X-ray tomography data of White Etching Cracks (WEC)

Fæster, Søren; Danielsen, Hilmar Kjartansson

Published in:
Data in Brief

Link to article, DOI:
10.1016/j.dib.2019.104531

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Data Article

X-ray tomography data of White Etching Cracks (WEC)

Søren Fæster*, Hilmar K. Danielsen

Department of Wind Energy, Technical University of Denmark, Risø Campus, Frederiksbergvej 399, 4000, Roskilde, Denmark

ARTICLE INFO

Article history:
Received 1 July 2019
Received in revised form 26 August 2019
Accepted 9 September 2019
Available online 17 September 2019

Keywords:
White Etching Crack
X-ray tomography
Bearing
Wind turbine

ABSTRACT

This data article contains lab-based micro-computed tomography (μCT) data of cracks and crack networks in 4 different bearings, mainly from wind turbines, which formed the basis for the crack analysis reported in Danielsen et al. (Danielsen et al., 2019).

© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Data

The data presented in this paper consist of 5 X-ray tomography datasets of crack networks found in 4 different types of bearings. Sample A is an axial bearing from an FE8 type test rig and two volumes have been scanned on this sample. These scans are labelled Sample A1 and Sample A2 (Fig. 1 and Fig. 2). Sample B is a tapered bearing (Fig. 3), Sample C is a ball bearing (Fig. 4) and Sample D is a radial bearing (Fig. 5). Samples B, C and D are all from wind turbine bearings. The original raceway is marked with an arrow while the running direction is unknown. The scan parameters for all the scans are listed in Table 1 and the datasets are all in 3D tif format.

* Corresponding author.
E-mail address: sfni@dtu.dk (S. Fæster).

https://doi.org/10.1016/j.dib.2019.104531
2352-3409/© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Specifications Table

<table>
<thead>
<tr>
<th>Subject</th>
<th>Specific subject area</th>
<th>Type of data</th>
<th>How data were acquired</th>
<th>Data format</th>
<th>Parameters for data collection</th>
<th>Description of data collection</th>
<th>Data source location</th>
<th>Data accessibility</th>
<th>Related research article</th>
</tr>
</thead>
</table>

Value of the Data

- The datasets contain detailed 3D information of crack formation in different types of wind turbine bearings, showing different crack morphology types in three dimensions.
- The datasets makes it possible to observe damage progression inside the specimens in 3D, which could enhance the understanding of the damage mechanisms and initiation.
- The datasets can serve as input for 3D fracture mechanics models dealing with the damage progression of cracks in bearings.
- The datasets can be used for developing better segmentation algorithm for determination of crack networks.

Fig. 1. Sample A1. Cross sections through the middle of the dataset in the directions (a) xy, (b) xz and (c) yz. The white arrow in (a) indicate the original raceway.
Fig. 2. Sample A2. Cross sections through the middle of the dataset in the directions (a) xy, (b) xz and (c) yz. The white arrow in (a) indicate the original raceway.

Fig. 3. Sample B. Cross sections through the middle of the dataset in the directions (a) xy, (b) xz and (c) yz. The white arrow in (a) indicate the original raceway.

Fig. 4. Sample C. Cross sections through the middle of the dataset in the directions (a) xy, (b) xz and (c) yz. The white arrow in (c) indicate the original raceway.
2. Experimental design, materials, and methods

The specimens that have been scanned consist of four different types of bearings, mainly from wind turbines, that are all containing cracks. The reader is referred to [1] for a detailed description of how the samples were manufactured. The tomography scans were performed on a Zeiss Xradia 520 Versa. The X-ray scanner was equipped with a tungsten target. An acceleration voltage of 30 kV and a power of 10 mA was applied to generate X-rays with energies up to 160 keV. Projections were acquired during a full 360° rotation of the specimens.

The detector size was 2k x 2k and projection images with a binning of 1 were acquired to obtain highest possible resolution. A Feldkamp reconstruction algorithm [2] for cone beam reconstructions was applied resulting in 3D reconstructions with voxel sizes down to 0.49 μm. All relevant scan parameters are listed in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample A1 Axial Bearing</th>
<th>Sample A2 Axial bearing</th>
<th>Sample B Tapered bearing</th>
<th>Sample C Ball Bearing</th>
<th>Sample D Radial bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical magnification</td>
<td>4X</td>
<td>4X</td>
<td>4X</td>
<td>4X</td>
<td>4X</td>
</tr>
<tr>
<td>Source to sample distance (mm)</td>
<td>8.18</td>
<td>11.02</td>
<td>15.10</td>
<td>8.10</td>
<td>7.87</td>
</tr>
<tr>
<td>Detector to sample distance (mm)</td>
<td>31.15</td>
<td>65.00</td>
<td>115.04</td>
<td>37.27</td>
<td>33.00</td>
</tr>
<tr>
<td>Exposure time (sec)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>No. of projections</td>
<td>4001</td>
<td>1601</td>
<td>3001</td>
<td>3201</td>
<td>3201</td>
</tr>
<tr>
<td>Rotation</td>
<td>360°</td>
<td>360°</td>
<td>360°</td>
<td>360°</td>
<td>360°</td>
</tr>
<tr>
<td>Accelerating voltage (kV)</td>
<td>80</td>
<td>90</td>
<td>160</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Binning</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pixel size (μm)</td>
<td>0.70</td>
<td>0.49</td>
<td>3.96</td>
<td>0.60</td>
<td>0.65</td>
</tr>
<tr>
<td>Source filter</td>
<td>LE6</td>
<td>HE1</td>
<td>HE5</td>
<td>LE6</td>
<td>HE2</td>
</tr>
<tr>
<td>Stitching</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Reconstruction filter (smooth)</td>
<td>0.7</td>
<td>2.5</td>
<td>1.0</td>
<td>0.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Beam hardening correction</td>
<td>0.16</td>
<td>0.16</td>
<td>0.11</td>
<td>0.13</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Acknowledgments

The data was acquired using the Zeiss Xradia 520 Versa from the DTU Centre for Advanced Structural and Material Testing (CAS-MAT), grant no. VKR023193 from Villum Fonden.
Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References