Headspace passive dosing of volatile hydrophobic organic chemicals from a lipid donor - linking their toxicity to well-defined exposure for an improved risk assessment

Trac, Ngoc Lam; Nørgaard Schmidt, Stine; Holmstrup, Martin; Mayer, Philipp

Published in:
Environmental Science and Technology

Link to article, DOI:
10.1021/acs.est.9b04681

Publication date:
2019

Document Version
Peer reviewed version

Citation (APA):
HEADSPACE PASSIVE DOSING OF VOLATILE HYDROPHOBIC ORGANIC CHEMICALS FROM A LIPID DONOR – LINKING THEIR TOXICITY TO WELL-DEFINED EXPOSURE FOR AN IMPROVED RISK ASSESSMENT

Lam Trac, Stine N. Schmidt, Martin Holmstrup, and Philipp Mayer

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.9b04681 • Publication Date (Web): 15 Oct 2019

Downloaded from pubs.acs.org on October 21, 2019
HEADSPACE PASSIVE DOSING OF VOLATILE HYDROPHOBIC ORGANIC CHEMICALS FROM A LIPID DONOR –
LINKING THEIR TOXICITY TO WELL-DEFINED EXPOSURE FOR AN IMPROVED RISK ASSESSMENT

Lam Ngoc Trac 1, Stine Nørgaard Schmidt 1, Martin Holmstrup 2, Philipp Mayer *1

1 Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby,
Denmark

2 Department of Bioscience, Aarhus University, DK-8600 Silkeborg, Denmark

AUTHOR INFORMATION

Corresponding author

*Phone: +45 4525 1569; fax: +45 4593 2850; e-mail: philm@env.dtu.dk

Notes

The authors declare no competing financial interest.
ABSTRACT

High hydrophobicity and volatility of chemicals often lead to substantial experimental challenges, but was here utilized in headspace passive dosing (HS-PD) to establish and maintain exposure: The pure chemical served as passive dosing donor for controlling exposure at saturation, whereas triglyceride oil containing the chemical was used to control lower exposure levels. These donor solutions were added to glass inserts placed in the closed test systems. Mass balance calculations confirmed a dominant donor capacity for all chemicals except isooctane. This HS-PD method was applied to algal growth inhibition and springtail lethality tests with terpenes, alkanes, and cyclic siloxanes. Headspace concentrations above the lipid donors were measured for three chemicals to determine their chemical activity, using saturated vapor as analytical standard and thermodynamic reference. Toxicity was related to chemical activity and calculated concentrations in membranes at equilibrium with the lipid donor. For both tests and all chemicals, toxic effects were observed within or above the reported range for baseline toxicity, meaning that no excess toxicity was observed. The toxicity of siloxanes was markedly higher to the terrestrial springtail than the aquatic algae, which is consistent with a more efficient mass transfer of these volatile hydrophobic chemicals in air compared to water.

Keywords: Raphidocelis subcapitata, Folsomia candida, aliphatic hydrocarbons, narcosis, Henry’s law, Raoult’s law.
1. INTRODUCTION

High volatility and high hydrophobicity make chemicals “difficult to test” with regards to toxicity testing. When a chemical possesses both properties, it becomes almost untestable with current standard toxicity test methods. In fact, for volatile hydrophobic chemicals with an air-water partition coefficient (K_{aw}) greater than 1 (L/L), a considerable mass fraction will partition into the headspace of aquatic test systems. The exposure via soil interstitial air will become important for terrestrial organisms, because of a more efficient mass transfer via air compared to water. For both aquatic and terrestrial testing, it is generally challenging to first establish well-defined exposure at the beginning of the test, then to maintain constant exposure during the test, and finally to analytically confirm this exposure. Experimental strategies to cope with these challenges include (1) flow-through systems with a continuous supply of spiked medium, (2) non-depletive testing focusing at minimizing test substance losses, and (3) passive dosing where the concentration in the test is established and re-supplied by phase partitioning from a pre-loaded polymer. Recently, a new headspace passive dosing (HS-PD) approach was developed for enabling aquatic toxicity testing of volatile hydrophobic organic chemicals (VHOCs) at the maximum exposure level. The toxicity tests using HS-PD were conducted in gas tight vials, and the pure liquid test substance was used as a partitioning donor to establish and control the test exposure exactly at the saturation level. The present study was directed at developing and applying a HS-PD approach for the dose-response testing of VHOCs.

The exposure to a test substance can be expressed in several ways that go beyond the concentration in the test medium (e.g., air and water). Various approaches have been proposed to link adverse biological responses to the internal exposure, such as the critical body residue model, critical body burdens, toxic cell concentrations, and the target lipid model. These studies advocate the use of the critical internal dose that causes 50% mortality in test organisms, e.g., critical body residue CBR-50, for the interpretation and prediction of toxicity. This is due to the fact that external medium-based effective concentrations vary greatly for narcotic chemicals, whereas their CBRs remain within a much more narrow range. It has been
reported that nonpolar narcosis initiates at a target concentration range of 40-160 mmol/kg membrane lipid, which in the present study is used as a reference for identifying excess toxicity.

Another way to interpret and study the toxicity of narcotic chemicals is to link toxic effects to chemical activity. Chemical activity expresses the chemical potential relative to a chosen reference state, which for hydrophobic chemicals often is the pure chemical in its liquid state where chemical activity is set to unity. The chemical activity is then defined between 0 and 1, and differences in chemical activities between different phases drive the diffusion, sorption, and partitioning of the chemical, with a direction from high to low chemical activity. Therefore, chemical activity can give new insights and facilitate comparison of chemical exposures across environmental compartments including air, water, soil, sediment, and biota. The relationship between chemical activity and toxicity was first proposed by Ferguson in the late 1930's, and several studies have since shown that nonpolar narcotic chemicals exert baseline toxicity when reaching a chemical activity between 0.01-0.1. Specific toxicity or excess toxicity is thus indicated when effects occur at a lower chemical activity (< 0.001).

The link between the toxicity of hydrophobic chemicals and internal exposure or chemical activity has been explored more recently with the use of passive dosing, which allows precise exposure control. Since passive dosing is based on equilibrium partitioning of the test chemical between different phases, its application in toxicity tests has several advantages: (1) by controlling concentrations in the donor, the concentrations in the test medium are precisely controlled, (2) the theoretical equilibrium partitioning concentration of test chemical in the organisms can be estimated, and (3) the chemical activity in the test system is determined by the concentration in the donor and can be measured in the headspace.

The present study introduces the use of a lipid as passive dosing donor for the toxicity testing of liquid VHOCs at and below their saturation level. Lipid has recently been successfully applied as a partitioning donor in dedicated analytical and partitioning studies with semivolatile organic chemicals, while other scientists used vacuum pump oil as partitioning donor for controlling headspace concentrations in
The working principle of the new passive dosing method is based on equilibrium partitioning between donor and exposure medium, without a direct contact between these two phases. The test system is simple: The lipid donor is loaded by direct addition of the liquid test chemical and then used for establishing and controlling exposures below the saturation level, while the test chemical in the pure liquid form is used to establish and control exposure at the saturation level. The donor in this passive dosing approach is kept separate from the test medium and organisms using a glass insert (see the TOC Figure). We used purified plant oil as lipid donor, which is a medium-chain triglyceride of fractionated plant fatty acids, e.g., caprylic (C8) and capric (C10) fatty acids. There are a number of advantages when using such a liquid lipid as donor: (1) it is easy to load these high capacity donors to different chemical concentrations for toxicity testing by directly mixing the test chemical with the purified plant oil, (2) it allows measurements of chemical activity based on headspace concentrations of test chemicals, (3) it allows prediction of “concentrations in membranes at equilibrium with the donor” based on estimated storage lipid to membrane lipid partition coefficients, and (4) toxicity can finally be linked to both chemical activity and calculated equilibrium concentrations in membranes.

The aims of the present study were: (1) to develop a passive dosing method that can control the exposure to VHOCs at and below their saturation level, (2) to apply the method to dose-response testing of mono terpenes, alkanes, and cyclic volatile methyl siloxanes with the freshwater green algae *Raphidocelis subcapitata* (Sphaeropleales; Selenastraceae) and the terrestrial springtail *Folsomia candida* (Collembola; Isotomidae), and (3) to link the toxic effects to calculated equilibrium concentrations in membranes and to the measured chemical activities, and thus assess whether the test chemicals exert baseline or excess toxicity. The hypotheses were that: (i) the HS-PD approach can control exposure concentrations at and below the saturation level in algal growth inhibition test and springtail lethality test, (ii) the tested chemicals do not exert excess toxicity, and (iii) since chemicals with high K_{OW} and high K_{AW} have more efficient mass transfer in air compared to water, such chemicals can have faster uptake kinetics in the absence of water and thus higher toxicity in small terrestrial compared to aquatic organisms.
2. MATERIALS AND METHODS

2.1. Chemicals and materials

The following test chemicals were from Sigma-Aldrich Denmark with purity ≥ 99% unless otherwise stated:

- α-(+)-pinene, α-(−)-pinene, S-(−)-limonene (96%), octamethylcyclotetrasiloxane (D4) (98%),
- decamethylcyclopentasiloxane (D5) (97%), isoctane, n-nonane, n-undecane (Sigma-Aldrich, Germany),
- n-dodecane and isododecane (98%) (TCI Chemicals, Belgium), and n-tridecane (Fluka AG, Switzerland).
- Miglyol 812 purified plant oil was obtained from Cremer Oleo GmbH, Germany.

2.2. Headspace passive dosing using lipid as donor

2.2.1. Headspace passive dosing system

Test chemicals were weighed and mixed into Miglyol oil (without any pre-treatment of the oil) to obtain desired test concentrations (% w/w, mass %), while pure liquid test chemicals with no further treatment were used to control exposure at the saturation level according to Trac and colleagues. An amount of 0.2 mL of the donor solutions was added to 0.3-mL glass inserts embedded with glass wool to increase the surface area for the passive dosing. The inserts were then placed in 20-mL test vials containing 4 mL algal test medium or in 20-mL empty test vials for the springtail lethality experiment (further details in Section 2.3 and depicted in the TOC Figure). The test vials were then closed air tight with screw caps with Teflon-lined (PTFE) septa, and finally the complete systems were kept at 20 ± 1 °C for 24 h for pre-equilibration.

During this period, the closed test vials were shaken at 200 rpm (10 mm orbit) in order for the test chemicals to equilibrate quickly within the test system. Shaking of test vials was not necessary for springtail lethality tests. At test start, the pre-equilibrated vials were opened shortly for adding test organisms. The loss of test chemical during the opening was assumed to be limited to the fraction in the headspace, which was negligible as demonstrated by the mass balance calculations below.

2.2.2. Mass balance calculations
Mass balance calculations were done for an algal toxicity test system with and without passive dosing donor (Table 1) in order (1) to illustrate the differences between the two systems and (2) to demonstrate that the donor capacity was sufficient for controlling the partitioning within the closed system (i.e., negligible donor depletion). The calculations were done for all test chemicals using partition coefficients from the UFZ-LSER database, a donor volume of 200 µL, a water volume of 4 mL, and a vial volume of 20 mL (see Section 2.2.1).

| Compound | Governing partition coefficient | Mass balance without PDc | Mass balance with PDc
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\text{Log } K_{\text{OW}}$</td>
<td>$\text{Log } K_{\text{AW}}$</td>
<td>$\text{Log } K_{\text{LW}}$</td>
</tr>
<tr>
<td>n-nonane</td>
<td>5.46</td>
<td>2.38</td>
<td>5.72</td>
</tr>
<tr>
<td>n-undecane</td>
<td>6.57</td>
<td>2.69</td>
<td>6.86</td>
</tr>
<tr>
<td>n-dodecane</td>
<td>7.13</td>
<td>2.84</td>
<td>7.43</td>
</tr>
<tr>
<td>n-tridecane</td>
<td>7.68</td>
<td>3.01</td>
<td>7.98</td>
</tr>
<tr>
<td>isoctane</td>
<td>4.65</td>
<td>2.40</td>
<td>4.81</td>
</tr>
<tr>
<td>isododecane</td>
<td>6.65</td>
<td>3.19</td>
<td>6.79</td>
</tr>
<tr>
<td>Limonene</td>
<td>4.44</td>
<td>0.54</td>
<td>4.60</td>
</tr>
<tr>
<td>α-pinene</td>
<td>4.61</td>
<td>1.23</td>
<td>4.83</td>
</tr>
<tr>
<td>D4</td>
<td>6.92</td>
<td>3.21</td>
<td>6.61</td>
</tr>
<tr>
<td>D5</td>
<td>8.07</td>
<td>3.52</td>
<td>7.51</td>
</tr>
</tbody>
</table>

a data from UFZ-LSER database

b calculated by subtracting $\text{Log } K_{\text{LW}}$ by $\text{Log } K_{\text{AW}}$

c due to rounding numbers may add up to more or less than 100%

The mass balance calculations in Table 1 apply to the Henry’s law regime with donor concentrations up to 30%, which complements the mass balance calculations for the saturation level in Trac et al. In the air-water system, all chemicals predominantly partition into the headspace, which asks for and justifies...
exposure confirmation to be done by headspace analysis. In the passive dosing system, 200 µL of storage lipid was found to have sufficient donor capacity for the passive dosing of water and headspace with donor depletion < 10% for all chemicals except isooctane. The high capacity of the Miglyol oil is consistent with lipid-water partition coefficients being considerably higher than K_{OW} and K_{MW}. The donor depletion in the Henry regime (Table 1) is higher than in the saturation regime, and can thus be used as a conservative estimate.

2.2.3. Analytical exposure confirmation

This experiment was performed to (1) analytically determine the chemical activity of three test chemicals in the HS-PD system relative to their saturation level, and (2) link the test chemical concentrations in the lipid donor to chemical activity and thus determine the actual chemical activity of these test chemicals in the toxicity tests. This exposure analysis was performed for limonene, n-nonane, and D4, chosen as representatives for the chemical groups tested. A series of concentrations in Miglyol oil (mass %) was prepared for each chemical, namely, limonene: 100, 89.9, 79.9, 40, 20, 10.6, 5.1, 2.5, 1.7%; n-nonane: 100, 89.9, 80, 40, 20, 10, 5, 2.5, 1%; and D4: 100, 95.5, 89.9, 79.9, 40, 19.9, 10, 4.9, 2.5%. Two mL of each concentration solution was transferred into a 20-mL autosampler vial, which was then closed air tight and left in darkness at 20 ± 1 °C for 24 h for equilibration. Fully automated headspace sampling was performed on the test vials utilizing an autosampler, and the samples were injected on a GC-MS to measure the chemical concentrations in the vapor phase of the HS-PD system relative to the saturated vapors above the pure test substances. The experiment was performed in triplicate.

We used the pure liquid chemical as analytical standard and as the thermodynamic reference ($a_{saturation} = 1$).

Therefore, the chemical activity (a) in the test system was determined by dividing the headspace measurement of that system (peak area) by the headspace measurement above the pure test chemical, after confirming the linearity of the MS by separate measurements.

2.2.4. Headspace GC-MS
168 Headspace samples were initially taken manually and injected on a GC-FID, which however provided
169 insufficient analytical precision. Headspace samples were then taken with a CTC PAL RSI 85 autosampler
170 (CTC Analytics, Zwingen, Switzerland) and injected directly onto an Agilent Technologies GC-MSD system
171 (7890B/5877A GC/MSD). On the autosampler, the samples were equilibrated at 35 °C at intermittent
172 orbital shaking for 10 minutes before 100-µL samples were withdrawn from the headspace of the test vials.
173 All analyses were run with a split ratio of 100:1, a DB-5ms Ultra inert column (60 m × 250 µm × 0.25 µm),
174 the following temperature program: initial: 80 °C, rate: 20 °C/min, final: 210 °C, and in TIC scanning mode
175 with a mass-to-charge range from 40-200 m/z. TIC peak areas of test chemicals were manually integrated
176 (MSD Chemstation, Agilent Technologies Inc.) and used for the determination of chemical activity. To
177 ensure that the measured peak areas throughout the entire concentration range were within the linear
178 range of the MS detector, an additional analysis was performed in duplicate for each test chemical with a
179 split ratio of 10:1 (Figure S1). While this exposure analysis based on headspace GC-MS analysis proved to be
180 simple, effective, and precise, it required still about 40 measurements for each of the three chosen
181 chemicals including the important linearity check of the MS detector.

182 2.3. Toxicity tests

183 2.3.1. Algal growth inhibition test

184 The HS-PD approach was applied to control exposure at and below the saturation level. The test chemicals
185 were α-(+)-pinene, α-(-)-pinene, limonene, n-nonane, n-undecane, and n-tridecane. Six concentrations
186 were prepared for each test chemical (Table S4). The donor solutions and test vials were prepared, and a
187 pre-equilibration was completed as described in Section 2.2.1. The R. subcapitata growth inhibition tests
188 were conducted as described earlier. Each treatment, including the oil control (insert with Miglyol oil), was
189 performed in 3 replicates, and the global control (without insert and oil) was performed in 6 replicates. A
190 lipid content of 17-19.5% (w/w, dry weight) has been reported for R. subcapitata.37,38

191 2.3.2. Acute springtail lethality test
The springtail *F. candida* was cultured in closed Petri dishes containing a cast of a mixture of charcoal and plaster of Paris (1:8). The cast was moistened, and dried yeast was used for feeding. The cultures were maintained at 20 ± 1 °C with a 12:12 h light:dark regime. The springtails had an average fresh weight of approximately 110 µg and were picked randomly from different Petri dishes for toxicity tests. The lipid content of *F. candida* has been reported to be 9.9% dry weight. A range of different mass concentrations (%) of each test chemical was prepared in Miglyol oil (Table S4), and the HS-PD was applied to control the exposure in the test vials as described in Section 2.2.1. The test chemicals were α-(+)-pinene, limonene, D4, D5, isooctane, n-nonane, n-dodecane, and isododecane. At test start, 2 µL Milli-Q water was added to the bottom center of the pre-equilibrated test vial to ensure sufficient humidity during the test period. Ten animals were transferred to each vial and most of them were observed on the bottom of the test vial throughout the test. The uptake of test chemicals via the water was negligible due to the small water volume, low aqueous concentrations, and limited water uptake by the animals. Hence, the exposure through air was the only uptake route of test chemicals in this HS-PD system. The springtail lethality test was conducted at 20 ± 1 °C with a 12:12 h light:dark photoperiod. Ten global control vials (with insert only, in this case) and 10 oil control vials (insert with Miglyol oil) were included in the experiment. Three replicates were done for each treatment. After 7 days of exposure, springtails were transferred to clean Petri dishes with a clean and moistened cast of charcoal and plaster of Paris mixture and allowed to recover for 24 h. The lethality was then examined, and springtails were characterized as dead when not able to move any part of their body, after gentle stimulation with a fine brush. In all tests, the lethality of the global controls and oil controls was less than 10%, which confirmed the validity of the springtail tests.

2.4. Data treatment

2.4.1. Exposure confirmation experiment

The relationship between test chemical concentration in the lipid donor and chemical activity was established by plotting the measured chemical activity a as a function of mass concentration of chemical in
Miglyol oil (X, %) and fitting the data with a one-phase association exponential model using least-squares regression by GraphPad Prism 5.0 software (GraphPad Software, Inc., USA):

\[a = a_{max} \times (1 - e^{-k \times X}) \]

(1)

2.4.2. Toxicity experiments

In the algal growth inhibition test with terpenes, there was no significant difference in algal biomass between the global controls and the oil controls after 72h (Figure S2A). In the test with alkanes, there was a minor but statistically significant difference (p < 0.05, Figure S2B). And because the majority of the test solutions were prepared in Miglyol oil, we used the mean growth rate of the oil control samples as the reference for calculating the inhibition caused in the treatments. The growth inhibition was calculated as described earlier8. Growth inhibition that was numerically higher than 100% was set to a value of 100% (i.e., full inhibition) for all further data analyses. The concentration of the test chemicals in the donor (\(C_{\text{Donor}}\)) was calculated as the added mass of chemical relative to the total mass of chemical and Miglyol oil, and concentrations were expressed in units of % (mass:mass) or mmol/kg:

\[C_{\text{Donor}} = (W_C/MW)/(W_C + W_{oil}) \]

(2)

Where \(W_C\) is the added mass (g) and \(MW\) the molecular weight (g mol\(^{-1}\)) of the test chemical, and \(W_{oil}\) is the added mass (g) of Miglyol oil.

The actual chemical activities of limonene, n-nonane, and D4 in toxicity tests were determined by interpolation using their corresponding donor concentrations in toxicity tests and the best fit model determined for each chemical in the exposure confirmation experiment (Equation 1). The chemical activity measurements were due to technical reasons performed at 35 °C, and thus at a temperature somewhat higher than the toxicity test temperature of 20 °C. The higher temperature will lead to higher headspace concentrations but should not have a marked impact on the chemical activity calibration curves.

Headspace measurements above donor solutions and pure substance references were done at the same
temperature, and we assume the temperature effect on vaporization of the pure chemical in liquid form to be similar to the temperature effect on the lipid-gas phase transfer of that chemical.

The observed toxicity was linked to concentrations in the donor \((C_{\text{Donor}}) \) and also to calculated equilibrium concentrations in membranes \((C_{\text{Membrane Donor}}) \). For the latter, storage lipid to membrane lipid partition coefficients \(K_{LM} \) were first calculated as ratio of \(K_{LW} \) and \(K_{MW} \) (Table 1), and then used to determine “theoretical concentrations in membranes at equilibrium with the lipid donor \((C_{\text{Membrane Donor}} = C_{\text{Donor}} / K_{LM}) \)”. These conversions were not done for \(C_{\text{Donor}} > 30\% \), where headspace GC-MS results indicated non-linear partitioning. For test chemicals without clear toxicity at \(C_{\text{Donor}} = 30\% \), no dose-response curves were thus produced.

3. RESULTS AND DISCUSSION

3.1. Confirmation of test chemical exposures

The measurements of headspace concentration and chemical activity were performed for limonene, n-nonane, and octamethylcyclotetrasiloxane (D4), which represent the three groups of test chemicals: terpenes, alkanes, and siloxanes, respectively. The same trend was observed for all three chemicals. At low mass concentrations, the partitioning of test chemicals between Miglyol and air was proportional and thus followed as expected Henry’s law where partition coefficients apply (Figure 1). At higher \(C_{\text{Donor}} \), typically 20-30\%, the partitioning became non-linear and entered the Raoult’s law regime. At the highest donor concentrations, the chemical activity measurements clearly showed a deviation from ideal Raoult’s law behavior, with chemical activity already reaching unity at mass concentrations below 100\% (e.g., 80\%) (Figure 1). The best explanation for this deviation is that the tested chemicals were only fully miscible with Miglyol oil until a certain concentration, above which the concentrations in the headspace were controlled only by pure test substance. It was difficult to visually confirm a physical separation of the high concentration donor solutions into two phases, and the headspace concentration measurements were then instrumental for identifying this phenomenon. Additionally, these measurements provided a solid link
between mass concentration and chemical activity, which in turn provided a defined exposure metric for
the assessment of toxicity. Low standard error of the mean (SEM) values for replicate vials confirmed well-
controlled exposure, and the high coefficients of determination (r^2) led to well-defined exposure via
interpolation (Figure 1).

Analytical confirmation of exposure in toxicity tests is essential for reliable toxicity assessments. For a test
system using passive dosing with a dominant donor, it is usually sufficient to perform the exposure
confirmation at the end of the test or in a separate test without the test organisms. Indeed, passive dosing
with a dominant reservoir of test chemical in the donor can buffer losses during testing7,20,39–41. As shown in
Table 1, chemicals with high K_{aw} values distribute predominantly (> 90%) to the headspace of a closed test
system without a passive dosing donor. In this scenario, a majority of test chemical thus partitions into the
headspace after being introduced into the aqueous test medium3,42, which in aquatic toxicity tests can lead
to un-controlled exposure and severe underestimation of toxicity2. In a passive dosing test system, the test
chemicals are contained predominantly in the donor, e.g., > 95% (Table 1), which then via equilibrium
partitioning will buffer any losses in the test medium and thus maintain the exposure. The mass balance
calculations demonstrate the much higher test substance masses and concentrations in the headspace
compared to the water, which make exposure confirmation via the headspace more straightforward and
meaningful. We have in the present study also tried to confirm the exposure in the water, which turned out
to be very difficult for VHOCs contained in these small volumes of water. Isooctane was the only test
substance with a lipid to air partition coefficient $K_{la} < 1000$, the only chemical with a donor depletion
> 10%, and thus omitted from all further data analysis.

To assess whether a test chemical exerts baseline or excess toxicity, external exposure concentrations can
be converted to internal exposure metrics such as lipid normalized concentration, calculated equilibrium
concentration in lipid, or chemical activity20,27,28. In this regard, the HS-PD from a lipid-based donor has a
number of advantages. First, the observed toxicity can be linked directly to the test concentrations in the
lipid donor for a simplified baseline toxicity assessment. Second, concentrations in the donor can be
converted to calculated equilibrium concentrations in membranes ($C_{\text{Membrane}} \rightleftharpoons C_{\text{Donor}}$), premised that required storage lipid-membrane lipid partition coefficient values are available, and effective concentrations can then be compared directly to the critical membrane concentration of 40-160 mmol/kg. Third, the combination of HS-PD and HS-GCMS allows control and measurement of chemical activity in the test system. Measuring head space concentrations and chemical activity is essential for VHOCS, especially when it is challenging to measure their concentrations in the aqueous medium or in the test organism. The measurement is simple, and one can obtain precise data by utilizing fully automated analytical instruments. This again provides a solid exposure metric to be linked to the observed toxicity.

Figure 1: Chemical activity of limonene (A), n-nonane (B), and octamethylcyclotetrasiloxane D4 (C) measured at different mass concentrations in Miglyol oil (mean ± SEM, n = 3).

3.2. Toxicity test results

The toxic effects of limonene, n-nonane, D4, and D5 on algae and springtail were examined both on a lipid basis and a chemical activity basis (Figure 2 and 3), whereas the toxic effects of other test chemicals were examined on the lipid basis only (Figure S3 and S4). Table S1 summarizes lipid based median effective concentrations (EC-50s) and Table S2 median effective chemical activities (Ea-50s) of limonene, n-nonane, and D4 in toxicity tests with both algae and springtails.

Figure 2A shows the growth inhibition of *R. subcapitata* after 72-h exposure to limonene, n-nonane, D4, and D5 against their concentrations in the lipid donor (Equation 2). The siloxanes exhibited no (by D5) or...
limited growth inhibition (11% by D4) toward *R. subcapitata* as reported by Trac and colleagues, and thus no EC-50 or Ea-50 values were derived for siloxanes in the algal growth inhibition tests. Figure 2B shows the dose-response curves of limonene and n-nonane on the membrane basis, which is within and slightly above the grey box depicting the concentration range for baseline toxicity. Their EC-50 values were 210 and 130 mmol/kg lipid, respectively (Table S1). This indicates that these two chemicals were baseline toxic towards algae and springtails and thus no excess toxicity was observed.

Figures 2C and 2D show the springtail lethality after 7-d exposure to limonene, nonane, D4, and D5 against their concentrations in the lipid donor and in the membranes at equilibrium with the donor. On the membrane basis, the EC-50 values were 90, 90, 70, and 70 mmol/kg, respectively (Table S1). For the other test chemicals, the EC-50 values in all toxicity tests with both algae and springtail were within or above the baseline toxicity range (Figure S4 and Table S1). These findings support the hypothesis that these test chemicals did not exert excess toxicity.

When assessed on the chemical activity basis, the Ea-50 values for limonene and nonane in the algal growth inhibition tests were 0.25 and 0.40, respectively (Table S1), whereas the Ea-50 values for limonene, nonane, and D4 in the springtail lethality tests were 0.11, 0.30, and 0.42, respectively (Table S1). Recent studies on algal growth inhibition caused by a large number of chemicals have reported that for nonpolar narcotic chemicals baseline toxicity requires 1% of saturation, i.e., chemical activity of 0.01, whereas excess toxicity occurs at chemical activity below 0.001, corresponding to 0.1% of saturation. Similar findings have been reported for the springtail *F. candida* regarding the chemical activities required for baseline toxicity. Again, the toxicity of limonene, n-nonane, D4, and D5 in the present study was observed to initiate above the chemical activity range of 0.01-0.1 for baseline toxicity (Figure 3), thus supporting the absence of excess toxicity by these chemicals.
Figure 2: Toxicity of limonene, n-nonane, octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5) to algae and springtail linked to concentration in lipid donor (A & C) and concentration in membranes at equilibrium with the donor (B & D) (mean ± SD, n = 3). Data for D4 and D5 in algal growth inhibition test were from Trac et al.8. The grey boxes depict the reported concentration range of 40 – 160 mmol/kg membrane lipid for baseline toxicity.

For each test chemical toxicity was higher in springtail than algae (Table S1 and S2, Figure 2 and 3).

Remarkably, the springtail lethality at saturation was 100% for D4 and about 50% for D5, which is markedly higher than the corresponding algal growth inhibition of D4 (11% at saturation) and D5 (no inhibition)8.

These toxicity differences for the siloxanes between the air-exposed springtail and the water-exposed algae can be explained by differences in the mass transfer of these chemicals through air and water. Indeed, the
bioconcentration kinetics of hydrophobic organic chemicals in aquatic organisms is generally rate limited by molecular diffusion through an unstirred aqueous boundary layer (UBL). Mayer and colleagues demonstrated that the diffusive mass transfer of 2-3 ringed PAHs was higher through air than through water. This observation is consistent with the observation by Hanzel and colleagues, who demonstrated that diffusive mass transfer of naphthalene is more efficient through soil interstitial air compared to soil interstitial water, and that air-exposure consequently can drive the naphthalene bioavailability to soil bacteria. Both observations can be explained by a higher product of diffusion coefficient and UBL concentration gradient for 2-3 ringed PAHs in air compared to water. The test chemicals in the present study have much higher air to water partition coefficients (K_{AW}) compared to PAHs. Hence, we expected much higher diffusive mass transfer and thus faster uptake kinetics for air compared to water exposure, which is consistent with the observed presence of toxicity in springtails and absence of toxicity in algae. These siloxanes are highly hydrophobic (Log K_{OW} of 6.98 and 8.09) and rather volatile (Log K_{AW} of 2.74 and 3.13). Their high hydrophobicity leads also to high concentration and retention in waste water treatment plant (WWTP) sludge, soils, and sediments, and the high K_{AW} values make air-exposure crucial for soil dwelling organisms, particularly in WWTP sludge amended soil. The combination of headspace passive dosing and the springtail lethality test can then be a simple and efficient way to link such soil air-exposure to toxicological endpoints.
Figure 3: Toxicity of limonene, nonane, and octamethyltetracyclosiloxane (D4) to algae (A) and springtail (B) linked to chemical activity (mean ± SD, n = 3). Data for D4 in algal growth inhibition test were from Trac et al. (mean ± SD, n = 6). The grey boxes depict the reported chemical activity range of 0.01-0.1 for baseline toxicity.

The HS-PD method developed in the present study is an effective method that enables the dose-response testing of liquid VHOCs and provides also an efficient way to assess their inherent toxicity by linking toxicity to estimated equilibrium concentrations in membranes. We expect the method to be applicable to chemicals with a sufficiently high air-water partition coefficient to allow equilibration via the headspace. All test chemicals in the present study have $K_{AW} > 1$ L/L, while other headspace passive dosing studies included semivolatile organic chemicals with lower K_{AW}^{31-33}. Further, the test chemicals need as a basic rule $K_{LW} > 1000$ L/L and $K_{LA} > 1000$ L/L in order to avoid donor depletion. Headspace passive dosing seems also suited for chronic and even multi-generation ecotoxicity testing with small aquatic and terrestrial animals41,45, since it circumvents biofilm formation on the passive dosing donor (i.e., no direct contact with medium) during extended test durations. Such chronic and multi-generation studies are particularly needed for highly hydrophobic chemicals that are prone to slow bioconcentration kinetics, even for the small test organisms used in the present study.

The loading of the passive dosing donor is one of the most time consuming and critical steps in passive dosing. A procedural novelty in the present work is the preparation of the donor by simply adding the liquid test chemical to a liquid donor lipid. This allows setting up the test systems for a reasonably large number of chemicals, treatments and replicates to be tested without significant delay. A main limitation of using a lipid donor has been that we could not find a lipid that is practical (i.e., high capacity, low viscosity liquid, clean, and good commercial availability) and at the same time is the optimal surrogate for the phospholipid membrane. The Miglyol oil used in the present study was practical and provided excellent passive dosing performance, and the subsequent conversions using estimated K_{LM} values were also found a practical and effective way to correct for partitioning differences between storage and membrane lipids.
The new combination of exposure control and analytical exposure confirmation for VHOCs can provide sound toxicity data, which now can be further assessed, applied to models, and used in risk assessment. Specifically, the headspace concentration measurements above the lipid donor provided an analytical calibration between equilibrium concentrations in lipids and the thermodynamic chemical activity (Figure 1). In the present study, both exposure metrics were used to assess VHOC toxicity and led to the same results and conclusions.

ASSOCIATED CONTENT

Supporting information

Additional figures for the chemical activity measurements, algal growth in the controls in algal inhibition tests, toxicity of other test chemicals assessed on the lipid basis, and additional tables for toxicity values and dose-response data.

ACKNOWLEDGEMENTS

We acknowledge the analytical support from Hanne Bøgild (DTU) and the maintenance of springtail culture from Elin Jørgensen and Zdenek Gavor (AU). Lam N. Trac acknowledges the PhD funding from DTU-Environment, and we thank for additional funding from the CEFIC LRI project ECO 42: Fate-directed toxicity testing and risk assessment of UVCBs. We thank the reviewers for their constructive criticism and input.

REFERENCES

406 (3) Birch, H.; Andersen, H. R.; Comber, M.; Mayer, P. Biodegradation testing of chemicals with high
Henry’s constants – Separating mass and effective concentration reveals higher rate constants.

409 (4) Mayer, P.; Fernqvist, M. M.; Christensen, P. S.; Karlson, U.; Trapp, S. Enhanced diffusion of polycyclic
(17), 6148–6155.

Pollut. 2011, 159 (4), 858–864.

416 (7) Smith, K. E. C.; Dom, N.; Blust, R.; Mayer, P. Controlling and maintaining exposure of hydrophobic

418 (8) Trac, L. N.; Schmidt, S. N.; Mayer, P. Headspace passive dosing of volatile hydrophobic chemicals –
Aquatic toxicity testing exactly at the saturation level. Chemosphere 2018, 211, 694–700.

420 (9) McCarty, L. S.; Mackay, D. Enhancing ecotoxicological modeling and assessment - Body residues and

422 (10) van Wezel, A. P.; Opperhuizen, A. Narcosis due to environmental pollutants in aquatic organisms:
279.

425 (11) Mayer, P.; Halling-Sørensen, B.; Sijm, D. T. H. M.; Nyholm, N. Toxic cell concentrations of three
polychlorinated biphenyl congeners in the green alga Selenastrum capricornutum. Environ. Toxicol.
Chem. 1998, 17 (9), 1848–1851.

471 (28) Vergauwen, L.; Schmidt, S. N.; Stinckens, E.; Maho, W.; Blust, R.; Mayer, P.; Covaci, A.; Knapen, D. A

(36) Helmholz Centre for Environmental Research - UFZ. UFZ - LSER Database

Mackay, D.; Powell, D. E.; Woodburn, K. B. Bioconcentration and Aquatic Toxicity of

(45) Leon Paumen, M.; Steenbergen, E.; Kraak, M. H. S.; van Straalen, N. M.; van Gestel, C. A. M.