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Abstract In this paper we present a mathematical analysis of a pharmaco-
logical ODE model for target mediated drug disposition (TMDD). It is known
that solutions of this model undergo four qualitatively different phases. In
this paper we provide a mathematical identification of these separate phases
by viewing the TMDD model as a singular perturbed system. Our analysis
is based on geometric singular perturbation theory and we believe that this
approach systemizes - and sheds further light on - the scalings arguments used
by previous authors. In particular, we present a novel description of the third
phase through a distinguished solution of a nonlinear differential equation.
We also describe the solution curve for large values of initial drug doses and
recover, en route, a result by Aston et al, 2014, on rebounding using our alter-
native perturbation approach. Finally, from our main result we derive a new
method for estimating the parameters of the system in the event that detailed
data is available. Ideally our approach to the TMDD model should stimu-
late further research into applications of these methods to more complicated
models in pharmacology.

Keywords Geometric singular perturbation theory · pharmacology · target
mediated drug disposition

1 Introduction

In pharmacology, the main objective is to understand physiological processes
and develop drugs that eliminate undesirable effects Peletier and Gabriels-
son [2015]. Central to these objectives is data collection of the processes, e.g.
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through measurements of blood pressure and heart rate. But for some pro-
cesses, like neurological ones, data is obtained more indirectly in combina-
tion with mathematical modelling. For these reasons, mathematical analysis
is now becoming increasingly relevant for drug development van der Graaf et
al. [2016].

Pharmacological models are typically compartment-like models described
by nonlinear ODEs. Here chemical reactions are described through rate con-
stants. Frequently, such models exhibit, e.g. due to rate constants on separate
orders of magnitude and/or as a consequence of the compartment structure,
slow-fast phenomenon where variables alternate between slow and fast transi-
tions. Mathematically, the slow-fast structure can be exploited using singular
perturbation theory Jones [1995]; Kaper [1999]; Kuehn [2015]. In many situa-
tions (see e.g. Kosiuk and Szmolyan [2011, 2015, 2009]; Bossolini et al. [2017])
this theory, in combination with the blowup approach Krupa and Szmolyan
[2001a], enables an accurate description of global phenomena (limit cycles, ho-
moclinics, etc). This is typically not possible for general nonlinear differential
equations without a slow-fast structure.

Target mediated drug disposition (TMDD) is the pharmacological phe-
nomenon in which a drug binds with high affinity to its pharmacological target,
such as a receptor, affecting its characteristics Levy [1994]; Dua et al. [2016].
In this paper we consider the following basic model

dx̃

dt̃
= −konx̃ỹ + koffz̃ − keLx̃, (1)

dỹ

dt̃
= kin − koutỹ − konx̃ỹ + koffz̃,

dz̃

dt̃
= konx̃ỹ − (koff + keRL)z̃,

introduced by Mager and Jusko [2001], where the drug (ligand) x̃ binds the
target (receptor) ỹ to form the ligand-target complex z̃. The parameters ki, i =
off, on, eL, eRL, in and out, are different rate constants associated with the
process, see Peletier and Gabrielsson [2009, 2012] for more information. Since
x̃, ỹ and z̃ measure concentration we restrict attention to the positive octant
Õ = {(x̃, ỹ, z̃) ∈ [0,∞)3}. Let

ỹ0 =
kin

kout
. (2)

Then the system (1) has a unique equilibrium

Ẽq = (0, ỹ0, 0), (3)

inside Õ.
Following Peletier and Gabrielsson [2009, 2012], it is assumed that an initial

drug dose is administered intravenously, while the system is in equilibrium.
Therefore the relevant initial conditions for (1) are

ĨC = (x̃0, ỹ0, 0), (4)
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Table 1 Values of the parameters from Peletier and Gabrielsson [2012].

kon koff keL kin kout keRL x̃0

Value 0.091 0.001 0.0015 0.11 0.0089 0.003 100
Unit (mg/L)−1h−1 h−1 h−1 (mg/L)h−1 h−1 h−1 mg/L

where x̃0 is the initial drug concentration. In this paper we will use x̃0 = 100 in
our computations. All values of the parameters from Peletier and Gabrielsson
[2012] are displayed in Table 1.

Following Aston et al. [2014], the system (1) admits a unique, global for-

ward solution inside the positive octant Õ. Moreover, the equilibrium Ẽq is the
global attractor. The evolution of the concentrations is shown in Fig. 1 (notice
log-log scale) for the parameter values in Table 1, in particular x̃0 = 100 and
ỹ0 = 12.3596. Peletier and Gabrielsson [2012] then noted that the forward so-

lution (x̃(t̃), ỹ(t̃), z̃(t̃)), t̃ ≥ 0, of (1) with (x̃(0), ỹ(0), z̃(0)) = ĨC qualitatively

undergoes four different phases P̃1, . . . , P̃4. The phases are described as follows:

P̃1: In this initial phase, all variables exhibit significant variations over a rel-
atively small time interval. The ligand x̃ binds the receptor ỹ and both
variables decrease while z̃ is increasing. This happens in such a way that
the total amount of ligand X̃ = x̃ + z̃ and the total amount of receptor
Ỹ = ỹ + z̃ are both almost constant during this phase. The phase ends
when the receptor ỹ is small enough.

P̃2: The subsequent phase is slower. Here ỹ increases gradually while the ligand
x̃ is removed by the complex z̃ in the absence of receptor ỹ. This phase
ends when the concentration of the ligand is small enough.

P̃3: In this phase ỹ starts to increase more profoundly while x̃ continues to
decrease. x̃ and ỹ appear to be fast variables during this phase whereas
z̃ is almost constant. Phase P̃3 is shorter than P̃2 but significantly longer
than P̃1.

P̃4: In the final phase, the system contracts towards the unique equilibrium
Ẽq. During this period x̃ is small throughout while ỹ and z̃ approach their
steady state values ỹ0 and 0, respectively. In particular, z̃ is monotonically
decreasing during this phase, whereas the receptor ỹ, in general, see Aston
et al. [2014], only increases monotonically during the first part. In the
situation where ỹ is not monotone, it first exceeds ỹ0 before decreasing
again. This is called rebounding. In Fig. 1, no rebounding occurs as ỹ is
seen to increase monotonically towards it steady state value.

In e.g. [Peletier and Gabrielsson, 2013, Section 6], it is shown that the pa-
rameters in the model can be estimated by separation of the data into these
separate phases. We will revisit this in Section 6.

Non-dimensionalisation. Following Peletier and Gabrielsson [2015], we con-
sider the following non-dimensionalisation of the variables

x̃ = ỹ0x, ỹ = ỹ0y, z̃ = ỹ0z, t̃ = k−1
off t. (5)
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(a)

(b)

Fig. 1 The solution (x̃(t̃), ỹ(t̃), z̃(t̃)), t̃ ≥ 0, of (1) with (x̃(0), ỹ(0), z̃(0)) = ĨC and the
parameters in Table 1. The solution is asymptotic to Ẽq but undergoes four different phases
P̃1, . . . , P̃4, separated by vertical dashed lines in (a) and (b).

This gives the system

εẋ = −xy + εz − εαx, (6)

εẏ = −xy + εβ(1− y) + εz,

εż = xy − ε(1 + δ)z,
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Table 2 Non-dimensionalised numbers. The values are computed from the dimensional
numbers in Table 1. ỹ0 is defined in (2).

ε α β δ x0

Definition koff
konỹ0

= koffkout
konkin

keL
koff

kout
koff

keRL
koff

x̃0
ỹ0

= x̃0kout
kin

Value 8.891× 10−4 1.500 8.900 3.000 8.091

with new non-dimensional parameters ε, α, β, δ listed in Table 2. Here (̇) = d
dt

is differentiation with respect to the non-dimensional time t. Notice that ε =
8.891× 10−4 in Table 2 is small, and hence the velocities of x, y and z are all
large in general. The non-dimensionalised initial conditions are

IC ≡ (x0, 1, 0), (7)

with

x0 = x̃0/ỹ0, (8)

cf. (4).

Similarly, the unique non-negative equilibrium (3) in the original (x̃, ỹ, z̃)-
variables becomes

Eq ≡ (0, 1, 0). (9)

Remark 1 In Peletier and Gabrielsson [2012], x is defined by x̃ = x̃0x. How-
ever, we prefer to use x as in (5). We find this scaling more natural since then
the differential equations are independent of x̃0. Instead the initial condition
on x varies with x̃0, which from a dynamical systems point of view seems more
desirable.

For clarity we illustrate in Fig. 2 the non-dimensionalised version (using
(x, y, z)) of the solution (using (x̃, ỹ, z̃)) in Fig. 1. The phases in Fig. 2 are
denoted by P1, . . . ,P4.

Known results. Peletier and Gabrielsson [2012, 2013] described the phases
using scaling and asymptotic arguments, following Aston et al. [2011], and
derived estimates of time and approximative equations for the evolution of the
variables. In fact, the parameters α, β, δ (called γ) and ε also appear in [Peletier
and Gabrielsson, 2013, Eq. (5.3)] and it assumed, see [Peletier and Gabrielsson,
2013, (A) p. 604], that ε � 1. But there are also other assumptions in these
references, such as [Peletier and Gabrielsson, 2012, Assumption p. 439], which
are derived from observations of numerical computations. They are not shown
to be consequences of the initial assumptions. Since the approach is fairly ad-
hoc, it is also unclear how robust their approach is for other, more complicated
systems.
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(a)

(b)

Fig. 2 The solution (x(t), y(t), z(t)), t ≥ 0, of (6) with (x(0), y(0), z(0)) = IC and the
parameters in Table 2. The solution converges to Eq but undergoes four different phases
P1, . . . ,P4, separated by vertical dashed lines.

Aim of the paper. The purpose of this paper is to provide a mathematical
identification and quantitative description of each of the phases P1, . . . ,P4 by
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viewing (6) as a singular perturbation problem with

α, β, δ, x0 all positive and 0 < ε� 1. (10)

This will include a geometric analysis of the dynamics and a novel description
of the third phase P3. In accordance with Table 2, we will also suppose that

x0 > 1, (11)

which in dimensional form becomes x̃0 > ỹ0.

Singular perturbation approach. Singular perturbations frequently occur in
models of biological and bio-chemical processes, see Kosiuk and Szmolyan
[2011, 2015]. Frequently such systems can be written in the standard slow-fast
form

εu̇ = f(u, v, ε), (12)

v̇ = g(u, v, ε),

with (u, v) ∈ Rm+n, smooth functions f and g and a small parameter ε > 0.

Here (̇) = d
dt and the time t in (12) is said to be slow. The system (12) is

therefore also called the slow system. Introducing the fast time scale τ = t/ε
gives the fast problem

u′ = f(u, v, ε), (13)

v′ = εg(u, v, ε),

where now ()′ = d
dτ . It is possible to study systems like (12) or equivalently

(13) for 0 < ε� 1 using Fenichel’s geometric theory of singular perturbations
Fenichel [1971]. The point of departure for this theory is the two limiting
systems: the reduced problem

0 = f(u, v, 0), (14)

v̇ = g(u, v, 0),

obtained from (12)ε=0, and the layer problem

u′ = f(u, v, 0), (15)

v′ = 0.

obtained from (13)ε=0. The equation f(u, v, 0) = 0 defines a set of critical
points C for (15), called the critical manifold. On the other hand, the reduced
problem is only defined on C. A point (u, v) ∈ C is said to be normally hyper-
bolic if the Jacobian ∂f

∂u (u, v, 0) has no eigenvalues on the imaginary axis. Due
to Fenichel, any compact normally hyperbolic submanifold S ⊂ C perturbs
smoothly to a locally invariant slow manifold Sε = S + O(ε) for ε sufficiently
small. In particular, if S is a graph u = h0(v), v ∈ I then Sε is also a graph
u = hε(u) = h0(u) +O(ε), v ∈ I, smooth in ε. Furthermore, the slow manifold
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Sε has stable and unstable manifolds, each of which has smooth invariant fo-
liation by fibers, that are smooth O(ε)-perturbations of the individual stable
and unstable manifolds of points on S for (15). Consequently, orbits of (12)
near S limit (in Hausdorff distance) as ε → 0 to singular orbits consisting of
pieces of orbits of the reduced problem (14) and of the layer problem (15). See
Jones [1995]; Kuehn [2015] for more details.

On the other hand, the slow system (6), or equivalently the corresponding
fast system

x′ = −xy + εz − εαx, (16)

y′ = −xy + εβ(1− y) + εz,

z′ = xy − ε(1 + δ)z,

is an example of a system in nonstandard slow-fast form:

w′ = F (w, ε), w ∈ Rm+n. (17)

see also Kosiuk and Szmolyan [2015]; Kosiuk [2012]; Goeke et al. [2015]. In
(16), ()′ = d

dτ and τ = ε−1t is the fast time. Fenichel’s theory applies to (17) as
follows: Suppose F (w, 0) = 0 (or a subset hereof) is a compact n-dimensional
critical manifold S satisfying the normal hyperbolicity assumption: For any
point w ∈ S, the Jacobian ∂F

∂w (w, 0) has only n eigenvalues with zero real part,
then S perturb smoothly to a locally invariant slow manifold Sε = S + O(ε),
for ε sufficiently small, again with stable and unstable manifolds. The stable
and unstable manifolds have smooth invariant foliation by fibers, that are
smooth O(ε)-perturbations of the individual stable and unstable, respectively,
manifolds of points on S for the following layer problem (17)ε=0:

w′ = F (w, 0).

Furthermore, suppose for simplicity that

w = (u, v) ∈ Rm+n, F (w, ε) = (Fu(u, v, ε), Fv(u, v, ε))
T ,

and that S can be written as a graph u = h0(v). Then S is normally hyperbolic
if all the eigenvalues of the matrix

P (v) =

(
∂h0

∂v
(v)

∂Fv
∂u

(h0(v), v, 0)− ∂Fu
∂u

(h0(v), v, 0)

)
∈ Rm×m,

have non-zero real part. In particular, P is then a regular matrix for each v.
Furthermore, the slow flow on Sε is on the slow time-scale smoothly O(ε)-close
to the reduced system:

ẇ =
∂F

∂u
(w, 0)h1(v) +

∂F

∂ε
(w, 0), (18)

on w ∈ S ⊂ Rn+m, where

h1(v) = P (v)−1

(
∂Fu
∂ε

(h0(v), v, 0)− ∂h0

∂v
(v)

∂Fv
∂ε

(h0(v), v, 0)

)
.
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See e.g. Goeke et al. [2015]. (In fact, h1 is such that Sε = {(u, v)|u = h0(v) +
εh1(v) +O(ε2)}.)

Remark 2 Locally, it is always possible to straighten out orbits of the layer
problem and transform a slow-fast system in nonstandard form into a slow-fast
system in standard form. For (16), we notice that

(x+ z)′ = −ε (αx+ δz) ,

(y + z)′ = ε (β(1− y)− δz) .

Therefore a (global) transformation to standard form is obtained by introduc-
ing

X = x+ z,

Y = y + z

as the total ligand and total receptor, and considering (X,Y, z) as new vari-
ables. Then X and Y are slow variables while z is fast. This is the approach
taken in Peletier and Gabrielsson [2012, 2013] to describe the second phase.
However, as the present paper exemplifies, there is no gain in going to standard
slow-fast form. The analysis and the geometry is not simpler. On the contrary,
working with an applied problem, there is a general advantage in using the
scientifically meaningful variables. In our case, this also eases the comparison
with the numerical computations in Fig. 1. We therefore proceed working with
the system in nonstandard form (16).

Outline. In the following Section 2 we will begin our singular perturbation
analysis of (1). For this we consider the scaled variables (x, y, z) and restrict
attention to the forward invariant positive octant O = {(x, y, z) ∈ [0,∞)3}. In
Section 3 we present our main result, Theorem 1, which describes the limit of
the forward orbit of IC for ε→ 0 with fixed x0 > 1, as the union of orbits of the
layer- and reduced problem. In Theorem 2 we describe x0 → ∞, by showing
that the convergence of the forward orbit to the limiting orbit in Theorem 1
is uniform in x0 > 1 within any fixed compact set. To the author’s knowledge,
this result has not been reported in the literature at any level of formality. We
prove Theorem 1 in Section 4 and Theorem 2 in Appendix B. We illustrate our
results using numerical computations in Section 5. In Section 6 we conclude
the manuscript with a discussion section, including a discussion of the role of
the parameters and a description of a new procedure to estimate these.

The proof of Theorem 1 shows that the third phase P3 is described by the
regime x = O(

√
ε), y = O(

√
ε), which we capture by the scaling

x =
√
εx2, y =

√
εy2, (19)

see also Section 4.1. This scaling gives rise to an inner solution which approx-
imates the third phase P3, see illustration in Fig. 9 in Section 5. In terms of
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the dimensional variables, this scaling becomes

x̃ = ỹ0

√
εx2 =

√
ỹ0koff

kon
x2 =

√
kinkoff

koutkon
x2, (20)

ỹ = ỹ0

√
εy2 =

√
ỹ0koff

kon
y2 =

√
kinkoff

koutkon
y2.

The scaling in (20) is therefore different from the one used in [Peletier and
Gabrielsson, 2013, Eq. (5.17)] and [Peletier and Gabrielsson, 2012, Eq. (32)]
and our description of the third phase therefore differs from theirs, see also
Remark 5. Notation: We will enumerate certain geometric objects that appear
in our analysis using superscripts. These superscripts are enumerated 1, . . . , 4
according to the phase P1, . . . ,P4 they describe or relate to.

2 Geometric singular perturbation analysis of (16)

Our singular perturbation analysis of (1) initially rests upon the layer prob-
lem and the reduced problem. We consider these systems successively in the
following.

2.1 Layer problem

Setting ε = 0 in (16) gives the layer problem:

x′ = −xy, (21)

y′ = −xy,
z′ = xy.

We have the following (see Fig. 3)

Lemma 1 The sets

S2 = {(x, y, z) ∈ O|x > 0, y = 0},
S4 = {(x, y, z) ∈ O|x = 0, y > 0},
L3 = {(x, y, z) ∈ O|x = y = 0},

are sets of critical points for (6). S2 and S4 are both normally hyperbolic and
attracting whereas L3 is a line of fully nonhyperbolic points.

Consider the plane

F = {(x, y, z) ∈ O|y = x, x > 0},

and let

F+ = {(x, y, z) ∈ O|y > x, x > 0},
F− = {(x, y, z) ∈ O|y < x, x > 0},

be the region above and below F , respectively. Then:
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– All points within F− are forward asymptotic under the flow of (21) to a
point on S2.

– All points within F are forward asymptotic under the flow of (21) to a
point on L3.

– All points within F+ are forward asymptotic under the flow of (21) to a
point on S4.

Proof The linearization of any point in S4 gives two zero eigenvalues and one
negative −y. Similarly, the linearization about any point in S2 gives two zero
eigenvalues and one negative −x. On the other hand, along L3 the linearization
has only zero eigenvalues.

For the statement about F , F±, we notice that away from S2,L3 and S4

we can divide the right hand side by xy > 0. Let therefore τ1 be defined as
follows

dτ1
dτ

= x(τ)y(τ) > 0.

Then, by the chain rule, the division of the right hand side by xy > 0, corre-
sponds to a re-parametrization of time by τ1 = τ1(τ) such that

dx

dτ1
= −1,

dy

dτ1
= −1,

dz

dτ1
= 1.

Orbits of (21) are therefore of the form

(x, y, z) = (c1, c2, c3) + (−1,−1, 1)τ1, (22)

τ1 ∈ I, I = (a, b) an appropriate interval. These curves produce the critical
fibers of points on S2, S4 and L3. Letting (c1, c2, c3) ∈ L3, so that c1 = c2 = 0,
produces F . The result then follows.

2.2 Reduced problem

To compute the reduced problem on S2 and S4, we use (18). This gives
h1(x, z) = x−1(z + β) with u = y, v = (x, z), P (v) = x and h1(y, z) = y−1z
with u = x, v = (y, z), P (v) = y, respectively, in (18). Therefore we obtain the
following two linear systems:

ẋ = −β − αx, (23)

y = 0,

ż = β − δz,
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and

x = 0, (24)

ẏ = β(1− y),

ż = −δz,

on S2 and S4, respectively. Any point (x, y, z) = (0, c2, c3) within S4 is there-
fore, under the forward flow of the reduced problem (24), given by

y(t) = 1 + (c2 − 1)e−βt, z(t) = c3e
−δt,

asymptotic to the stable node at (x, y, z) = Eq, recall (9). Within {z ≥ 0, y <
1, x = 0}, y is monotonically increasing towards y = 1 while z is monotonically
decreasing towards z = 0. Similarly, any point within S2 reaches, under the
forward flow of the reduced problem (23), its boundary along L3 in finite time.
In details, if x(0) = c1, z(0) = c3, then

x(t) = −α−1β + (c1 + α−1β)e−αt, z(t) = δ−1β + (c3 − δ−1β)e−δt, (25)

for t ∈ [0, T (c1)), for

T (c1) = α−1 ln

(
c1 + α−1β

α−1β

)
, (26)

where x(t)→ 0+ for t→ T (c1). Here z is increasing below z = δ−1β which is
an invariant for the linear system (23) (corresponding to c3 = δ−1β in (25)).
We sketch the phase portraits of (23) and (24) within S2 and S4 in Fig. 3.

2.3 Slow manifolds

By Fenichel’s theory Fenichel [1971], compact sub-manifolds of the normally
hyperbolic critical manifolds S2 and S4 perturb to locally invariant slow man-
ifolds S2

ε and S4
ε , respectively. In details, we have

Lemma 2 Let V (W) be a large, closed rectangle in the positive quadrant of
the (x, z)-plane ((y, z)-plane). Then there exists an ε0 = ε0(V,W) > 0 and
smooth functions

G : V × [0, ε0]→ R,
and

H :W × [0, ε0]→ R,
satisfying

G(x, z, 0) = x−1(z + β), H(y, z, 0) = y−1, (27)

and

∂G

∂ε
(x, z, 0) = −x−2

(
β(z + β)x−1 + (α+ β)(z + β) + β − δz

)
,

∂H

∂ε
(y, z, 0) = y−2

(
δ − α− β(1− y−1)

)
, (28)
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such that the graphs

S2
ε = {(x, y, z) ∈ O|y = εG(x, z, ε), (x, z) ∈ V}, (29)

S4
ε = {(x, y, z) ∈ O|x = εzH(y, z, ε), (y, z) ∈ W}, (30)

are locally invariant attracting slow manifolds of (6) for ε ≤ ε0.
Also, S2

ε and S4
ε have 3D stable manifolds with invariant foliations by stable

fibers. These fibers are smoothly O(ε)-close to the critical fibers that are orbits
of the layer problem (21) asymptotic to points on S2 and S4, respectively. The
contraction towards S2

ε and S4
ε along the fibers is O(e−ct/ε), c = c(V,W) > 0,

on the slow time scale.

Proof Follows from Fenichel’s theory and simple calculations. In particular,
the form of S4

ε follows from the fact that x = z = 0 is invariant for all ε > 0.

The slow flow on S2
ε and S4

ε is found by substituting the expressions (29)
and (30) into (6). To order O(ε2), we obtain

ẋ = −β − αx+ εx−1
(
β(z + β)x−1 + (α+ β)(z + β) + β − δz +O(ε)

)
,

ż = β − δz − εx−1
(
β(z + β)x−1 + (α+ β)(z + β) + β − δz +O(ε)

)
,

and

ẏ = β(1− y)− εzy−1
(
δ − α− β(1− y−1) +O(ε)

)
, (31)

ż = −δz + εzy−1
(
δ − α− β(1− y−1) +O(ε)

)
,

respectively. Notice that we obtain (23) and (24) for ε = 0 as desired.

3 Main result

We now define a singular or candidate forward orbit of the initial condition
IC:

Γ0 = Γ 1 ∪ Γ 2 ∪ γ3 ∪ Γ 4,

see Fig. 3, as the following concatenation of orbits of the layer problem and
the reduced problem on S2 and S4:

– Γ 1 is the forward orbit of IC under the flow of the layer problem (21). It
is asymptotic to the base point

γ2 = (x(2), 0, 1) ∈ S2,

where
x(2) = x0 − 1.

Notice that x(2) > 0 by assumption (11). In details,

Γ 1 = {(x, y, z) ∈ O|x = x0 − s, y = 1− s, z = s, s ∈ [0, 1)},

using (22) with (c1, c2, c3) = (x0, 1, 0).
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– Γ 2 is the forward orbit of γ2 ∈ S2 under the flow of the reduced problem
(23) on S2. It reaches

γ3 = (0, 0, z(3)) ∈ L3,

where

z(3) = δ−1β + (1− δ−1β)e−δT (x(2)), (32)

in finite slow time

T (x(2)) = α−1 ln

(
x(2) + α−1β

α−1β

)
, (33)

recall (26). In details:

Γ 2 =

{
(x, y, z) ∈ S2|x(t) = −α−1β + (x(2) + α−1β)e−αt,

z(t) = δ−1β + (1− δ−1β)e−δt, t ∈ [0, T (x(2))))

}
.

(34)

– Γ 4 is the orbit segment of (24) on S4 that leaves S4 in finite backward
time at γ3 and is forward asymptotic to Eq. In details:

Γ 4 =

{
(x, y, z) ∈ S4|y(t) = 1− e−β(t−T (x(2))),

z(t) = z(3)e−δ(t−T (x(2))), t > T (x(2))

}
. (35)

Then we have the following:

Theorem 1 Let Γε be the forward orbit of IC under the flow of (16) and
suppose that α, β, δ are all positive and that (11) holds. Then there exists an
ε0 > 0 such that for all ε ∈ (0, ε0] the following holds:

(A) Γε is O(
√
ε)-close to Γ0 in Hausdorff distance: Γε → Γ0 as ε→ 0+.

(B) Γε is forward asymptotic to the equilibrium Eq (9).

Remark 3 Statement (B) follows from (A) since (a) Γ 4 is asymptotic to Eq
and (b) Eq is a stable node of the reduced problem (31) for any 0 < ε � 1.
But (B) is not new. In fact, (B) is true for any ε > 0, see Aston et al. [2014]
where separate methods were used. But, although our approach only works for
ε � 1, we believe that it is a more direct approach, that offers more explicit
information about the dynamics, and which, at least potentially, may be more
useful for more complicated systems of this kind.
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Fig. 3 Singular forward orbit Γ0. Γ 1 is the forward orbit of IC under the flow of the layer
problem. Γ 2 is a forward orbit of the base point of Γ 1 on S2 by the flow of the reduced
problem. γ3 is a point on L3. Finally Γ 4 is the orbit segment of the reduced problem on S4

that leaves S4 at γ3 in finite backwards time. The sections Σ2
out and Σ4

in are used in the
proof. The orange curve is an example of a singular orbit for x0 < 1. Here the forward flow
connects directly to a point on S4 through a stable critical fiber.

Remark 4 Theorem 1 describes the closeness of Γε to Γ0. The closeness of
Γε to the individual segments is described more carefully in Section 4.5. But
essentially, the result says, loosely speaking, that outside a neighborhood of
γ3, Γε is O(ε)-close to Γ 1 ∪ Γ 2, but after passage near L3, it is only O(

√
ε)-

close to Γ 4. To the author’s knowledge, this order of accuracy has not been
described previously in the literature. In particular, it does not follow from
the analysis in Peletier and Gabrielsson [2012, 2013].

In Peletier and Gabrielsson [2012]; Patsatzis et al. [2016] larger values of
x̃0 are considered. This corresponds to larger values of x0 by (8). Fenichel’s
theory only applies to compact critical manifolds. But when x0 increases then
the base point γ2 moves further away from L3. Hence this may potentially
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require smaller ε-values for (a) Fenichel’s theory to apply near γ2 and for (b)
Γε to be approximated by the singular orbit Γ0. However, this is not the case
for (1) in the sense of the following theorem.

Theorem 2 In the following, denote Γε and Γ0 for x(0) = x0 by Γε(x0) and
Γ0(x0), respectively. Fix any bounded box B = [0, b1] × [0, b2] × [0, b3] of xyz-
space with bi > 0, i = 1, 2, 3. Then the convergence Γε(x0) ∩ B → Γ0(x0) ∩ B
for ε → 0 is uniform with respect to x0 > 1. In particular, there exists an ε0
and a sufficiently large K > 0 such that

distHausdorff(Γε(x0) ∩ B, Γ0(x0) ∩ B) ≤ K
√
ε

for all (ε, x0) ∈ (0, ε0]× (1,∞).

Proof The proof builds upon the proof of Theorem 1. For further details, see
Appendix B.

4 Proof of Theorem 1

By Fenichel’s theory we can guide Γε along Γ 1 and Γ 2 while (x(t), z(t)) ∈ V
(recall Lemma 2) using the slow manifold S2

ε and its stable perturbed fibers.
In particular, let ξ > 0 be small, let R2 be a suitable rectangle in the yz-plane
and denote the intersection of Γ 2 with the section Σ2

out = {x = ξ, (y, z) ∈ R2}
(transverse to Γ 2) by q1. Then Γε intersects Σ2

out near q1 in a point q1
ε which is

O(ε)-close to q1. Here q1
ε is exponentially close to S2

ε . Similarly, using the slow
manifold S4

ε , we can also guide initial conditions within the section Σ4
in = {y =

ξ, (x, z) ∈ R4}, sufficiently close to Γ 4, towards the equilibrium Eq. R4 is now
a suitable rectangle in the xz-plane. But Fenichel’s theory breaks down near
L3 since this set is not normally hyperbolic, recall Lemma 1, and as a result
there is a gap between Σ2

out and Σ4
in that we need to cover to complete the

proof of the theorem. This gap will relates to the third phase P3. We illustrate
Σ2

out and Σ4
in in Fig. 3.

4.1 Dynamics near L3: Regime x, y = O(
√
ε)

Consider the following scaling

x = r2x2, y = r2y2, ε = r2
2, (36)

zooming in on L3. Notice that (36) implies (19) since r2 =
√
ε. Inserting (36)

into (16) gives

x′2 = r2 (−x2y2 + z − r2αx2) , (37)

y′2 = r2 (β(1− r2y2)− x2y2 + z) ,

z′ = r2
2 (x2y2 − (1 + δ)z) .

r′2 = 0.
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Notice that r2 is a common factor on the right hand side. Introducing a new
time τ2 by

τ2 = r2τ

gives

ẋ2 = −x2y2 + z − r2αx2, (38)

ẏ2 = β(1− r2y2)− x2y2 + z,

ż = r2 (x2y2 − (1 + δ)z) .

where (̇) = d
dτ2

, obtained from (37) by dividing the right hand side by r2. Now,

since r2 =
√
ε� 1 the scaled variables x2 and y2 are both fast on the τ2 time

scale while z is slow. Setting r2 = 0 gives a new layer problem

ẋ2 = −x2y2 + z, (39)

ẏ2 = β − x2y2 + z,

ż = 0,

where z ∈ R is now a parameter. There are no equilibria solutions of this
system. Instead we have the following.

Lemma 3 Let z ∈ [0,∞). Then any solution (x2(τ2), y2(τ2), z) of (39), with
initial conditions (x2(0), y2(0)) in the first quadrant of the (x2, y2)-plane, is
asymptotic to

x2 = y−1
2 z, (40)

as τ2 →∞. In particular, for each z ∈ R there exists a unique solution curve
Γ2(z) of (39) with the following asymptotics

y2 = x−1
2 (z + β), (41)

for τ2 → −∞. Along Γ2(z), x2 decreases monotonically while y2 increases
monotonically.

Proof Follows from (a) a simple phase plane analysis in the x2y2-plane using
nullclines and the positive invariance of the first quadrant in the (x2, y2)-plane,
see Fig. 4, and (b) the existence of locally invariant manifolds at x2 � 1 and
y2 � 1. The manifold with x2 � 1 is unique whereas the one with y2 � 1 is
not. (b) follows from a Poincaré-like compactification of the (x2, y2)-plane and
center manifold theory. Further details are delayed to Appendix A.

Now, on a purely formal level we note the following: Consider the following
approximation of the slow manifolds S2

ε and S4
ε :

y ≈ εx−1(z + β), (42)

x ≈ εy−1z, (43)
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Fig. 4 Phase portrait of (39). There exists a unique orbit with asymptotics (42) and (43)
for x2 → ±∞. The sections Σ3

in,2 and Σ3
out,2 transverse to Γ2(z) are used in the proof.

see Lemma 2 and (27). Inserting (36) into these expressions gives

y2 ≈ x−1
2 (z + β),

x2 ≈ y−1
2 z,

coinciding with (41) and (40), respectively. This formal argument provides
some intuition into why orbits along S2

ε move towards S4
ε (by following the

surface {Γ2(z)|z ∈ [0,∞)} in the scaled variables (x2, y2, z)) once reach-
ing a vicinity of L3. Furthermore, if we consider a section Σ3

in = {x =√
εξ−1, (y/

√
ε, z) ∈ R2} then we can, by working in the scaled variables

(x2, y2, z) and equations (38), track initial conditions close to Γ2(z) up to
a section Σ3

out ⊂ {y =
√
εξ−1, (x/

√
ε, z) ∈ R4} using regular perturbation

theory. We illustrate the sections Σ3
in/out in Fig. 4 using a projection onto the

x2y2-plane. But this leaves a gap between Σ2
out and Σ3

in. There is a similar gap
between Σ3

out and Σ4
in ⊂ {y = ξ}. In the following, to cover these gaps, we pro-

vide rigorous mathematical justification for inserting (36) into (42) and (43)
(recall that H and G are only defined on (x, z) ∈ V and (y, z) ∈ W which
are fixed with respect to ε) and extend the slow manifolds into the scaled
(x2, y2, z)-system. Henceforth, we put Γ 3

2 = Γ2(z(3)), where z(3) is the z-value
for the point γ3.
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4.2 Blowup of L3

Consider the extended system of (16)

x′ = −xy + εz − εαx, (44)

y′ = −xy + εβ(1− y) + εz,

z′ = xy − ε(1 + δ)z,

ε′ = 0,

in the phase space (x, y, z, ε) ∈ O × [0, ε0], ε0 > 0. The manifolds S2
0 , S4

0 , L3

are now viewed as subsets of O×{0}. Similarly, Γ0 ⊂ O×{0}. We then follow
the blowup approach in the formulation of Krupa and Szmolyan Krupa and
Szmolyan [2001a] and view (36) as a local version of the blowup transformation

(r, z, (x̄, z̄, ε̄)) 7→


x = rx̄
y = rȳ
z = z
ε = r2ε̄

, (45)

where

(r, (x̄, ȳ, ε̄)) ∈ [0,∞)× S2,

and

S2 ≡ {(x̄, ȳ, ε̄) ∈ R3|x̄2 + ȳ2 + ε̄2 = 1},

is the unit sphere. The variable z remains unchanged under (45) so we keep
using this symbol henceforth. The blowup and the analysis in the following
resembles the blowup of the planar transcritical bifurcation, see Krupa and
Szmolyan [2001b].

Clearly (45) is a diffeomorphism for r > 0. But the pre-image of L3 : x =
y = ε = 0, z ∈ [0,∞) is a cylinder (z, (x̄, ȳ, ε̄)) ∈ [0,∞)× S2. We therefore say
that the transformation (45) (or, actually, the inverse process) blows up L3 to
a cylinder. See illustration in Fig. 5.

Notice that the weights on r in (45): 1, 1, 0, 2, correspond to the weights in
(36) since ε = r2

2. These are the correct weights due to the following. Let X
denote the vector-field on (r, (x̄, ȳ, ε̄)) ∈ [0,∞)×S2 obtained from transforming

(44) by application of (45). Then with the weights in (45), we have X = rX̂

with X̂ being well-defined and non-trivial X̂|r=0 6= 0, see e.g. Krupa and

Szmolyan [2001b]. It is X̂ that we shall study for r ≥ 0. Notice that for r > 0,

going from X to X̂ corresponds to a transformation of time (see e.g. proof
of Lemma 1 where apply a similar division of the right hand side). But for

r = 0, X = 0 whereas X̂ 6= 0. The advantage of working with X̂ is therefore
that it has improved hyperbolicity properties. Loosely speaking, the division
by r divides out/amplifies a vanishing eigenvalue and this process is called
desingularization, see e.g. Krupa and Szmolyan [2001a].



20

Fig. 5 Blowup of L3 to a line of spheres.

As described in Krupa and Szmolyan [2001a], the coordinates (x2, y2, r2) in
(36) are local coordinates of a directional chart κ2, obtained by setting ε̄ = 1
on the right hand side of (45):

rx̄ = r2x2

rȳ = r2y2

r2ε̄ = r2
2

⇒ (r, (x̄, ȳ, ε̄)) 7→


x2 = ε̄−1/2x̄
y2 = ε̄−1/2ȳ
r2 = r

√
ε̄

.

This gives (36) as a local form of (45) in the chart κ2. (37) is therefore also a
local form of X. By division of the right hand side by r2, we obtain (38) from
(37) which is (up to a further invertible time transformation) a local form of

X̂.
The chart κ2 covers ε̄ > 0 of S2. To cover x̄ > 0 and ȳ > 0 we similarly

insert x̄ = 1 and ȳ = 1 in (45) to obtain the directional charts κ1 and κ3.
Denoting the corresponding coordinates by (r1, y1, ε1) and (x3, r3, ε3), respec-
tively, we obtain the following local forms of (45):

κ1 : x = r1, y = r1y1, ε = r2
1ε1, (46)

κ3 : x = r3x3, y = r3, ε = r2
3ε3, (47)

The change of coordinates between κ2 and κ1 is given by

κ21 : (r1, y1, ε1) 7→

 r2 = r1
√
ε1

x2 = 1/
√
ε1

y2 = y1/
√
ε1

, (48)

for ε1 > 0. Similarly, the change of coordinates between κ2 and κ3 is given by

κ23 : (r3, x3, ε3) 7→

 r2 = r3
√
ε3

x2 = x3/
√
ε3

y2 = 1/
√
ε3

, (49)
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for ε3 > 0. In the charts κ1 and κ3, we obtain local versions of X̂ by division
of the right hand sides by r1,3, respectively. We will follow the standard con-
vention that any object O in the extended space (x, y, z, ε) will be denoted by
O in the blown up space. In the charts, this object will be given a subscript
Oi.

4.3 Dynamics in chart κ1

Inserting (46) into (44) gives

ṙ1 = r1 (−y1 + ε1z − r1ε1α) , (50)

ẏ1 = −y1 + ε1 (β(1− r1y1) + z)− (−y1 + ε1z − r1ε1α) y1,

ż = r1 (y1 − ε1(1 + δ)z) ,

ε̇1 = −2ε1 (−y1 + ε1z − r1ε1α) ,

upon division of the right hand side by r1. Notice that both {r1 = 0} and
{ε1 = 0} are invariant for (50). Along their intersection {r1 = ε1 = 0} we
obtain the following dynamics

ẏ1 = −y1 + y2
1 , (51)

ż = 0.

We therefore obtain two lines of equilibria:

l21 = {(r1, y1, z, ε1)|y1 = 0, r1 = ε1 = 0, z ∈ [0,∞)},

lf1 = {(r1, y1, z, ε1)|y1 = 1, r1 = ε1 = 0, z ∈ [0,∞)}.

For the flow on {r1 = ε1 = 0}, described by (51), we see that these two lines

are normally hyperbolic: The linearization of (51) about any point in l21 (lf1 )
gives −1 (1, respectively) as a single non-zero eigenvalue. Hence l21 is attracting

and lf1 is repelling. Within ε1 = 0 we find

ṙ1 = −r1y1,

ẏ1 = −y1 + y2
1 ,

ż = r1y1,

This system has two invariant planes S2
1 at y1 = 0, emanating from the line

l31, and F1 at y1 = 1, emanating from the line lf1 . Here S2
1 and F1 are just S2

and F written in the present chart. S2
1 is therefore also a plane of equilibria

but now the linearization along S2
1 gives −1 as a single non-zero eigenvalue.

Finally, the dynamics within r1 = 0 is governed by

ẏ1 = −y1 + ε1 (β + z)− (−y1 + ε1z) y1, (52)

ż = 0,

ε̇1 = 2ε1(y1 − ε1z)
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Here we recover l21 and lf1 but we also obtain additional eigenvalues due to the

final equation. For lf1 this additional eigenvalue is 2 but it is 0 along l21. Hence
there exists a 2D center manifold C3

1 of l21 within r1 = 0.

Proposition 1 Fix any large k1 > 0 and k2 > 0. Then for ξ > 0 sufficiently
small we have: There exists a 3D attracting, locally invariant manifold of (50)
of the following form

M2
1 =

{
(r1, y1, z, ε1)|y1 = ε1

(
z + β + ε1m

2
1(z, ε1)

)
+ r1ε1m

2
2(r1, z, ε1),

z ∈ [0, k1], r1 ∈ [0, k2], ε1 ∈ [0, ξ]

}
,

with m2
i , i = 1, 2, smooth. This manifold contains S2

1 = {y1 = ε1 = 0} within
ε1 = 0 and a unique center manifold

C3
1 =

{
y1 = ε1

(
z + β + ε1m

2
1(z, ε1)

)
, z ∈ [0, k1], r1 = 0, ε1 ∈ [0, ξ]

}
,

within r1 = 0. The flow on C3
1 is constant in z and increasing in ε1.

Proof Existence of M2
1 follows from center manifold theory applied to points

within l11. Notice that we can “globalise” M2
1 in r1 due to the plane of equi-

libria S2
1 . The remainder of the proof then follows from simple calculations.

In particular, C3
1 is unique because each point on l21 is saddle-like within r1 =

0, z = const. due the hyperbolic contraction in y1 and the (non-hyperbolic)
expansion in ε1.

Now, by construction ε = r2
1ε1 is an invariant for the equations (50). Therefore

restricting M2 to ε = r2
1ε1 = const. gives an extension of the slow manifold

S2
ε in the (x, y, z)-variables as a locally invariant manifold up to x =

√
ε/ξ. In

particular, in the present chart κ1, this extended slow manifold, S2
ε,1, intersects

ε1 = ξ in a graph:

S2
ε,1 ∩ {ε1 = ξ} :

{
r1=

√
ε/ξ

y1 = ξ
(
z + β + ξm2

1(z, ξ)
)

+
√
εξm2

2(
√
ε/ξ, z, ξ)

, z ∈ [0, k1],

(53)

which is smoothly O(
√
ε)-close to the intersection of C3

1 with ε1 = ξ:

C3
1 ∩ {ε1 = ξ} :

{
r1= 0
y1 = ξ

(
z + β + ξm2

1(z, ξ)
) , z ∈ [0, k1]. (54)
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4.4 Dynamics in chart κ3

Inserting (47) into (44) gives the following equations

ṙ3 = r3 (−x3 + ε3(β(1− r3) + z)) , (55)

ẋ3 = −x3 + ε3z − r3ε3αx3 − (−x3 + ε3(β(1− r3) + z))x3,

ż = r3 (x3 − ε3(1 + δ)z) ,

ε̇3 = −2ε3 (−x3 + ε3(β(1− r3) + z)) ,

upon division of the right hand side by r3. The analysis in this chart is similar
to the analysis in κ1. In particular, the line

l43 = {(r3, x3, z, ε3)|r3 = x3 = ε3, z ∈ [0,∞)},

is partially hyperbolic. By center manifold theory we obtain the results in the
following proposition.

Proposition 2 There exists a 3D attracting, locally invariant manifold of
(55) of the following form

M4
3 =

{
(r3, x3, z, ε3)|x3 = ε3

(
z + ε3m

4
1(z, ε3)

)
+ r3ε3m

4
2(r3, z, ε3),

z ∈ [0, k1], r3 ∈ [0, k2], ε3 ∈ [0, ξ]

}
,

with m4
i , i = 1, 2, smooth. M4

3 contains S4
3 = {x3 = ε3 = 0} within ε3 = 0 and

a non-unique center manifold

C3
3 =

{
x3 = ε3

(
z + ε3m

4
1(z, ε3)

)
, z ∈ [0, k1], r3 = 0, ε3 ∈ [0, ξ]

}
within r3 = 0. The flow on C3

3 is constant in z and ε3 decreases.

Proof Result again follows from center manifold theory and simple calcula-
tions. But now C3

3 is non-unique because each point on l43 is node-like within
r3 = 0, z = const. due the strong (hyperbolic) contraction in x3 and the weak
(non-hyperbolic) contraction in ε1.

Again, by construction ε = r2
3ε3 is an invariant for the equations (50). There-

fore restrictingM4 to ε = r2
3ε3 = const. gives an extension of the slow manifold

S4
ε in the (x, y, z)-variables as a locally invariant manifold up to y =

√
ε/ξ. In

particular, in the present chart κ3, this extended slow manifold, S4
ε,3, intersects

ε3 = ξ smoothly O(
√
ε)-close to the intersection of C3

3 with ε3 = ξ.
We illustrate the dynamics of the blowup system in Fig. 6. Upon blowup

we have obtained a new singular orbit including Γ
3

= Γ (z(3)) with improved
hyperbolicity properties.
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Fig. 6 Blowup dynamics and improved singular orbit.

4.5 Putting things together to complete the proof of Theorem 1

Now, using the coordinate changes (48) and (49), we obtain locally invariant
manifolds κ21(C3

1) and κ21(C3
3) within r2 = 0 in chart κ2 with the following

asymptotics:

y2 ≈ x−1
2 (z + β), (56)

x2 ≈ y−1
2 z, (57)

for x2 → ∞ and y2 → ∞, respectively. Now, Γ2(z) connects (56) with (57)
and therefore (by uniqueness) extends κ21(C3

1) under the forward flow of (39)
to a smooth 2D globally invariant manifold C3

2 = {Γ2(z), z ∈ [0,∞)}. In fact,
we fix the non-unique local manifold C3

3 in chart κ3 such that κ23(C3
3) belongs

to this global manifold C3
2 .

Now, by following C3
2 , we can guide the manifoldM2

2 = κ21(M2
1) and flow

this forward to obtain an extended manifoldM2,∗
2 in such a way that the non-

unique M4
2 from chart κ3 contains the resulting manifold M2,∗

2 . Restricting
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to ε = const. and blowing back down to (x, y, z)-space we obtain an invari-
ant manifold containing (by choice) S2

ε and S4
ε where these are defined. This

manifold is smooth on O (because it is smooth in the charts κ1, κ2 and κ3)
and by regular perturbation theory it is smoothly O(

√
ε)-close to C3

2 (since it
is so at x2 = ξ−2 or ε1 = ξ cf. (53) and (54)) within any compact subset of
(x2, y2, z)-space. Parts (A) and (B) of the main theorem now follow. In fact,
working in the entry chart κ1, we realise that Γε is smoothly O(ε)-close to
Γ (2) at Σ2

out ⊂ {x = ξ} (this is just Fenichel), and smoothly O(
√
ε)-close at

Σ3
in ⊂ {x =

√
ε/ξ} for ξ > 0 but small. Consequently, cf. the analysis in κ2

and κ3, Γε is also smoothly O(
√
ε)-close to Γ 4 at both Σ3

out ⊂ {y =
√
ε/ξ}

(see section in Fig. 4) and Σ4
in ⊂ {y = ξ}.

5 Numerics

In this section, we illustrate our main theoretical result, Theorem 1, through
numerical computations of (1) in the non-dimensional form (6) for the param-
eters in Table 1 (or equivalently Table 2). Fig. 7 shows Γε in the xyz-phase
space. Here we also illustrate the extended slow manifold (as described in
Section 4.5). We simply compute the slow manifold by forward integration of
different initial conditions on the approximations of S2

ε and S4
ε : y ≈ εx−1(z+β)

and x ≈ εy−1z, respectively. Notice how Γε follows the slow manifold. We do
not plot Γ0 because it is so close to Γε, making it difficult to separate the
curves on this scale. Instead we include the point γ3 to indicate the order of
accuracy.

In Fig. 8, we have used similar direct methods to compute the invariant
manifold C3

2 for (38) in the (x2, y2, z)-variables for r2 = 0. Here we also show
Γε (in red) in the (x2, y2, z)-variables along with its approximation Γ 3

2 ⊂ C3
2

(in blue).

Finally, in Fig. 9 we do a time plot of x(t), y(t) and z(t) in blue, red and
black, respectively, along Γε together with their approximations due to Γ 2,
Γ 3

2 and Γ 4 on a time interval near third phase. The dashed blue curve is x(t)
along Γ 2, see expression in (34). It is defined up until T (x(2)). In agreement
with our analysis, this curve follows x(t) (in blue) along Γε outside P3. Inside
P3 the separation between the curves is larger. Similarly, the dashed red line
is y(t) along Γ 4, see expression in (35), defined for t ≥ T (x(2)). It follows
the actual y(t) (in red) along Γε outside P3. Within P4 the approximation
of Γε by Γ 4 is less accurate. There is also a dashed black curve due to z(t)
along Γ 2 and Γ 4, see expressions in (34) and (35) for t ≷ T (x(2)), but this
curve is inseparable from the full black curve representing z(t) along Γε. Now,
the dotted lines in blue, red and black are due to the approximation by Γ 3

2 ,
setting x(t) =

√
εx2(t/

√
ε), x(t) =

√
εx2(t/

√
ε), z(t) = z(3), with x2(τ2), y2(τ2)

described in Lemma 3. This approximation is accurate within P3 as desired but
less accurate outside. In the context of matched asymptotics one would refer
to the dotted lines as outer solutions and the dashed ones as inner solutions.
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Fig. 7 Γε (red) and the extended slow manifold (surface).

Fig. 8 Γε (red) in the scaled variables (x2, y2, z), where it by our notation convention is
denoted by Γε,2, and the center manifold C3

2 (surface). Γε,2 is approximated by Γ 3
2 ⊂ C3

2 in
blue.

6 Discussion

Following our analysis, we can attribute each phase with different scales. For
example, during phase P1, all variables x, y, z are O(1). During phase P2,
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Fig. 9 x(t) (blue), y(t), (red), z(t) (black) along Γε. The dashed lines are approximations
(outer solutions) due to Γ 2 and Γ 4 whereas the dotted lines are approximations (inner
solutions) due to Γ 3

2 .

described by motion along the slow manifold S2
ε , y = O(ε). Along this phase

x is monotonically decreasing since x is so along the reduced flow on S2.
But then since y ≈ εx−1(z + β) within S2

ε , y is slightly increasing. Once
x reaches O(

√
ε) then y = O(

√
ε) and we enter phase P3. Here x, y = O(

√
ε)

throughout and P3 is described by the solution curve Γ 3
2 in the scaled variables

x2 = x/
√
ε, y2 = y/

√
ε (recall Fig. 4). z is almost constant but x2 and y2 vary

quickly in agreement with the initial observations by Peletier and Gabrielsson
[2012]. At the end of phase P3, we have x ≈ εy−1z and therefore as y increases
to O(1) we have x = O(ε) during the final phase P4.

Remark 5 In Peletier and Gabrielsson [2012, 2013], the third phase is described
by the scaling

x̃ =
koff

kon
u

see e.g. [Peletier and Gabrielsson, 2013, Eq. (5.17)]. By Table 2, it follows that

x = εu. (58)

This scaling therefore zooms in on x = 0 for 0 < ε � 1. Inserting (58) into
(16) gives

u′ = −uy + z − εαu, (59)

y′ = ε (−uy + β(1− y) + z) ,

z′ = ε (uy − (1 + δ)z) ,
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which is a standard slow-fast system with u being fast and y, z being slow.
Setting ε = 0, gives u = y−1z as an attracting critical manifold for y > 0.
Notice by (58), x ≈ εy−1z. Referring to Lemma 2, in particular the expression
(29), we realise that the critical manifold is just S4

ε to leading order written
in the (u, y, z)-coordinates. This scaling therefore only describes phase P4, not
phase P3. Indeed, the manifold u = y−1z is not compact for y > 0 and the
approximation by Fenichel therefore breaks down as y approaches 0 (which is
the relevant regime for P3).

Dependency on x0. For x0 → ∞ the duration of P1 diminishes, see e.g. Ap-
pendix B and (72) where we have multiplied the right hand side by u = x−1

to slow down time. On the other hand, the duration of P2 enhances and
(x(t), y(t), z(t)) spends an increasing amount of time close to the invariant
line x > 0, y = 0, z = δ−1β of (23). We can also see this in the expression for
Γ 2, see (34), as T (x(2))→∞ when x0 →∞.

On the other hand, the phase P2 diminishes as x0 → 0+. Indeed, for x0 < 1
then Γε converges directly to a point on S4

ε and hence there are no second and
third phase. In this situation Γε is described by Fenichel’s theory near S4 and
limε→0+ Γε is the union of

Γ 1 = {(x, y, z) ∈ O|x = x0 − s, y = 1− s, z = s, s ∈ [0, x0)},

and

Γ 4 = {(x, y, z) ∈ O|x = 0, y(t) = 1 + (1− x0 − 1)e−βt, z = x0e
−δt, t ≥ 0}.

Here Γ 1 is the forward orbit of IC under the flow of the layer problem (21). It
is asymptotic to (x, y, z) = (0, 1 − x0, x0). From here Γ 4 is the forward orbit
of the reduced problem on S4 (24). An example is illustrated in Fig. 3 (orange
curve).

Dependency on other parameters. The dependency on all other parameters can
easily be derived from the explicit expression of Γ0 or simply from the reduced
problems on S2 and S4, see (23) and (24). From (23), for example, we realise
that decreasing (increasing) β has the following affect on P2: it (a) increases
(decreases) the time T (x(2)) and (b) decreases (increases, respectively) the
z-value, z(3), of γ3. For P4, increasing (decreasing) β implies by (24) that y
converges faster (slower, respectively) to its steady-state value y = 1. Similarly,
decreasing (increasing) α increases (decreases, respectively) T (x(2)) during P2

but to leading order z is unaffected. Also α has no affect on P4 to leading order.
Moreover, by decreasing (increasing) δ, z and z(3) both increase (decrease)
during phase P2 while for P4 the convergence rate of z towards its steady-
state value z = 0 is enhanced (detracted, respectively). Finally, to leading
order only β affects P3.
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Estimation of the parameters. By dividing the data of the evolution of the
concentrations into the separate phases, one can approximate the parameters.
An approach is described in Peletier and Gabrielsson [2013]. Following our
main theorem, we can provide an alternative estimation process through a data
set (x̃, ỹ, z̃)(t̃), t̃ ≥ 0, as follows, using the definitions of the non-dimensional
numbers in Table 2:

(i) ỹ0 is estimated by ỹ0 ≈ y(t1) with t1 � 0 large or by x̃2 = x̃0 − ỹ0 using
an estimate of x̃2, the value of x̃ at the end of the first phase;

(ii) ε can be estimated from a point (x(tii), y(tii), z(tii)) during P4 by the
condition that (x(tii), y(tii), z(tii)) ∈ S4

ε :

x̃(tii) ≈ ỹ0εỹ(tii)
−1z̃(tii), (60)

obtained from (30) using (5) and multiplication of ỹ0;
(iii) kout = βkoff is the slope of − log(ỹ0 − ỹ(t̃)) during P4, see (24);
(iv) Given ỹ0 and ε from (i) and (ii), respectively, β can be determined directly

from P2 by the condition that (x(tiv), y(tiv), z(tiv)) ∈ S2
ε :

ỹ(tiv) ≈ ỹ0εx̃(tiv)
−1(z̃(tiv) + ỹ0β), (61)

obtained from (29) using (5) and multiplication of ỹ0;
(v) keRL = δkoff is the slope of − log z̃(t̃) during P4, see (24);
(vi) Given ỹ0 and kout = βkoff from (i) and (iii), respectively, we determine

keL = αkoff as follows: Let x̃1 and x̃2 < x̃1 be two values of x̃ at t̃ = t̃1 and
t̃ = t̃2 > t̃1 during phase P2. Then by (25) and (5) we obtain the following
equation for t̃2 − t̃1:

t̃2 − t̃1 = −
ln
(
ỹ−1
0 x̃2+α−1β

ỹ−1
0 x̃1+α−1β

)
αkoff

= −
ln
(
ỹ−1
0 x̃2+k−1

eL kout

ỹ−1
0 x̃1+k−1

eL kout

)
keL

. (62)

Having determined kout and β in (iii) and (iv), respectively, we directly obtain

koff = β−1kout, (63)

by Table 2. Furthermore, by step (i) we have

kin = koutỹ0, (64)

using (2). Finally, step (ii) implies that

kon =
koff

ỹ0ε
, (65)

obtained by rearranging the equation for ε in Table 2. The quantities on the
right hand side of (65) are at this stage of the procedure all known. In this
way, we therefore approximate all six ki, i = off, on, eL, eRL, in and out,
dimensional numbers. The error of these estimates can easily be estimated
because they are based on equations that in non-dimensional form are correct
up to O(ε). Also the error of this approach should, by Theorem 2 and the fact
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that we do not use phase P1 in (i)-(vi), be largely independent of the initial
dose x̃0 > ỹ0.

Notice in comparison with Peletier and Gabrielsson [2013], that this process
does not use the third, nonlinear phase P3. Also, kon is estimated in a different
way in Peletier and Gabrielsson [2013] using an estimate of the half-time of
the contraction towards S2 during P1. Moreover, the authors in Peletier and
Gabrielsson [2013] do not exploit the estimates (60) and (61) in step (ii) and
step (iv) for the approximation of the slow manifolds S2

ε and S4
ε , see (29) and

(30).
In the following, we apply the procedure (i)-(vi) to the data in Fig. 1

obtained from a numerical computation using Matlab’s ODE-solver ode45
with tolerances = 10−9. In step (i), we just take the last data point

ỹ0 = 12.3595.

In step (ii), we use linear interpolation of the data points produced by Matlab
to obtain x̃ = 0.0095, ỹ = 11.9049, z̃ = 10.2769 at t̃ii = 900 within P4, see also
Fig. 1 (b). This gives

ε = 8.9063× 10−4.

after rearranging (60). Matlab’s detailed output is probably not comparable
with a real-life experiment. But our primary aim with this section is to illus-
trate how our approach can be used and for this purpose the amount of data
is not important.

In step (iii), we consider t̃ = 800 and t̃ = 1000 within P4 and obtain
ỹ = 1.1035 and ỹ = 0.1876 using linear interpolation, respectively, see Fig. 1
(b). This gives

kout ≈ −
log 1.1035− log 0.1857

200
= 0.008860. (66)

In step (iv), we take t̃iv = 100 within P2 and obtain x̃ = 65.2615, ỹ = 0.0216,
z̃ = 18.6222, see Fig. 1 (a). This gives

β ≈ 8.8605,

after rearranging (61). Then by (63) we obtain

koff ≈ 9.9989× 10−4.

In step (v), we again consider t̃ = 800 and t̃ = 1000 within P4 and find
z̃ = 13.8696 and z̃ = 7.6145, respectively, see Fig. 1 (b). This gives

keRL = 0.002998.

In step (vi), we finally take t̃1 = 100 and t̃2 = 200 and obtain

x̃1 = 65.2615, x̃2 = 45.9876,
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Table 3 Estimation of the parameters using the approach described in (i)-(vi). The maxi-
mum relative error is 0.5%, see third row.

kon koff keL kin kout keRL

Value 0.091 0.001 0.0015 0.11 0.0089 0.003
Est. val. 0.09079 9.9989× 10−4 0.0015030 0.1095 0.008860 0.002998

Rel. err. (%) 0.3 0.06 0.2 0.5 0.5 0.06

see Fig. 1 (a). Inserting this into (62) together with (66) gives a nonlinear
equation

100 = −
ln
(

3.7208+k−1
eL 0.008860

5.2803+k−1
eL 0.008860

)
keL

for keL, which we solve using Matlab’s fsolve. This gives

keL = 0.0015030.

Finally,

kin = 0.1095, kon = 0.09079,

using (64) and (65). We summarise our estimates in Table 3. The maximum
relative error of the estimated parameters is 0.5%.

Higher order approximations. It is possible to use our approach and results
to obtained higher order approximations of Γε and capture the O(

√
ε)-terms.

This is not conceptually difficult (we just do the matching in the charts, see
also van Gils et al. [2005]) but the calculations are tedious and the formulas
are lengthy. Also we are unsure what extra insight this would provide. We
therefore also leave out such results from the present manuscript.

Rebounding. Finally, we conclude the paper by describing rebounding. This
is the phenomenon where the receptor levels (concentration of ỹ) exceeds its
baseline value ỹ0: ỹ(t) > ỹ0 after application of the drug x̃0. In Aston et
al. [2014] the authors show that for (1) rebounding occurs if and only if the
elimination rate of the complex product keRL is slower than the elimination
rates of the drug keL and of the receptor kout:

keRL < min(keL, kout), (67)

see [Aston et al., 2014, Corollary 3.2]. In our non-dimensionalised variables,
rebounding means that Γε ∩ {y > 1} is non-empty. By (67) it occurs if and
only if

δ < min(α, β).

In the following, we reproduce this result for 0 < ε� 1 using our perturbation
approach. For this we first realise by Theorem 1 (A) that rebounding (i.e.
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y(t) > 1) can only occur during the final phase P4. This phase occurs on
the slow manifold S4

ε , see (30). Therefore we can reduce the problem to the
two-dimensional system (31), in terms of y and z, obtained by inserting x =
εzH(y, z, ε) into (6). Eq is a stable node for these equations for any 0 ≤ ε� 1
(recall also Remark 3(b)). In particular, for ε = 0 we obtain the reduced
problem on S4, see (24), in agreement with Fenichel’s theory, in which case the
linearization about Eq has the following eigenvalues−β and−δ with associated
eigenvectors v1 = (1, 0)T , v2 = (0, 1)T , respectively, in the yz-plane. In fact,
the set M2 = {y = 1, z ≥ 0}, obtained by the span of the eigenvector v2,
is invariant for the flow of (31) for ε = 0. Similarly, M1 = {y ≥ 0, z = 0},
obtained by the span of the eigenvector v1, is also invariant, even for all ε ≥ 0.
Consider first β < δ. Then v1 (v2) is the weak (strong) eigenvector of Eq for
ε = 0. M2 is therefore the unique strong stable manifold, tangent to v2 at
Eq; all other orbits of the reduced problem (i.e. ε = 0) on S4 are tangent to
M1 at Eq. In this case, Γ 4 therefore approaches Eq from below and tangent
to M1 in such a way that y is monotonically increasing. To perturb this into
0 < ε � 1 we note the following simple consequences of Theorem 1 (A) and
regular perturbation theory within the compact set W, recall also Lemma 2
and see Fig. 10 for an illustration : (a): Γε is O(

√
ε)-close to Γ 4 at Σ4

in (entry
to phase P4); (b): M2 perturbs by an O(ε)-amount. Therefore for 0 < ε � 1,
the projection of Γε onto the (y, z)-plane is contained within the subset of
W bounded by M2 and the z-axis, consisting of all orbits that approach Eq
tangent to the M1; in particular Γε ∩Σ4

in is uniformly bounded away from M2

for 0 < ε � 1. This means that the solution approaches Eq from below and
no rebounding occurs.

On the other hand, for β > δ (the situation in Table 1) the vector v2

is now the weak eigenvector and hence Γ 4 approaches Eq tangent to M2.
To determine whether rebounding occurs for β ≥ δ, we compute the weak
eigenvector at Eq on S2

ε to higher order in ε. We therefore consider (31) with
0 < ε� 1 and compute the linearization of the resulting equations about Eq,
setting (y, z) = (1, 0). This gives the following eigenvalues

λ1 = −β, λ2 = −δ + ε(δ − α) +O(ε2),

and the following corresponding eigenvectors

v1 = (1, 0)T , v2 =
(
ε(β − δ)−1(α− δ) +O(ε2), 1

)T
, (68)

respectively, for β 6= δ. For β > δ the eigenvalue λ2 is weakest for all 0 ≤
ε � 1. The projection of Γε onto the (y, z)-plane therefore approaches Eq
tangent to the corresponding eigenvector v2. Now by (68), for α > δ we have
(β − δ)−1(α − δ) > 0 and therefore the span of v2 based at Eq intersects the
“rebound” region y > 1, z > 0. Hence rebounding does occur in this case for
0 < ε� 1. On the other hand, for α < δ, then (β− δ)−1(α− δ) < 0 and hence
the span of v2 based at Eq does not intersects y > 1, z > 0. Therefore, referring
again to Theorem 1 (A), we conclude that rebounding does not occur in this
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Fig. 10 Illustration of the dynamics on S4
ε within W during the final phase P4 for β < δ

and 0 ≤ ε � 1. M2 is, in this situation, the strong stable manifold (indicated by the
tripple-headed arrows). The invariant y-axis coincides with the weak eigenspace (indicated
by single-headed arrows). By Theorem 1 (A), Γε is O(

√
ε)-close to Γ 4 at Σ4

in and by regular
perturbation theory M1 perturbs by an O(ε)-amount within the compact set W.

instance.1 The remaining cases β = δ and α = δ have to be handled separately
using higher order terms. We leave out the details of these calculations here.

Now, although our approach only works for 0 < ε � 1, the singular per-
turbation theory tackles the global part of the problem relatively easy and
therefore reduces the problem to a local one near Eq almost directly. We there-
fore anticipate that our method might be more useful for more complicated
systems of this kind.
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A Proof of Lemma 3

We consider

ẋ2 = −x2y2 + z, (69)

ẏ2 = β − x2y2 + z,

with z ∈ [0,∞) a parameter. A simple phase plane analysis shows that every point in the
first quadrant moves towards y2 → ∞ with x2 > 0 bounded. To study y2 → ∞, we use a
version of Poincaré compactification Meiss [2007] that follows our approach for the blowup
(45). In particular, we view (x2, y2) as coordinates on (x̄, ȳ, ε̄) ∈ S2 defined by

x2 = ε̄−1/2x̄, y2 = ε̄−1/2ȳ,

and then study y2 →∞ by setting

ε3 = y−2
2 , x3 = x2y

−1
2 , (70)

see also (49). Notice that

ε3 = ȳ−2ε̄, x3 = ȳ−1x̄,

and hence the coordinates (ε3, x3) cover ȳ > 0 of (x̄, ȳ, ε̄) ∈ S2. Inserting (70) into (69)
gives (55)r3=0 within z = const. By Proposition 2 (and the existence of C3

3) there exists a
non-unique center manifold of (ε3, x3) = (0, 0) in these coordinates with asymptotics

x3 ≈ ε3z



36

for ε3 → 0. ε3 decreases along this manifold. Returning to the (x2, y2)-variables using (70)
gives the first result in Lemma 3. Secondly, to study x2 →∞ we insert

ε1 = x−2
2 , y1 = y2x

−1
2 ,

see also (48), into (69). Notice that

ε1 = x̄−2ε̄, y1 = x̄−1ȳ,

and hence the coordinates (ε1, y1) cover x̄ > 0 of (x̄, ȳ, ε̄) ∈ S2. This gives (52) within
z = const. and according to Proposition 1 (and the existence of C3

1) there exists a unique,
attracting center manifold Γ1(z) of (ε1, y1) = (0, 0) in these coordinates with asymptotics

y1 ≈ ε1(z + β),

for ε1 → 0. ε1 increases along this manifold. Returning to the (x2, y2)-variables then com-
pletes the proof of Lemma 3.

B Proof of Theorem 2

The uniformity of Γε ∩ B → Γ0 ∩ B for x0 ∈ (1, c] for any fixed c follows from the proof of
Theorem 1. In particular, we note that if x0 = 1 then the initial condition belongs to F and
hence Γ 2 = ∅. To study x0 � 1 we introduce u by

u = x−1. (71)

Then u(0) = x−1
0 � 1. Furthermore,

u′ = −u2 (−y + εuz − εα) , (72)

y′ = −y + εβu(1− y) + εzu,

z′ = y − εu(1 + δ)z,

after multiplying the right hand side by u to ensure that u = 0 is well-defined. Here S2 :
y = 0, (u, z) ∈ [0,∞)2 (abusing notation slightly) is normally hyperbolic (linearization gives
−1 as single non-zero eigenvalue) for any u ≥ 0. Fenichel’s theory therefore applies and we
obtain S2

ε in the following form

S2
ε : y = εu(z + β +O(uε)), (u, z) ∈ [0, k−1

1 ]× [0, k3],

by a simple calculation. Now, the reduced problem on S2
ε is described by the planar system

u̇ = −u (u(β +O(uε)) + α) , (73)

ż = β +O(uε)− δz,

where we have undone the multiplication of the right hand side by u. The time in (73) is
therefore the slow time t also used in (6). Notice that (u, z) = (0, δ−1β) is a hyperbolic
equilibrium for these equations with eigenvalues α and −δ. To describe Γε for x0 � 1 we
therefore consider an initial condition (u, z)(0) = (u0, 0) of (73) with 0 < u0 � 1. See
Fig. 11 for a sketch of the phase portrait of (73) near the saddle. Clearly, the forward orbit
converges to the (one-sided) stable and unstable manifold of the saddle as u0 → 0+. Now, by
Sternberg [1958]; Sell [1985], there exists a C1-linearization of (73) near (u, z) = (0, δ−1β)
which is also C1 in ε. Therefore, although the solution spends an increasing amount of time
near the saddle, the forward orbit Γε is O(ε)-close to Γ0 in the (u, y, z)-variables at u = k−1

1 ,

uniformly in u0 > 0. At u = k−1
1 (or x = k1 by (71)) we can change back to the (x, y, z)-

variables. From here the analysis in Section 4 carries over. This completes the proof of the
theorem.
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Fig. 11 Phase portrait of (73) near the saddle (u, z) = (0, δ−1β) for ε = 0 (in blue) and
0 < ε� 1 (in red).


