 2 2 2 2 311 0 1 0
0 11 1 11 111 111 112

ii2 2 23 1 1 01
1 11 11 1 11 11 1 1 12 2

1 i1 1 0
1 020

=1

D = e e

i i2 D ( )e e

e d c.c.,

T T

TT
p

n T
n

n

q q H AA H A B A

m K B AA A A p x

g g x

ω ω

ωσ

ω

ω γ γ μ

ω ω α μ ω ϕ

β ϕ
∞

+ − − −

 + − − − − + 
 − + + 
 



 (24) 

and 

 
( ) ii2 2 2 1 1 01

0 21 2 21 1 21 21 1 21 22

1 i1 1 0
2 020

=1

D = i ( )e e

e d c.c.,

TT
p

n T
n

n

q q m K A p x

g g x

ωσ

ω

ω ω ω α ϕ

β ϕ
∞

 + − − + 
 − + + 
 


 (25) 

where a detuning parameter σ has been introduced to express the nearness to first-mode pri-
mary resonance, i.e. the nearness of the excitation frequency Ω to the fundamental natural 
frequency ω1 of the perfect pipe :  

 1 0 1 0 1= ( = ).T T Tω εσ ω σΩ +  Ω +  (26) 
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The requirement for solutions q11 of (24) to be free of secular terms is that the resonant exci-
tation terms (proportional to 1 0ie Tω ) vanish identically, i.e. the solvability condition becomes:  

 ( ) 1i2 2 23 1 1
1 11 11 11 1 11 11 1 1 12 2 0

ˆ d 0.i i2 D ( )e T
p g xm K c B AA A A p x σ β ϕω ω μ ω ϕ − =− − − − +   (27) 

With this fulfilled, a particular solution of (24) is: 

 
( )( )i2 i32 2 31 11 0 1 0

11 111 113 162
1

1 i2 11 1 0
1 020

=2

1 e e

(1 ) d c.c.

T T

n T
n

n

q H A A A B A

g n g e x

ω ω

ω

γ μ
ω

β ϕ
∞

−

= − + +

  + + − +  
  


 (28) 

Similarly, for solutions q21 (25) to be free of secular terms, excitation terms proportional to 
2 0i Te ω should vanish identically. Assuming ω2 is away from ω1 there will be no such terms, 

unless the damping is nonlinear (β ≠0), and at the same time an internal resonance exist be-
tween the lowest to natural frequencies of the perfect pipe, i.e. ω2 ≈ nω1; this is the well-known 
case of modal interaction [24,26], where nonlinearity and internal resonance combines to al-
low the transfer of energy from a directly excited mode (here ϕ1) to another mode (here ϕ2). 
Such near-integer relationships between the lowest natural frequencies could cause anomalies 
in the functioning of Coriolis flowmeters, in the presence of nonlinearity, since the second 
mode would be excited not only by the fluid flow. For this present study we assume the pipe 
is designed so as to not possess internal resonance. A particular solution to (25) is then: 

 
( ) ii2 1 1 01

21 1 21 21 1 21 222 2
2 1

i 1 01

2 02 20
=12 1 2

1 ˆ= i ( )e e

2 e d c.c.,
2 1 ( )

TT
p

n T
n

n

q m K c A p x

gg x
n

ωσ

ω

ω ω ϕ
ω ω

β ϕ
ω ω ω

∞

 − − + −

 
− + +  − 


 (29) 

To determine the amplitude function A(T1) from (27) we express it in polar form,  

 i ( )1 1
1 12( ) = ( )e ,TA T a T φ  (30) 

where a and φ are real-valued functions to be determined. In terms of these, the Fourier coef-
ficients (23) can be written 

 i= ( i ) , = 0,1, ,n
n n ng e nφκ ξ−   (31) 

where 

 
( )

( )

2
1

1 12 0
2

1
1 12 0

( , ) ( )sin cos( )d ,

( , ) ( )sin sin( )d .

n n

n n

x a f a x Y nY Y

x a f a x Y nY Y

π

π

π

π

κ κ ω ϕ

ξ ξ ω ϕ

= = −

= = −




 (32) 

One can show that, for any function f, (32) gives κn = 0 for odd n while ξn = 0 for even n. Also, 
with ϕ1(x) being symmetric w.r.t. 1

2 ,x =  κn and ξn are symmetric w.r.t. x as well. Finally, if f 
is antisymmetric w.r.t. its argument, i.e. ( ) ( )f u f u− = −   (as e.g. with damping functions of 
only odd-ordered powers of velocity), then κn = 0 for all n, while if f is symmetric,

( ) ( ),f u f u− =   then ξn = 0 for all n. 
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Inserting this and (30) into the solvability condition (27) gives, when multiplying by ie φ−  and 
separating real and imaginary parts, the autonomous modulation equations: 

 
1

1
11 1 1 12 0

1

1ˆ= 2 d ( )sin( ) ,
2 pa c a x p xβ ϕ ξ ϕ ψ
ω

 ′ − + +    (33) 

 ( )2 2 2 23
1 11 11 11 18

1

1= ( ) cos( ) ,
2 pa a m K B a a p xψ σ ω μ ϕ ψ
ω

 ′ + − − +   (34) 

where 1( ) d d ,T′ ≡  and a new phase variable has been introduced:  

 1 1 1( ) = ( ),T T Tψ σ φ−  (35) 

Inserting (30) also into (21) gives, with (26), and back substituting T0 = t and T1 = εt: 

 i( )1 1 0
10 1 0 12= e c.c. cos( ) cos( ),Tq a a T T a tω φ ω σ ψ ψ+ + = + − = Ω −  (36) 

while inserting (30) into (28)–(29) with similar back substitutions gives: 

 
( )( ) ( )

( ) ( )

2 2 2 31 1 1
11 111 112 3 642

1

1

1 02 20
=21

1 1 cos 2( ) cos 3( )

cos ( ) sin ( )
2 d ,

1
n n

n

q H t a B a t

n t n t
x

n

γ ψ μ ψ
ω

κ ψ ξ ψβ ϕ κ
ω

∞

 = − + Ω − + Ω − 

Ω − + Ω − 
− − − 


 (37) 

and: 

 
( )

( ) ( )

2
21 1 21 21 1 21 22 2

2 1

1

2 02 20
=12 1 2

1 ˆ= cos( ) sin( ) ( )cos( )

cos ( ) sin ( )
2 d ,

( ) 1

p

n n

n

q m K a t c a t p x t

n t n t
x

n

ω ψ ω ψ ϕ
ω ω

κ ψ ξ ψβ ϕ κ
ω ω ω

∞

 − Ω − + Ω − + Ω −

 Ω − + Ω −
− − − 


 (38) 

The two-mode approximate perturbation solution for the transverse pipe vibrations u(x,t) is 
then obtained from (9) with (16) and (36) inserted: 
 ( ) [ ] 2

1 11 1 21 2( , ) = ( ) cos ( ) ( ) ( ) ( ) ( ) ( ) ( ),u x t a t t t x q t x q t x Oψ ϕ ε ϕ ϕ εΩ − + + +  (39) 

where q11(t) and q21(t) are given by (37)–(38) and the slowly varying amplitude a(t) and phase 
ψ(t) are solutions to the modulation equations (33)–(34). 
For flowmeter applications we are in particular interested in the stationary vibrations that re-
main when transients caused by disturbances of any kind (e.g. a change in flow speed or actu-
ator force) have damped away. The corresponding stationary solutions to (33)–(34) are char-
acterized by having constant amplitude ˆ( )a t a= and phase ˆ( ) ,tψ ψ=  as determined by letting 

0a ψ′ ′= =  in (33)–(34) and solving the resulting algebraic pair of equations for â  and ψ̂ . 
Eliminating ψ̂  from the two equations so obtained, and inserting (26), gives the algebraic 
frequency response equation, implicitly defining the relation between the stationary vibration 
amplitude â  and the excitation frequency Ω: 

 
( )

( )
22 2 2 2 23

11 1 11 1 1 118

21 2 2
1 11 1 1 10

ˆ ˆ2 ( )

ˆ ˆ ˆ2 ( ) ( , )d ( )p

K m B a a

c a x x a x p x

ω ω ω μ

ω β ϕ ξ ϕ

− − Ω − +

+ − =
 (40) 
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where the three groups of terms represent, respectively, (dynamic) stiffness, dissipation, and 
forced excitation. Dividing the first of the two aforementioned equations ((33)–(34) with 

0a ψ′ ′= = ) with the second gives the corresponding stationary phase ˆ :ψ  

 ( )

1

1 11 1 10
2 2 2 23

11 1 11 1 1 118

ˆ ˆ ˆ2 ( ) ( , )d
ˆtan ,

ˆ ˆ2 ( )

c a x x a x

K m B a a

ω β ϕ ξ
ψ

ω ω ω μ

−
=

− − Ω − +
  (41) 

where the numerator represents energy dissipation and the denominator dynamic stiffness 
(vanishing at resonance). 
The frequency response curve ˆ( , )aΩ  can be described by solving (40) for Ω, giving: 

 
2 22 2 11211

1 11 1 10
1 1 1

( )3 1 2ˆ ˆ ˆ ˆ( ) ( , )d ,
ˆ ˆ16 2

pp xB a c x x a x
a a

ϕμ βω ϕ ξ
ω ω ω

   
Ω = + ± − −   

   
  (42) 

where 

 ( ) 111
1 11 12

1

ˆ 1
2
Kmω ω
ω

= − +  (43) 

is the linear 2 2ˆ( 0 or 1)aμ =   natural frequency 1ω̂  of the pipe in the presence of nonuniform 
pipe mass (m11 ≠ 0) and any factor causing K11 ≠ 0 (i.e. additional translational stiffness Lk, bend-
ing stiffness nonuniformity Δe, mass flow αv, or axial tension μ2η). 
The frequency response is qualitatively illustrated in Fig. 2, for a case where the effect of 
stretching nonlinearity (second term in (42)) is sufficiently strong to create a frequency “over-
hang” region where two stable vibration amplitudes â  exist. The two first terms of (42) de-
fines the backbone of the frequency response (dash-dotted in Fig. 2), with the basic relation-
ship between frequency and amplitude for free oscillations (undamped and unforced): 

 
2 2

211
1 11

1

3ˆ ˆ ˆfor the backbone ( 0),
16

B a p cμω β
ω

Ω = + = = =  (44) 

which grows quadratically with vibration amplitude â  from the linear natural frequency 1ˆ .ω  

 

 
 Fig. 2 Nonlinear frequency response according to (42): Stationary pipe vibration amplitude

â  of the fundamental harmonic as a function of excitation frequency Ω. Stable (solid line),
unstable (dashed), and free oscillation / backbone response (dash-dotted) 
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The maximum forced response amplitude *ˆ ˆa a=  occurs where the width of the resonance peak 
vanishes (cf. Fig. 2). Equating to zero the radical in (42), and using (15) and (13) to obtain 

11 11ˆ ,c c=  this gives: 

 ( )1* *
1 1 10

11 1

1ˆ ˆ( ) 2 ( ) ( , )d .pa p x x x a x
c

ϕ β ϕ ξ
ω

= +   (45) 

The corresponding peak frequency *
1ω̂Ω =  (see Fig. 2) is obtained from (42) or (44) with 

*ˆ ˆa a= inserted: 

  * 2 2 *23
1 1 11 116ˆ ˆ ˆ .B aω ω μ ω= +  (46) 

As appears from (45)–(46) the maximum amplitude is independent on the midplane stretching 
nonlinearity parameter μ, which affects only the frequency at which the maximum amplitude 
occurs. As for the asymmetric stiffness nonlinearity parameter γ, it appears to affect neither 
the maximum amplitude or the frequency at which this occurs. However, besides the linear 
damping (c11), nonlinear damping (β ≠ 0) appears to affect the maximum amplitude, and also 
makes (45) nonlinear in *â .  
With Coriolis flowmetering the pipe is automatically (by a positive velocity-feedback loop 
corresponding to negative damping) driven at the current resonance frequency, i.e. *

1ˆ ,ωΩ =  
which changes slightly with mass flow αv via its influence on K11, cf. (46), (43), and (15). As 
for the pipe vibration amplitude at this frequency, with stronger nonlinearity there is a theo-
retical risk that the stationary vibrations settle at the lower-amplitude stable branch of the fre-
quency response, rather than at the peak. This could be avoided by design changes that alter 
the quantities μ, B11, and ω1 in the second term on the right-hand side of (46) and (42) suffi-
ciently, that is: so that for any Ω, Equation (42) has at most a single solution ˆ.a  

3.4 Interpreting the general solution 

Equation (39), with q11 and q21 given by (37)–(38), shows that the pipe basically vibrates at 
amplitude a in its driven fundamental mode ϕ1(x). On top of this are small additional motions 
of order ε, in both the first and the second vibration mode, accounting for the effects of mass 
flow αv, for possible external excitation of the second mode pϕ2(xp), and for the various non-
uniformities considered. 
The first-mode correction amplitude q11 in (39), as given by (37), vanishes identically if non-
linearities are ignorable (γ =μ2

 = β = 0), and can have a nonzero time average if γH111≠ 0 (i.e. 
with asymmetric stiffness, e.g. a pre-deformed pipe), or if κ0≠ 0 (i.e. with asymmetric gener-
alized damping functions ( ) ( )f u f u− ≠ −  ). Nonlinearity from asymmetric stiffness and mid-
plane stretching (γ and μ2 terms) creates response components oscillating at multiples of the 
forcing frequency, as is typical for nonlinear systems. Such higher harmonics also arise with 
the β-term in (37), originating from the Fourier expansion of the generalized damping func-
tion. 
The second-mode correction amplitude q21 in (39) is given by (38). For a pipe which is perfect 
(cf. Sect. 2.5) except for a nonzero mass flow (αv≠0), and (as with flowmeters) is driven at a 
nodal point for the second vibration mode (ϕ2(xp) = 0), the only nonzero term is the one with 

21ˆ ;c  for this case, by (15) and (12), 2 2 1
21 21 1 2 1= 2 ( ) sin( ),q C a v tα ω ω ω ψ−− Ω −  which describes 

a second-mode component oscillating 900 out of phase with the primarily excited first mode, 
but at the same frequency, with an amplitude proportional to the mass flow αv; this is the 
design case for a Coriolis flowmeter. By (39) the resulting pipe motion u(x,t) is then a traveling 
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wave, i.e. the nodes of the vibration pattern move in time; this corresponds to a phase shift in 
the zero crossing times for two different points located along the pipe, which can be measured 
and related to the mass flow. However, as appears from (38) a nonzero value of 

1

20
dn xβ ϕ ξ

 (i.e. nonlinear, asymmetric damping, cf. (32)) can also produce a second-mode oscillation at 
frequency Ω and 90o degrees out of phase with the driven mode, and thus traveling waves that 
could be erroneously related to mass flow. The same applies if c21 ≠ 0, as could occur with even 
linear damping varying nonuniformly along the pipe-axis; this would lead to a change of 21ĉ  
which is unrelated to mass flow (cf. (15)). 
To investigate more closely the effects of pipe nonuniformity and generalized nonlinear damp-
ing, we next calculate predictions of the phase shift between two specific points located along 
the pipe; this is what is actually measured in Coriolis flowmeter applications. 

4 Phase shift with mid-pipe sharply resonant excitation 

4.1 Resonant response amplitude at measurement locations 

With Coriolis flowmeters, pipe motions are typically measured by a pair of magnetic pickup 
coils situated at x = x1 and x = x2 symmetrically an axial distance Δx from the pipe middle: 
 1 1

1,2 2 2= , ]0; [.x x xΔ Δ ∈  (47) 

The pickup signals are narrow-band filtered and analyzed to ensure the measured phase shift 
between x1 and x2 is only for vibrations at the excitation frequency Ω. The pipe excitation is 
applied at 1

2 ,px =  so that ϕ2(xp) = 0, cf. (7), and is controlled by velocity-feedback to be sharply 
resonant with the damped primary resonance frequency, so that and *

1ω̂Ω =  and *ˆ ˆ ,a a= cf. 
Fig. 2 and (45)–(46). Under these conditions, and according to (39) with (37)–(38), recalling 
that only vibration components at frequency Ω passes the filter, the pipe motions measured at 
x = xk becomes:  
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where 
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and where for A(x) a term 
1

2 10
2 dxβ ϕ ξ  has cancelled, being the integral of a product of an 

antisymmetric and a symmetric function, cf. (7) and the comment below (32). To order ε the 
pipe response amplitude ˆ( )ku x at pipe measurement point xk is then, by Taylor-expanding the 
factor multiplying the dominating harmonic term in (48) and inserting (49):  
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4.2 Phase shift between measurement locations 

Defining the phase shift between the measurement points x1 and x2 as  

 1 2= ( ) ( ),x xΔΨ Ψ − Ψ  (51) 

and utilizing that (by (47) and (7)) 1 1 1 2( ) = ( )x xϕ ϕ  and 2 1 2 2( ) = ( ),x xϕ ϕ−  gives, upon Taylor-
expanding for small ε, and substituting (15) with (11) and (20) with (11)–(12) for 21ĉ :  

 ( )1 31 2 1
2 1 122 2 0

2 1 1 1

2 ( ) 2 d ( ),
( ) ( )

x v x c O
x

ω ϕε α ϕ ϕ ε
ω ω ϕ

′ΔΨ = + +
−   (52) 

where, by (12): 
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 (53) 

where the last equality follows from splitting cu and cθ into symmetric and antisymmetric parts 
and noting the symmetry properties of the mode shapes (for hinged-hinged or clamped-
clamped pipes 1 2ϕ ϕ and 1 2ϕ ϕ′ ′ are both antisymmetric on x∈[0,1]). 
The analytical prediction (52) for the phase shift is accurate to order ε2 (the ε2-terms cancel 
identically); it can readily be rearranged into a form more directly useful for applications: 
 ( ) 3

1 0 ( )s v Oε α εΔΨ = + ΔΨ +  (54) 

where s1 is the linear meter sensitivity, i.e. the factor of proportionality between mass flow αv 
and phase shift ΔΨ: 

 
1 1 2 1

1 2 1 2 20
2 1 1 1

2 ( )2 d , ,
( )
xs x
x

ω ϕϕ ϕ
ω ω ϕ

′= Γ Γ =
−  (55) 

and ΔΨ0 is the zero shift, i.e. the phase shift present when there is no fluid flow (αv = 0): 

 0 12 .cΔΨ = Γ  (56) 

Note again that ε only serves to bookmark the magnitude order of small terms; in actual nu-
merical calculation it is set to unity. From (54)–(56) some conclusions relevant for flowme-
tering applications readily follow: 
To order ε2, the meter sensitivity s1 is predicted to: 
 grow with the nearness of the perfect-pipe natural frequencies ω1 and ω2 for the two 

vibration modes involved, in the same proportion as reported in other studies [1,45], 
 be independent on the vibration amplitude ˆ,a and 
 be independent on all imperfections included in this study, i.e. small (O(ε)) linear and 

nonlinear damping, mass and stiffness nonuniformity, and additional transverse stiff-
ness (by pre-tension, midplane stretching / symmetric stiffness nonlinearity, or asym-
metric nonlinearity). 

Also, according to (56) a zero shift Ψ0≠0 may result if c12≠0. According to (53) this generally 
occurs if cu(x) ≠ cu(1–x) or cθ(x) ≠ cθ(1–x) i.e. if the damping distributions are not symmetric 
w.r.t. 1

2x =  on x∈[0,1]. In practice zero phase shifts of (also) this kind are routinely removed 
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during the initial flowmeter calibration. However, subsequent changes of system damping un-
der operation (e.g. due to temperature, wear, lubrication, vibration level, or multi-phase flow 
[21]) could lead to phase shifts that would erroneously be related to mass flow. 
It is important to note that these conclusions only holds under the assumptions that all imper-
fections considered are small. Thus the rather general expressions (54)–(56) does not imply 
that the phase shift, the meter sensitivity, and the zero shift are independent of all imperfections 
considered in this study other than mass flow and asymmetric damping. What can be inferred 
is only that if the imperfections considered are of magnitude order O(ε), ε1, then the effect 
of asymmetric damping on phase shift is of the same order of magnitude as the mass flow, i.e. 
O(ε), and introduces a zero shift that could be mistaken for mass flow, while the effect of all 
other imperfections considered are at least two orders of magnitude, smaller, i.e. O(ε3). As for 
imperfection in the form of added nonuniform mass, a similarly very weak dependency on 
phase shift was reported in [46]. 
Indeed the phase shift does depend on several of the imperfections considered here, if just 
large enough. Added mass, for example, changes the separation between the two lowest natu-
ral frequencies and the mode shapes, and thus affects meter sensitivity. This is evident e.g. 
from Fig. 4 in [10], showing a clear effect of added mass on phase shift; however in that 
example the total mass amounts to up to 30 % of the pipe mass, and thus is not a “small 
imperfection” in the sense considered in the present paper (where the corresponding terms in 
the equation of motion should be much smaller than the dominating terms). In [10] the added 
mass is not assumed small, and thus the resulting analytical expressions are more accurate than 
(54)–(56), but also significantly more complicated and less readily interpretable. (See e.g. [23] 
for a further discussion of added mass effects.) 

4.3 Phase shift with hinged supports 

The above conclusions are valid for both sets of boundary conditions considered (hinged-
hinged, clamped-clamped), as long as the pickups are symmetrically positioned lengthwise, 
and the excitation applied at the pipe center, 1

2=px . For hinged supports (52) gives, on in-
serting (6)–(7) and (47): 

 ( )2
364 3

121645
= sin( ) ( ),x v c O

π
ε π α εΔΨ Δ + +  (57) 

where, by (53): 
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 (58) 

This is identical to what was found in [1] for the case of ideally hinged supports (i.e. with κ1 = 

0 in [1], Eq. (42)–(43)). According to (57) the maximum linear meter sensitivity is obtained 
for 1

2 ,xΔ → i.e. with measurement pickups placed as close as possible to the supports, how-
ever, in practice pickups are located so as to obtain the strongest signal from the (weakly) 
flow-excited second vibration mode, i.e. at the antinodes of ϕ2, corresponding to 1

4xΔ =  for 
hinged supports. 
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5 Numerical validation of analytical predictions 
The approximate analytical predictions of phase shift (52) and (57) can be tested by comparing 
with numerical results obtained with a minimum of approximating assumptions, using a Ga-
lerkin expansion a with sufficiently high number of modes to discretize (1). For the linear 
problem ( 0)μ γ β= = =  numerical solutions for the pipe motion can be calculated by insert-
ing the known solution form and solving the resulting set of linear algebraic equations for the 
modal amplitudes; phase shifts can then be calculated without analyzing response time series. 
For the nonlinear problem, by contrast, numerical simulation of the ordinary nonlinear differ-
ential equations for the modal amplitudes is required. 

5.1 Main approximations and solution procedure 

The partial differential equation (1) is discretized by the standard Galerkin expansion (9), us-
ing mode shapes (7) of the corresponding unperturbed problem. The resulting system of N 
coupled second order nonlinear differential equations (10) can be written in the form:  
 ( ) ( ) ( , ) = cos( ).v v t+ + + ΩMq D q K q g q q f    (59) 

where q= q(t) holds the modal amplitudes qj(t), j = 1,…,N, and the elements of the mass matrix 
M, the damping and stiffness matrices D(v) and K(v) (both fluid-velocity dependent), the es-
sentially nonlinear forcing vector ( , ),g q q and the modal forcing amplitude vector f are: 
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 (60) 

where all system constants are already defined (cf. (5), (6), (11), (12), (15)), and ε still serves 
only to bookmark terms assumed to be small (in actual numerical calculations ε=1).  
For N = 2 this system reduces to the two-mode approximation (14), which allowed the simple 
analytical approximate expression (52) for the phase shift to be set up, though at the cost of 
reduced accuracy due to excluding vibration modes higher than the second. Using numerical 
simulation of (59)–(60) for sufficiently high N allows the accuracy of (52) to be tested.  

5.1.1 Determining phase shift in the linear case 

For the linear case 0,γ μ β= = =  and thus g=0. Then (59) can be solved exactly for q(t), and 
the resulting phase shift calculated in a straightforward manner, as described for a similar case 
in [1]. For this the pipe is assumed to be excited resonantly in its fundamental symmetric mode. 
The resonance frequency of this mode changes with fluid flow and other imperfections con-
sidered; it can be calculated by letting = =f g 0  in (59), inserting a time harmonic solution 
q(t) = ϕ*eλ

 
t, and solving the resulting algebraic eigenvalue problem numerically for the fun-

damental eigenvalue λ = λ1. Generally with underdamped systems, and even with nonzero 
flow speed v≠0 or if D is not proportional to K or M, the eigenvalues λ = λj come as complex 
conjugate pairs, with the imaginary part Im(λj) = ωj* defining the j’th damped natural fre-
quency, and the real part defining the damping ratio ζj = –Re(λj)/|λ| of mode j [47]. Thus, as 
the excitation frequency for resonant excitation of the fundamental mode we take Ω = ω1* (

*
1 1ˆ ˆω ω≈ =  in the absence of midplane stretching nonlinearity, μ=0, cf. Fig. 2). 
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To solve (59) for the harmonically forced linear case ( , )≠ =f 0 g 0  we insert a time-harmonic 
solution form for the stationary part of the response: 
 ( ) sin( ) cos( ),t t t= Ω + Ωq a b  (61) 

and separate the in-phase (cos(Ωt)) and out-of-phase (sin(Ωt)) terms to give: 

 
2

2 = ,
 − Ω −Ω    

    Ω − Ω     

a 0K M D
b fD K M

 (62) 

which can be solved for the vectors a and b to give the corresponding q(t) by (61) for any 
excitation frequency Ω, including the particular 1st-mode resonance frequency ω1* of interest 
here. 
Substituting *

1ωΩ =  into (61)−(62), and solving (62) for the corresponding resonant values of 

{ } { }1 1and ,T T
N Na a b b= =a b   the value of q resulting from (61) can be substituted into 

(9) to give, upon rewriting from sine-cosine to amplitude-phase form: 

 ( )*
1( , ) = ( )sin ( ) ,u x t C x t xω − Ψ  (63) 

where the amplitude C and the phase Ψ generally vary along the pipe axis x: 
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The phase shift ΔΨ between any two pipe points x1 and x2 can then be calculated by inserting 
(65) into (51). For two symmetrically situated points 1

1,2 2x x= Δ  (cf. (47)) this gives:  

 1 1
2 2( ) ( ),x xΔΨ = Ψ − Δ − Ψ + Δ  (66) 

the numerical result of which can then be compared to the corresponding phase shift predicted 
by the simple analytical approximations (52) or (57). 
Eq. (66) with (65) will be referred to as the numerical solution, since it relies on numerical 
solution of the set of linear algebraic equations (62); it was calculated using MATLAB. The 
convergence of numerically calculated phase shifts ΔΨ with increased number of included 
modes N was tested in each case reported below, with final values of N chosen large enough 
to ensure no significant changes in results by halving or doubling N.  
The numerical solution can be expected to offer good accuracy as N is increased, converging 
towards the exact solution as N → ∞. It does not require imperfections to be small, but on the 
other hand provides very little insight into how imperfections affect phase shift. Thus the key 
role of numerical solution is here to test the quality of the simple, more approximate analytical 
solutions. For parameter ranges where the analytical expressions can be validated, these are 
considered much more useful than numerical solutions for practical innovation, design, and 
troubleshooting. 

5.1.2 Determining phase shift and response amplitude in the nonlinear case 

For the nonlinear case at least one of (γ,β,μ2) is nonzero, so that g≠0 in (59)-(60). Then this 
set of nonlinear ODEs must be solved for q(t) for specific parameters by numerical integration, 
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with the excitation frequency equal to the peak resonant frequency, *
1ω̂Ω =  (cf. Fig. 2), and 

the corresponding pipe deformations 1
2( , )u x t± Δ  calculated by (9). The procedure follows [18] 

in first rewriting (59) into standard (implicit) first-order form: 

 ( , ),t=My G y   (67) 

where { } 2( ) ,
TT T Nt R= = ∈y y q q  and: 

 , ( , ) cos( ).
( )

t t       
= = − + Ω      − −       

I 0 0 I 0 0
M G y y

0 M K D g y f
  (68) 

with M, D, K, g, and f given by (60). Equation (67) with (68) was solved for y=y(t) using a 
MATLAB standard solver for stiff systems (ODE23TB, and crosschecking with other solvers), 
using ODESET with the MASS(-matrix) option, and initial conditions { }(0) (0) (0)

TT T=y q q . 
When during simulation a stationary state has settled, the time shift Δt between the instances 
of zero velocity crossings of u at the two pipe points 1

1,2 2x x= Δ can be determined numeri-
cally using (9), and the corresponding phase shift ΔΨ = ΩΔt calculated. With numerical solu-
tions that are time-sampled uniformly at high enough frequency, and zero crossings deter-
mined by linear interpolation between sampled points, the time shift Δt can be determined 
accurately enough to reveal even the very small phase shifts ΔΨ relevant for flowmeter appli-
cations. 

5.1.3 Numerical issues with nonlinear response simulation 

a) Convergence tolerance: A proper choice of MATLAB’s absolute tolerance parameter 
(ABSTOL) turned out to be more than usually critical for acceptable numerical solution accu-
racy: Whereas the choice of the relative tolerance parameter (RELTOL) is not critical, MAT-
LAB’s default value of 10–6 for ABSTOL in most cases implies highly inaccurate numerical 
results for the phase shift ΔΨ. This is because the phase shift depends mostly on the nondi-
mensional modal amplitudes q1 and q2 of the first and second vibration mode (cf. (9)), where 
for realistic flowmeter parameters q1 is very small, e.g. O(10−6), and q2 maybe an order of 
magnitude smaller, and the higher modes yet smaller. With MATLAB’s ODE-solver consid-
ering all solution components smaller than ABSTOL effectively zero or “unimportant”, 
ABSTOL needs to be set small enough that the smallest component relevant for the solution 
(typically that means the amplitude of the highest mode included) will be determined to full 
accuracy, i.e. with tolerance RELTOL. (Or alternatively, the modal amplitudes qj could be re-
scaled to be all of order unity.) For all results presented below parameters were set to 
(RELTOL,ABSTOL) =(10–8,10–10), giving acceptable accuracy and computation time.  
b) Initial conditions: In some cases choosing these is not trivial, since with nonlinear systems 
the stationary state may depend on initial conditions. With weak cubic nonlinearities and 
mono-frequency harmonic excitation as assumed, the present system will have at most two 
stable stationary states at the drive frequency *

1ω̂Ω =  (cf. Fig. 2). However, with a real Coriolis 
flowmeter, feedback control will work so as to keep the response close to the backbone of the 
frequency response (dash-dotted in Fig. 2), since this gives the relation between oscillation 
frequency and amplitude for an undamped and unforced system, and this is effectively what 
the feedback control does: delivers a small amount of energy at the natural frequency corre-
sponding to a given amplitude, which exactly balances the energy dissipated by damping, so 
that the system is held at a constant frequency and amplitude. This means that the solution for 
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the feedback-controlled system will be at * *
1ˆ ˆ( , )aω  in Fig. 2, i.e. at the peak, and not on the 

lower branch. Thus we use, for the excitation frequency Ω, the analytically predicted reso-
nance frequency *

1ω̂  given by (46). But for cases with significantly bent response peak (i.e. 
with significant stiffness nonlinearity), a numerical procedure was employed corresponding to 
positive velocity-feedback (i.e. negative damping), ensuring the solution to be at the top of the 
response peak and not on the lower branch.  
c) Achieving stationarity: The inherently very low damping in Coriolis flowmeter pipes, im-
plies similarly long simulation times needed for transients to decay and stationarity to settle. 
To indicate the time scale, for a first-mode damping ratio ζ1 ≈ 0.01% (a typical value for Cor-
iolis flowmeters, cf. Sect. 5.2 below) the number of oscillation cycles NR needed to reach R = 
99.9 % of the stationary amplitude is ,1 1ln(1 ) / (2 )Rn R πζ≈ − −  ≈ 11,000 cycles of first-mode 
oscillations. To drastically cut down on the simulation time needed to attain stationarity, the 
already known linear stationary solution (61), giving q(t0) at some arbitrary time t0, was used 
as initial conditions q(0) for the nonlinear system (67). To further cut down on simulation 
time, these initial conditions were multiplied by *

1ˆˆ ˆ( ) ,a a ω i.e. by the theoretically predicted 
ratio between nonlinear and linear base oscillation amplitude (cf. (42), (43), (45)). By running 
a few simulation instances at very long times corresponding to at least nR,1 cycles, it was ver-
ified that stationarity was actually reached. 
d) Coping with long computation times: With e.g. N=16 modes the natural frequency of the 
highest mode of the hinged-hinged pipe is 162=256 times that of the fundamental mode, mak-
ing the system computationally stiff, and requiring fine time discretization. When additionally 
the damping is extremely low, requiring many oscillation cycles simulation to reach station-
arity (cf. preceding paragraph), and nonlinearity is also involved, then computation time for a 
standard PC running MATLAB becomes of the order of days to simulate a useful time series 
for just a single set of parameter values. This problem is reduced drastically when increasing 
the damping coefficient away from the extremely low value encountered with real Coriolis 
flow meters. Therefore, for the nonlinear cases reported below, the damping is artificially in-
creased by a factor 100, using a base value of cu0=0.2 (corresponding to ζ1=1.0 % and ζ2=0.25 
%, i.e. still very weak damping), and at the same time increasing also the forcing amplitude p 
by the same factor, so as to maintain the same level of stationary vibration amplitude (about 
7×10–5; see below) in all cases. This cuts down the time to reach stationarity during simulation 
by about the same factor, while supposedly not affecting the main conclusion drawn from the 
validation procedure. The latter is due to the way the artificial damping is introduced, as a 
simple increase in the spatially uniform part of the system damping, which is already known 
[1,20,48] not to affect the spatial phase shift of interest here (this damping affects only the 
phase temporal shift between input forcing and output response). Furthermore, for some of the 
numerical simulations with nonlinearity, the number of included modes was reduced to N = 8, 
as indicated in the figure captions, checking for a few cases that doubling the number of modes 
would not visibly change the graphs displayed. Alternative ways to cut down simulation time 
could involve numerically more efficient software, e.g. using Fortran coding, or replacing 
brute force simulation with solvers searching for periodic solutions (e.g. MATLAB’s BVP 
solver BVP5C). 
e) Calculating stationary vibration amplitude from time series data with weak harmonic 
distortion: With numerical simulation the response amplitude 1û at pipe measurement point 
x1 is calculated simply as half the peak-to-peak amplitude in the stationary time series u(x1,t), 
ignoring the very small content of harmonic distortion. The value of 1û  so computed can be 
compared to the analytical prediction given by (50). The distorting higher harmonics could be 
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filtered away, if significant; this is done anyway with a real Coriolis flow meter, where only 
the signal components at the drive frequency Ω are further processed. 

5.2 Validation cases 

The simple first-order approximate analytical prediction (57)–(58) for phase shifts of the 
hinged-hinged beam is here validated against numerical solutions, at the same time also illus-
trating the effect of the considered pipe imperfections on the phase shift. After defining base-
line system parameter values, sects. 5.2.2-5 consider the effects of imperfections correspond-
ing to, respectively, nonuniform linear damping, nonuniform mass and stiffness, nonlinear 
damping, and nonlinear stiffness. 

5.2.1 Baseline system parameters 

The baseline parameters are for a perfect pipe, except that uniform transverse damping is in-
cluded in all cases, i.e. Δm(x) = Δe(x) = cθ(x) = μ = η = γ = β = 0 (cf. Sect. 2.5), but cu(x)≠0. 
The effects of imperfections are then considered separately. For the uniform transverse damp-
ing cu(x)=cu0 = 0.002, unless otherwise stated in figure captions; this implies a quality factor Q1 

= ω1/cu ≈ 5000 for the drive mode, or a damping ratio of ζ1 = (2Q1)–1
 ≈ 0.010 % (and ζ2 = 0.0025 

%) corresponding to the value for a particular industrial Coriolis flowmeter. For the mass ratio 
we use α  = 0.3, and consider a mass flow range αv∈[0,0.1]; this roughly corresponds to a 
specific industrial Coriolis flowmeter measuring water flow from zero to full nominal flow 
rate. For optimal flowmeter sensitivity the measurement sensors are located at the antinodes 
of the second vibration mode, i.e. 31 1

1 24 4 4, , ,x x x= = Δ = while input forcing is provided at the 
antinode of the first mode, i.e. 1

2 ,px =  with amplitude p=10–6 (unless otherwise stated in figure 
captions); this exemplifies, for the level of damping used, a flowmeter pipe vibrating at max-
imum normalized resonant amplitude of the order 7×10–5, e.g. a 200 mm long pipe vibrating 
at about 14 μm amplitude. 

5.2.2 Effect of nonuniform linear damping 

As an illustrative example we consider the damping distribution to be basically uniform, but 
with an additional nonuniformity localized at { },,c cu cx x x x θ= ∈  , i.e.: 

 10( ) ( )– ,u u u cuc c xx c xδ+=  (69) 
 0 1( ) ( ),– cc c c x xxθ θ θ θδ= +  (70) 

where cu0 and cθ0 are positive constants for uniform transverse and rotational damping, respec-
tively, and cu1 and cθ1 the corresponding constants for a localized change (positive or negative) 
in damping at x = xcu and x = xcθ. The phase shift ΔΨ is then given by (57), where c12 is 
calculated from (58) with (69)–(70) to give: 

 12 1 1
22 sin( ) sin(2 ) 4 cos( ) cos(2 ),c c c cuc x x xc c xθπ π π π π= +  (71) 

which does not depend on the uniform damping constants cu0 and cθ0. Thus to order ε2 the 
phase shift is predicted to be unaffected by small (O(ε)) uniformly distributed linear viscous 
damping. Also, transverse damping localized at the nodes of the first or second vibration mode 

1
2( )cx = has no effect on the phase shift (the cu1-term in (71) vanishes); similarly, rotational 

damping localized at the antinodes of the first or second mode (xc∈{ }31 1
4 2 4, , ) has no effect on 

the phase shift (the cθ1-term vanishes). 
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Fig. 3(a) shows the effect of localized (i.e. nonuniform) transverse damping cu1 (cf. (69)) on 
the phase shift ΔΨ for varying mass flow αv, with details as given in the caption, and with the 
uniform part of the damping cu0=0.002 (cf. intro to Sect. 5.2). Solid lines represent results 
obtained by the analytical approximation (57) with (71); they agree very well with results of 
numerical solution (65)–(66) of the original model equations (1)–(3), deviating less than 0.6 
% even for the largest nonuniformity, cu1 = ±0.2, which is two orders of magnitude higher than 
the uniform part of the damping. The number of modes used in the Galerkin expansion (9) 
were N=16, chosen so as to ensure convergence of ΔΨ to typically six (in worst cases three) 
significant digits. However, the results appear to be rather insensitive to all N ≥ 2, reflecting 
the dominating influence of the lowest two modes. This also explains the high accuracy of the 
simple analytical prediction, which include just these modes. 
Fig. 3(b) illustrates the effect of different levels of pure uniform damping cu0 (with cu1=0) on 
the phase shift ΔΨ. The values used for cu0 spans four orders of magnitudes, with correspond-
ing damping ratios in the range 0.01–10 %, i.e. from realistic to unrealistically high, but in all 
cases with good agreement between analytical predictions and numerical solutions, and 
demonstrating independency of the phase shift to uniformly distributed linear viscous damping 
(all lines coinciding and symbols overlaid). 
As for rotational damping (cf. (70)), corresponding graphs for the effects of the nonuniform 
part cθ1 and the uniform part cθ0 are not given here, since they are closely similar to Fig. 3(a) 
and (b) for transverse damping, that is: The nonuniform part introduces zero shifts (i.e. the 
lines translate upwards with increasing nonuniformity), the uniform part has no effect on phase 
shift (all lines coinciding), and the agreement of the analytical prediction (57) with (71) to 
numerical solutions is very good, even up to unrealistically high values of the damping con-
stants. 
The prediction that asymmetrically distributed damping introduces a zero shift, while sym-
metrically (including uniformly) distributed damping has no significant effect, agrees with 
experimental findings involving artificially induced damping asymmetries [20,49]. 

 

         
Fig. 3 (a) Effect of localized (i.e. nonuniform) transverse damping cu1 (cf. (69)) on phase shift ΔΨ for varying 
mass flow αv, as obtained by the analytical approximation (57) with (71) (lines), and by the numerical solution
(65)–(66) to (1)–(3) using N = 16 modes (symbol markers). From bottom to top the lines show ΔΨ for different 
levels of nonuniform damping { }1 0.2, 0.1, 0.0, 0.1, 0.2uc − −=  at location xcu=0.1, with cu0 = 0.002 in all cases. 
(b) Effect of different levels { }0 0.002 1,  10,  100,  1000uc ×=  of pure uniform transverse damping (cu1=0) on 
ΔΨ, again with lines (symbols) showing results of numerical solution (analytical approximation) 
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5.2.3 Effect of nonuniform mass and stiffness 

As an example of mass and stiffness nonuniformity we consider the following axial distribu-
tion of, respectively, additional (fluid empty) pipe mass Δm, additional bending stiffness Δe, 
transverse stiffness ku, and rotational stiffness kθ: 
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 (72) 

where m1, e1, ku1, kθ1 represent concentrated added (or removed) mass and stiffness at corre-
sponding locations , , ,{ }m e ku k qx x x x x∈ . 
Fig. 4(a)–(d) displays the relation between phase shift ΔΨ and mass flow αv for each of the 
four nonuniformities separately, with solid lines representing the analytical approximation 
(57) with (71) and (72), symbols marking numerical solutions (65)–(66) of the original model 
equations (1)–(3), and parameter values as given in the caption. Numerical solutions were 
obtained using N=16 modes, but using e.g. 160 modes provides no visible change to the 
graphs. For each of the cases (a)–(d) the effect of nonuniformity is shown for, respectively, a 
vanishing nonuniformity for reference (zero coefficient, shown with circle symbols for the 
numerical results), a small nonuniformity corresponding to realistic cases and also to the as-
sumptions underlying the analytical approximations (coefficient 0.1, squares), and an unreal-
istically large nonuniformity for which the assumptions underlying the analytical approxima-
tion fails substantially (coefficient 1.0, diamonds; e.g. m1=1.0 implies an added mass equal to 
the total pipe mass, i.e. not “small” as assumed). As for the analytical predictions, these predict 
the phase shift not to depend on nonuniformities in mass or stiffness; consequently the solid 
lines in each subfigure all overlap, and in particular there is no zero shift. These features are 
confirmed by numerical simulation, where the marker symbols for zero (circle) or small 
(square) nonuniformity falls closely on the lines. Only in the cases of unrealistically large 
nonuniformities (diamonds) do the numerical results visibly differ from the analytical approx-
imations, though not very much so. 
Thus, under the assumed smallness in nonuniformity, the equivalence of the simple analytical 
prediction ((57) with (71)) to the results of detailed numerical solution of a multi-mode expan-
sion is confirmed. Also, the prediction that even a nonuniform mass distribution does not pro-
duce a zero shift agrees with experimental findings involving artificially added mass to a real 
Coriolis flowmeter [20]. 

5.2.4 Effect of nonlinear (cubic) damping 

Here we validate the analytical predictions for the case of nonlinear cubic damping, All other 
imperfections except linear damping and mass flow are ignored, i.e. Δm = Δe = η = γ = Lk = μ 
= 0, but β≠0 (the coefficient of damping nonlinearity), αv ≠ 0 (mass flow), and cu(x) = cu0 ≠ 0 
(uniform linear damping, giving Lc ≠ 0). 
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According to the simple analytical approximation (57) with (71), the phase shift ΔΨ does not 
depend on the coefficient β characterizing uniform nonlinear damping; the influence, if any, 
is predicted to be O(ε3). But the stationary vibration amplitude is predicted to be affected. For 
cubic damping, 3( ) ,f u u=   we use (45) to calculate the approximate resonant vibration ampli-
tude *â , using first (32) to calculate 33

1 1 18( , ) ( ( )) ,x a a xξ ω ϕ= − and inserting also (6)–(7) for 
hinged pipe supports; this gives, for insertion into (45): 

 
1 * 6 * 3 39

1 1 160
ˆ ˆ( ) ( , )d ( ) ,   for   ( ) .x x a x a f u uϕ ξ π= − =    (73) 

When β≠0 Eq. (45) with (73) is a depressed cubic in *â , which for all relevant physical pa-
rameter has only a single real-valued solution [50]):  

 * 3 3
1 2 1 2ˆ ,a r r r r= + + −  (74) 

where 

   
 

   
Fig. 4 Phase shift ΔΨ for varying mass flow αv, with nonuniformity in (a) mass, { }1 0,  0 ;.1,  1m =  (b) bending 
stiffness, { }1 0,  0 ;.1,  1e =  (c) transverse stiffness, { }1 0,  0.1  1 ;,uk =  (d) rotational stiffness, { }1 0,  0.1,  1 ,kθ =  as 
obtained by the analytical approximation (57) with (71) (lines), and by the numerical solution (65)–(66) to (1)–
(3) using N = 16 modes ({ }circle, square, diamond ) for { }zero, small, large nonuniformity). All nonuniformities
are localized at x = 0.1, i.e. xm =xe=xku=xkθ=0.1, and damping is taken to be linear and uniformly viscous, i.e.  (69)
-(70) with cu0=0.002 and cu1= cθ0= cθ1=0 
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 (75) 

For calculating frequency responses in terms of resonant stationary pipe amplitude 1ˆ( )u x at a 
sensor location x1 as a function of excitation frequency Ω, we use (50) with â  determined 
(implicitly, in the nonlinear case) by (42). In (42), by (73) and since C11=0 (by (13)) and 

11 11ĉ c= (by (13),(15)), the damping term under the radical reduces to: 

 
1 4 2 39

11 1 1 11 80
1

2ˆ ˆ ˆ( ) ( , )d ,   for   ( ) .
ˆ

c x x a x c a f u u
a
β ϕ ξ π β

ω
− = + =    (76) 

Thus (42) gives, by (43), (6), (7), (20), (12), (11)–(15), and with no stiffness nonlinearity 
(μ=0), uniformly distributed mass, stiffness, and cross section (m11=k11=n11=0): 
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 (77) 

which can be solved for â . Then (50) gives, since ϕ1(x1)=ϕ1(x2)=1 and m21 = K21= 0: 

 2
1 2ˆ ˆ ˆ( ) ( ) = ( )u x u x a O ε= +  (78) 

To test the theoretical predictions, Fig. 5(a) first shows the phase shift ΔΨ for varying mass 
flow αv as obtained by the analytical approximation (57) with (71) (lines), and by the numer-
ical solution (65)–(66) to (1)–(3) using N=8 modes (symbol markers). Three lines are shown, 
corresponding to different levels of damping nonlinearity, { }5 60,  10 ,  10 ;β =  however, since 
according to (57) ΔΨ is independent on β, the lines are identical. Numerical simulation results 
(symbol markers) confirms this, agreeing very closely to the analytical prediction. 
To ensure this insensitivity to β is not just due to parameters corresponding to a very weak 
damping nonlinearity, the largest value 106 used for β in Fig. 5(a) was chosen so as to corre-
spond to a damping nonlinearity strong enough to substantially change the frequency response 
near resonance. This is illustrated by the example frequency response in Fig. 5(b), showing 
the resonant stationary pipe amplitude 1ˆ( )u x as a function of excitation frequency Ω for the 
largest mass flow αv=0.1 of Fig. 5(a), and β=106, with the theoretical prediction (78) (with â  
from (77)) in solid line. Apparently the nonlinear part of the damping is here strong enough to 
reduce the peak resonant vibration amplitude to about half the value for linear damping only 
(dashed line). The circle mark shows the result of numerical simulation ((9) with (59)–(60)), 
agreeing closely with the theoretical prediction (78) with (74) (max value on solid line). 
Next we illustrate the modal composition of the pipe vibrations, i.e. the significance of differ-
ent modes. In Fig. 6 the top graph shows a simulation time series for the stationary displace-
ment responses u(x1,t) and u(x2,t) at sensor measurement locations x1 and x2, for parameters 
corresponding to the circle marker in Fig. 5(b). The two responses appear indistinguishable at 
this scale, the phase shift between them being so small (of order magnitude 10−2, cf. Fig. 5(a)), 
corresponding to a time shift Δt = ΔΨ/Ω ≈ 10−3). The lower graphs show the first four modal 
amplitudes q1–4(t), i.e. the lowest terms in the Galerkin expansion (9) for u(x1,2,t). Apparently  
q1 alone is indistinguishable from u(x1,2,t), reflecting the strong dominance of the resonantly 
excited first mode. The modal amplitude q2 of the second mode (main responsible for the phase 
shift of interest) is two orders of magnitude smaller than q1, and the third and fourth modes 
even smaller (four orders of magnitude); for modes 5–16 the modal amplitudes (not shown) 
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are even smaller. This explains why even a greatly reduced 2-mode model, as the one em-
ployed in sects. 3-4 for deriving analytical response predictions, provides high accuracy and 
good agreement with numerical simulation using many modes. 
Summing up this section, the analytical prediction that uniformly distributed nonlinear damp-
ing does not affect phase shift appears validated by numerical simulation, even for levels of 
nonlinearity strong enough to significantly affect pipe vibration amplitude. Also, even with a 
significant level of nonlinearity, analytical predictions based on just the two lowest linear 
mode shapes shows excellent agreement with numerical simulation using many modes. Nu-
merical simulation was performed only for the case of cubic damping. However, this form of 
damping can be seen as rather generic, representing the essence of many types of real damping 
forces that are antisymmetric in relative velocity. This includes “quadratic” or “air” damping 

2( ( ) sgn( )),f u u u=   and generally any damping law that is oddly symmetric in u  and can be 
Taylor-expanded at 0u = for small ;u the cubic term is then the dominating nonlinearity. 

5.2.5 Effect of nonlinear (cubic) stiffness 

Next we validate the analytical predictions for the case of cubic stiffness nonlinearity, as will 
be relevant e.g. for applications with constrained axial motion, leading to midplane stretching 
(μ≠0, cf. definition of μ in (5) and the discussion in Sect. 2.3, 2nd paragraph). All other im-
perfections except linear damping and mass flow are ignored, i.e. Δm = Δe = η = γ = Lk = β = 
0, but μ≠0 (the coefficient for cubic stiffness nonlinearity), αv ≠ 0 (mass flow), and cu(x) = cu0 
≠ 0 (uniform linear damping, giving Lc ≠ 0). 
As for the case with nonlinear damping, according to the simple analytical approximation (57) 
with (71), the phase shift ΔΨ is predicted not to depend on the nonlinear stiffness coefficient 
μ, while the stationary vibration amplitudes will be affected. 
Using again (45) with (6)–(7) (for hinged pipe supports) to calculate the approximate resonant 
vibration amplitude *ˆ ,a  one finds: 

          

 
Fig. 5 (a) Effect of nonlinear (cubic) damping 3( )f u u=  on phase shift ΔΨ for varying mass flow αv, as obtained 
by the analytical approximation (57) with (71) (lines), and by the numerical solution (65)–(66) to (1)–(3) using 
N=8 modes (symbol markers). The lines show ΔΨ for different levels of damping nonlinearity { }5 60,  10 ,  10β =
with cu0 = 0.2 and p=10–4 in all cases. (b) Frequency response showing the resonant stationary pipe amplitude

1ˆ( )u x as a function of excitation frequency Ω when αv=0.1. Solid line: analytical prediction (78) (with â  from 
(77)) for cubic damping (β=106); dashed line: linear damping (β=0); circle marker: numerical simulation ((9)
with (59)–(60)) 
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 2
* 2

11

ˆ .pa
cπ

=  (79) 

That is, by contrast to the above case of nonlinear cubic damping, nonlinear cubic stiffness 
does not affect the peak response amplitude. It only affects the frequency of excitation where 
the peak amplitude is encountered, i.e. it changes the backbone of the frequency response 
curve. 
For calculating frequency responses we use the same procedure as described in Sect. 5.2.4 for 
nonlinear damping, i.e. 1ˆ( )u x is computed from (50) with â  determined by (42). This gives, 
instead of (77): 
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2 2 2 231
1 1 112 16

1

1ˆ 2 ,
ˆ2

pv a c
a

ω α μ ω
ω

 
Ω = − + ± − 

 
 (80) 

which can be solved for â . Then 1ˆ( )u x is given by (50), again with m21 = K21= 0: 

 2
1 2ˆ ˆ ˆ( ) ( ) = ( )u x u x a O ε= +  (81) 

 
Fig. 6 Stationary resonant response for a case of nonlinear damping, with system parameters corresponding to
the circle marker in Fig. 5(b). Top: Displacement response u(x1,t) and u(x2,t) (difference too small to be visible
at this scale) at measurement locations x1 and x2 computed by (9) with N=8 modes; lower graphs: Modal ampli-
tudes qj(t) for the four lowest modes 
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To test the theoretical predictions, Fig. 7(a) shows the phase shift versus mass flow as obtained 
by the analytical approximation (57) with (71) (lines), and by the numerical solution (65)–(66) 
to (1)–(3) using N=8 modes (symbol markers). Three lines are shown, corresponding to dif-
ferent levels of stiffness nonlinearity, { }0,  3000,  7 0 ;00μ =  however, since according to (57) 
ΔΨ is independent on μ, the lines are identical (and also identical to the lines in Fig. 5(a)). 
Numerical simulation results (symbol markers) agree closely with the theoretical predictions, 
except for the largest value of μ=7000 where a small deviation is visible. However, this value 
of μ is unrealistically large, and chosen just to provoke at least some visibly detectable change 
in phase shift. For the particular (rather typical) industrial flowmeter, whose parameter values 
provide numerical illustration for this work, the slenderness ratio μ is about 300. This means 
the highest value for μ used with Fig. 7 is more than twenty times that of the example flow-
meter, and even the “medium” value of μ = 3000, which still gives excellent agreement be-
tween analytical results and numerical simulation, is one order of magnitude larger than for 
the typical flowmeter. Thus, for a real flowmeter, one can expect uniformly distributed cubic 
nonlinearity (as from e.g. midplane stretching) to have insignificant effect on phase shift. A 
similar observation was reported in [28] for a mathematical model of a curved micro Coriolis 
flowmeter, employing Galerkin-based numerical solutions: For the specific numerical exam-
ple reported, the mass flow remains linearly related to phase shift, even in the presence of 
cubic stiffness nonlinearity. 
As for the case with nonlinear damping, though the phase shift is not affected by uniformly 
distributed nonlinearity, the frequency response is affected. To illustrate this for the case of 
nonlinear stiffness, Fig. 7(b) shows the resonant stationary pipe amplitude 1ˆ( )u x as a function 
of excitation frequency Ω for the largest mass flow αv=0.1 of Fig. 7(a), and μ=7000; The 
theoretical prediction (81) (with â  from (80)) is shown in solid line, with the corresponding 
linear response (μ = 0) dashed. With such a large value of μ the resonant response peak is 
significantly bent towards higher frequencies, a well-known feature with hardening nonline-
arity ( 0μ > ; e.g. [26]). The circle marker shows the result of numerical simulation ((9) with 

 

       
Fig. 7 (a) Effect of nonlinear (cubic) stiffness on phase shift ΔΨ for varying mass flow αv, as obtained by the 
analytical approximation (57) with (71) (lines), and by the numerical solution (65)–(66) to (1)–(3) using N=8
modes (symbol markers). The lines show ΔΨ for different levels of stiffness nonlinearity { }0,  3000,  7000μ =
with cu0 = 0.2 and p=10–4 in all cases. (b) Example frequency response showing the resonant stationary pipe am-
plitude 1ˆ( )u x as a function of excitation frequency Ω when αv=0.1. Solid line: analytical prediction (81) with 
(80) for cubic stiffness (μ=7000); dashed line: linear stiffness (μ=0); circle marker: numerical simulation ((9)
with (59)–(60)) 
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(59)–(60)), agreeing rather closely with the theoretical prediction (79) (max value on solid 
line); for lower (more realistic values of μ) the peak is less bent, and the agreement with nu-
merical simulation even closer. 
As for the contribution of various modes to the nonlinear resonant response, graphs of u(x1,2,t) 
and the modal amplitudes qj(t) show features very similar as for the case of nonlinear damping 
(cf. Fig. 6); they are thus not shown here. Again the response is strongly dominated by the first 
mode, with the modal amplitude of the second mode being two orders of magnitude smaller, 
and that of the third and higher modes four or more orders of magnitudes smaller. Again this 
contributes to explaining why the reduced 2-mode model provides good agreement to numer-
ical simulation using many modes. 

6 Conclusions 
A mathematical model of a resonantly excited vibrating pipe with fluid flow was set up, in-
cluding generic models of several imperfections relevant for applications, in particular in Cor-
iolis flowmetering: Small axial variations (possibly discontinuous) in pipe mass, bending stiff-
ness, and transverse and rotational linear viscous damping and stiffness (additional to pipe 
bending stiffness), axial pre-tension, nonlinear stiffness (quadratic-cubic), and generalized ve-
locity-dependent nonlinear damping. The imperfections serve as simple theoretical models for 
many features of real flowmeters, such as mounted sensors and actuators, production inaccu-
racies, mounting conditions (e.g. constrained pipe ends), and wear, contamination, and corro-
sion. 
Assuming imperfections to be small, a two-mode approximation was employed, and perturba-
tion analysis used to calculate approximate analytical predictions for the frequency response, 
and for the vibration phase shift between two points along the pipe; the latter is the prime 
measured quantity in Coriolis flowmetering. The analytical expression (Eq. (52)) for the phase 
shift is very simple, though accurate to second order; it allows direct insight into how param-
eters other than mass flow affects phase shift, and thus in Coriolis flowmetering could be 
mistaken for mass flow. The following readily appear from inspecting the analytical prediction 
for phase shift: 
The meter sensitivity (ratio of phase shift to mass flow) is predicted to a) grow with the near-
ness of the natural frequencies of two lowest vibration modes, in the same proportion as re-
ported in other studies [1,45]; b) be independent on the vibration amplitude, and c) be inde-
pendent on all imperfections included in this study, i.e. independent of small linear and non-
linear damping, mass and stiffness nonuniformity, and additional transverse stiffness (by pre-
tension, midplane stretching / symmetric stiffness nonlinearity, or asymmetric nonlinearity). 
Also, a zero phase shift (nonzero shift even in absence of mass flow) may result if the damping 
distribution is not symmetric along the pipe axis, but not with any of the other imperfections 
considered. 
The main assumption for calculating the simple analytical approximation for the phase shift is 
that the imperfections considered are small, and that the vibration modes of importance is the 
first (which is resonantly excited) and the second (which is weakly excited by Coriolis forces 
associated with mass flow and certain imperfections), while the influence of all higher modes 
is negligible in comparison. It then follows from the analysis that if the imperfections consid-
ered are of magnitude order O(ε), ε1, then the effect of asymmetrically distributed damping 
on phase shift is of the same order of magnitude as the mass flow, i.e. also O(ε), and introduces 
a zero shift that could be mistaken for mass flow, while the effect of all other imperfections 
considered are at least two orders of magnitude, smaller, i.e. O(ε3). 
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Validation of the analytical expression was performed by comparing to results of numerical 
simulation of the full equation of motion, using a Galerkin expansion with many modes, and 
for parameter sets for various imperfections ranging from “small” (as assumed, realistically) 
to “large” (orders of magnitude larger than realistic). In all cases of “small” imperfections 
agreement were excellent; only with “large” imperfections deviations show up. 
The numerically based validation was performed for a broad range of parameters for the im-
perfections considered. But naturally it is not possible to test every imperfection considered 
thoroughly in a full parameter space; for example, an endless variation of possible relevant 
spatial distributions of even linear damping exists, and the same for “nonlinear damping”. 
However, for imperfections that could be of practical interest for applications, the simple an-
alytical approximations for the phase shift (Eq. (52)) and the stationary vibration amplitude 
(Eq. (50)) can be used to rather easily predict whether or not a given imperfections affects 
phase shift and how, possibly cross-checking with numerical simulation or laboratory experi-
ments. 
The theoretical prediction that asymmetrically distributed damping affects phase shift, while 
a symmetric damping distribution or small nonuniformity in mass distribution has no signifi-
cant effect, agrees with earlier reported experimental findings [20,49]. Also, the theoretical 
prediction that weak cubic stiffness type nonlinearity does not affect phase shift agrees with 
recently reported numerical observations for a particular curved micro Coriolis flowmeter 
[28]. However, the remaining of the abovementioned predictions of effects of various imper-
fections should be considered theoretically based hypotheses, awaiting experimental valida-
tion. 
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