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In classical thermodynamics the work cost of control can typically be neglected. On the contrary, in quantum
thermodynamics the cost of control constitutes a fundamental contribution to the total work cost. Here, focusing
on quantum refrigeration, we investigate how the level of control determines the fundamental limits to cooling
and how much work is expended in the corresponding process. We compare two extremal levels of control: first,
coherent operations, where the entropy of the resource is left unchanged, and, second, incoherent operations,
where only energy at maximum entropy (i.e., heat) is extracted from the resource. For minimal machines, we
find that the lowest achievable temperature and associated work cost depend strongly on the type of control, in
both single-cycle and asymptotic regimes. We also extend our analysis to general machines. Our work provides
a unified picture of the different approaches to quantum refrigeration developed in the literature, including
algorithmic cooling, autonomous quantum refrigerators, and the resource theory of quantum thermodynamics.

DOI: 10.1103/PhysRevE.100.042130

I. INTRODUCTION

Characterizing the ultimate performance limits of ther-
mal machines is directly connected to the problem of un-
derstanding the fundamental laws of thermodynamics. The
development of classical thermodynamics was instrumental
for the realization of efficient thermal machines. Similarly,
understanding the thermodynamics of quantum systems is
closely related to the fundamental limits of quantum thermal
machines. An intense research effort has been devoted to these
questions [1–4], resulting in the formulation of the basic laws
of quantum thermodynamics, a resource theory perspective,
and a large body of work on quantum thermal machines,
including first experimental demonstrations.

When trying to establish fundamental limits on quantum
thermodynamics tasks, one is always faced with the prob-
lem of identifying the relevant resources. For instance, one
may consider different classes of allowed operations on a
quantum system, or equivalently different levels of control.
This challenge is particular to the quantum regime, where
monitoring and manipulating systems generally affects the dy-
namics. Conceptually different approaches have been pursued
in parallel to explore this question.

One approach is via the development of a general theory of
quantum thermodynamics that aims at placing upper bounds
on the performance limits of quantum thermal machines.
By establishing fundamental laws, this abstract perspective
provides limits that hold for any possible quantum process
(hence to all transformations achievable by quantum thermal
machines). Typically, such upper bounds are obtained by char-
acterizing possible state transitions, focusing on the single-
cycle regime. The intuition being that a machine cannot per-
form better than a perfect cycle. Here one can distinguish two
paradigms. In the first, free operations are given by “thermal

operations” [5–10], i.e., energy-conserving unitaries applied
to the system and a thermal bath. The implicit assumptions
are access to (1) a perfect timing device, (2) arbitrary spectra
in the bath, and (3) interaction Hamiltonians of arbitrary com-
plexity. This perspective led to derivations of the second law
[11–13]—i.e., the removal of system entropy in a thermally
equilibrated environment comes at an inevitable work cost—
and general formulations of the third law [14–16]—cooling to
temperatures approaching absolute zero requires a diverging
amount of resources. In the second paradigm, one considers
an increased amount of classical control over a single quantum
system, but no access to bath degrees of freedom; i.e., the
implicit assumptions are (1) a perfect timing device and (2) the
ability to implement any cyclic change in the Hamiltonian
of a quantum system. This led to the concepts of passive
states [17–21] and algorithmic cooling [22–26] and more
generally to fundamental limits on single-cycle performance
of coherently driven quantum machines [27].

Another approach is via explicit models of quantum ther-
mal machines that provide lower bounds on their perfor-
mance. A wide range of such models have been discussed. In
general terms, a quantum thermal machine makes use of ex-
ternal resources (e.g., thermal baths) to accomplish a specific
task, such as work extraction or cooling. More formally, these
machines are modeled as open quantum systems, where the
machine consists of few interacting quantum systems coupled
to external baths. Performance is usually evaluated in the
asymptotic regime of nonequilibrium steady states. Machines
with very different levels of control must be distinguished.

Autonomous quantum thermal machines feature the low-
est level of control [28–36]. Here the machine subsystems
are coupled to thermal baths at different temperatures, and
interact via time-independent Hamiltonians, thus requiring no
external source of work or control. In the opposite regime,
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TABLE I. Summary of the important properties of both
paradigms. Complexity means the number of components the ma-
chine is allowed to have. Each component is in principle allowed
to be a qudit of arbitrary dimension. In the limit of infinitely many
ancillas the single-cycle incoherent paradigm becomes the thermal
operations (TOs) used in the resource theory of thermodynamics
(RTT) and in the single-cycle coherent paradigm one is allowed to
apply any CPTP map to the target.

���������Complexity
Control

Incoherent Coherent

Ancillas At TH m 0
At TR n-m n

Limit n → ∞ TOs CPTP

machines requiring a high level of control have been consid-
ered, such as quantum Otto engines [37–40]. Here one as-
sumes the ability to implement complex unitary cycles, which
generally require time-dependent Hamiltonians or well-timed
access to a coherent battery [41–43]. Nonetheless similar
statements of the second and third law are also possible in
this regime [44,45].

Each of the above approaches represents a perfectly rea-
sonable paradigm for discussing the ultimate limitations of
quantum thermodynamics, each featuring its own merits and
drawbacks. Comparing these approaches is thus a natural and
important question. It is, however, also a challenging one,
due to the fact that each approach works within its own
respective framework and set of assumptions. Recently, sev-
eral works established preliminary connections between some
of these approaches. References [46,47] studied autonomous
machines in the transient regime and showed that a single
cycle can achieve more cooling than the steady-state regime.
Quantum machines powered by finite-size baths have been
studied [48] to understand the impact of finite resources, and
the control cost of achieving a shortcut to adiabaticity was
studied in Ref. [49]. In Ref. [50] the authors explored the
implications of finite-size systems, i.e., thermal operations
not at the thermodynamic limit. In the single-cycle regime,
Refs. [51–53] discussed thermodynamic performance under
restricted sets of thermal operations, with limited complexity.
Finally, even the assumption of perfect timing control, in-
herent to all paradigms except autonomous machines, should
arguably carry a thermodynamic cost [54].

The above paradigms can instructively be split into two
types of assumed control over the quantum system. For a sin-
gle cycle of a thermodynamic process, we can either assume
to be capable of engineering time-dependent Hamiltonians,
dubbed coherent control or just turning on time-independent
interactions, which we call incoherent control. We explicitly
model each bath constituent that we have access to and refer to
it as machine size. Thus for an infinite machine size, the inco-
herent control paradigm exactly captures the resource theory
of thermodynamics (see Table I for an overview of machine
complexity in our two paradigms). On the other hand, the
explicit modeling of size adds another layer to the analysis
of thermodynamic processes in terms of size and complexity.

In the accompanying article [55], we used this framework
to derive a universal bound for quantum refrigeration and

proved that it could be obtained by all types of control,
provided that complex enough machines and corresponding
interactions are available. In the present work we dig deeper
and reveal the intricate connection between machine complex-
ity, control and add the amount of resources consumed in the
process to the picture. The latter, in turn, is connected to the
entropy change associated with the energy drawn from the
resource. Consider our two extremal levels of control—first,
the coherent scenario, where the entropy of the resource is left
unchanged and, second, the incoherent scenario, where only
energy at maximum entropy (i.e., heat) is extracted from the
resource. Within each level of control, we investigate the low-
est attainable temperature, and the work cost for attaining a
certain temperature. These quantities allow us to give a direct
and insightful comparison between the different approaches
for quantum refrigeration.

To tackle these questions, it is natural to consider machines
of a given size (i.e., the number of systems to which one
has access), since the size in itself also represents a form of
control. We analyze this aspect of control starting from the
smallest possible machines. It turns out that the two-qubit
machine is the smallest one where the coherent and incoherent
scenarios can be compared in a meaningful way. We also
discuss the case of general machines, and in particular the
limit of asymptotically large machines.

Our results clearly demonstrate the expected crucial role
of control for quantum cooling performance, but surprisingly
unifies the different operational approaches through machine
complexity.

II. SETTING AND SUMMARY OF RESULTS

Cooling a quantum system could have several meanings.
For a system initially in a thermal state, one can drive it
to a thermal state of lower temperature. Alternatively, one
could consider increasing the ground-state population, or
decreasing the entropy or the energy. These notions are in
general inequivalent for target systems of arbitrary dimension.
Determining the fundamental limits to cooling is therefore a
complex problem in general. It turns out, however, that for
the case of a qubit target, all the above notions of cooling
coincide. Because of the clarity that this offers but also
because the bounds set on target qubits imply bounds for
target qudits (see our accompanying article [55]) we focus
on qubit targets only in this article. Specifically we consider
cooling a single qubit which is initially in a thermal state set
by the environment temperature TR and then isolated from any
environment [56]. The goal is to increase the ground sate of
the qubit (without changing its energy gap). In order to cool
the target qubit, we couple it to a quantum thermal machine.
We consider two scenarios for the operation of this machine,
that represent the two extremal levels of control (coherent and
incoherent) introduced above. For each of these scenarios we
are interested in the limits to cooling performance (see our
accompanying article [55] for a complementary treatment of
this) as well as in the associated work cost.

Work cost

We characterize the work cost by the free energy change
of the resource with respect to the environment temperature
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W := �FR = �E − TR�S, where �E is the energy change
of the resource (hot bath or battery), �S the corresponding
entropy change of the resource and TR the temperature of
the environment. Since all of our free energy differences will
be taken with respect to the same temperature, namely, TR,
we will in the rest of the paper denote �FR by �F for
ease of notation. �F is a well-established monotone across
thermodynamic paradigms (see, e.g., Refs. [57,58]). In a
resource theoretic sense it quantifies the maximum extractable
work from a resource in the presence of an environment at
equilibrium. This measure thus quantifies how much work the
resource could have performed with the energy invested in the
machine, if there were no further restrictions. This quantifier is
uniquely suited to capture the dimensional restrictions coming
from finite-size machines. If one could engineer machines op-
erating at the saturation of the second law of thermodynamics,
1 there would be no difference between both scenarios studied
here (indeed, one could use the energy in the hot bath to run a
thermal machine at Carnot efficiency to produce “pure” work
corresponding to the free energy change of the hot bath). As
we will see in the following, for finite-size machines, there can
be a drastic difference in cooling performance for the same
amount of invested work potential of the resource.

More precisely, the two scenarios are defined as follows:
Scenario 1: Incoherent operations. The source of free

energy is a hot bath at a temperature TH > TR. The machine
(or any of its subsystems) can be coupled to the hot bath or
rethermalized with the environment at any stage. The machine
interacts with the target qubit via an energy-conserving uni-
tary operation. The work cost of the operation corresponds to
the decrease in free energy of the hot bath.

Scenario 2: Coherent operations. Here the source of free
energy is coherent in the sense of allowing for energy-
nonconserving unitary operations between the machine and
the target qubit. This effectively assumes a coherent battery or
classical control field as the source of free energy. There is no
additional thermal bath, and the machine may only be coupled
to the environment (at temperature TR). As the entropy is
unaffected, the work cost, i.e., the change in free energy, is
simply the change in energy.

In order to compare these two scenarios and understand the
fundamental limits to cooling performance, we investigate

(1) The lowest attainable temperature T ∗
(2) The work cost for attaining any given temperature, in

particular T ∗.
In contrast to our accompanying article [55] where we

focus on the unbounded number of cycles regime, we are
here interested in the single cycle, repeated and asymptotic
regimes. In the single-cycle regime, an initial thermalization
step is followed by a single unitary operation on the ma-
chine and the target qubit (energy-conserving or arbitrary, for
scenarios 1 and 2, respectively). In the repeated operations
regime, thermalization and unitary operations are alternated

1By the second law of thermodynamics we mean that every state
transformation on the system ρ → ρ ′ such that F (ρ ′) − F (ρ ), where
F is the Helmholtz free energy, is smaller than the free energy
difference of the resource, denoted by �F here, is allowed. This law
holds true for asymptotically large dimensional resources; see [58].

FIG. 1. Comparison of achievable temperatures and associated
work costs for scenarios 1 and 2 in the single-cycle, finite repetitions,
and asymptotic regimes. The ratio T/TR is the relative cooling, T
being the final temperature and TR the initial one. The symbols
(dots, etc) correspond to maximal cooling (i.e., achieving minimal
temperature T ∗) in each scenario. Here we use TR = 1.

a finite number of times. In the asymptotic regime, this cycle
of steps is repeated indefinitely.

Turning our attention to the machine more closely, we
consider that distinct subsystems of the machine can connect
to baths at different temperatures, but we do not allow indi-
vidual transitions in the machine to be separately thermalized
at different temperatures. With that in mind, while bounds
on the performance of general machines can be set for both
paradigms (see our accompanying article [55]), the incoherent
paradigm is trivial unless the machine has a tensor product
structure. Since we are here focusing in comparing both
paradigms, in particular with respect to their associated work
cost, we will consider machines with such a structure only.
Furthermore, besides the more practical aspect of small ma-
chines, which are arguably easier to realize, especially in the
incoherent scenario where increasing the machine size usually
comes at the price of decreased interaction strengths [33,35],
they also already suffice to saturate the cooling bounds of
each scenario, see our accompanying article [55]. This as
such motivates our interest to focus most our analysis on the
minimal settings. The two smallest possible machines consist
of either a single qubit or two qubits. Of these, only the latter
allows for a nontrivial comparison between the incoherent
and coherent scenarios as a single-qubit machine allows for
cooling only in scenario 2.

Figure 2 summarizes the results of our comparison, and
demonstrates the crucial role of control for the fundamental
limits of quantum refrigeration. It shows the minimal achiev-
able temperature of the target qubit versus the associated work
cost in each scenario and for the single-cycle, finite-repetition,
and asymptotic regimes.

Surprisingly, in the single-cycle regime, we find that nei-
ther scenario is universally superior. While scenario 2 always
achieves the lowest temperature when no restriction is placed
on the work cost, there is a threshold work cost below which
scenario 1 outperforms scenario 2.
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Target qubit Machine

TH

TR

TRTR

Energy non-cons. unitariesHot bath + Energy cons. unitaries

EB

EC

U(t)

TR

Scenario 1 Scenario 2

Initialization

E

E = EB − EC

Tinc? ΔFinc? Tcoh? ΔFcoh?

FIG. 2. Model for the minimal thermal machine achieving cool-
ing and allowing for the comparison of two paradigmatic scenarios of
quantum refrigeration. After initialization of the machine and target
qubit with a thermal bath at room temperature TR, two scenarios
are proposed. In scenario 1, the free energy is provided by a hot
bath. This corresponds to a low level of control, i.e., maximal
entropy change. In contrast, scenario 2 describes a thermal machine
requiring a high level of control (e.g., via a coherent battery), that
can implement arbitrary unitary operations at zero entropy change.

For finite repetitions, additional cooling starts from the end
points of maximal single-cycle cooling in each scenario. For
scenario 1, one can think of this as repeated thermal operations
with a locality restriction, i.e., access to a single qubit from
each of the two baths in every round, and for scenario 2 it
corresponds to multiple cycles of coherently driven quantum
machines (such as, e.g., quantum Otto cycles).

In the asymptotic regime scenario 1 corresponds to the
minimal autonomous quantum thermal refrigerator, as shown
in Ref. [59] and discussed in our accompanying article [55].
Scenario 2 leads to heat bath algorithmic cooling, when
augmented with the ability to individually rethermalize the
machine qubits to the environment temperature TR. Moreover,
like in the single-cycle regime, scenario 2 always achieves a
lower temperature, although generally at a higher work cost.

While minimal machines saturate the cooling bounds, they
do so in a very ineffective way from a work cost perspective.
Extending our analysis to the case of N-qubit machines, by
considering cooling to a fixed target temperature, we finally
show that both coherent and incoherent machines can achieve
minimal work cost, i.e., saturate the second law, in the limit of
large size.

The rest of the paper is organized as follows. In Sec. III
we introduce notation and definitions. Section IV deals with
the case of the one-qubit machine. In Secs. V and VI we
investigate the cooling performance and associated work cost
of the two-qubit machine, focusing on the single-cycle regime.
In Sec. VII we discuss repeated operations and the asymptotic
regime of the two-qubit machine. We then discuss the satura-
tion of the second law by more general machines in Sec. VIII
before concluding in Sec. IX.

III. NOTATION AND DEFINITIONS

As argued in Sec. II, we consider machines consisting of
a given number of qubits. We take the energies of all qubit
ground states to be zero, denote the excited state energy of
qubit i by Ei, and the energy eigenstates by |0〉i and |1〉i. Thus,
the local Hamiltonian for each qubit is Hi = Ei|1〉i〈1|, and the
total Hamiltonian of target and machine is

H =
∑

i

Ei|1〉i〈1|. (1)

The initial state, prior to cooling, is the same for the incoherent
and coherent scenarios. Every qubit is in a thermal state of
its local Hamiltonian at the environment temperature TR. In
general, a thermal state of a qubit with energy gap ε and
temperature T is given by

τ (ε, T ) = r(ε, T )|0〉〈0| + [1 − r(ε, T )]|1〉〈1|, (2)

where the populations are determined by the Boltzmann
distribution (throughout the paper we work in natural units,
kB = h̄ = 1)

r(ε, T ) = 1

1 + e−ε/T
= 1

Z (ε, T )
, (3)

where Z (ε, T ) is the partition function corresponding to the
qubit Hamiltonian and temperature.

We denote the ground-state populations at the environ-
mental temperature by ri = r(Ei, TR), and the corresponding
thermal states by τi. We will refer to the target to be cooled
as qubit A, but for convenience, we will generally drop the
subscript for the target qubit, such that

E := EA, r := rA, τ := τA. (4)

Note that we can choose a unit of energy such that E = 1
without loss of generality, which we do for all our numerical
analysis.

In scenario 1, one (or more) of the machine qubits is first
heated to a higher temperature TH . This is followed by an
energy-conserving unitary acting jointly on the target and the
machine, i.e., any unitary U for which [U, H] = 0. In scenario
2, an energy-nonconserving unitary is applied directly to the
initial state of target and machine.

We extract the temperature of the target qubit by reading its
ground-state population and inverting the relation (3). When
the target qubit is diagonal, which will turn out to be the
case for all our relevant operations, the target has a well
defined temperature and this is a valid way to extract it.
When the target state is not diagonal it strictly speaking has
no temperature. One way to nevertheless extend the notion
of temperature to these states also is as presented above.
The work cost is accounted for from the perspective of the
work reservoir, i.e., the free energy change of the resource.
This is not necessarily equal to the free energy change of
the system itself, but is nonetheless the appropriate way to
quantify consumed resources. For completeness, we have also
worked out the two scenarios for the two-qubit machine case
from a system perspective in Appendix F.
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IV. ONE-QUBIT MACHINE

Denoting the machine qubit by B, the Hamiltonian is H =
HA + HB, and the initial state is simply

ρ in = τ ⊗ τB. (5)

A. Scenario 1: Incoherent operations

In this scenario, the machine qubit is first heated to a higher
temperature TH , resulting in the state

ρH = τ ⊗ τH
B , (6)

where τH
B = τ (EB, TH ) is the thermal state of qubit B at the

temperature of the hot bath. This is followed by an energy-
conserving unitary. However, there is no such unitary that can
cool the target, as we demonstrate now.

For the action of the unitary to be nontrivial (and hence,
for any cooling of the target to happen), the spectrum of the
joint Hamiltonian H must have some degeneracy, allowing
one to shift population between distinct energy eigenstates of
the same energy. The only possibilities are that (1) one of the
energies vanish E = 0 or EB = 0 or (2) the gaps are equal E =
EB. In case (1) the thermal state ρH will be proportional to the
identity in the degenerate subspace, and hence UρHU † = ρH

for any energy-conserving unitary U . In case (2) because
the matrix elements (in the product basis of HA, HB) fulfill
ρH

01,01 = r(1 − rH
B ) > rH

B (1 − r) = ρH
10,10, unitaries acting on

the degenerate subspace can only heat up the target.
Thus, for the single-qubit machine, cooling is impossible

in the incoherent scenario.

B. Scenario 2: Coherent operations

Using coherent operations, it is possible to cool, and we
now derive the minimal attainable temperature of the target,
and the work cost of cooling. This will also provide some
intuition for how to tackle the two-qubit machine, where
coherent and incoherent cooling can be compared.

Cooling corresponds to increasing the ground-state pop-
ulation of the target using an arbitrary joint unitary U on
target and machine. This population rcoh is given by the sum
of the two first diagonal entries of the final state Uρ inU †,
when expressed in the product basis of HA ⊗ HB. From the
Schur-Horn theorem one learns that this sum can at most be
the sum of the two greatest eigenvalues of Uρ inU †, which,
since U cannot change the eigenvalues of the state and since
ρ in is diagonal, are the sum of the two largest diagonal entries
of ρ in. Maximal cooling is thus achieved when rcoh equals the
sum of the two largest diagonal entries of ρ in. One readily
sees that ρ in

00,00 = rrB is the largest element and ρ in
11,11 = (1 −

r)(1 − rB) the smallest, while

ρ in
01,01

ρ in
10,10

= r(1 − rB)

(1 − r)rB
= e

E−EB
TR . (7)

Cooling is only possible if the initial ground-state population
r = ρ in

00,00 + ρ in
01,01 is not already maximal, i.e., if E < EB.

In this case, the maximal final population is r∗
coh = ρ in

00,00 +

ρ in
10,10 = rB corresponding to [from (3)]

T ∗
coh = E

ln
( r∗

coh
1−r∗

coh

) = E

EB
TR. (8)

This temperature can be achieved by a unitary which swaps
the states |01〉 and |10〉, and in fact this also minimizes the
associated work cost. More generally, we can identify an
optimal unitary which minimizes the work cost of cooling to
any temperature in the attainable range, i.e., any ground-state
population rcoh between r and r∗

coh. The optimal work cost is
given by

�Fcoh = (rcoh − r)(EB − E ), (9)

and it is achieved by a unitary of the form

U = e−itL, (10)

where

L = i|01〉〈10| − i|10〉〈01| (11)

is a Hamiltonian which generates swapping of excitations
between the target and machine qubits, and t = arcsin(

√
μ)

with

μ = rcoh − r

rB − r
. (12)

The optimality of (9) can be proven using the Shur-Horn
theorem and majorization [60,61]. The idea of the proof is
as follows. By scanning through all the unitarily attainable
ρcoh = Uρ inU † we are looking at all the Hermitian matrices
ρcoh with spectrum 
ρ in (given an n × n matrix μ = (μi j )
we generically denote its vectorized diagonal (μ11, . . . , μnn)
by 
μ). According to the Schur-Horn theorem there exists a
Hermitian matrix ρcoh with spectrum 
ρ in if and only if the
majorization condition 
ρcoh ≺ 
ρ in holds. Hence, a state ρcoh

is reachable by a unitary starting from ρ in if and only if the
diagonals fulfill 
ρcoh ≺ 
ρ in. In the coherent scenario, the free
energy difference and hence the work cost are simply given
by

�F = Tr[(ρcoh − ρ in )H] = (
ρcoh − 
ρ in ) · 
H , (13)

where 
H is the diagonal of H . The last term is constant, and
so minimizing the work cost for a given final rcoh is equivalent
to

min

ρ≺
ρin


ρ · 
H s.t. ρ1 + ρ2 = rcoh. (14)

As shown in Appendix C, this minimization can be solved
analytically, leading to (9) and (10).

V. TWO-QUBIT MACHINE: MODEL

When considering the two-qubit machine, the total Hamil-
tonian of target and machine is H = HA + HB + HC , with
qubits B and C forming the machine. The setup, as well as
the two scenarios, are illustrated in Fig. 1. The starting point
for both scenarios 1 and 2 is the initial state

ρ in = τ ⊗ τB ⊗ τC . (15)
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In scenario 2, an energy nonconserving unitary is applied
directly to the initial state ρ in, while in scenario 1, qubit C is
first heated to a higher temperature TH , resulting in the state

ρH = τ ⊗ τB ⊗ τH
C , (16)

where τH
C = τ (EC, TH ) is the thermal state of qubit C at the

temperature of the hot bath. This is followed by an energy-
conserving unitary acting on the three qubits. To allow for
nontrivial energy-conserving unitaries, there must be a de-
generacy in the spectrum of H with an associated degenerate
subspace. In Appendix A we show that the only degeneracy
which enables cooling of the target is obtained by setting

E = EB − EC . (17)

Hence, we work with this convention throughout the follow-
ing.

VI. TWO-QUBIT MACHINE: SINGLE-CYCLE REGIME

In this section, we discuss the single-cycle regime of
the two-qubit machine. We show that scenario 2 (coherent
operations) always reaches lower temperatures when the work
cost is unrestricted. However, for sufficiently low work cost, it
turns out that scenario 1 (incoherent operations) outperforms
scenario 2.

A. Scenario 1: Incoherent operations

We first identify the energy-conserving unitary that is
optimal for cooling the target qubit. From the relation (17)
it follows that there is only one subspace that is degenerate
in energy (relevant for cooling), which is spanned by the
states |010〉 and |101〉. Optimal cooling is simply achieved
by swapping these two states, i.e., the unitary is given by (see
Appendix A for more details)

U = |010〉〈101| + |101〉〈010| + 1non-deg, (18)

where 1non-deg is the identity operation on the complement
space. We can thus directly compute the final temperature
of the target qubit. We first compute the final ground-state
population rinc

rinc(TH ) = rrB + [(1 − r)rB + r(1 − rB)]
(
1 − rH

C

)
, (19)

where rH
C = r(EC, TH ) denotes the ground-state population

of qubit C after heating and r and rB denote the ground-
state populations of the target qubit and qubit B at room
temperature TR. The final temperature is found by inverting
Eq. (3):

Tinc(TH ) = E

ln
( rinc

1−rinc

) . (20)

Not limiting the work cost, optimal cooling is obtained in the
limit TH → ∞. In this case rH

C = 1
2 , and thus

r∗
inc = lim

TH →∞
rinc(TH ) = 1

2 (r + rB). (21)

We thus obtain the lowest achievable temperature for
scenario 1:

T ∗
inc = lim

TH →∞
Tinc(TH ) = E

ln
[ r+rB

2−(r+rB )

] . (22)

FIG. 3. Parametric plot of the relative temperature of the target
qubit T

TR
as a function of its work cost �F for EC = 0.4 and

TR = 1. The red solid curve corresponds to scenario 1 (incoherent
operations), the blue dashed, to scenario 2 (coherent operations).
When the cooling is maximal (i.e., the work cost is unrestricted),
scenario 2 always outperforms scenario 1, T ∗

coh < T ∗
inc and �F ∗

coh <

�F ∗
inc. However, below a critical work cost �Fcrit, scenario 1 always

outperforms scenario 2.

We are now interested in the work cost of cooling. For
scenario 1, the hot bath is the only resource, implying that
the free energy decrease in the hot bath represents the cooling
cost. The free energy difference is �F = �U − TR�S, where
�U is the internal energy change. For a thermal bath �U is
defined as the heat drawn from the bath, Q, which from the
first law equals the change in energy of qubit C. We follow
the convention of counting as positive what is taken from the
bath. The change in entropy �S also takes a simple form for
a thermal bath, �S = Q/TH . This gives

�Finc(TH ) = Q

(
1 − TR

TH

)

= EC
(
rC − rH

C

)(
1 − TR

TH

)
. (23)

The above equation shows that the work cost is determined
directly by the hot bath temperature TH . The work cost asso-
ciated to maximal cooling is given by

�F ∗
inc = lim

TH →∞
�Finc(TH ) = EC

(
rC − 1

2

)
. (24)

Note that despite appearances, the above expression is not
independent of EB, as the machine qubits are mutually con-
strained by the degeneracy condition (17).

More generally, as the ground-state population rinc is
monotonic in rH

C [see Eq. (19)] and thus in TH , one can
cool to any temperature between TR and T ∗

inc by varying TH

continuously between TR and infinity. The associated work
cost is given by Eq. (23); see Fig. 3.
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Note that the minimum achievable temperature in this
scenario is lower bounded away from absolute zero. Taking
the limits TH → ∞ and then EB → ∞, rinc tends to (1 + r)/2.
The work cost diverges in this limit. This is in contrast
to scenario 2 presented in the following section, where for
an unbounded work cost, one can cool arbitrarily close to
absolute zero.

B. Scenario 2: Coherent operations

We now turn to the second scenario, where any joint uni-
tary operation can be applied to the target and machine qubits.
The freedom in unitary operation means that the resonance
condition EB = E + EC is in principle not required to allow
cooling, in contrast to scenario 1. However, as the cooling in
either scenario depends on the choice of machine qubits, the
freedom to choose them represents an extra level of control. In
order to make a meaningful comparison between coherent and
incoherent operations, we will therefore enforce the resonance
condition for scenario 2 as well.

We first investigate the lowest achievable temperature. By
definition this is obtained by maximizing the ground-state
population of the target qubit. If we express the state of all
three qubits as a density matrix ρ in the energy eigenbasis,
then the initial state is seen to be diagonal from Eq. (15)
and the reduced state of the target is given by TrBC (ρ). Its
ground-state population is then simply given by adding the
populations (diagonal elements) of the four following states:
{|000〉, |001〉, |010〉, |011〉}. Making use of the Schur-Horn
theorem as argued in Sec. IV B one reaches optimal cooling
by unitarily rearranging the populations such that the four
largest populations of the initial state are mapped to the four
levels contributing to the ground-state population of the target.
Labeling the population of the state |i jk〉 in the corresponding
initial density operator ρ in by pi jk , and arranging them in
decreasing order of magnitude, we find

p000 >{p001, p100}> p010 = p101 >{p011, p110}> p111, (25)

where {·} denotes populations whose ordering depends on
whether EC > E or EC < E . Thus the only change necessary
to optimize cooling is to swap the populations of |100〉 and
|011〉, and this leads to a final ground-state population of
r∗

coh = rB, corresponding to the remarkably simple final tem-
perature

T ∗
coh = TR

E

EB
. (26)

This is the lowest achievable temperature in scenario 2, when
the work cost is unrestricted.

We now turn to the question of optimizing the work cost.
Indeed, on inspection of the end point of the above procedure,
one finds that within the ground and excited subspaces of
the target qubit, one can perform unitaries that rearrange
populations without affecting cooling, but that extract energy
back from the system, hence decreasing the work cost of the
cooling procedure.

We illustrate this subtlety with the end point of the simple
swap above. The only modified populations after the swap
are those of the states |100〉 and |011〉. Denoting the new
population of energy level |i jk〉 by p′

i jk , we have that p′
011 =

p100 and p′
100 = p011, with the rest unchanged. Thus the new

ordering is

p′
000 >{p′

001, p′
011}> p′

010 = p′
101 >{p′

100, p′
110}> p′

111. (27)

Although the ground-state population is maximized by this
swap, one sees that its energy is not minimal, since, e.g.,
p′

011 > p′
010. As a consequence, one could now extract en-

ergy without changing the ground-state population by simply
swapping the levels |011〉 and |010〉. Formally, this implies
that within each subspace of the target qubit (ground and ex-
cited), the state is not passive [17], i.e., the populations are not
ordered in decreasing order in energy within each subspace.
This showcases the general fact that the state the optimal
unitary drives the system to, necessarily has to be passive
within each of these subspaces. In the maximal cooling case,
as shown in Appendix C 3, this passivity condition remarkably
turns out to also be sufficient. If one thus follows performing
the unitary that reorders each subspace to be passive, and
subtracts the energy extracted from the work cost, we arrive
at the optimal work cost corresponding to maximal cooling,
�F ∗

coh.
We find that there are two cases. If EC � E , then

�F ∗
coh = EC (rB − r). (28)

Note that this end point can be achieved by simply performing
the unitary that swaps the states of qubits A and B. On the
other hand, if EC > E , then

�F ∗
coh = (EC − E )(rC − r) + EC (rB − rC ). (29)

The unitary that achieves this result is the sequence of two
swaps: first, the swap between the target and qubit C, followed
by the swap between the target and qubit B.

Remarkably, these two expressions can be intuitively un-
derstood in the following manner. In order to achieve cooling
on the target qubit, one would swap its state with a qubit of the
machine (or qubit subspace from the machine, also called a
“virtual qubit” [31] (see Appendix G) that has a larger energy
gap between its ground and excited states than the target qubit.
However, doing so requires moving population against the
energy difference between the target and the specific machine
qubit. Minimizing the work cost of the cooling procedure
therefore amounts to swapping the state of the target qubit
with the state of the machine qubit with the minimal energy
gap as long as this one is bigger than the energy E of the target
qubit.

If EC � E , then the smallest qubit subspace of the machine
that has a higher energy gap than the target is qubit B, and the
optimal procedure is to swap the states of those two qubits.
This has a work cost EB − E = EC per population. In contrast,
when EC > E , then qubit C is the machine qubit with the
smallest energy gap bigger than E (EC < EB by definition).
We thus begin by swapping the target qubit with qubit C, at
a work cost per population of EC − E < EC , and only after
proceed to cool further by swapping the target qubit with qubit
B, at higher work cost. This two cases, respectively, lead to
Eqs. (28) and (29) when the work cost is unrestricted.

We now move to the case where the work cost is restricted.
Equivalently, we consider the problem of cooling to a certain
temperature (above T ∗

coh), and derive the minimal associated
work cost. Intuitively, as the lowest temperature given by
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Eq. (26) can be reached by a full swap (or a sequence of
two full swaps if EC > E ), we might expect that an optimal
strategy for reaching an intermediate temperature will be a
partial swap.

This is indeed the case. In analogy with (30), the min-
imal work cost for a given target temperature Tcoh and
corresponding ground-state population rcoh is given by

min

ρ≺ 
ρin


ρ · 
H s.t.
4∑

i=1

ρi = rcoh, (30)

where 
ρ,
−→
ρ in, and 
H represent the diagonals of ρ, ρ in, and

H . This minimization can be solved analytically, as shown in
Appendix C. The optimal unitary and associated work cost
depends on whether EC � E or EC > E .

For the case EC � E , we can parametrize a partial swap of
the target with machine qubit B as in (11) by

U�(μ) = e−itLAB , (31)

where

LAB = i|01〉AB〈10| − i|10〉AB〈01|. (32)

It is useful to define t = arcsin(
√

μ), where μ ∈ [0, 1] is a
swapping parameter. The ground-state population of the target
qubit and the free energy cost are given by

rcoh,�(μ) = r + μ(rB − r), (33)

�Fcoh,�(μ) = μEC (rB − r), (34)

with μ = 0 corresponding to no swap and μ = 1 to a full
swap, which is the limit of maximal cooling, as previously
discussed; see Eqs. (26) and (28).

Similarly, for the case EC > E we employ the unitary that
first swaps qubits A with C until the required temperature is
reached, and if this is not the case after the full swap, continue
by swapping the new state of qubit A with qubit B. This
unitary can be parametrized as

U>(μ) = e−ig(μ)LAB e−i f (μ)LAC , (35)

where f (μ) = arcsin(
√

min{2μ, 1}), g(μ) = arcsin
(
√

max{2μ − 1, 0}), and LAC is defined analogously to
Eq. (32). Again μ ∈ [0, 1] such that for μ � 1

2 , a partial
swap between A and C is performed and for 1

2 < μ � 1, an
additional partial swap between A and B is performed. The
ground-state population for the strategy defined by U> is

rcoh,>(μ) =
{

r + 2μ(rC − r), μ ∈ [
0, 1

2

]
rC + (2μ − 1)(rB − rC ), μ ∈ (

1
2 , 1

] , (36)

and the work cost for the same strategy is given by

�Fcoh,>(μ) =
⎧⎨
⎩

2μ(EC − E )(rC − r), μ ∈ [
0, 1

2

]
(EC − E )(rC − r)
+ (2μ − 1)EC (rB − rC ), μ ∈ (

1
2 , 1

] .

(37)

The final temperature can again be computed by inverting
Eq. (3) using the ground-state population rcoh as given by
Eq. (33) or Eq. (36) according to the relative size of E and
EC . Since both �Fcoh and Tcoh are given as functions of μ,
by varying μ from 0 to 1, we can parametrically map out the

amount of cooling and the associated work cost, as shown in
Fig. 3 and discussed in Sec. VI C.

C. Comparison of scenarios 1 and 2

Our main results in the single-cycle regime are summarized
in Fig. 3. There we map out the amount of cooling versus
the associated work cost for both scenarios 1 and 2. In the
first case, the curve is generated from Eqs. (19) and (23)
[inverting Eq. (3) to extract Tinc] and is parametric in the hot
bath temperature TH . In the second case, the curve is generated
from Eqs. (34) and (33) [inverting Eq. (3) to extract Tcoh] and
is parametrized by the swapping parameter μ. We selected
EC � E for Fig. 3 but note that the behavior of the curve for
EC > E is similar, changing only by the fact that the coherent
curve has a discontinuity in the first derivative at μ = 1

2 .
The plot illustrates several interesting observations. First,

comparing the endpoints of the curves, we see that coherent
operations achieve a lower minimal temperature (i.e., stronger
cooling) and that the associated work cost is lower than the
one for achieving the minimal temperature with incoherent
operations. This is true generally. As can be seen by compar-
ing Eqs. (22) and (26), T ∗

coh < T ∗
inc since

ln

[
r + rB

2 − (r + rB)

]
<

EB

TR
, (38)

where we use that EB > E . Similarly, comparing Eqs. (24) and
(28), we see that �F ∗

coh < �F ∗
inc; see Appendix D. Thus, for

maximal cooling, coherent operations always perform better
than incoherent ones in the single-cycle regime.

Second, perhaps surprisingly, for nonmaximal cooling with
low work cost, incoherent operations may outperform coher-
ent ones. In fact, for sufficiently low work cost, this is always
the case. This can be seen by looking at the derivatives of the
two curves in Fig. 3 with respect to �F , close to �F = 0. For
the incoherent scenario, using the parametrization w.r.t. TH ,
we have

lim
�Finc→0

dTinc

d�Finc
= lim

�Finc→0

dTinc

dTH

(
d�Finc

dTH

)−1

= −∞. (39)

On the other hand, for the coherent scenario, using the
parametrization in terms of μ, we find that

lim
�Fcoh→0

dTcoh

d�Fcoh
= − 1

E ′
Cr(1 − r) ln2

(
1−r

r

) , (40)

where E ′
C = EC for EC � E and E ′

C = EC − E if E > EC .
This expression is negative but finite. Hence, since both curves
begin at the same point, the incoherent curve must lie below
the coherent one for sufficiently small �F . From the previous
observations, it follows that the curves must cross at least
once. Numerically we find that there is always exactly one
such crossing. Hence, there exists a critical work cost �Fcrit

below which incoherent operations perform better than coher-
ent ones, while the reverse is true above some �F ′

crit � �Fcrit,
with �F ′

crit = �Fcrit numerically strongly supported to be true.
We denote the temperature of the target qubit at the crossing
point by Tcrit. In Appendix E we study the behavior of Tcrit and
�Fcrit as functions of TR and EC .
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VII. TWO-QUBIT MACHINE: REPEATED OPERATIONS
AND ASYMPTOTIC REGIME

In this section we go beyond the single-cycle regime
discussed above. In the repeated and asymptotic regimes, the
cooling unitaries of either scenario can be repeated a finite
number of times or indefinitely, interspaced by steps in which
the machine qubits (B and C) are rethermalized to the temper-
atures of their baths, i.e., respectively, TR and TH in scenario 1
and TR for both machine qubits in scenario 2. The target qubit
is assumed not to rethermalize during the cooling process. In
this way, the bounds we obtain on achievable temperature and
work cost are general. Moreover, these bounds can be attained
in the limit where the thermal coupling of the target qubit is
much smaller than other couplings in the system.

Before going into detail, we first summarize the main
results of this section.

(1) Repeated operations do enhance the cooling, as the
lowest achievable temperatures in both scenarios are strictly
lower than in the single-cycle case.

(2) For incoherent operations (scenario 1), the asymptotic
regime (the limit of infinite repetitions) corresponds to au-
tonomous refrigeration. Specifically, we recover the cooling
and work cost obtained in the steady state of a three-qubit
autonomous refrigerator [29,62].

(3) For coherent operations (scenario 2), the asymptotic
regime corresponds to algorithmic cooling. In particular, the
cooling bounds correspond to known results [24,25].

(4) In the asymptotic regime, incoherent operations (sce-
nario 1, autonomous cooling) achieve the same maximal cool-
ing (for TH → ∞) as that of a single-cycle coherent operation
(scenario 2). See our accompanying article [55] for more
details on this relation.

(5) In both scenarios, the approach to the asymptotic
state of the target qubit (w.r.t. its ground-state population) is
exponential in the number of repetitions.

In the following, we will start by discussing repeated
operations in scenario 1 and then move to scenario 2.

A. Scenario 1: Repeated incoherent operations

As mentioned above, the scenario of repeated incoherent
operations involves a rethermalization of the machine qubits
to their respective baths in every step. This is followed by an
energy-conserving unitary operation between the machine and
the target. Thus, the cooling cycle consists in the following
steps (see Fig. 4), which can be repeated any number of
times.

(1) Environment reset and resource input. Qubit C is
heated to TH after the machine has been brought back to the
environment temperature TR.

(2) Cooling step. The energy-preserving unitary given by
Eq. (18) (swapping the degenerate states |101〉 ↔ |010〉) is
applied.

Prior to the first step, all three qubits are at temperature TR.
Then qubit C is heated to TH . After this, every cooling step
lowers the temperature of the target qubit A, but also cools
down qubit C while heating qubit B, which necessitates the
reset of B to TR and the heating of C to TH before the swap can
be repeated. This process can be conveniently characterized

TH

TR

Step 1 Step 2

FIG. 4. Scenario 1, repeated incoherent operations. Each cycle
comprises the steps of (1) the environment reset of qubit B and
resource input into qubit C and (2) the cooling unitary operation.

using the notion of a virtual qubit [31]. The virtual qubit
corresponds to the subspace of the machine which is involved
in the cooling swap with the target qubit. See Appendix G and
Appendix H for a detailed explanation. It is thus the properties
of the virtual qubit that determine the cooling in each step. For
the unitary operation here, the virtual qubit is spanned by the
states {|01〉BC, |10〉BC}. In each repetition, the rethermalization
of qubits B and C (Step 1) resets the virtual qubit.

In the asymptotic limit of infinite repetitions, we find
that the ground-state population of the target goes to (see
Appendix H)

rinc,∞ = 1

1 + e−E/Tinc,∞
, (41)

where Tinc,∞ is equal to the temperature of the virtual qubit,

Tinc,∞ = TV,inc = E
EB
TR

− EC
TH

. (42)

For a finite number n of repetitions, the ground-state popu-
lation of the target qubit approaches the asymptotic value as

rinc,n = rinc,∞ − (rinc,∞ − r)(1 − NV,inc)n, (43)

where NV,inc = rB(1 − rH
C ) + (1 − rB)rH

C is the norm of the
virtual qubit (i.e., the total population in the subspace
{|01〉BC, |10〉BC}). Note that all of the quantities in the above
expressions are functions of TH .

As argued also in Appendix I, the asymptotic temperature
given by Eq. (42) is exactly equal to the temperature obtained
in the steady state of an autonomous refrigerator [29], and
thus the asymptotic state of the target qubit under repeated
incoherent operations is the same as the steady state of the
autonomous fridge. More precisely,

rinc,∞ = rauto, i.e., Tinc,∞ = Tauto. (44)

This highlights an interesting connection between discrete and
continuous cooling procedures; see also Ref. [59].

Furthermore, showcasing one of the result of our accompa-
nying article [55], the maximal cooling in either case, obtained
in the limit TH → ∞, is the same as for a single-cycle
coherent operation [cf. Eq. (26)]

T ∗
auto = lim

TH →∞
Tauto = E

EB
TR = T ∗

coh . (45)
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FIG. 5. Cooling vs the work cost for different number of repe-
titions of incoherent operations. Each curve is parametrized by the
temperature of the hot bath, TH . EC , E , and TR are all set to 1.

Note that in this limit we have that NV,inc = 1
2 . Hence in each

repetition the difference between the current and asymptotic
ground-state population is halved.

Finally, we discuss the work cost of cooling. Detailed
calculations are given in Appendix H. Intuitively, the free
energy drawn from the hot bath can be divided into two
parts: (1) the energy required in the first instance of step 1,
to initially heat up qubit C to temperature TH , and (2) the
energy required in all subsequent repetitions of step 1, to
bring qubit C back to TH . This is straightforwardly calculated
from the change in population of qubit C, which is equal to
the change in population of qubit A, due to the form of the
energy-preserving unitary in step 2. The total heat drawn from
the hot bath for n repetitions is

QH
n = EC

(
rC − rH

C

) + EC (rinc,n−1 − r). (46)

In the asymptotic case, we find that the total heat drawn
from the hot bath is exactly the same as if we had run the
autonomous refrigerator beginning from the initial state, i.e.,
QH

∞ = QH
auto. See Appendix I for a detailed proof.

In order to cool to a given temperature, it is possible to
vary the number of repetitions as well as the temperature of
the hot bath TH . One may therefore ask which is the most
cost-efficient strategy. Generically, we observe (see Fig. 5)
that for a given final temperature, implementing many cooling
swaps has a lower work cost than using fewer swaps (at higher
temperature TH ). As implementing a higher number of swaps
would take longer time, this observation is reminiscent of
the power versus efficiency trade-off in continuously operated
machines [63].

B. Scenario 2: Repeated coherent operations

When discussing single-cycle cooling via coherent oper-
ations in Sec. VI B, we found that according to the relative

FIG. 6. Scenario 2, coherent operations, in the regime of repeated
operations. Each cycle comprises the steps of (1) the environment
reset of the machine and (2) cooling.

size of EC and EA, there were two different sets of unitaries
which lead to the lowest achievable temperature T ∗

coh of the
target qubit. The first procedure involved only qubits A and
B, and maximal cooling could be achieved with a single-qubit
machine (i.e., without qubit C). This procedure was found to
be optimal when EC � EA. However, although this procedure
was also valid when EC > E we showed that in this case a
different procedure, involving all three qubits, could reach the
same temperature, but at a lower work cost.

In the present section we discuss cooling via repeated
coherent operations. We find that after the first cycle a pro-
cedure similar to the second procedure in the single-cycle
case must be applied in order to cool further. In fact, one can
immediately see that for a single-qubit machine, repetitions
do not lower the temperature further beyond the single-cycle
case. Since the single-qubit machine simply swaps qubits A
and B, there is no unitary operation that can cool further, even
after B is rethermalized to the ambient temperature TR.

On the contrary, using a two-qubit machine one can
enhance the cooling beyond the single-cycle case. This is
achieved by repeating the following steps (see Fig. 6 and
Appendix J for more details):

(1) Environment reset. Qubits B and C are brought back to
the environment temperature TR.

(2) Cooling step. The unitary swapping the populations of
the states {|100〉, |011〉} is applied.

As qubit A is cooled by swapping with the subspace
{|00〉BC, |11〉BC} of the machine, we identify this subspace
as the relevant virtual qubit of the machine, and denote its
norm as NV,coh. Following calculations given in Appendix J,
one finds that in the asymptotic limit (infinite repetitions), the
ground-state population of the target goes to

r∗
coh,∞ = 1

1 + e−E/T ∗
coh,∞

, (47)

where the asymptotic temperature takes the simple form

T ∗
coh,∞ = TR

E

EB + EC
. (48)

This recovers the result of our accompanying article [55]
and the results of heat bath algorithmic cooling with no com-
pression qubit. Note that in the coherent case, the temperature
of the virtual qubit is just TR, since both the machine qubits
are at TR after rethermalization. However, due to the swap, the
final temperature of the target qubit is not simply the virtual
temperature, but rather is modulated by the ratio of energies of
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the target and virtual qubits; see Appendix G for more details.
This is why maximal cooling in the asymptotic case is attained
by picking the virtual qubit of the largest energy gap, which
for the two qubit machine is {|00〉BC, |11〉BC}.

For a finite number n of repetitions, the ground-state popu-
lation of the target approaches its asymptotic value as

r∗
coh,n = r∗

coh,∞ − (r∗
coh,∞ − r)(1 − NV,coh)n. (49)

Thus we see that cooling is enhanced compared to the
single-cycle case, i.e., T ∗

coh,n < T ∗
coh. (Note that we use the

asterisk here to denote the lowest achievable temperature for
a fixed number of repetitions.)

We proceed to discuss the work cost of this process. Note
that the optimal work cost of the first coherent operation
has already been discussed in Sec. VI B and is denoted by
�F ∗

coh. For further repetitions of the steps presented above,
free energy is needed to implement the unitary in step 2,
as populations of states with different energies are swapped.
(Step 1 is free as it involves thermalization of the machine
qubits to the environment temperature TR.) The work cost of n
full repetitions of the cycle is given by (details in Appendix J)

�F ∗
coh,n = �F ∗

coh + 2EC (r∗
coh,n − rB), (50)

where �F ∗
coh is the work cost in the single-cycle regime given

by Eq. (28). In the asymptotic regime, the work cost becomes

�F ∗
coh,∞ = �F ∗

coh + 2EC (r∗
coh,∞ − rB), (51)

where r∗
coh,∞ is the final ground-state population for the target

qubit corresponding to T ∗
coh,∞. Following the argument ex-

panded in full detail in Appendix J, the steps presented above
are the only way to cool the target after the first (optimal)
coherent operation, and thus �F ∗

coh,n represents the minimum
work cost given the lowest achievable temperature after n
repetitions.

C. Scenario 2: Algorithmic cooling

It turns out that even stronger cooling can be obtained, by
increasing the level of control compared to the above model
of repeated coherent operations, specifically, by allowing for
individual rethermalization of each machine qubit separately.
This model is equivalent to heat bath algorithmic cooling,
this time with a compression qubit, as we will demonstrate
shortly. The procedure consists in repeating the following
steps, shown schematically in Fig. 7:

(1) Environment reset. Qubit B is brought back to the
environment temperature TR.

(2) Precooling. The states of qubits B and C are swapped.
(3) Environment reset. Qubit B is brought back to the

environment temperature TR.
(4) Cooling step. The unitary swapping the populations of

the states |100〉 ↔ |011〉 is applied.
As before, the target qubit is swapped with the qubit sub-

space of the machine that has the highest energy gap, spanned
by |00〉BC and |11〉BC . However, because of the precooling
step, the virtual temperature of this coldest qubit subspace is
decreased, from TR to

TV,algo = TR
EB + EC

2EB
. (52)

FIG. 7. Scenario 2 in the regime of algorithmic cooling. Each
cycle comprises the steps of (1) environment reset, (2) precooling,
(3) environment reset, and (4) cooling.

The final temperature is again determined by the virtual
temperature. Following calculations given in Appendix K, in
the asymptotic limit of infinite repetitions, the ground-state
population of the target qubit tends to

r∗
algo,∞ = 1

1 + e−E/T ∗
algo,∞

, (53)

where the aysmptotic temperature is given by

T ∗
algo,∞ = TR

E

2EB
= T ∗

coh

2
. (54)

The final temperature is thus half the temperature achieved
via single-cycle coherent operations. Note that it is also half
of the minimal achievable temperature T ∗

auto in the asymptotic
incoherent regime. Moreover, since EB > EC , we see that
the lowest achievable temperature of algorithmic cooling is
strictly colder than that of repeated coherent operations. It is
worth noting that the expression for the minimal temperature
of Eq. (54) perfectly matches known results in algorithmic
cooling: specifically Eq. (7) of Ref. [24] (for the case of two
reset qubits), as well as Eq. (10) of Ref. [25].

For a finite number of repetitions of the above cycle of
steps, one finds that the ground-state population of the target
approaches r∗

algo,∞ as

ralgo,n = r∗
algo,∞ − (r∗

algo,∞ − r0)(1 − NV,algo)n, (55)

where r0 is the population of the ground state before the first
application of the procedure, and NV,algo is the norm of the
virtual qubit {|00〉BC, |11〉BC} right before step 4 (i.e., after
qubit C has been precooled and qubit B rethermalized).

Finally, we discuss the work cost of this process. Free
energy is needed to implement the unitaries in steps 2 and 4,
as populations of states with different energies are swapped.
Steps 1 and 3 have zero cost, since they involve only the
environment bath. As detailed in Appendix K, the work cost
after n full repetitions is given by

�Falgo,n = E (rB − rC ) + 2EC (ralgo,n − r0)

+ E (ralgo,n−1 − r0). (56)
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FIG. 8. Comparison of the work cost of using algorithmic cool-
ing from the beginning (orange dot-dashed), as opposed to the
optimal sequence of coherent operations (blue solid line), and of an
autonomous refrigerator (red dashed, parametrized w.r.t. TH ). EC , E ,
and TR are all set to 1.

Let us first remark that for cooling to a temperature that
would be achievable with repeated coherent operations, al-
gorithmic cooling has a higher work cost, as is argued in
Appendix L, and on comparison of Eqs. (50) and (56). Thus,
in order to minimize the work cost, a better strategy consists
in first cooling using repeated coherent operations, until the
temperature cannot be lowered any further, and only then
switch to algorithmic cooling. A detailed discussion of this
sequence of operations may be found in Appendix L. In the
asymptotic case of infinite repetitions, the work cost of this
procedure (denoted by �F ∗) becomes

�F ∗
algo,∞ = �F ∗

coh,∞ + E (rB − rC )

+ (2EC + E )(r∗
algo,∞ − r∗

coh,∞). (57)

This procedure turns out to be optimal with respect to the
work cost if one is interested in reaching the lowest achievable
temperature T ∗

algo,∞. If one is, however, interested in cooling
the target to a temperature between T ∗

algo,∞ and T ∗
coh,∞, fully

precooling qubit C is unnecessary and there exists a better
manner of proceeding after repeated coherent operations,
where given the desired final temperature of the target, one
tunes the precooling of qubit C to be a partial rather than a
full swap.

In Fig. 8 we compare the work cost of the optimal sequence
of operations (first repeated coherent, then optimized algo-
rithmic cooling) against that of using standard algorithmic
cooling from the beginning.

Finally, it is worth noting that algorithmic cooling is rather
expensive even when compared to autonomous cooling, for
the same target temperature; see Fig. 8. Thus, while algorith-
mic cooling can achieve the lowest temperatures, it may be
the case, depending on the parameters of the problem, that

an autonomous refrigerator can cool to any T � T ∗
auto more

efficiently.

VIII. SATURATING THE SECOND LAW

Upon comparing the cooling performance of the minimal
machines presented in this article with the ultimate perfor-
mance bound set by each paradigm in our accompanying
article [55], it is quite striking to notice that as simple as
they are, the minimal machines already suffice to saturate the
bound. The next natural question to ask is if these machines
are also optimal in terms of the associated work cost. We in
this section answer this question by the negative.

Clearly, fundamental limitations on the work cost arise
from the second law. Specifically, the free energy change of
the target qubit is a lower bound on the work cost. Here
we present a family of N-qubit coherent machines which
asymptotically saturate this bound. These machines have been
introduced in Ref. [12] for demonstrating optimal work ex-
traction from quantum states. Moreover, for any machine in
the family, we construct an incoherent machine of 2N qubits
achieving the same temperature. In the limit where the hot
bath becomes infinite, the associated work cost is the same up
to a constant offset that can be made arbitrarily small.

As we have learned from Sec. IV, a given temperature
T can be achieved via a single-qubit machine with energy
gap EN = E TR

T . In order to minimize the work cost, we now
introduce N − 1 additional qubits with energy gaps (evenly)
spaced between E and EN . The single swap is now replaced
by a sequence of swaps between the target qubit and machine
qubits in order of increasing energy gaps. This can be under-
stood intuitively by noticing that the energy difference �E
when swapping two qubits represents the work cost per unit
of population transferred �r (see Appendix G)

�F = �r�E . (58)

Hence, for a given final population transfer, replacing one
single swap at large �E by N swaps at smaller �E reduces
the work cost. As shown in Ref. [12], the total work cost of
this procedure is given by

�F = �Ftarget + O

(
1

N

)
, (59)

where �Ftarget is the increase in the free energy of the target
qubit. In the limit N → ∞, the work cost is exactly the free
energy transferred to the system, which is the lower bound
provided by the second law. See Appendix M for details.

The next question is whether we can find an incoherent
machine which also saturates the second law. A first pos-
sibility is to transform the above coherent machine into an
incoherent one, using the same idea as discussed in our ac-
companying article [55]. Specifically, each swap can be made
energy preserving by adding an extra qubit to the machine.
Therefore, the N-qubit coherent machine discussed above, can
be made incoherent by adding N extra qubits. The temperature
achieved by the incoherent machine will match that of the
coherent if either TH → ∞, or if the energies of the machine
qubits are increased so as to match the desired temperature on
the target qubit. In the former case, the work cost will diverge
when N → ∞, as each additional qubit must now be heated
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FIG. 9. Lowest achievable temperature T ∗ and associated free energy change of the resource �F ∗ for different cooling paradigms and
machine sizes.

from TR to infinite temperature. Nevertheless, in the second
case, this problem can be circumvented by noting that these
N additional qubits do not need to correspond to physical
qubits, but can be taken as virtual qubits. For instance, one
can consider a single evenly spaced (N + 1)-level system
providing all these virtual qubits. By embedding this (N + 1)-
level system into a larger system, the initial work cost can be
made arbitrarily small, and we can thus approach the work
cost of the corresponding coherent machine arbitrarily closely.
Consequently, we have constructed an incoherent machine
which also saturates the second law in the limit of N → ∞.
See Appendix M 2 for an explicit construction and proof.

IX. CONCLUSION AND OUTLOOK

We have presented a unified view of quantum refrigeration,
allowing us to compare various paradigms. In particular,
our framework incorporates autonomous quantum thermal
machines, algorithmic cooling, single-cycle refrigeration and
the resource theory of thermodynamics.

We characterize fundamental limits of cooling, in terms of
achievable temperature and work cost, for both coherent and

incoherent operations, in single-cycle, finite repetitions, and
asymptotic regimes. The main formulas are summarized in
Fig. 9.

We find that, contrary to classical thermodynamics, the
fundamental limits crucially depend on the level of control
available. In particular, this implies that the free energy does
not uniquely determine the minimal achievable temperature.
Moreover, the size of the machine represents an additional
form of control, which also influences thermodynamic per-
formance. On the one hand, for minimal machines, the dif-
ference between coherent and incoherent control is strongly
pronounced. On the other, in the asymptotic limit, the two
scenarios become mostly equivalent.

While we focused here on the task of cooling a single
qubit, it is natural to ask what the fundamental limits to
cooling larger systems are. Understanding the qubit case
already provides significant insight into the general case. For
the task of increasing the ground-state population, we showed
that qubit bounds apply in general. Repeating every scenario,
for every possible notion of cooling would, while possible,
not add much insight without a more physical motivation
of the respective target Hamiltonian and setting. It would
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furthermore be interesting to characterize the work cost of
cooling general systems, although this will also depend on
the exact Hamiltonian structure of the target, and so one
cannot expect to obtain a single-letter formula (as in the qubit
case).

Finally, it would indeed be interesting to discuss different
tasks than cooling, e.g., work extraction, and determine if
similar conclusions can be drawn.
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APPENDIX A: DEGENERACY CONDITION
FOR COOLING

We want here to investigate the conditions for cooling to
be possible in the incoherent scenario. First, we will see that
given an arbitrary machine, the system Hamiltonian of target
and machine together must have some degeneracy in that
scenario for cooling to be possible at all with that machine.
This is the content of Lemma 1. We will then move on to the
specific case of the two-qubit machine and prove that given
such a machine, cooling is only possible when EB = EA + EC .
This is what Lemma 2 proves.

Lemma 1. As [U, H] = 0, U can only cool the target by
acting on the degenerate eigenspaces of H .

Proof. Let EigH (E ) be the eigenspace of H with eigen-
value E . Let |v〉 ∈ EigH (E ). Per definition H |v〉 = E |v〉. Fur-
thermore as [U, H] = 0 we have

UH |v〉 = HU |v〉, ⇔ E (U |v〉) = H (U |v〉), (A1)

which shows that U |v〉 ∈ EigH (E ). This means that every en-
ergy eigenspace is invariant under U and so as the whole vec-
tor space can be decomposed as a direct sum of EigH (E ),U =
⊕EUE . We now have left to prove that if dim[EigH (E )] =
1, UE does not affect the temperature of the target. for
this, let E be an eigenvalue of H with dim[EigH (E )] = 1.
Let |v〉 ∈ EigH (E ). From Eq. (A1) and dim[EigH (E )] = 1,
UE |v〉 = U |v〉 = λ|v〉, meaning that |v〉 is an eigenvector
of UE with eigenvalue λ. Since UE is unitary, λ = eiθ and
so UE |v〉〈v|U †

E = |v〉〈v|, which proves our assertion as only
the diagonal elements of the density matrix UEρU †

E con-
tribute to the temperature of the target and that we can write

any ρ as

ρ =
∑

i j

ai j |vi〉〈v j |, (A2)

with (|vi〉)i being an ONB of eigenvectors of H and |v1〉 = |v〉.
So

UEρU †
E = UE

⎛
⎝∑

i j

ai j |vi〉〈v j |
⎞
⎠U †

E

= UE

⎛
⎝∑

i, j �=1

ai j |vi〉〈v j | +
∑
j �=1

a1 j |v〉〈v j |

+
∑
i �=1

ai1|vi〉〈v| + a11|v〉〈v|
⎞
⎠U †

E

=
∑
i, j �=1

ai j |vi〉〈v j | +
∑
j �=1

λa1 j |v〉〈v j |

+
∑
i �=1

ai1λ̄|vi〉〈v| + a11|v〉〈v|, (A3)

implying that

(UEρU †
E )kk = akk|vk〉〈vk| = ρkk, (A4)

i.e., the diagonal elements of UEρU †
E are the original ones. �

Next we want to argue the following lemma.
Lemma 2. Among all the possible degeneracies of H , only

EB = EA + EC enables cooling of qubit A.
Proof. Going through all the possible eigenvalue de-

generacies of H = HA + HB + HC, Hi = Ei|1〉〈1|i ⊗ 1ī, i ∈
{A, B,C}, we see that we can have three different types of
degeneracies:

(1) Ei = Ej, i, j ∈ {A, B,C}
(2) Ei = 0, i ∈ {A, B,C}
(3) Ei = Ej + Ek, i, j, k ∈ {A, B,C}.
We first look at type 2. Imposing EA = 0 we get four

degenerate subspaces: Amn := span{|0〉A|mn〉BC, |1〉A|mn〉BC},
where m, n ∈ {0, 1}. Our unitary can act within each Amn

subspace on ρH = τ ⊗ τB ⊗ τH
C . However, note that as rA =

1

1+e
− EA

TR

= 1
2 = 1 − rA, we have

ρH
0mn,0mn = rA[m + (−1)mrB]

[
n + (−1)nrH

C

]
= (1 − rA)[m + (−1)mrB]

[
n + (−1)nrH

C

]
= ρH

1mn,1mn (A5)

such that in each of the Amn ρ is proportional to the identity
and hence UρU † = ρ for all unitaries U acting only within
those subspaces. Note that this argument actually holds for
any permutation of A, B, and C thus also treating the EB = 0
and EC = 0 cases and showing that Type 2 degeneracies do
not enable cooling qubit A.

Turning to type 1, if EB = EC , we have two
2-dim. degenerate subspaces span(|001〉, |010〉) and
span(|101〉, |110〉). In order to cool qubit A, one
should maximize [TrBC (UρHU †)]1,1 = (UρHU †)000,000 +
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(UρHU †)001,001 + (UρHU †)010,010 + (UρHU †)011,011. As
unitaries are trace preserving, acting with U within the
first subspace leaves ρH

001,001 + ρH
010,010 unchanged. Acting

with U within the second one does not alter any term in
[TrBC (ρH )]1,1, meaning that this degeneracy does not allow
us to cool qubit A. For EA = EB, the degenerate subspaces are
span(|010〉, |100〉) and span(|011〉, |101〉). Doing the same
analysis as before shows that in general the unitary does not
leave [TrBC (ρ)]1,1 invariant, unfortunately it does for our ρH

since with this condition

ρH
010,010 = rA(1 − rB)rH

C = rB(1 − rA)rH
C = ρH

100,100 (A6)

and similarly ρ011,011 = ρ101,101. Imposing EA = EC we
have as degenerate subspaces span(|001〉, |100〉) and
span(|011〉, |110〉). As above the unitary does not in general
leave [TrBC (ρ)]1,1 invariant. For our ρH it is also the case but

since TH � TR, we have −EC
TH

� −EA
TR

meaning rH
C � rA, such

that

ρH
001,001 = rArB

(
1 − rH

C

)
� rH

C rB(1 − rA) = ρH
100,100 (A7)

and

ρH
011,011 = rA(1 − rB)

(
1 − rH

C

)
� rH

C (1 − rB)(1 − rA)

� ρH
110,110. (A8)

The unitary that maximizes [TrBC (UρHU †)]1,1 is therefore the
trivial one. Indeed any two-dimensional unitary can be written
as

U =
(

a b
−b∗eiθ a∗eiθ

)
, (A9)

with |a|2 + |b|2 = 1 and θ ∈ [0, 2π ). And so

[
U

(
ρH

001,001 0
0 ρH

100,100

)
U †

]
1,1

=
(

|a|2ρH
001,001 + |b|2ρH

100,100 abe−iθ
(
ρH

100,100 − ρH
001,001

)
a∗b∗eiθ

(
ρH

100,100 − ρH
001,001

) |b|2ρH
001,001 + |a|2ρH

100,100

)
1,1

= |a|2ρH
001,001 + |b|2ρH

100,100 (A10)

is maximal for |a| = 1, b = 0 and any choice of θ , which
exactly corresponds to the unitary of span(|001〉, |100〉) acting
trivially on our ρH . The same obviously holds for the unitaries
of span(|011〉, |110〉). This type of degeneracy hence also
does not allow any cooling to happen.

We are left with the last type of degeneracy, type 3. Look-
ing at EA = EB + EC we have that the degenerate subspace
is span(|011〉, |100〉). As after heating we have that TR � TH ,
which implies e−EC/TR � e−EC/TH , we have

ρH
011,011 = rA(1 − rB)

(
1 − rH

C

)
= rAe− EB

TR e− EC
TH rBrH

C

� rAe− EB+EC
TR rBrH

C = (1 − rA)rBrH
C = ρH

100,100,

(A11)

meaning that our unitary can only decrease [TrBC (UρU †)]1,1
by making use of this degeneracy (that corresponds to heating
qubit A). Similarly for EC = EA + EB (here the subspace is
span(|001〉, |110〉) and we have ρH

001,001 � ρH
110,110).

However, for EB = EA + EC , we have that our unitary can
increase [TrBC (ρH )]1,1 by acting in the degenerate subspace
span(|010〉, |101〉) since

ρH
010,010 = rA(1 − rB)rH

C

= rAe− EA
TR e− EC

TR rBrH
C

� rAe− EA
TR e− EC

TH rBrH
C = (1 − rA)rBrH

C = ρH
101,101.

(A12)

This shows that the only single degeneracy enabling cooling
is EB = EA + EC .

To finish the proof one needs to prove that there is no
way of selecting some of the above degeneracies and achieve
cooling without also having to select the degeneracy EB =

EA + EC . All the ways of selecting two degeneracies can be
listed as

(a) Ei = Ej = 0, i, j ∈ {A, B,C}
(b) Ei = Ej, Ek = 0, {i, j, k} = {A, B,C}
(c) EA = EB = EC = 0
(d) EA = EB = EC

(e) Ei = Ej, Ek = 2Ei, {i, j, k} = {A, B,C}.
In case (a), ρ ∝ 1 within the degenerate subspaces and so

no cooling can occur. In case (b) the degenerate subspaces are
span(|00〉i j |0〉k, |00〉i j |1〉k ), span(|11〉i j |0〉k, |11〉i j |1〉k ), and
span(|01〉i j |0〉k, |01〉i j |1〉k, |10〉i j |0〉k, |10〉i j |1〉k ). In the first
two subspaces ρ ∝ 1. In the third if (i, j, k) = (A, B,C)
then ρ ∝ 1, if (i, j, k) = (B,C, A) then cooling is possi-
ble as ρH

001,001 = ρH
101,101 � ρH

010,010 = ρH
110,110, but this is no

contradiction to our claim since in this case EB = EA +
EC holds, and if (i, j, k) = (C, A, B), ρH

100,100 = ρH
110,110 �

ρH
001,001 = ρH

011,011, meaning that no cooling is possible. In
case c) ρ ∝ 1 and so no cooling is possible. In case
(d) the degenerate subspaces are span(|001〉, |010〉, |100〉)
and span(|011〉, |101〉, |110〉) and as ρH

001,001 � ρH
010,010 =

ρH
100,100 and ρH

011,011 = ρH
101,101 � ρH

110,110, no cooling is
possible. Finally in case (e) the degenerate subspaces
are span(|01〉i j |0〉k, |10〉i j |0〉k ), span(|00〉i j |1〉k, |11〉i j |0〉k ),
and span(|01〉i j |1〉k, |10〉i j |1〉k ). If (i, j, k) = (A, B,C), then
ρH

010,010 = ρH
100,100, ρH

011,011 = ρH
100,100, and ρH

001,001 � ρH
110,110

so that no cooling is possible. If (i, j, k) = (B,C, A), then
ρH

001,001 � ρH
010,010, ρH

101,101 � ρH
110,110, and ρH

100,100 � ρH
011,011

so that no cooling is possible either. If (i, j, k) = (C, A, B),
ρH

010,010 � ρH
101,101 so that one can cool in that subspace but as

in this case EB = EA + EC also happens to hold; this again is
no contradiction to our claim.

If one selects more than two different degeneracies from
the list 1, 2, and 3, either three linearly independant degen-
eracies are selected, which results in EA = EB = EC = 0 and
leads to no cooling as shown above, or less than three of
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the selected degeneracies are linearly independent and the
situation reduces to one of the above treated case. This ends
the proof. �

APPENDIX B: OPTIMAL INCOHERENT
THERMALIZATION

Here we want to argue that for the case of the two-qubit
machine in order to cool the target qubit maximally, the
best way to make use of both thermal baths at TR and TH

respectively, is to thermalize qubit B at TR and qubit C at TH .
To begin, note that the only allowed unitaries are those

within the degenerate subspace, as these are the only ones
that preserve energy; see Sec. A. Any unitary within this
qubit subspace can be viewed as a partial swap between the
populations of the two levels (up to a change in relative phase,
which does not affect cooling). Thus the maximum cooling is
achieved by either swapping the populations fully, or not at all,
since these are the two extremes of the achievable populations.

Thus given two thermal baths, at temperatures TR and TH ,
the optimal manner of cooling would be to thermalize qubits
B and C in such a way as to maximize the difference in
the populations of the two degenerate levels |101〉 and |010〉
before applying a full swap; i.e., maximize p101 − p010, where
pi jk denotes the population of level |i jk〉.

Consider that we thermalize B and C to temperatures
between those of the environment and of the hot bath (these
are the extremes of temperatures available to us, and thus any
temperature in between is also attainable). It is straightforward
to check that

d

dTB
(p101 − p010)

= −EBrB(1 − rB)

T 2
B

(rrC + (1 − r)(1 − rC )) < 0 ∀TB,

(B1)

and
d

dTC
(p101 − p010)

= +ECrC (1 − rC )

T 2
C

(r(1 − rB) + (1 − r)rB) > 0 ∀TC .

(B2)

Therefore, it is optimal to have qubit B be as cold as
possible (the environment temperature TR), and qubit C be as
hot as possible (the temperature of the hot bath TH ). Thus,
although the whole machine has access to a hotter thermal
bath at temperature TH , it is best to only put qubit C in contact
with it, leaving B at the room temperature TR.

Note that the above argument also holds if the population
on qubit A is set to be some other value than r, meaning
that in the repeated incoherent operations one should also
rethermalize qubit B to TR and qubit C to TH before applying
the swap operation in order to maximally cool the target qubit.

APPENDIX C: SINGLE-CYCLE COHERENT MACHINES

We want here to discuss the solution of the single-cycle
coherent machines presented in the main text. More precisely,
we are interested in finding the unitary Uopt (or equivalently

the state ρopt = Uoptρ
inU †

opt) that enables us to cool the target
to a given temperature, i.e., ground state, rcoh ∈ [rin, r∗

coh] at a
minimal work cost. From the discussion of the main text we
know that using the Schur-Horn theorem, finding ρopt for a
system comprises a target qubit and a machine of n/2 energy
gaps amounts to solving

min

ρ≺ 
ρin


ρ · 
H , s.t.
n/2∑
i=1

ρi = rcoh. (C1)

Indeed, the solution of Eq. (C1) gives us 
ρcoh from which we
can easily reconstruct ρcoh and Uopt.

We in the following solve the problem for the one qubit
machine (n = 4) and the two qubit machine (n = 8). We then
show that, given a general machine, it is sufficient to solve two
marginal problems in order to find the optimal unitary cooling
the target to the lowest temperature r∗

coh. We also provide 
ρ∗
coh.

1. Coherent one-qubit machine

We want to solve

min

ρ≺ 
ρin


ρ · 
H, s.t. ρ1 + ρ2 = rcoh, (C2)

where the majorization conditions are simply given by

l∑
i=1

ρ
↓
i �

l∑
i=1

ρ
in,↓
i , ∀l = 1, . . . , 4, (C3)

with equality for l = 4. First, note that ρ1 + ρ2 = r with the
trace condition implies that ρ3 + ρ4 = 1 − r such that


ρ · 
H = ρ2EB + ρ3EA + ρ4(EA + EB)

= (r − ρ1 + ρ4)EB + (1 − r)EA︸ ︷︷ ︸
=cste

(C4)

such that in order to minimize 
ρ · 
H , one should minimize
ρ4 − ρ1. This means that ρ1 should be the greatest component
of 
ρ, namely, ρ1 = ρ

↓
1 and ρ4 the smallest, namely, ρ4 =

ρ
↓
4 . From Eq. (C3) with l = 1 we have ρ1 = ρ

↓
1 � ρ in

1 and
combining Eq. (C3) with l = 3 with the trace condition we
get

ρ
in,↓
1 + ρ

in,↓
2 + ρ

in,↓
3 + ρ

in,↓
4

= ρ
↓
1 + ρ

↓
2 + ρ

↓
3 + ρ

↓
4 � ρ

in,↓
1 + ρ

in,↓
2 + ρ

in,↓
3 + ρ

↓
4 , (C5)

such that ρ4 = ρ
↓
4 � ρ

in,↓
4 . In order to minimize ρ4 − ρ1 we

therefore have to choose 
ρ such that

ρ1 = ρ in
1 , ρ4 = ρ in

4 . (C6)

Plugging these values in the majorization conditions
[Eq. (C3)], we are left with

ρ
↓
2 � ρ in

3 , ρ
↓
2 + ρ

↓
3 = ρ in

2 + ρ in
3 . (C7)

As ρ
↓
2 = max{ρ2, ρ3} and ρ

↓
2 + ρ

↓
3 = ρ2 + ρ3, these are

exactly the conditions for

(ρ2, ρ3) ≺ (
ρ in

2 , ρ in
3

)
, (C8)

which means that one can get the majorized vector by ap-
plying a T-transform to the initial vector; that is, for some
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t ∈ [0, 1],(
ρ2

ρ3

)
= T

(
ρ in

2

ρ in
3

)
, T =

(
t 1 − t

1 − t t

)
. (C9)

This simply follows from the fact that in general r ≺ s iff there
exists some doubly stochastic matrix D such that r = Ds, and
that the most general 2 × 2 doubly stochastic matrices are T-
transforms. Now we just have to choose t such that ρ1 + ρ2 =
r, that is,

t = ρ in
1 + ρ in

3 − r

ρ in
3 − ρ in

2

, (C10)

or equivalently

1 − t = r − rin

rB − rin
(C11)

or

r = rin + (1 − t )(rB − rin). (C12)

The associated work cost is

�F = (
ρ − 
ρ in) · 
H
= (1 − t )

(
ρ in

3 − ρ in
2

)
(EB − EA)

= (1 − t )(rB − rA)(EB − EA). (C13)

A unitary U such that 
ρ = 
Diag(Uρ inU †) is for example
given by

U =

⎛
⎜⎝

1 0 0 0
0

√
1 − μ

√
μ 0

0 −√
μ

√
1 − μ 0

0 0 0 1

⎞
⎟⎠, (C14)

where μ = 1 − t and can be written more compactly as

U = e−i arcsin(
√

μ)LAB , (C15)

with LAB = i|01〉〈10| − i|10〉〈01|.

2. Coherent two-qubit machine

We want to solve

min

ρ≺ 
ρin


ρ · 
H , s.t.
4∑

i=1

ρi = rcoh, (C16)

where the majorization conditions are simply given by

k∑
i=1

ρ
↓
i �

k∑
i=1

ρ
in,↓
i , ∀k = 1, . . . , 7,

8∑
i=1

ρ
↓
i =

8∑
i=1

ρ
in,↓
i . (C17)

The ordering of the original entries is crucial to the solving
of the problem. There are hence two regimes that one needs
to investigate, namely, EC � EA and EC > EA. We begin with
the EC � EA regime.

a. The EC � EA regime. In this regime the ordering of the
original diagonal entries is given by

ρ in
1 > ρ in

2 > ρ in
5 > ρ in

3 = ρ in
6 > ρ in

4 > ρ in
7 > ρ in

8 . (C18)

We furthermore have


ρ · 
H = ρ2EC + ρ3EB + ρ4(EB + EC ) + ρ5EA

+ ρ6(EA + EC ) + ρ7(EA + EB)

+ ρ8(EA + EB + EC ). (C19)

We will next rewrite Eq. (C19), keeping in mind the
ordering of the original state of Eq. (C18), in a way that the
majorization conditions of Eq. (C17) can easily be applied.
First, we use that ρ5 + ρ6 + ρ7 + ρ8 = 1 − r and get


ρ · 
H = (ρ2 + ρ4)︸ ︷︷ ︸
r−ρ1−ρ3

EC + (ρ3 + ρ4)︸ ︷︷ ︸
r−ρ1−ρ2

EB

+ (1 − r)EA + (ρ6 + ρ8)︸ ︷︷ ︸
1−r−ρ5−ρ7

EC + (ρ7 + ρ8)EB

= (r − ρ1)EC − ρ3EC + (r − ρ1 − ρ2)EC

+ (r − ρ1 − ρ2)EA + (1 − r)EA + (1 − r − ρ5)EC

− ρ7EC + (ρ7 + ρ8)EC + (ρ7 + ρ8)EA

= (r − ρ1)EC + [1 − (ρ1 + ρ2 + ρ5 + ρ3)]EC

+ [1 − (ρ1 + ρ2)]EA + ρ8EC + (ρ7 + ρ8)EA,

(C20)

where in the second step we used that EB = EA + EC . Note
that the sum of the the minima of each summand of 
ρ · 
H is
for sure a lower bound to the minimum of 
ρ · 
H , such that
if one can pick a ρ achieving this lower bound, we will have
reached the minimum of 
ρ · 
H . Using the last reformulation
of 
ρ · 
H , this is luckily possible, indeed:

ρ1 � ρ
↓
1 � ρ

in,↓
1 = ρ in

1 ,

ρ1 + ρ2 + ρ5 + ρ3 �
4∑

i=1

ρ
↓
i �

4∑
i=1

ρ
in,↓
i

= ρ in
1 + ρ in

2 + ρ in
5 + ρ in

3 ,

ρ1 + ρ2 � ρ
↓
1 + ρ

↓
2 � ρ

in,↓
1 + ρ

in,↓
2 = ρ in

1 + ρ in
2 ,

ρ8 � ρ
↓
8 � ρ

in,↓
8 = ρ in

8 ,

ρ7 + ρ8 � ρ
↓
7 + ρ

↓
8 � ρ

in,↓
7 + ρ

in,↓
8 = ρ in

7 + ρ in
8 .

(C21)

To minimize the first summand we hence have to choose
ρ1 = ρ in

1 . To minimize the third summand, since ρ1 = ρ in
1 , we

have to pick ρ2 = ρ in
2 . To minimize the fourth summand we

have to choose ρ8 = ρ in
8 which forces us to choose ρ7 = ρ in

7
in order to minimize the last summand. We are hence left with
the minimization of the second summand that is achieved if

ρ5 + ρ3 = ρ in
5 + ρ in

3 (C22)

is satisfied.
Now note that we have

ρ1 + ρ2 + max{ρ3, ρ5} � ρ
↓
1 + ρ

↓
2 + ρ

↓
3

� ρ
in,↓
1 + ρ

in,↓
2 + ρ

in,↓
3

= ρ in
1 + ρ in

2 + ρ in
5

= ρ1 + ρ2 + ρ in
5 (C23)
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such that

max{ρ3, ρ5} � ρ in
5 . (C24)

Equations (C24) and (C22) together mean that (ρ3, ρ5) ≺
(ρ in

5 , ρ in
3 ), which we know from Sec. C 1 to be equivalent to(
ρ3

ρ5

)
= T1

(
ρ in

3

ρ in
5

)
, T1

(
t1 1 − t1

1 − t1 t1

)
, (C25)

for some t1 ∈ [0, 1]. Similarly, as
∑8

i=1 ρi = ∑8
i=1 ρ in

i we find
that

ρ4 + ρ6 = ρ in
4 + ρ in

6 (C26)

and using that the second line of Eq. (C21) is satisfied with
equality we find that

4∑
i=1

ρ
↓
i + max{ρ4, ρ6} �

5∑
i=1

ρ
↓
i =

5∑
i=1

ρ
in,↓
i =

4∑
i=1

ρ
↓
i + ρ in

6

(C27)

such that

max{ρ4, ρ6} � ρ in
6 . (C28)

Now Eqs. (C26) and (C28) together mean that (ρ4, ρ6) ≺
(ρ in

4 , ρ in
6 ), which as before is equivalent to(
ρ4

ρ6

)
= T2

(
ρ in

4

ρ in
6

)
, T2

(
t2 1 − t2

1 − t2 t2

)
, (C29)

for some t2 ∈ [0, 1]. This means that for any t1 and t2, we
have found a vector ρ that achieves the minimum of each
summands in (C20) and that therefore is the solution of our

problem. Of course, for a given r, only some t1 and t2 will
solve our problem, namely the ones satisfying

r = ρ1 + ρ2 + ρ3 + ρ4

= ρ in
1 + ρ in

2 + t1ρ
in
3 + (1 − t1)ρ in

5 + t2ρ
in
4 + (1 − t2)ρ in

6

=
4∑

i=1

ρ in
i + (t1 − 1)ρ in

3 + (1 − t1)ρ in
5

+ (t2 − 1)ρ in
4 + (1 − t2)ρ in

6

= rin + (1 − t1)
(
ρ in

5 − ρ in
3

) + (1 − t1)
(
ρ in

6 − ρ in
4

)
.

(C30)

Next note that

ρ in
5 − ρ in

3 = (1 − rA)rBrC − rA(1 − rB)rC

= rBrC − rArBrC − rArC + rArBrC

= (rB − rA)rC,

ρ in
6 − ρ in

4 = (1 − rA)rB(1 − rC ) − rA(1 − rB)(1 − rC )

= (1 − rC )(rB − rArB − rA + rArB)

= (1 − rC )(rB − rA) (C31)

such that

r = rin + [(1 − t1)rC + (1 − t2)(1 − rC )](rB − rA). (C32)

If we were to choose t1 = t2 = t , then we would have

r = rin + (1 − t )(rB − rA). (C33)

Now the work cost of carrying this process is

�F = (
ρ − 
ρ in ) · 
H = [
t1ρ

in
3 + (1 − t1)ρ in

5 − ρ in
3

]
EB + [

t2ρ
in
4 + (1 − t2)ρ in

6 − ρ in
4

]
(EB + EC )

+ [
(1 − t1)ρ in

3 + t1ρ
in
5 − ρ in

5

]
EA + [

(1 − t2)ρ in
4 + t2ρ

in
6 − ρ in

6

]
(EA + EC )

= (1 − t1)
(
ρ in

5 − ρ in
3

)
EB + (1 − t2)

(
ρ in

6 − ρ in
4

)
(EB + EC )

+ (1 − t1)
(
ρ in

3 − ρ in
5

)
EA + (1 − t2)

(
ρ in

4 − ρ in
6

)
(EA + EC )

= [
(1 − t1)

(
ρ in

5 − ρ in
3

) + (1 − t2)
(
ρ in

6 − ρ in
4

)]
EC

= [(1 − t1)rC + (1 − t2)(1 − rC )](rB − rA)EC . (C34)

If we choose t1 = t2 = t , then

�F = (1 − t )(rB − rA)EC . (C35)

A unitary U such that 
ρ = 
Diag(Uρ inU †) is, for example, given by

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0

√
1 − μ1 0

√
μ1 0 0 0

0 0 0
√

1 − μ2 0
√

μ2 0 0
0 0 −√

μ1 0
√

1 − μ1 0 0 0
0 0 0 −√

μ2 0
√

1 − μ2 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (C36)
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where μ1 = 1 − t1 and μ2 = 1 − t2. If we choose t1 = t2 = t , then μ1 = μ2 = μ and

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0

√
1 − μ 0

√
μ 0 0 0

0 0 0
√

1 − μ 0
√

μ 0 0
0 0 −√

μ 0
√

1 − μ 0 0 0
0 0 0 −√

μ 0
√

1 − μ 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(C37)

can be compactly written as

U = e−i arcsin(
√

μ)LAB , LAB − i|01〉〈10|AB − i|10〉〈01|AB. (C38)

b. The EC > EA regime. In this regime the ordering of the original diagonal entries is given by

ρ in
1 > ρ in

5 > ρ in
2 > ρ in

3 = ρ in
6 > ρ in

7 > ρ in
4 > ρ in

8 . (C39)

As before, we would like to reshuffle the terms of


ρ · 
H = ρ2EC + ρ3EB + ρ4(EB + EC ) + ρ5EA + ρ6(EA + EC ) + ρ7(EA + EB) + ρ8(EA + EB + EC ) (C40)

such that each summand can be minimized. So we get


ρ · 
H = (ρ2 + ρ4)EC + (r − ρ1 − ρ2) EB︸︷︷︸
=EA+EC

+ρ5EA + ρ6(EA + EC ) + (1 − r − ρ5 − ρ6)(EA + EB) + ρ8EC

= −ρ1EC + (−ρ1 − ρ2)EA + (−ρ5)(EA + EC ) + ρ4EC + (−ρ6)EA + ρ8EC + (1 − r)(EA + EB) + rEB︸ ︷︷ ︸
c

= −ρ1EC + (−ρ1 − ρ5 − ρ2)EA + (r − 1 + ρ6 + ρ7 + ρ8)EC + (ρ4 + ρ8)EC + (−ρ6)EA + c

= −ρ1EC + (−ρ1 − ρ5 − ρ2)EA + ρ6(EC − EA) + (ρ7 + ρ4 + ρ8)EC + ρ8EC + c + (r − 1)EC︸ ︷︷ ︸
d

= −ρ1EC + (−ρ1 − ρ5 − ρ2)EA + d + ρ8EC + (ρ6 + ρ7 + ρ4 + ρ8)(EC − EA) + (ρ7 + ρ4 + ρ8)EA. (C41)

Now looking at each summand and applying the majorization conditions with the order of the original vector that we know we
get

ρ1 � ρ in
1 ⇒ ρ1 = ρ in,

1
ρ1 + ρ5 + ρ2 � ρ in

1 + ρ in
5 + ρ in

2 ⇒ ρ5 + ρ2 = ρ in
5 + ρ in

2 ,

ρ8 � ρ in
8 ⇒ ρ8 = ρ in

8 ,

ρ7 + ρ4 + ρ8 � ρ in
7 + ρ in

4 + ρ in
8 ⇒ ρ7 + ρ4 = ρ in

7 + ρ in
4 ,

ρ6 + ρ7 + ρ4 + ρ8 � ρ in
6 + ρ in

7 + ρ in
4 + ρ in

8 ⇒ ρ6 = ρ in
6 .

(C42)

Furthermore, note that out of
∑8

i=1 ρi = ∑8
i=1 ρ in

i and the
above fixed values we get

ρ3 = ρ in
3 . (C43)

Also using the majorization conditions, we have

ρ1 + max{ρ5, ρ2} � ρ in
1 + ρ in

5 ⇒ max{ρ5, ρ2} � ρ in
5 ,

min{ρ5, ρ2} + ρ8 � ρ in
4 + ρ in

8 ⇒ min{ρ5, ρ2} � ρ in
4 ,

(C44)

which together with (C42) means that (ρ5, ρ2) ≺ (ρ in
5 , ρ in

2 )
and (ρ4, ρ7) ≺ (ρ in

4 , ρ in
7 ), which is equivalent to(

ρ5

ρ2

)
= T1

(
ρ in

5
ρ in

2

)
, T1

(
t1 1 − t1

1 − t1 t1

)
(C45)

and (
ρ4

ρ7

)
= T2

(
ρ in

4
ρ in

7

)
, T2

(
t2 1 − t2

1 − t2 t2

)
, (C46)

for some t1 ∈ [0, 1] and t2 ∈ [0, 1]. This means that for any t1
and t2, the vector ρ is the solution of our problem. Of course,
for a given r, only some t1 and t2 will solve our problem,
namely, the ones satisfying

r = ρ1 + ρ2 + ρ3 + ρ4

= rin + (1 − t1)
(
ρ in

5 − ρ in
2

) + (1 − t1)
(
ρ in

7 − ρ in
4

)
= rin + [(1 − t1)rB + (1 − t1)(1 − rB)](rC − rA). (C47)

If we were to choose t1 = t2 = t , then we would have

r = rin + (1 − t )(rC − rA). (C48)

Now the work cost of carrying this process is

�F = (
ρ − 
ρ in ) · 
H
= [(1 − t1)rB + (1 − t2)(1 − rB)]

·(rB − rA)(EC − EA). (C49)
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If we choose t1 = t2 = t , then

�F = (1 − t )(rC − rA)(EC − EA). (C50)

A unitary U such that 
ρ = 
Diag(Uρ inU †) is for example given by

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0

√
1 − μ1 0 0

√
μ1 0 0 0

0 0 1 0 0 0 0 0
0 0 0

√
1 − μ2 0 0

√
μ2 0

0 −√
μ1 0 0

√
1 − μ1 0 0 0

0 0 0 0 0 1 0 0
0 0 0 −√

μ2 0 0
√

1 − μ2 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C51)

where μ1 = 1 − t1 and μ2 = 1 − t2. If we choose t1 = t2 = t , then μ1 = μ2 = μ and then U can be compactly written as

U = e−i arcsin(
√

μ)LAC , LAC = −i|01〉〈10|AC − i|10〉〈01|AC . (C52)

Note, however, that upon applying this procedure one only finds the solution of our problem for

rA � r � ρ in
1 + ρ in

5 + ρ in
3 + ρ in

7 . (C53)

To find the solution for

ρ in
1 + ρ in

5 + ρ in
3 + ρ in

7 � r � ρ in
1 + ρ in

5 + ρ in
2 + ρ in

3 (C54)

we use another rearrangement of terms of 
ρ · 
H , namely,


ρ · 
H = ρ2EC + (r − ρ1 − ρ2)EB + ρ4EC + (1 − r − ρ7 − ρ8)EA + ρ6EC + (ρ7 + ρ8)(EA + EB) + ρ8EC

= −ρ1EC + (−ρ1 − ρ2)EA + rEB + (1 − r)EA(ρ4 + ρ6 + ρ7 + ρ8)EC + (ρ7 + ρ8)EA + ρ8EC . (C55)

By looking at each summand individually we find that

ρ1 � ρ in
1 ⇒ ρ1 = ρ in

1
ρ1 + ρ2 � ρ in

1 + ρ in
5 ⇒ ρ2 = ρ in

5
ρ8 � ρ in

8 ⇒ ρ8 = ρ in
8

ρ7 + ρ8 � ρ in
4 + ρ in

8 ⇒ ρ7 = ρ in
4

ρ6 + ρ7 + ρ4 + ρ8 � ρ in
6 + ρ in

7 + ρ in
4 + ρ in

8 ⇒ ρ4 + ρ6 = ρ in
6 + ρ in

7 .

(C56)

Using the trace condition we find that

ρ3 + ρ5 = ρ in
2 + ρ in

3 . (C57)

As before this leads to (ρ5, ρ3) ≺ (ρ in
2 , ρ in

3 ) and (ρ6, ρ4) ≺
(ρ in

6 , ρ in
7 ), which is equivalent to(

ρ5

ρ3

)
= T1

(
ρ in

2

ρ in
3

)
, T1

(
t1 1 − t1

1 − t1 t1

)
(C58)

and (
ρ6

ρ4

)
= T2

(
ρ in

6

ρ in
7

)
, T2

(
t2 1 − t2

1 − t2 t2

)
, (C59)

for some t1 ∈ [0, 1] and t2 ∈ [0, 1]. This means that for any t1
and t2, the vector ρ is the solution of our problem. Of course,
for a given r, only some t1 and t2 will solve our problem,
namely, the ones satisfying

r = ρ1 + ρ2 + ρ3 + ρ4

= rC + [(1 − t1)rA + (1 − t1)(1 − rA)](rB − rC ). (C60)

If we were to choose t1 = t2 = t , then we would have

r = rC + (1 − t )(rB − rC ). (C61)

The work cost of carrying this process is

�F = (
ρ − 
ρ in) · 
H
= (rC − rA)(EC − EA)

+ [(1 − t1)rA + (1 − t2)(1 − rA)](rB − rC )EC . (C62)

If we choose t1 = t2 = t , then

�F = (rC − rA)(EC − EA) + (1 − t )(rB − rC )EC . (C63)

A unitary U such that 
ρ = −−→
Diag(UρU †) is given by

U = U35(μ1)U46(μ2)U25(1)U57(1), (C64)

where μ1 = 1 − t1 and μ2 = 1 − t2 and μ ∈ [0, 1]

Ui j (μ) :=
(√

1 − μ
√

μ

−√
μ

√
1 − μ

)
i j

⊕ 1ī j . (C65)

If we choose t1 = t2 = t then μ1 = μ2 = μ, then U can be
written as

U = e−i arcsin(
√

μ)LAB e−iπ/2LAC , (C66)

with LAC = −i|01〉〈10|AC − i|10〉〈01|AC and LAB =
−i|01〉〈10|AB − i|10〉〈01|AB. We can also summarize both
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parts of the solution in one unitary. Then U looks like

U = U35(μ2)U46(μ2)U25(μ1)U57(μ1), (C67)

with μ1 = min(2μ, 1), μ2 = max(2μ − 1, 0), and μ ∈ [0, 1],
or

U = e−i arcsin(
√

μ2 )LAB e−i arcsin(
√

μ1 )LAC . (C68)

3. Endpoint of arbitrary single-cycle machines

We here want to find the solution of the problem of
Eq. (C1) when r is chosen to be the maximally allowed r.
We set k = n/2. We know that r is at most r∗

coh = ∑k
i=1 ρ

in,↓
i

since

r =
k∑

i=1

ρi �
k∑

i=1

ρ
↓
i �

k∑
i=1

ρ
in,↓
i (C69)

and choosing ρi = ρ
in,↓
i , i = 1, . . . , n achieves this upper

bound, i.e., then 
ρ ≺ 
ρ in and r = r∗
coh. We next want to show

the following lemma.
Lemma 3. For any state ρ such that rρ = r∗

coh, the first k
entries of the state are its biggest entries.

Proof. Suppose not, i.e., there exists a ρ as in the statement
for which there exist i � k, and j > k such that ρi <

ρ j . Then 
ρ ′ := Pi j 
ρ ≺ 
ρ ≺ 
ρ in and r′ = ∑k
l=1 ρ ′

l =∑k
l=1,l �=i ρl + ρ j >

∑k
l=1,l �=i ρl + ρi = ∑k

l=1 ρl = rρ . As


ρ ′ ≺ 
ρ in, r′ � r∗
coh so rρ < r∗

coh contradicting the
assumption. �

Writing 
ρ as


ρ = (vρ,wρ ), (C70)

with

vρ = ((vρ )1, . . . , (vρ )k ) := (ρ1, . . . , ρk )

wρ = ((wρ )1, . . . , (wρ )n−k ) := (ρk+1, . . . , ρn), (C71)

the above lemma can be reformulated as

v↓
ρ = (ρ↓

1 , . . . , ρ
↓
k ). (C72)

What makes the above equation nontrivial is that on the left-
hand side only the first k entries of ρ are reordered whereas
on the right-hand side all the entries of ρ are reordered. Using
that 
ρ ≺ 
ρ in we have for all l = 1, . . . , k that

l∑
i=1

(v↓
ρ )i =

l∑
i=1

ρ
↓
i �

l∑
i=1

ρ
in,↓
i , (C73)

with equality for l = k. This is equivalent to vρ ≺ vρin,↓ . Also
note that the lemma implies that the last n − k entries of 
ρ are
the smallest n − k ones, that is,

w↓
ρ = (ρ↓

k+1, . . . , ρ
↓
n ). (C74)

Again using that 
ρ ≺ 
ρ in we find that for all l = 1, . . . , n − k,

l∑
i=1

(w↓
ρ )i =

l∑
i=1

ρ
↓
k+i �

l∑
i=1

ρ
in,↓
k+i (C75)

with equality for l = n − k. This is equivalent to wρ ≺ wρin,↓ .
So we have proven the following lemma.

Lemma 4. If 
ρ satisfies rρ = r∗
coh, then


ρ ≺ 
ρ in ⇔ vρ ≺ vρin,↓ and wρ ≺ wρin,↓ , (C76)

where 
ρ = (ρ1, . . . , ρk︸ ︷︷ ︸
vρ

, ρk+1, . . . , ρn︸ ︷︷ ︸
wρ

).

Indeed, the reverse implication is trivially satisfied. This
means that ρ is the solution of

min
ρ≺ρin


ρ · 
H , s.t.
k∑

i=1

ρi = r∗
coh (C77)

iff vρ and wρ are solutions of

min
vρ≺v

ρin,↓
vH · vρ, min

wρ≺w
ρin,↓

wH · wρ, (C78)

where we split H in the same way as ρ in H = (vH ,wH ).
That is, we have reformulated the original constraint problem
into two marginal unconstraint problems. The minimums of
vH · vρ and wH · wρ are attained by

∑k
i=1 (v↓

H )i(v
↑
ρ )

i
and∑n−k

i=1 (w↓
H )i(w

↑
ρ )

i
, that is when the entries of vρ and wρ are

inversely ordered with respect to the ones of vH , respectively,
wH . This uniquely defines the 
ρ that minimizes (C77) and
solves the endpoint problem.

APPENDIX D: SINGLE-CYCLE ENDPOINT FREE ENERGY

We want here to argue that in the two-qubit machine
one always needs less free energy to reach the endpoint in
the single-cycle coherent scenario than in the single-cycle
incoherent scenario. This is formulated in the following.

Claim 1. �F ∗
coh � �F ∗

inc with equality iff TR → +∞,
E → 0, EC → 0, or EC → +∞.

Proof. If TR → +∞, one sees directly that for both cases
of EC � E and E > EC , �F ∗

coh = 0 = �F ∗
inc. If E → 0, then

also in both cases �F ∗
coh = �F ∗

inc. If EC → 0 we also trivially
have �F ∗

coh = 0 = �F ∗
inc. If EC → +∞, both terms go to

infinity as O(EC ) and are in that sense equal. Similarly one
sees that if TR → 0 or E → +∞, EC (rB − r) < 1

2 = �F ∗
inc.

Else, assuming EC, E , TR /∈ {0,+∞}, note that as for EC > E
we have

�F ∗
coh = EC (rB − r) − E (rC − r), (D1)

the work cost in the coherent scenario is always bounded by
EC (rB − r). In order to prove our point we hence need only to
prove that EC (rB − r) < �F ∗

inc. To do so we look at

f (TR) = rC + r − rB − 1
2 (D2)

for fixed EC, E ∈]0,+∞[. As

f (0) = 1
2 , f (+∞) = 0, (D3)
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if f ′(TR) < 0 our point is proven. We hence calculate

f ′(TR) = − 1

T 2
R

[ECrC (1 − rC ) + Er(1 − r) − EBrB(1 − rB)]

= − 1

T 2
R

⎧⎨
⎩EC [rC (1 − rC ) − rB(1 − rB)]︸ ︷︷ ︸

>0

+ E [r(1 − r) − rB(1 − rB)]︸ ︷︷ ︸
>0

⎫⎬
⎭ < 0, (D4)

where in the second step we used that g(r) = r(1 − r) is
strictly decreasing on [ 1

2 .1] as well as 1
2 < rC < rB < 1 and

1
2 < r < rB < 1. This ends the proof. �

APPENDIX E: CROSSING POINT

In Sec. VI C we demonstrate the existence of a critical
point (�Fcrit, Tcrit ) beyond which the coherent scenario out-
performs the incoherent one in the single-cycle regime. Note
that as both curves start at the same point, this critical point
is not the only crossing point of both curves. Our numerical
results though strongly suggest that those are the only two.
We want here to study the behavior of the more interesting
crossing point, (�Fcrit, Tcrit ), when one varies the environment
temperature TR and the energy gap EC . In Fig. 10 we analyze
the behavior of �Fcrit as a function of TR for fixed EC . Apart
from the fact that the curves seem smooth, it is interesting to
note that they all exhibit a maximum for some environmental
temperature. This point corresponds to the environmental
temperature for which the crossing between coherent and
incoherent occurs at the lowest temperature of the target qubit
(i.e., at maximum cooling).

FIG. 10. �Fcrit is plotted as a function of TR for various fixed EC .

APPENDIX F: TREATING THE RESOURCE INTERNALLY

Instead of treating the resource as an external supply, one
can instead consider part of the machine to be the resource
itself. We showcase here what such a standpoint would lead
to for the two-qubit machine when considering qubit C to
be the resource. One can then ask the same question, namely
how do the fully entropic (incoherent) versus the nonentropic
(coherent) supply of free energy scenarios compare in terms
of

Reachable temperatures and
Reachable temperatures for a given work cost.

The incoherent scenario translates to exchanging qubit
C with a qubit at a hotter temperature TH and then
performing the energy-conserving unitary in the subspace
span(|010〉, |101〉). The free energy difference is now calcu-
lated in terms of the system state since the state itself is the
resource. We hence have for the final free energy

F fin = 〈H〉ρfin − TRSρfin

= Tr(ρfinH ) + TR Tr[ρfin ln(ρfin)]

= Tr(ρfin[H + TR ln(ρfin)])

= TR ln
(
rrBrH

C

) + EC

(
1 − TR

TH

)(
1 − rH

C

)
.

To calculate the initial free energy note that the initial state
ρ in = τ ⊗ τB ⊗ τC is the same as ρH = τ ⊗ τB ⊗ τH

C with
TH = TR. Hence by setting TH = TR in the above result,

F in = TR ln(rrBrC ). (F1)

Therefore

�Finc,int = F fin − F in = EC
TH − TR

TH

(
1 − rH

C

) + TR ln

(
rH

C

rC

)
.

(F2)

The temperature achieved on the target qubit is the same as in
the single-cycle incoherent scenario of Sec. VI A and reads

rinc,int = rrB + (
1 − rH

C

)
[(1 − r)rB + r(1 − rB)], (F3)

Tinc,int = E

ln rinc,int

1−rinc,int

. (F4)

The coherent scenario allows one to implement any unitary
on qubit C and then performing the energy-conserving unitary
on the three-qubit system in the subspace span (|010〉, |101〉).
After applying the unitary to qubit C the state looks like

ρU = τ ⊗ τB ⊗ UτCU †, (F5)

where

U =
(

a b
−b∗eiθ a∗eiθ

)
, (F6)
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with θ ∈ [0, 2π ] and |a|2 + |b|2 = 1, a, b ∈ C. Hence,

UτCU † =
(

(1 − |b|2)rC + |b|2(1 − rC ) abe−iθ (1 − 2rC )
a∗b∗eiθ (1 − 2rC ) |b|2rC + (1 − |b|2)(1 − rC )

)

=
(

(1 − μ)rC + μ(1 − rC )
√

μ(1 − μ)(1 − 2rC )√
μ(1 − μ)(1 − 2rC ) μrC + (1 − μ)(1 − rC )

)
,

=:

(
rU

C z
z 1 − rU

C

)
,

(F7)

where in the second step we made the choice of a and b being
real, θ = 0, and b2 = μ. Note that making this choice does not
influence the performance of U since for this only the value of
rU

C , which is not altered by the choice, matters. In any case, to
maximally cool the target qubit for a given state of qubit C,
one notices that the energy-conserving unitary Ucons need be
chosen as Ucons = (0 1

1 0) in the span(|010〉, |101〉) subspace

and as identity elsewhere, such that for the final state ρfin :=
Uconsρ

UU †
cons we have

TrBC (ρfin) =
(

rcoh,int 0
0 1 − r f

coh,int

)
, (F8)

with rcoh,int := rrB + (1 − rU
C )[(1 − r)rB + r(1 − rB)]. And

so the final temperature is obtained as usual by

Tcoh,int = E

ln rcoh,int

1−rcoh,int

. (F9)

The free energy cost is obtained as

�Fcoh,int = �〈H〉ρ − TR�Sρ. (F10)

Note that as the transformations are all unitaries, �Sρ = 0,
and so we have

�Fcoh,int = �〈H〉ρ
= Tr((ρU − ρ in )H )

= (
rC − rU

C

)
EC . (F11)

We are now in a position to map out the amount of
cooling versus the associated work cost for both scenarios and
compare them. This is displayed in Fig. 11.

Note, however, that those plots will never cross. Indeed
by choosing the same cooling in both scenarios, i.e., Tinc,int =
Tcoh,int, we have

Tcoh,int = Tinc,int ⇔ rcoh,int = rinc,int

⇔ rU
C = rH

C

⇒ 〈H〉ρU = 〈H〉ρH

⇒ �Fcoh,int = 〈H〉ρU > �Finc,int

= 〈H〉ρH − TR�SρH , (F12)

meaning that for each temperature that both the incoherent
and the coherent scenarios can reach, the incoherent scenario
outperforms the coherent one. However, the coherent scenario
can always reach lower temperatures than the incoherent one,
that is T ∗

coh,int < T ∗
inc,int. This hence settles the comparison of

both scenarios in a much more trivial way than in the external
resource case.

APPENDIX G: THE SWAP OPERATION AND THE
VIRTUAL QUBIT AS A BASIS FOR COOLING

OPERATIONS

In all of the paradigms discussed in this work, the operation
that causes the target qubit to be cooled down is a swap
operation between the target qubit and a qubit subspace in
the joint system of the machine qubits. The latter can, but
need not be, either one of the machine qubits. The effect of
this swap operation can be very simply understood in terms
of the “virtual qubit” subspace of the machine qubits. This
section presents the cooling effect of the swap in terms of
the virtual qubit, as was done in Ref. [45]. All of the results
in the case of repeated operations (and some of those in the
single-cycle regime) follow from this argument. For a proof
of the statement, see Ref. [45], Appendix A.

Let A be a real (target) qubit system that begins in a
state that is diagonal w.r.t. the energy eigenbasis (denoted
by {|0〉, |1〉}, with the population of its ground state (i.e.,
the corresponding diagonal element in the density matrix)

FIG. 11. The internal resource versions of the coherent (solid
blue) and the incoherent (dashed red) scenarios are compared. The
energy gaps are fixed to E = 1 and EC = 1

3 and the environment
temperature to TR = 1. One sees that the incoherent scenario always
outperforms the coherent one for temperatures that are reachable to
both scenarios.

042130-23



FABIEN CLIVAZ et al. PHYSICAL REVIEW E 100, 042130 (2019)

denoted by r. Denote the energy difference between the two
levels by E . In addition, consider another system M (repre-
senting the machine), that has in particular a two-dimensional
subspace spanned by the energy eigenstates {|Eg〉, |Ee〉}, this
subspace is referred to as the “virtual qubit.” We denote by
EV = Ee − Eg the energy gap of the virtual qubit. The initial
state of the machine, expressed as a density matrix in the
energy eigenbasis, is assumed to have no coherence w.r.t. the
eigenstates of the virtual qubit, i.e., the coefficients of |Eg〉〈Ei|
are zero for all i (except the diagonal element i = g), and
similarly for |Ee〉〈Ei|.

Let the population in the |Eg〉 state (the coefficient of
|Eg〉〈Eg| in the density matrix) be denoted as pg, and that in
the |Ee〉 state be denoted by pe. We label by

NV (the “norm” of the virtual qubit), the total population
in the virtual qubit, NV = pg + pe.

rV the normalized ground-state population of the virtual
qubit, rV = pg/NV , i.e., the population if the virtual qubit was
normalized to have NV = 1,

ZV the bias of the virtual qubit, also normalized, ZV =
(pg − pe)/NV .

TV the virtual temperature of the virtual qubit, calculated
by inverting its Gibb’s ratio,

pe

pg
= e−EV /TV . (G1)

Alternatively, the virtual temperature can also be expressed in
terms of the bias, via the relation

ZV = tanh

(
EV

2TV

)
. (G2)

Let a swap operation be performed between the real and
virtual qubits, described by the unitary

U = 1AM − |0, Ee〉AM〈0, Ee| − |1, Eg〉AM〈1, Eg|
+ |1, Eg〉AM〈0, Ee| + |0, Ee〉AM〈1, Eg|. (G3)

Then the final reduced state of the target qubit will have a
new ground-state population given by

r′ = r + (1 − r)pg − r pe

= NV rV + (1 − NV )r, (G4)

i.e., with probability NV , the new populations of the target
qubit are those of the normalized virtual qubit, and with
probability 1 − NV , there is no change. We assume NV �= 0,
as this corresponds to the virtual qubit being empty.

One can also express the above in the form

rV − r′

rV − r
= 1 − NV . (G5)

Thus, if after a single swap, the machine is restored to
its state before the unitary, and then the swap is repeated,
the recursive relation between r and r′ will hold for the new
population r′′ in terms of r′. In general, if the reset of the
machine and the swap are repeated in turn n times, then the
ground-state population of the target qubit after the nth step
will be

rV − r (n)

rV − r
= (1 − NV )n, (G6a)

equivalently, r (n) = rV − (rV − r)(1 − NV )n. (G6b)

In the asymptotic limit of infinite swaps, r → rV . This is
equivalent to the Gibbs ratio of the target qubit approaching
that of the virtual qubit, and the bias of the target qubit
approaching ZV .

In terms of temperature, if the target qubit and virtual qubit
have the same energy gap (E = EV ), then the temperature of
the target qubit approaches the virtual temperature with each
swap, and in the asymptotic limit, T → TV . However, if the
energies are unequal, then

T −→ TV
E

EV
, (G7)

since it is the Gibbs ratio that equilibrates to that of the virtual
qubit.

Finally, one can calculate the work cost of the swap opera-
tion. Since it is unitary, the energy difference and free energy
difference are the same, and given by

�F = Tr(ρ ′H ) − Tr(ρH ), (G8)

where {ρ, ρ ′} are the initial and final states of the system
and machine, and H is the Hamiltonian of the system and
machine.

For the degenerate case, i.e., E = EV , one finds the work
cost to be zero. For the nondegenerate case, the work cost of
a single swap is given by

�F = (r′ − r)(EV − E ). (G9)

To end this section, we list the relevant virtual qubits
for each of the paradigms used in this work (see further
Appendixes for details):

(1) For single-shot and repeated incoherent operations, the
virtual qubit is spanned by the two levels {|01〉BC, |10〉BC} of
the machine qubits, with the energy gap of the virtual qubit
equal to that of the target qubit EB − EC = E .

(2) For repeated coherent operations and algorithmic cool-
ing, the virtual qubit is spanned by the levels {|00〉BC, |11〉BC},
with the energy gap being EB + EC .

(3) For single-shot coherent operations, one requires the
swap between the target qubit A and the machine qubit B,
which also falls under the above analysis, here the virtual
qubit is simply the machine qubit B (thus NV = 1). The energy
gap is thus EB. If EC > E , one also requires the swap between
qubits A and C, where C can be treated as a virtual qubit.

APPENDIX H: REPEATED INCOHERENT OPERATIONS

1. The rate of cooling with repeated incoherent operations

In the case of incoherent operations, the relevant virtual
qubit (see Appendix G) is the subspace {|01〉BC, |10〉BC} of
the machine qubits. When qubit B is at the environment
temperature TR and qubit C at the hot temperature TH , one can
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calculate the populations and variables of the virtual qubit:

p01 = rB
(
1 − rH

C

)
, (H1)

p10 = (1 − rB)rH
C , (H2)

NV,inc = p01 + p10 = rB
(
1 − rH

C

) + (1 − rB)rH
C , (H3)

rV,inc (=rinc,∞) = rB
(
1 − rH

C

)
rB

(
1 − rH

C

) + (1 − rB)rH
C

, (H4)

where the labeling of rV,inc as rinc,∞ will become clear shortly.
Equivalently, rV,inc can be expressed in terms of the virtual
temperature of the virtual qubit,

rV,inc = 1

1 + e−E/TV
, where TV,inc(=Tinc,∞) = E

EB
TR

− EC
TH

.

(H5)

Thus following the argument in Appendix G, the ground-
state population after n repetitions of the incoherent cycle will
be given by

rinc,n = rV,inc − (rV,inc − r)(1 − NV,inc)n. (H6)

Thus in the asymptotic limit of infinite repetitions, as 0 <

NV � 1, we recover rinc,∞ = rV,inc, and the temperature of
the target qubit in this limit is the virtual temperature, i.e.,
Tinc,∞ = TV,inc.

In particular, in the limit that the hot bath is at infinite
temperature, TH → ∞,

N∗
V,inc = 1

2 , (H7)

r∗
inc,∞ = rB, (H8)

T ∗
inc,∞ = TR

E

EB
, (H9)

r∗
inc,n = rB − (rB − r)

2n
. (H10)

2. The free energy cost of repeated incoherent operations

Here we calculate the free energy cost of repeating the
incoherent operations a finite number of times. Since the
resource is the hot bath, we will account for Qh, the heat
drawn from it. Among all of the steps involved, only the
thermalization of qubit C involves the hot bath, and so it is
sufficient to keep track of the populations of the reduced state
of qubit C in order to calculate QH .

We can divide the total heat current into two parts, first off,
the amount required to heat up qubit C from the environment
temperature TR to the temperature of the hot bath TH . Follow-
ing that, there is the repeated heat current required to bring
back qubit C to TH after a cooling swap has been performed.

The first heat current is trivial to calculate, from the differ-
ence in the ground-state population of C due to heating:

QH
1 = EC

(
rC − rH

C

)
. (H11)

For the second part, we have to determine the population
change, specifically the reduction in the excited state popula-
tion of qubit C, every time that the cooling swap is performed.
However, since the swap is between the levels |010〉 and

|101〉, we see that whatever the change in the reduced state
populations of C, the change in the corresponding reduced
state populations of A is exactly the same. More precisely, the
heat required to reset qubit C before the nth swap [i.e., after
the (n − 1)th cooling swap] is

QH
n = EC (rinc,n−1 − rinc,n−2), (H12)

which holds for n � 2. From the above two expressions, we
thus have the cumulative heat current required for n cooling
steps,

QH
n = EC

(
rC − rH

C

) + EC (rinc,n−1 − r). (H13)

In the asymptotic limit of infinite repetitions, rinc,n−1 goes to
rinc,∞, and the resultant expression demonstrates that the total
heat current is asymptotically finite.

The work cost is given by the decrease in the free energy of
the hot bath w.r.t. the temperature of the environment, which
is defined as

�Finc,n = QH
n − TR�SH,n, (H14)

where �SH,n is the decrease in the entropy of the bath after
n repetitions of the swap. For a thermal bath that stays
at equilibrium, as we assume throughout, �SH,n = QH

n /TH ,
leading to

�Finc,n = QH
n

(
1 − TR

TH

)
. (H15)

In particular, for the case that TH → ∞, in the asymptotic
limit of infinite repetitions of the swap,

�F ∗
inc,∞ = EC

(
rC − 1

2 + rB − r
)
. (H16)

APPENDIX I: ASYMPTOTIC EQUIVALENCE OF
INCOHERENT OPERATIONS AND AUTONOMOUS

REFRIGERATOR

In this section, we show that in the two-qubit machine the
final state, and hence the final temperature of the target, as
well as the total work cost, are the same as if we had run an
autonomous refrigerator between the three qubits and waited
for the steady state. In other words, since the autonomous
refrigerator runs continuously, repeated incoherent operations
can be understood as a discretized version of the continuous
process. For a discussion on the connection between contin-
uous and discretized versions of quantum thermal machines,
see Ref. [59]. Here we simply review the autonomous three-
qubit fridge introduced in Ref. [29] and the equivalence of
its steady-state parameters with the asymptotic end point of
repeated incoherent operations.

In the case of the autonomous fridge, rather than having
repeated unitary operations, there is a time-independent inter-
action Hamiltonian between the three qubits given by

Hint = g(|010〉ABC〈101| + H.c), (I1)

which acts on the degenerate subspace. Note that this Hamil-
tonian is a generator of the unitary that swaps the population
of the degenerate levels, specifically, U = exp(−i π

2gHint ).
At the same time, each qubit is coupled to a thermal bath,

qubit B to the environment, qubit C to the hot bath. For
completeness one could also consider qubit A to be coupled to
its own environment, but for simplicity we ignore this effect
here. This is to be consistent with the repeated incoherent
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operations picture, where we did not take into account any
coupling between qubit A and an environment in between the
cooling operations.

As proven in Ref. [29], the three qubits approach a steady
state, which is particularly simple in the case that qubit A has
no coupling to a bath,

τauto ⊗ τB ⊗ τH
C . (I2)

That is, the steady state is a tensor product state, with qubits
B and C thermal at the temperatures of the baths they are,
respectively, coupled to, and qubit A in Gibbs state with
temperature

Tauto = E
EB
TR

− EC
TH

. (I3)

This is the same as Tinc,∞ [see Eq. (H5)], which is the
asymptotic limit of repeated incoherent operations. Further-
more, it is clear that in the repeated operations, when the
number of operations approaches infinite, the cooling swaps
stop having an effect, and thus the final states of qubits B
and C are Gibbs states at TR and TH , respectively, as these
are the temperatures they are reset to after each cooling cycle.
Thus the final state of all three qubits is the same in both the
autonomous and repeated operations scenario.

Free energy equivalence

Here we calculate the free energy consumed by the au-
tonomous fridge to go from the initial state to the final state.
As the resource is the hot bath, we will calculate the free
energy from QH

auto, the heat drawn from the hot bath. The
initial state is that of all three qubits being at the environment
temperature TR, while the final state is the tensor product of
Gibbs states derived above; see Eq. (I2).

Consider the entire system to comprise three parts. Each
part consists one of the qubits and the bath that it is attached
to (in the case of qubits B and C). The only way that energy
is exchanged between the different parts is via the energy-
preserving interaction Hamiltonian given by Eq. (I1). This
swaps the populations of the two energy eigenstates |010〉 and
|101〉, and thus the change in population of qubit A due to
the interaction is exactly the same as that in qubit C. Since
the energy change is given by the population times the energy
gap this implies that the energy change of the three parts (at
all times during the operation of the machine) must be in
proportion to E : −EB : EC , from the form of Hint.

Since part A consists only of the target qubit, the total
energy change is simply the difference in energy from the
initial to the final state, E (r − rauto). For part C, the total
energy change is the sum of that of qubit C, and that of the
hot bath, EC (rC − rH

C ) − QH
auto. Via the preceding argument,

E (r − rauto)

E
= EC

(
rC − rH

C

) − QH
auto

EC
. (I4)

Solving for QH
auto, we find that

QH
auto = EC

(
rC − rH

C + rauto − r
)
. (I5)

As rauto = rinc,∞, this is the same heat current as in the asymp-
totic limit of infinite repetitions of the incoherent operation;
see Eq. (H13).

FIG. 12. Cooling via repeated coherent operations after the first
coherent operation is completed. First the machine qubits B and C
are thermalized to the environment temperature TR, following which
one performs a unitary that swaps the populations of the levels |011〉
and |100〉.

APPENDIX J: REPEATED COHERENT OPERATIONS

1. Choosing the best virtual qubit from the machine

In this section we investigate the effect and optimal strategy
for repeated coherent operations. Here we are allowed to
repeatedly perform arbitrary unitary operations on the joint
system of the target and machine qubits, with the machine
qubits being reset to the temperature of the environment in
between (see Fig. 12). To begin with, we demonstrate that
in terms of asymptotic cooling, the best virtual qubit of the
machine to choose is that spanned by {|00〉BC, |11〉BC}.

First off, w.r.t. the virtual qubit picture, here we can choose
any qubit subspace of the machine qubits to swap with the
target qubit, unlike in the incoherent case, where we were
forced to choose the subspace {|01〉BC, |10〉BC}, so as to be
degenerate (EV = E ) with the target system.

However, in the coherent case, there is only a single tem-
perature available (TR), thus the state of the machine after it is
rethermalized to the environment will simply be the thermal
state of qubits B and C at TR. Given that the entire state of B
and C is thermal, every qubit subspace of the machine has the
same virtual temperature, TV = TR.

From Appendix G, Eq. (G7), we conclude that if we pick
a virtual qubit from the machine with energy gap EV , then the
temperature of the target system after many repetitions of the
swap between the virtual qubit and the target (with the reset
of the machine in between) will tend to

T −→ TR
E

EV
. (J1)

Thus to cooling the maximum amount in the asymptotic case
of infinite repetitions, we should pick the largest energy gap,
i.e., the qubit subspace {|00〉BC, |11〉BC}. In what follows, we
show that in fact, after the first coherent operation (which was
dealt with in Sec. VI B), this is the only virtual qubit that
allows for cooling the target.

2. The target qubit after n repetitions of coherent operations

Consider the state of the three qubits at the end of the single
coherent operation. The initial state before the operation was
the thermal state of all three qubits at the environment tem-
perature T . If the energies satisfy E � EC , then the optimal
coherent operation is simply to swap the states of A and B,
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leaving the three qubits in the state

ρ ′ = τB ⊗ τA ⊗ τC, (J2)

whereas if E < EC , then the optimal coherent operation is to
first swap the states of A and C, and then proceed by swapping
A with B, leading to the final state of

ρ ′ = τB ⊗ τC ⊗ τA. (J3)

In either case, there is no further cooling on qubit A
possible by any unitary operation. Thus the only option to
continue is to bring the machine back to the environment
temperature. At this point, the state is now given by

ρ̃ = τB ⊗ τB ⊗ τC (J4)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r2
BrC

r2
Br̄C 0

rBr̄BrC

rBr̄Br̄C

rBr̄BrC

0 rBr̄Br̄C

r̄2
BrC

r̄2
Br̄C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(J5)

Recall that the first four populations (i.e., eigenvalues)
are those in the ground state of qubit A. Labeling all of the
populations from p000 to p111, one can verify (using EB > EC)
that

p000 > p001 > p010 = p100 > p011 = p101 > p110 > p111.

(J6)

Thus from the perspective of maximizing the ground-state
population of A, the only two populations that are not in the
optimal location are p011 and p100, which should be swapped,
corresponding to unitarily swapping the two energy levels
|011〉 and |100〉. This is unlike the initial state before the first
coherent operation, where there were a number of possible
level swaps that achieved cooling. There one had to optimize
over all possible swap operations to minimize the work cost,
whereas here there is only one possible cooling swap.

Thus the second coherent operation continues with the
|100〉 ↔ |011〉 swap, cooling down qubit A further, followed
by bringing back the machine qubits B and C to the envi-
ronment temperature. One can verify that after resetting the
machine qubits, the populations once again satisfy p011 <

p100, allowing cooling to continue by repetition of this cycle
of steps. In the same manner as for repeated incoherent opera-
tions, from the arguments of Appendix G, one can identify the
properties of the relevant virtual qubit in this case, the states
|00〉BC and |11〉BC of the machine,

p00 = rBrC, (J7)

p11 = (1 − rB)(1 − rC ), (J8)

NV,coh = p00 + p11 = rBrC + (1 − rB)(1 − rC ), (J9)

rV,coh (=rcoh,∞) = rBrC

rBrC + (1 − rB)(1 − rC )
, (J10)

where the labeling of rV,coh as rcoh,∞ will become clear shortly.
Equivalently, rV,coh can be expressed in terms of the virtual
temperature of the virtual qubit,

rV,coh = 1

1 + E−EV /TV,coh
, where EV = EB + EC and

TV,coh = TR. (J11)

Thus following the argument in Appendix G, the ground-
state population after n repetitions of the incoherent cycle will
be given by

r∗
coh,n = rV,coh − (rV,coh − r)(1 − NV,coh)n. (J12)

Thus in the asymptotic limit of infinite repetitions, r∗
coh,∞ =

rV,inc, and the temperature of the target qubit in this limit is

T ∗
coh,∞ = TV,coh

E

EV,coh
= TR

E

EB + EC
. (J13)

3. The free energy cost of cooling
with repeated coherent operations

In the case of repeated coherent operations, the work cost is
only calculated from the unitary swap operations, as the other
step is the thermalization of the machine to the environment
temperature, which comes at no cost. To calculate the work
cost of the unitary operations, we follow the argument in
Appendix G. From the argument therein [Eq. (G9)], the free
energy input in each repeated coherent operation is given by

�F ∗
coh,n − �F ∗

coh,n−1

= (r∗
coh,n − r∗

coh,n−1)(EB + EC − E ) (J14)

= 2EC (rcoh,n − rcoh,n−1). (J15)

This only applies for n � 2 since the first coherent opera-
tion is different, and the optimal work cost of the latter (�F ∗

coh)
has been calculated in Sec. VI B. Recalling that the ground-
state population of the target qubit after a single coherent
operation is rB, we can calculate the work cost of n repetitions
of coherent operations,

�F ∗
coh,n = �F ∗

coh + 2EC (r∗
coh,n − rB), (J16)

where

�F ∗
coh =

{
EC (rB − r) if EC � E ,
(EC − E )(rC − r) + EC (rB − rC ) if EC � E .

(J17)

APPENDIX K: ALGORITHMIC COOLING

In the case of repeated coherent operations, the minimum
temperature achievable by the target qubit is bound by the
maximum bias ZV (see Appendix G) that can be engineered
on any qubit subspace of the machine qubits B and C.
When the qubits are both thermalized to the environment
temperature TR, the maximum bias is on the virtual qubit of
{|00〉BC, |11〉BC}.

However, if one is allowed to thermalize the machine
qubits separately, then an even higher bias can be engineered
on the same subspace, by precooling qubit C. Specifically,
after the cooling swap of the target qubit with the virtual
qubit {|00〉BC, |11〉BC}, only qubit B is rethermalized to the
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environment temperature, and then its state is swapped with
that of qubit C, thus cooling the state of C. Qubit B is then
rethermalized to TR, and then the cooling swap involving all
three qubits is repeated.

The state of the machine qubits prior to the swap is now
a tensor product of two copies of the thermal state of qubit
B w.r.t. TR, and so the virtual qubit {|00〉BC, |11〉BC} has the
following properties:

p00 = r2
B, (K1)

p11 = (1 − rB)2, (K2)

NV,algo = p00 + p11 = r2
B + (1 − rB)2, (K3)

rV,algo (=r∗
algo,∞) = r2

B

r2
B + (1 − rB)2 , (K4)

where the labeling of rV,algo as r∗
algo,∞ will become clear

shortly. Equivalently, rV,algo can be expressed in terms of the
virtual temperature of the virtual qubit,

rV,algo = 1

1 + e−EV,algo/TV,algo
, where EV,algo = EB + EC

and TV,algo = TR
EB + EC

2EB
. (K5)

Thus following the argument in Appendix G, the ground-
state population after n repetitions of algorithmic cooling will
be given by

ralgo,n = rV,algo − (rV,algo − r0)(1 − NV,algo)n, (K6)

where r0 is the ground-state population of the target before
starting the algorithmic cooling procedure. r0 can be r, in
the case that we begin with algorithmic cooling from the
initial state, but can also be anything else, in particular some
population greater than r, corresponding to the endpoint of
a different type of cooling operation. Finally note that in the
asymptotic limit of infinite repetitions, r∗

algo,∞ = rV,algo, and
the temperature of the target qubit in this limit is given by

T ∗
algo,∞ = TV,algo

E

EV,algo
= TR

E

2EB
, (K7)

which is independent of r0, the initial ground-state population
of the target.

The free energy cost of algorithmic cooling

Analogous to the case of repeated coherent operations,
here the work cost is invested during the unitary operations.
However, in addition to the cooling swap involving all three
qubits, whose cost is calculated in exactly the same way as
in the repeated coherent case[see Appendix J 3], there is also
the precooling of qubit C, which is a nonenergy-preserving
unitary operation. Since this is effected by a swap between
qubits B and C, the work cost per population swapped (in the
direction of cooling C) is EB − EC = E .

The work cost of precooling C can be split into two
contributions: first, the initial cost of cooling C from the
environment temperature TR to the state that has the same
populations as that of the initial state of B, that costs E (rB −
rC ), and then the work cost of returning it to the precooled

state after every successive three-qubit swap. Since the three
qubit swap is between the states |011〉 and |100〉, we see that
whatever the change in the population of the ground state
of the target qubit, there is exactly the same decrease in the
ground-state population of qubit C.

Adding up all of these contributions, one finds that the free
energy cost of algorithmic cooling is given by

�Falgo,n = 2EC (ralgo,n − r0) + E (rB − rC )

+ E (ralgo,n−1 − r0), (K8)

where the first term is the total work cost of the cooling swap
on all three qubits, the second term is the cost of precooling
qubit C from its initial state thermal at TR, and the third
represents the cost of returning qubit C to the precooled state
prior to the nth cooling swap. As before, r0 is the ground-state
population of the target before starting the algorithmic cooling
procedure.

APPENDIX L: OPTIMIZING THE REPETITION OF
COHERENT OPERATIONS W.R.T. THE WORK COST

In the case of coherent operations, we now have a number
of different procedures for cooling. Recall that in the single-
cycle case, we found that we could cool by simply swapping
the target qubit A with B. Furthermore, if it is the case that
E < EC , then a lower work-cost can be achieved by swapping
the target qubit with C to begin with. For repeated coherent
operations, we have to swap the target qubit with the virtual
qubit {|00〉BC, |11〉BC}. And finally, to cool the maximum we
should precool qubit C (which is a swap between qubits B and
C) prior to the same cooling swap.

Each of these processes has a different work cost, and it
is illuminating to construct the optimal manner of combining
them to have the minimum work cost. Following the argument
in Appendix G, Eq. (G9), we understand that to optimize the
work cost, we should always seek to swap the target qubit with
a virtual (or real) qubit of as small an energy gap as we can
find, given it has a greater normalized ground-state population
rV than the ground-state population of the target. This way we
minimize the energy gradient over which we move population,
and thus minimize the work cost.

At the beginning, when the target and machine qubits are at
the environment temperature, if EC > E , then one can verify
from the machine state that among all the virtual qubits of the
machine with greater normalized ground-state population rV

than r, qubit C (here it is a real qubit, rather than virtual) is
the one that has the smallest energy difference with E, EV −
E . Thus the minimal cost of cooling is to swap these states,
taking r → rC at a gradient of EC − E .

Once this procedure is exhausted and the ground-state
population of qubit A has become rC , we find that among the
above virtual qubits of the machine, qubit B has the second
smallest energy difference with E , and so one proceeds by
swapping the target qubit with qubit B, taking r → rB, at
a gradient of EB − E . One then rethermalizes the machine
qubits to TR. Note that qubit C could have equivalently been
rethermalized at any point between the end of the first swap
and now without affecting the cooling and the work cost of
the procedure.
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At this point, after resetting the machine qubits, we find
that the only virtual or real qubit in the machine that allows for
cooling is the virtual qubit {|00〉BC, |11〉BC}, and one proceeds
by repeatedly swapping the target qubit with this virtual
qubit, until r → rV,coh. This is performed at a gradient of
EB + EC − E .

Finally, one proceeds via algorithmic cooling, where one
precools qubit C, at a gradient of EB − EC , before applying
the same cooling swap as in the case of repeated coherent op-
erations. The reason one exhausts the repeated coherent opera-
tions procedure before proceeding with algorithmic cooling is
that precooling qubit C has a work cost that arguably enables
one to cool more but still at the same energy rate, 2EC . Thus,
as long as cooling without this extra work-cost is possible, it
is more efficient to do so.

The work cost at an intermediate stage in this process can
be simply calculated from the above, we present here the total
work cost of the entire procedure:

�F ∗
algo,∞ = (rC − r)(EC − E ) + (rB − rC )(EB − E )

+ (r∗
coh,∞ − rB)2EC

+ (rB − rC )(EB − EC )

+ (r∗
algo,∞ − r∗

coh,∞)[(EB − EC ) + 2EC], (L1)

where the first, second and third lines correspond to the work
cost of the single-cycle, repeated and algorithmic sections of
the protocol respectively. In the case of EC � E , the single-
shot case simplifies to directly swapping the target qubit with
qubit B, and thus the first line of the work cost becomes
(rB − r)(EB − E ).

It is interesting to observe that subdividing the entire
procedure in this manner, the temperature of the target qubit
evolves due to each subsection as

T
E<EC−−−→ TR

E

EC
−→ TR

E

EB

−→ TR
E

EB + EC
−→ TR

E

2EB
. (L2)

An optimal cooling sequence in the regime
of algorithmic cooling

In the analysis above, we noted that algorithmic cooling
is more expensive as it requires the precooling of qubit C.
Furthermore, if one precools C via a full swap with B, as
presented above, this represents an initial work cost which
does not cool down the target at all, representing a discon-
tinuity in the curve of cooling versus work cost. This is
especially relevant if the desired final temperature is not that
corresponding to algorithmic cooling, but is rather somewhere
in between algorithmic cooling and the endpoint of repeated
coherent operations.

In this case, one can optimize the work cost by using the
same cycle of steps as in Fig. 13, but only partially precooling
qubit C in Step 2, to exactly the temperature required to
achieve the desired final temperature on the target.

More precisely, consider that during Step 2, one performs
a partial swap between qubits B and C, such that the final
ground-state population of qubit C is given by

rC (ν) = rC + ν(rB − rC ), (L3)

Step 1

Step 2
U(t)

Step 3

TR

Step 4

TR

U(t)

FIG. 13. The cycle of steps corresponding to algorithmic cool-
ing. Steps 1 and 3 thermalize qubit B to the environment. Step
2 is the precooling of qubit C by a swap with B. Step 4 is the
cooling of the target qubit via the usual coherent operation. In the
case of optimizing algorithmic cooling w.r.t. the work cost (see
Appendix L 1), Step 2 is replaced by a partial rather than full swap.

where ν ∈ [0, 1]. On inspection of the virtual qubit
{|00〉BC, |11〉BC}, we can calculate the normalized ground-
state population rV (ν),

rV,νalgo = rB · rC (ν)

rB · rC (ν) + (1 − rB)(1 − rC (ν))
. (L4)

Note that r∗
coh,∞ < rV,νalgo < r∗

algo,∞, with rV,0algo = r∗
coh,∞ and

rV,1algo = r∗
algo,∞, and thus ν parametrizes the entire regime of

cooling between the endpoint repeated coherent operations,
and full algorithmic cooling.

In the limit of infinite repetitions of the cycle of steps, the
ground-state population of the target becomes rV,νalgo, such
that, given the desired final temperature of the target, T ∗

νalgo,∞,
the swapping parameter ν need be chosen such that

rV,νalgo = 1

1 + e
− E

T ∗
νalgo,∞

. (L5)

The work cost of cooling the target to rV,νalgo, given that
we began with the target ground-state population of r0, is
found by adding up the cost of precooling qubit C, the cost
of returning it the precooled state, and the cost of the repeated
cooling swaps on the target,

�Fνalgo,∞ = E (rC (ν) − rC ) + E (rV,νalgo − r0)

+ 2EC (rV,νalgo − r0). (L6)

Thus given the endpoint of repeated coherent operations,
(where r0 = r∗

coh,∞), the above expression represents the op-
timal extra work cost for cooling the target to a ground-
state population [Eq. (L4)] that is between the end points
of repeated coherent operations and algorithmic cooling. The
total work cost of the optimal sequence is in this case therefore
given by

�F ∗
νalgo,∞ = (rC − r)(EC − E ) + (rB − rC )(EB − E )

+ (r∗
coh,∞ − rB)2EC
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+ (rC (ν) − rC )(EB − EC )

+ (rV,νalgo − r∗
coh,∞)((EB − EC ) + 2EC ). (L7)

Note that for ν = 1, we recover the previously discussed total
work cost of the optimal sequence of coherent operations of
Eq. (L1).

APPENDIX M: OPTIMIZING THE WORK COST

1. The N-qubit coherent machine

In this section we review a result demonstrated in Ref. [12]
(within a different context), that given a final cold tempera-
ture, there exists a family of coherent machines, each member
of increasing size, that can attain the final temperature, and
that saturate the second law of thermodynamics in the limit of
infinite size. We do this for coherent machines first, and prove
the same for incoherent machines in the next section.

Consider the system to be a qubit of energy E (the result
may be generalized by cooling individual qubit subspaces of
a more complicated system), that begins at the environment
temperature TR. The final temperature that we would like to
attain is labeled TC , where TC < TR.

The simplest machine to do so would be a single qubit of
energy

Ecoh,max = E
TR

TC
, (M1)

as in Sec. IV B, and perform a swap in the energy eigenbasis.
Note that the machine is assumed, as always, to begin at TR.

As discussed in the main text and in Appendix G on the
virtual qubit, the work cost of this protocol involves pushing
population against the energy gradient between the machine
and system, Ecoh,max − E ,

W = (rmax − r)(Ecoh,max − E ) = (rmax − r)E

(
TR

TC
− 1

)
,

(M2)

where r and rmax are the initial and final ground-state popula-
tions of the target.

One can reduce this work cost by splitting the protocol into
a number of steps. Consider that the machine is constructed
out of a sequence of N qubits, with linearly increasing energy,

Ecoh,i = E + i

N
(Ecoh,max − E ) = E

[
1 + i

N

(
TR

TC
− 1

)]
,

i ∈ {1, 2, . . . , N}. (M3)

The protocol now consists in performing swap operations
between the target qubit and each of the machine qubits in
sequence. The final temperature is the same as before, since
the final qubit has energy Ecoh,max. At each intermediate step,
the temperature attained by the target is given by

E

Ti
= Ecoh,i

TR
= E

TR
+ i

N

(
Ecoh,max − E

TR

)
(M4)

∴ 1

Ti
= 1

TR
+ i

N

(
1

TC
− 1

TR

)
. (M5)

Correspondingly, the ground-state population of the target
after the ith step is given by

ri = 1

1 + e−E/Ti
. (M6)

The work cost of the ith step is now

Wcoh,i = (ri − ri−1)(Ecoh,i − E ), (M7)

from which the total cost follows as

Wcoh =
∑

i

Wcoh,i =
N∑

i=1

(ri − ri−1)(Ecoh,i − E ) (M8)

= E
N∑

i=1

(ri − ri−1)
i

N

(
TR

TC
− 1

)
. (M9)

In Ref. [12] this protocol was studied, and it was shown
that the total work cost was equal to

Wcoh = �F + O

(
1

N

)
, (M10)

where �F is the increase in free energy of the system from
its initial to final temperature, and where the free energy is
defined w.r.t. the environment temperature,

F = 〈E〉 − TRS, (M11)

〈E〉 and S being the average energy and entropy of the system.
Thus one can get arbitrarily close to saturating the second
law of thermodynamics by increasing the number of steps
involved in the protocol.

Note that the qubits in the coherent machine need not be
real qubits, but qubit subspaces (virtual qubits) embedded
in a larger space. In this case, rather than a single swap
for each of the machine qubits, one would require repeated
swaps (interspaced with rethermalization of the machine) to
approach the asymptotic temperature corresponding to that
qubit. This does not, however, change the work cost of the
procedure, since the cost is always given by the amount of
population changed multiplied by the energy gradient, so
repeating the swap with the same virtual qubit a number of
times to achieve the same population difference as with a real
qubit of the same energy gap results in the same work cost.

2. The 2N-qubit incoherent machine

Consider as before that we wish to cool a target qubit of
energy E from the environment temperature TR to TC , but only
using incoherent operations, that include energy-preserving
unitaries, and heating up parts of our machine to a given hot
temperature TH .

The simplest manner of achieving this temperature is via
the simplest possible incoherent machine, comprises two
qubits (as in Sec. VII A), of energies EB = Einc,max and EC =
Einc,max − E . The machine may be run in the repeated op-
erations regime, where the energy-preserving swap opera-
tion between the states |010〉ABC and |101〉ABC is repeatedly
applied, interspaced by rethermalizing qubits B and C to
the environment TR and hot bath TH respectively, or in the
autonomous mode, where the Hamiltonion that generates the
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swap is left running continuously, while the qubits are kept
coupled to their respective baths.

The final temperature achieved by such a machine is given
by

E

T f
= Einc,max

TR
− Einc,max − E

TH
, (M12)

and so we choose Einc,max such that T f = TC , the final desired
cold temperature, resulting in

Einc,max = E

(
1

TC
− 1

TH

1
TR

− 1
TH

)
⇔ Einc,max − E = E

(
1

TC
− 1

TR

1
TR

− 1
TH

)
.

(M13)

The work cost of this protocol was discussed in Sec. I,
and may be calculated from the heat drawn from the hot
bath during the protocol. The heat comprises two parts, the
preheating of qubit C, that we label Qinit , followed by the
heat required to keep it at the hot temperature after repeated
incoherent operations. In the limit of infinite repetitions (or the
steady state of the autonomous machine), this heat is given by

QH = (rmax − r)EC = (rmax − r)(Einc,max − E ). (M14)

Note that as the final temperature of the target is the same
as in the coherent case, the final ground-state population rmax

is also identical.
Note that from the two heat contributions, the initial heat

cost to bring qubit C to TH from TR depends on whether it
is a real or virtual qubit, and in the latter case, depends on
the spectrum of the larger space in which the virtual qubit is
embedded. However, the heat required to keep it at TH remains
the same, as it only depends on the population flow between
the system and the machine, which in the limit of infinite
repetitions or the autonomous steady state, only depends on
the Gibb’s ratio of qubit C.

In a similar manner as in the coherent case, one can
decrease the work cost by using a machine made out of a
sequence of N two-qubit systems, with linearly increasing
energies given by

EB,i = E + i

N
(Einc,max − E ), (M15a)

EC,i = EB,i − E = i

N
(Einc,max − E ). (M15b)

For each of the two-qubit systems, one runs the same
protocol as before, and thus the temperature attained by the
ith step is given by

E

Tinc,i
= EB,i

TR
− EC,i

TH
(M16)

= E

TR
+

(
1

TR
− 1

TH

)
i

N
(Einc,max − E ) (M17)

= E

TR
+ i

N
E

(
1

TC
− 1

TR

)
, (M18)

by using (M13) for Einc,max. Thus Tinc,i = Ti from the coherent
machine [see Eq. (M5)], and we keep the notation Ti. This
implies that the ground-state population of the target after the

ith step is also the same as in the coherent machine, and we
keep the notation ri.

The heat drawn in each step again comprises the two
contributions of preheating and maintenance of the ith qubit
C,

Qi = Qinit,i + (ri − ri−1)EC,i (M19)

= Qinit,i + (ri − ri−1)
i

N
(Einc,max − E ), (M20)

where we label the initial heat drawn for preheating as Qinit,i.
Simplifying the rest of the expression using (M13), and sum-
ming up for the total heat,

Q =
N∑

i=1

Qinit,i + E
N∑

i=1

(ri − ri−1)
i

N

(
1

TC
− 1

TR

1
TR

− 1
TH

)
(M21)

= Qinit + Wcoh

1 − TR
TH

, (M22)

using (M9) for the total work cost in the coherent case. We
have denoted by Qinit the total cost of preheating each of the
qubits {C, i}.

The above is the heat drawn from the hot bath. To compare
with the coherent case we take the work cost instead, which is
the decrease in free energy of the hot bath,

W = �FH = Q − TR�S = Q

(
1 − TR

TH

)
. (M23)

Thus the work cost in the incoherent case is

Winc = Qinit

(
1 − TR

TH

)
+ Wcoh. (M24)

Thus the incoherent cost is very similar to the coherent
cost, with the sole addition of bringing the additional qubits
from TR to TH . At first glance, this may appear to be a finite
disadvantage; however, it is possible to make this additional
cost as small as possible, as we now demonstrate.

The N qubits {C, i} need not be real qubits, but virtual ones.
Consider for instance, a system with Hamiltonian

HC = −Eg|Eg〉〈Eg| +
N∑

i=0

i

N
(Einc,max − E ), (M25)

which is an evenly spaced ladder of N + 1 levels plus a
single ground state that lies at an energy Eg below the ladder.
Labeling the levels by {g, 0, 1, 2, . . . , N}, we observe that
Ei − E0 = EC,i, and thus the pair of levels 0 and i may be
employed as the ith virtual qubit C in the incoherent machine.

However, for any fixed N , TH , and Einc,max, the cost of
preheating this system can be made as small as we like, by
pushing the ground-state energy further downward. For high
enough values of Eg, the population in the ladder will be small
enough for both TH and TR such that the difference in average
energy is vanishingly small.

Note that this implies that the machine will run slower
(in the autonomous case) or require many more repeated
operations in the discrete case. However, in principle the final
temperature attained is still the same and thus the incoherent
machine can achieve as close a work cost as one likes to
the coherent case. Together with the fact that the coherent
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machine can get as close to saturating the second law, we
thus have the statement that for arbitrary sized machines, both

coherent and incoherent machines can approach the limit of
the second law of thermodynamics.
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