Exploring the global transcriptomic response of L. monocytogenes to desiccation on stainless steel

Kragh, Martin Laage; Hansen, Lisbeth Truelstrup

Publication date: 2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Title: Exploring the global transcriptomic response of *L. monocytogenes* to desiccation on stainless steel

Authors: Martin Laage Kragh and Lisbeth Truelstrup Hansen
National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark.

Abstract:

The ability of *L. monocytogenes* to survive desiccation for extended periods on food contact surfaces remains a challenge for the food industry.

The purpose of this study was to further our understanding of the bacterium’s survival by investigating the global transcriptomic response of *L. monocytogenes* to desiccation (43% RH, 15°C) on food grade stainless steel surfaces.

Two strains (a food and an outbreak strain) of *L. monocytogenes* were desiccated (43% RH, 15°C) on stainless steel under conditions simulating a food processing plant. Survivor counts and RNA extracts were obtained after 0 (control), 6, 12, 24 and 48 hours for subsequent rRNA-depleted Illumina TrueSeq RNA library preparations and strand specific Illumina Hiseq 2000 paired end RNA-sequencing. Differentially expressed genes were reported as significant (*p* adjust < 0.05) if log2 fold change were >1 (fold change > 2).

Both strains were reduced by 1.8 – 2.0 log CFU/cm² over 48 hours (from 7.7 log CFU/cm²), with the first log reduction occurring after 6 hours. The number of differentially expressed genes varied among the food (336±20) and outbreak strains (646±32). After commencement of the desiccation, gene expression remained stable over the 48 hours for both strains. A core set of 154 genes were differentially (*p* adjust < 0.05) expressed in both strains throughout the desiccation and included the downregulated cheY and cheA (two component system involved in chemotaxis), the upregulated qoxABCD operon (*sigB* dependent quinol oxidase), and the upregulated phdA (general metabolism related to osmotic stress). In contrast, genes such as *inlH* (internalin H) and *lmo0781-0784* (PTS mannose system) were differentially up- or down- regulated in the strains.

The present study detected novel desiccation associated stress genes in *L. monocytogenes* and revealed strain differences. Taken together this will increase our knowledge of the bacterium’s desiccation-stress response and lead to improved control in food processing plants.