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Cooling quantum systems is arguably one of the most important thermodynamic tasks connected to
modern quantum technologies and an interesting question from a foundational perspective. It is thus of no
surprise that many different theoretical cooling schemes have been proposed, differing in the assumed
control paradigm and complexity, and operating either in a single cycle or in steady state limits. Working
out bounds on quantum cooling has since been a highly context dependent task with multiple answers, with
no general result that holds independent of assumptions. In this Letter we derive a universal bound for
cooling quantum systems in the limit of infinite cycles (or steady state regimes) that is valid for any control
paradigm and machine size. The bound only depends on a single parameter of the refrigerator and is
theoretically attainable in all control paradigms. For qubit targets we prove that this bound is achievable in a
single cycle and by autonomous machines.

DOI: 10.1103/PhysRevLett.123.170605

Characterizing the ultimate performance limits of quan-
tum thermal machines is directly related to the under-
standing of energy exchanges at the quantum scale, and
hence to the formulation of thermodynamic laws valid in
the quantum regime [1]. A central challenge towards this
goal is to identify the relevance of different levels of control
that can be achieved over quantum mechanical machines
and how this determines the thermodynamic limits in the
quantum regime. To analytically derive such fundamental
limits, it is instructive to observe that the time evolution of
closed quantum systems is unitary in quantum mechanics.
Discussing nontrivial changes of energy and entropy on
a target system thus requires a conceptual separation of a
thermodynamic process into a target system, upon which a
desired task is performed, and a “machine,” comprised of
several other quantum systems, which is used to perform
the task upon the target. The total evolution will be a global
unitary operation and feature a limited depth or complexity
(i.e., machines and the baths’ constituents they couple to
have a finite size) and can either be assumed to be energy
changing, if one allows for a coherent control of the
process, or alternatively energy preserving in an incoherent
control paradigm. Furthermore, machines can operate
in a cyclic manner, such that each of these unitary
operations can be repeated an arbitrary number of times.
To derive self-contained and nontrivial bounds on thermo-
dynamic performance, the state of the machine for each of
the repetitions should be thermal with respect to its
Hamiltonian. Additionally, to include heat engines, part

of the machine could be thermalized with respect to a
higher temperature. All these different paradigms are
illustrated in Fig. 1, and include paradigmatic scenarios,
such as autonomous quantum thermal machines [2–4], heat
bath algorithmic cooling [5–10], and quantum otto engines
[11,12] for finite size processes. Our framework is a special
case of the generalized framework exposed in Ref. [13] but
differs from any of the case studies made there. In the limit

FIG. 1. Schematic representation of the paradigms of coherent
and incoherent control for quantum refrigeration. For a target
qubit, the coldest state of the infinite cycle regime of the
incoherent paradigm is the steady state achieved by autonomous
cooling. For a target qubit and a product qubit machine, the
coherent paradigm is a special instance of heat bath algorithmic
cooling with no compression qubit.
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of infinite size, the limiting cases are the resource theory of
thermodynamics [14–17] for incoherent operations and for
coherent control general completely positive and trace
preserving maps, that make cooling to the ground state
trivially possible, emphasizing the role of complexity in the
third law of thermodynamics [18–22].
A task of paramount importance for quantum technol-

ogies is refrigeration and, depending on the paradigm,
different limitations have been derived for specific machine
designs. Indeed, it seems a daunting task to derive bounds
beyond specific, low complexity machines, as the poten-
tial Hamiltonians, dimensions, and number of repetitions
present an overwhelming amount of parameters to optimize
over. Thermodynamics as a theory, however, has been
astoundingly successful in deriving general statements that
are independent of the microscopic complexity, by iden-
tifying a small number of relevant parameters that ulti-
mately determine the limits of processing energy.
We should first clarify that cooling a quantum system

can have several meanings. For a system initially in a
thermal state, one can drive it to a thermal state of lower
temperature. Alternatively, since for some paradigms fixing
the entire spectrum is actually too strong a condition, one
could just consider increasing its ground-state population
or its purity, or decreasing its entropy or its energy (see,
e.g., discussions on passivity [23–26]). These notions are in
general nonequivalent for target systems of arbitrary
dimension and determining the fundamental limits to
cooling is therefore dependent on the choice of target
function. However, by using majorization theory, we are
able to derive results that hold for all of the above-
mentioned notions of cooling.
Setting.—We consider a target system of dimension dS

with Hamiltonian HS ¼
PdS−1

i¼0 EijEiiShEij, where Ei ≤ Ej

for i < j and a thermodynamic machine of finite size dM
with Hamiltonian HM¼

PdM−1
i¼0 EijEiiMhEij, where Ei ≤ Ej

for i < j, both surrounded by a thermal bath at temperature
TR (or inverse temperature βR). Without loss of generality
we assume E0 ¼ E0 ¼ 0. We also write Emax ¼ EdM−1 and
for a qubit target, dS ¼ 2, ES ¼ E1. The joint initial state of
target and machine is given by ρSM ¼ τSðβRÞ ⊗ τMðβRÞ,
where τðβRÞ denotes a thermal state at inverse temperature
βR. Our goal is to cool the target system. After the
application of a single unitary the target state is changed
as TrM½UρSMU†�≕Λ½τSðβRÞ�≕ ρ0S. To induce a nontrivial
change of the target system, out-of-equilibrium resources
have to be used, which we conceptually divide into two
extremal cases: Either we use external coherent control to
induce any energy changing unitary of target and machine
(see, e.g., Ref. [27]), inducing the map Λcoh on the system.
Or we consider an energetically closed system, i.e., con-
sider unitaries that commute with the total system-machine
Hamiltonian H ¼ HS þHM, inducing Λinc on the target.
This application of a unitary represents a single cycle of the
machine. Between cycles the machine is rethermalized,

where individual machine components can thermalize
either with the environment at temperature TR or draw
further resources from a hot bath at temperature TH. For
many cycles we denote the number of cycles k by a
superscript on the map Λk

coh=inc. Of particular interest to us
is the unbounded cycle regime, i.e., as k → ∞, which we
denote by p�

0. The setting is visually represented in Fig. 1
and the asymptotic relations of the induced maps is
summarized in Table I in the Supplemental Material [28].
Results.—In the following we consider an arbitrary

sequence of operations and prove a bound that holds for
any control paradigm and any machine size in the limit of
infinite cycles. This bound only depends on the maximal
energy gap of the machine, irrespective of the structure of
HM. The bound can be attained for both coherent and
incoherent machines. Finally, for qubit targets, the bound
can even be obtained in a single cycle by the smallest
possible coherent machine (i.e., a single qubit machine), as
well as via the smallest autonomous refrigerator (i.e., a
two-qubit machine).
The energetics of quantum systems only depend on the

diagonal elements in the energy eigenbasis, which through
unitary evolution change unistochastically. This already
gives a recipe for single cycle cooling that is analytically
optimal in terms ofmajorization theory: The global diagonal
of the joint target and machine density matrix of the final
state is always majorized by the initial diagonal (Shur-Horn
Lemma). Thus, the optimal unitary is one that puts all the
largest eigenvalues in the diagonal entries that contribute to
the ground state population of the target, the next largest in
those entries contributing to the first excited state of the
target, and so on. Which unitary that is, depends on all
energy gaps and respective eigenvalues for each cycle.
Descriptions of thermodynamic machines, however,

should go beyond such optimal single cycles and also
allow for a repetition of cycles to determine its ultimate
limits. Ideally, each cycle can be perfectly separated and the
machine rethermalized in between cycles. In both coherent
and incoherent paradigms we thus also consider the limit of
infinite repetitions of optimal unitary operations, where the
machine can be perfectly rethermalized in between. While
optimal unitary operations can at least in principle be
described for every cycle of arbitrary machine and target
systems, they will in general depend on the entire spectrum
and do not identify relevant machine parameters for
determining performance. Indeed, determining simple
and universal bounds on reachable target temperatures
and revealing the relevant parameters of machines in all
paradigms, even after infinite cycle repetitions, is the main
result of this Letter. We present four theorems gauging the
cooling performances for the different types of machines,
prove universal upper bounds on cooling, and demonstrate
their respective attainability. In the accompanying article
[29], we furthermore investigate the work cost of achieving
these bounds.
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Universal bound on cooling.—Unless stated otherwise,
we consider an arbitrary machine, i.e., any spectrum and
size. It turns out, however, that no matter the microscopic
physics of the machine, only a single machine parameter
determines the ultimate cooling bound, namely, the largest
energy gap Emax.
Theorem 1: (Universal bound on cooling) For any

machine and control paradigm, in the limit of infinite
cycles, i) for a qubit target, the ground state population is
upper bounded by

p�
0 ¼

1

1þ e−βREmax
; ð1Þ

(ii) for an arbitrary target of dimension dS, the vector of
eigenvalues of the final state is majorized by that of the
following state,

ρ�S ¼
1

Z

XdS−1

n¼0

ðe−βREmaxÞnjEniShEnj; ð2Þ

as long as the initial state is majorized by ρ�S. In particular,
the ground state population, purity, entropy, and average
energy of the final state are bounded by those of ρ�S.
Before we discuss the proof, we would like to make a

few remarks. The qubit bound, first derived in Ref. [30],
and also appearing in Ref. [31] corresponds to an inverse
temperature of

β� ¼ βREmax

ES
: ð3Þ

The crucial parameter is the ratio between the populations
of the excited and ground state, g ¼ e−βREmax . The bound (2)
for higher dimensional systems has the same property, that
the ratio of populations for every pair of successive energy
levels is given by g.
We emphasize the advantage of a bound based on

majorization. Since the state ρ�S is the unique passive state
[32] that majorizes all others also attainable by coherent
operations, it upper (lower) bounds every Schur convex
(concave) function of the eigenvalues, which includes the
various notions of cooling listed in the theorem.
Proof of Theorem 1.—First, for machines using coherent

operations, using the Schur-Horn Lemma for the joint state
of target and machine ρSM, one can verify (see the
Supplemental Material [28]) that the system after a single
cycle operation ρ0S satisfies ρ

0
S ≺ ρ�S as long as ρS ≺ ρ�S. By

induction, one arrives at ρðnÞS ≺ ρ�S for all n.
Furthermore, note that a hotter thermal state is always

majorized by a colder thermal state and majorization is
stable under tensor products, see Corollary 1.2. of
Ref. [33]. Thus, having access to a hot thermal bath to
rethermalize our machine before a cycle, or part of it, if the
machine has a tensor product structure, will only enable us

to reach states that are majorized by the initial state. Thus a
hot thermal bath does not allow us to reach a state that
cannot already be reached by a coherent resource, com-
pleting the proof. ▪
Attaining the cooling bound.—The bound defined in

Eq. (2) only depends on the subspace of the machine with
the “coldest” ratio of populations. Indeed, one can con-
struct an explicit cooling protocol as follows: consider the
following simple joint unitary operation between target and
machine,

Ui ¼ 1 − jEi−1EmaxihEi−1Emaxj − jEiE0ihEiE0j
þ jEi−1EmaxihEiE0j þ jEiE0ihEi−1Emaxj: ð4Þ

Each Ui is a simple qubit swap, between the ith pair of
successive energy eigenstates of the target, and the Emax
subspace of the machine, and will lead to the population of
the lower energy state pi−1 increasing by someΔi (this may
be negative). We define the “coherent max-swap” operation
as the one that performs the Ui corresponding to the
greatest positive value of Δi (if none exists, then no unitary
is performed). The choice and implementation of Ui is
preceded and followed by a unitary on the target that leaves
the target in a passive state.
Theorem 2: (Coherent attainability) The state of the

target under the repeated application of either one of the
coherent max-swap operation or the optimal coherent
operation converges to ρ�S.
Proof.—Since the state of the target is passive before a

particular Ui is performed, and Δi > 0 in this case, the
population is always moved from a smaller eigenvalue to a
larger one. Thus the final state always majorizes the initial
one. This is also true for the optimal coherent operation,
since by construction it leaves the target in a state that
majorizes all others. Thus the ordered partial sums of
eigenvalues of the target under repeated application of
either operation form monotonically increasing sequences.
As these sums are bounded by one, both protocols must
converge. ▪
In the Supplemental Material [28], we show that the state

converged to is a fixed point of the coherent max-swap
operation, and that all fixed points of this protocol have the
property of majorizing ρ�S. By Theorem 1, the final state
under any protocol must be majorized by ρ�S, proving that
the only possible convergent point of the max swap is ρ�S
itself.
The proof for the case of optimal coherent operations

follows from the fact that the state under many cycles
majorizes the state under an equal number of cycles of any
other coherent operations (see Supplemental Material [28]).
Thus the state converged to must majorize that of the max
swap, but also still be majorized by ρ�S (Theorem 1).
Therefore it also converges to ρ�S.
This shows that the universal bound is tight in the

coherent case. Since the operations involved are nonenergy
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conserving, one cannot conclude the same for the incoher-
ent paradigm. Nonetheless, a minor addition to the machine
enables a similar statement.
In the coherent case we only required to swap qubit

subspaces in the target with the maximum energy gap of the
machine. Each of these swaps can be made energy
preserving by adding one more qubit to the machine to
bridge the energy difference, and thermalizing this qubit to
a hot temperature TH > TR in between cycles. This defines
an incoherent version of the max-swap protocol.
Theorem 3: (Incoherent attainability)In the limit

TH → ∞, one can incoherently cool the target to at least
the coherent cooling bound of ρ�S in the infinite cycle limit,
if one extends the machine by (at most) dS − 1 qubits, each
with energy gap Emax − ðEi − Ei−1Þ, i ∈ f1; 2;…; dS − 1g,
or more generally, any extension that has qubit subspaces
with these energy gaps [34].
Proof.—The proof is analogous to that of Theorem 2.

Here too, the (incoherent) max-swap operation has the
property of the final state always majorizing the initial one.
It follows that the repeated application converges. One can
prove (see Supplemental Material [28]) that the convergent
point is a fixed point of the operation, and that in the limit
TH → ∞, the fixed points all majorize ρ�S, proving attain-
ability as desired. ▪
Theorem 3 shows that the two paradigms are in fact

closely related to one another in terms of cooling perfor-
mance. In the limit of TH → ∞, a finite resource of the
same dimension of the target suffices to bridge the gap
between them.
Bridging extremal cooling paradigms.—So far, we dealt

exclusively with stroke type machines, in the sense that we
allowed for rethermalization or unitary operations in well
separated discrete time steps. One may, however, wonder if
the bounds on cooling set by Theorems 1–3 are also valid
for autonomous thermal machines, where thermalization
and machine cycles happen simultaneously and continu-
ously. Interestingly, a link exists between those machines
and our incoherent paradigm, see also Ref. [35]. In essence,
the energy-preserving unitaries of the incoherent paradigm
are replaced by a time-independent energy-preserving
interaction Hamiltonian between the target system and
the machine. It is then straightforward to prove the
following statement.
Theorem 4: (Autonomous machines correspondence)

Consider an arbitrary machine and a qubit target system.
When the target coupling to the thermal bath is zero, one
can cool the target to β� with an autonomous machine by
extending the machine as in Theorem 3.
Proof.—This follows directly from known results for

small autonomous machines. Following the derivation in
[36], which is based on a linear master equation, one can re-
place the second qubit by the subnormalized qubit ρ0;max¼
ð1=ZÞðj0ih0jþe−βREmax jEmaxihEmaxjÞ. Furthermore, adding
energy levels to themachine between j0i and jEmaxi does not

affect the analysis since the added levels remain invariant
under this evolution. ▪
While it is expected that the correspondence holds for

higher dimensional targets as well, it requires an analysis of
the master equation that we leave for further work. The zero
coupling of the target to the environment needed for exact
correspondence comes from the fact that in the repeated
cycles paradigm, there is never any reheating between the
cycles, which corresponds to an open quantum system in
which the target is not coupled to a bath. Any realistic
coupling would only worsen the bound. The correspon-
dence of Theorem 4 links extremal paradigms of control
in quantum thermal machines, perfect batteries and well-
timed operations on the one hand, and autonomous
machines with no external source of work or timing control
on the other, demonstrating that increased control on a
quantum system does, after all, not significantly impact
the cooling performance in this context, but that the
difference manifests as different work costs and the actual
challenge rather lies in designing appropriate interaction
Hamiltonians for autonomous machines [37].
Smallest machines for maximal cooling.—Interestingly

the smallest possible implementation can already attain the
bounds. For a qubit target of energy gap ES, the simplest
coherent machine consists of a single qubit, of energy gap
EM. The Hilbert space of the joint target and machine
system is spanned by fjijiSMgi;j¼0;1. Maximal cooling is
achieved by a single unitary operation, swapping the states
j01iSM and j10iSM. The final state of the target thus has the
same populations and Gibbs ratio as the initial state of the
machine, i.e.,

β�ES ¼ βREM; ð5Þ
which matches Eq. (3) for maximal cooling with
EM ¼ Emax. This single qubit machine is also sufficient
to cool higher dimensional targets to the bound (2), using
the coherent max-swap protocol (Theorem 2).
Note that if the machine had additional energy levels in

between j0iM and j1iM, then a single swap would not be
sufficient to recover Eq. (5) for a qubit target, and onewould
only do so in the limit of infinite cycles. Furthermore, higher
dimensional targets would also be cooled at a slower rate
(per cycle). In this sense, a single qubit machine is more
effective than a more complex machine. The advantage of a
more complexmachine is revealed when analyzing thework
cost of the operation (see Ref. [29]), and in general can help
increase Emax by composition.
In the incoherent paradigm, a single qubit machine is

unable to cool. The simplest machine allowing for cooling
features an extra qubit of energy EA ¼ EM − ES, as
proposed in Theorem 3. This corresponds to the smallest
autonomous refrigerator [2]. The optimal unitary for cool-
ing is now the swap between the states j010iSMA and
j101iSMA. Comparing this to the single qubit coherent
machine, we see that the swap is identical with respect to
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the target (S) and the original machine (M), and the role of
the additional qubit (A) is to enable this transition for
incoherent cooling by bridging the energy gap between S
and M. In coherent cooling, this role is implicitly fulfilled
by the battery that allows for arbitrary unitary operations.
Cooling over multiple cycles consists in repeatedly

thermalizing M to TR and A to TH and performing the
relevant swap. In the limit of infinite cycles, the temper-
ature achieved by the target is given by

β�incES ¼ βREM − βHðEM − ESÞ: ð6Þ

In the limit of TH → ∞, the second term on the right-hand
side vanishes and we get Theorem 3.
Conclusion.—We derive universal and attainable bounds

for cooling using any quantum machine and target system.
Interestingly, this bound only depends on the largest energy
gap present within the quantum refrigerator and is inde-
pendent of all other spectral properties and valid for all
temperature regimes. For qubits, this bound is already
attainable by the simplest possible machines: either by a
single cycle of a coherent one-qubit machine or, in the
continuous autonomous quantum refrigerator paradigm, as
a steady state of a two-qubit machine. These results unify
different operational approaches to quantum thermody-
namics and thus go beyond one particular approach. They
embody one of the central conceptual pillars of statistical
physics, that, despite the potential complexity, thermody-
namic tasks can be characterized by a small number of
system parameters that need no detailed knowledge of the
microstates. The universal bounds and the attainability
protocols presented here, are, in general, of course highly
idealized and go beyond realistic control over many-body
quantum systems. That makes the attainability by few qubit
machines all the more interesting, however, as they could
potentially be realized with state-of-the-art quantum tech-
nologies. A more detailed analysis of few qubit machines in
both paradigms, including a finite number of cycles and the
respective work costs of achieving the temperature bound
can be found in Ref. [29]. Future investigations should
include a trade-off between complexity and achievable
Emax, as the required unitaries would quickly become
impossible to even approximate in the regime of large
machines. Another question beyond asymptotics is the
actual convergence rate. We showcase the simplest case in
the Supplemental Material [28] and hope to gain more in-
depth insight in the future. One could also further extend
the operational paradigm by including quantum measure-
ments of the target or working fluid, such as in Ref. [38],
keeping in mind that there one also implicitly assumes large
measurement machines that replace the refrigerator [39].
Or one could investigate the advantage of more general
thermal couplings, such as in Ref. [40]. Finally, in the
cooling task considered here, both initial and final states are
diagonal in the energy eigenbasis, such that further

limitations from the manipulation of coherences do not
apply [41,42]. It could be interesting to study how initial
coherences affect the results.
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