Review of ammonia as an electrofuel for Internal Combustion Engines

Klüßmann, J. N.; Ekknud, L. R.; Ivarsson, A.; Schramm, J.

Publication date: 2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Review of ammonia as an electrofuel for Internal Combustion Engines

5th International Conference on Smart Energy Systems
Copenhagen, 10-11 September 2019

Klüssmann JN, Eknud LR, Ivarsson A and Schramm J.
Technical University of Denmark
Electrofuels/ammonia
Electrofuels

Examples:

- Liquid fuel production: methanol
- Biogas enrichment
- Hydrogen
- Ammonia! (if no carbon source is available)
Ammonia Production
Ammonia application today: mainly industry

Possibilities: peaker plants, IC engines

Substitution of: natural gas, HFO
Ammonia distribution and storage
Pipelines:

<table>
<thead>
<tr>
<th></th>
<th>Efficiency*</th>
<th>Capacity°</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural gas</td>
<td>97%</td>
<td>1,464MW</td>
<td>-</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>87%</td>
<td>1,207MW</td>
<td>0,5-3,2 $/kg</td>
</tr>
<tr>
<td>Ammonia</td>
<td>99%</td>
<td>2,251MW</td>
<td>0,034 $/kg</td>
</tr>
</tbody>
</table>

*: conditioned for vehicle application purposes

°: based on a 12-inch nominal pipeline
<table>
<thead>
<tr>
<th></th>
<th>Energi content (LHV) [MJ/Kg]</th>
<th>Energi content (LHV) [MJ/L]</th>
<th>Octane</th>
<th>Cetane</th>
<th>Laminar Flame velocity [m/s]*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>45.6</td>
<td>38.6</td>
<td>~50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>46.4</td>
<td>34.2</td>
<td>92-95</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Liquified Ammonia</td>
<td>18.6</td>
<td>11.5</td>
<td>>130</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>Liquified Hydrogen</td>
<td>120</td>
<td>8.491</td>
<td>>130</td>
<td>3.51</td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td>49.6</td>
<td>20.3</td>
<td>120</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>19.7</td>
<td>15.6</td>
<td>108.7</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>26.9</td>
<td>21.3</td>
<td>108.6</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>DME</td>
<td>28.4</td>
<td>19.3</td>
<td>60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Stoichiometric combustion

For compressed hydrogen divide by 2-4!
Storage:
Ammonia stored at 17 bars: 13,8 MJ/l
Liquid hydrogen at -253°C: 10,0 MJ/l

Vessel storage:
Ammonia (typical capacity): 15-60,000 t
Hydrogen (with current techn.): <900 t
Ammonia as an IC engine fuel
Diesel
HFO
HVO, SVO, FAME
DME

Ammonia?

Gasoline
MeOH, EtOH
Hydrogen
LPG
CNG, LNG

Cetane – Octane Comparison
100 High Octane

50 High Cetane

Diesel fuel must burn faster. Cetane is a measure of ignitability and rapid combustion (ignition quality).

Gasoline must burn evenly. Octane is a measure of a fuel's ability to resist detonation (pre-ignition).
<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Energi content (LHV) [MJ/Kg]</th>
<th>Energi content (LHV) [MJ/L]</th>
<th>Octane</th>
<th>Cetane</th>
<th>Laminar Flame velocity [m/s]*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>45.6</td>
<td>38.6</td>
<td>~50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>46.4</td>
<td>34.2</td>
<td>92-95</td>
<td></td>
<td>0.28</td>
</tr>
<tr>
<td>Liquified Ammonia</td>
<td>18.6</td>
<td>11.5</td>
<td>>130</td>
<td></td>
<td>0.015</td>
</tr>
<tr>
<td>Liquified Hydrogen</td>
<td>120</td>
<td>8.491</td>
<td>>130</td>
<td></td>
<td>3.51</td>
</tr>
<tr>
<td>Methane</td>
<td>49.6</td>
<td>20.3 (LNG)</td>
<td>120</td>
<td></td>
<td>0.34</td>
</tr>
<tr>
<td>Methanol</td>
<td>19.7</td>
<td>15.6</td>
<td>108.7</td>
<td></td>
<td>0.43</td>
</tr>
<tr>
<td>Ethanol</td>
<td>26.9</td>
<td>21.3</td>
<td>108.6</td>
<td></td>
<td>0.41</td>
</tr>
<tr>
<td>DME</td>
<td>28.4</td>
<td>19.3</td>
<td></td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

*) Stoichiometric combustion
Ammonia

Barriers:
- Low flame speed
- Additional fuel/ig. improver needed (CI application)
- Poisonous Materials
- Heat of vaporization
- Emissions unknown (N$_2$O?)
<table>
<thead>
<tr>
<th>Ammonia</th>
<th>Additional fuel</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
<td>😞 ☹️ ☹️</td>
<td>High compression needed (CR 35:1) to achieve combustion</td>
</tr>
<tr>
<td>Gaseous in intake</td>
<td>Hydrogen in intake</td>
<td>☵ ☵ ☵</td>
<td>Applied in SI engine, 5 vol-% hydrogen achieves good combustion – only tried at limited operating conitions, NOx and N2O? (SCR needed)</td>
</tr>
<tr>
<td>Gaseous in intake</td>
<td>Gasoline DI</td>
<td>☹️</td>
<td>Difficult at many operating conditions (low flame speed), Low BSFC, Fuel NOx high</td>
</tr>
<tr>
<td>Dissolved in gasoline</td>
<td>Gasoline</td>
<td>☺️</td>
<td>Higher power with moderate ammonia concentrations, but not much info</td>
</tr>
<tr>
<td>Gaseous in intake</td>
<td>Diesel DI</td>
<td>☵ ☹️</td>
<td>Possible but high BSFC, high fuel NOx production at lower loads, N2O? (SCR needed), higher CO and HC</td>
</tr>
<tr>
<td>Gaseous in intake</td>
<td>Biodiesel DI</td>
<td>☵ ☹️</td>
<td>As above with even higher NOx</td>
</tr>
<tr>
<td>DI</td>
<td>DME DI</td>
<td>☹️</td>
<td>Cyclic variations, higher CO HC and NOx</td>
</tr>
</tbody>
</table>
SI engine application

SCR Necessary!
Ammonia emissions seems to be much higher in CI engines!

SCR Necessary!
CI engine application

Ammonia injected into the air stream

DI of diesel fuel

However, poor engine efficiency for ammonia due to cyclic variations!

Very high emissions of unburned ammonia!

Aaron et. Al. Fuel, 2011
CI engine application

100% DME, SOI = 10 BTDC,

60% DME-40% NH₃, SOI = 20 BTDC.

(b) BMEP = 0.21 MPa

(c) BMEP = 0.35 MPa
Conclusions:

- Ammonia cannot be applied as the only fuel
- Different concepts have been studied
 - SI engine application with hydrogen is most promising so far
- Fuel NOx production is a new issue to consider
- N2O emissions have to be addressed
- BSFC is quite poor in CI engines
- SCR is needed to reduce NOx
Thank you for your attention!