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Abstract  1 

Purpose Large data amounts are required in an LCA, but often, site-specific data are missing and less representative 2 

surrogate data must be used to fill data gaps. No standardized rules exist on how to adress data gaps and process 3 

completeness. We suggest a systematic evaluation of process completeness, identification of data gaps, and application 4 

of surrogate values to fill the gaps. The study focus on foreground process data.       5 

Methods A solid waste management (SWM) scenario was used to illustrate the suggested method. The expected input 6 

and output flows in a waste incineration model were identified based on legislation and expert judgement, after which 7 

process completeness scores were calculated and missing flows identified. To illustrate the use of different types of 8 

surrogate data to fill data gaps, data gaps were selected for 16 different parameters in five SWM processes. We 9 

compared the global warming potential (GWP) from using surrogate data, and from leaving the gap, to identify the data 10 

gaps where representative surrogate data should be used. 11 

Results and discussion The completeness score for the material inputs to waste incineration was 78%, and the missing 12 

flows were auxiliary fuels and precipitation chemicals. The completeness score for air emissions were between 38% and 13 

50% with and without expert judgement. If only greenhouse gases were considered (CO2, CH4, and N2O), the 14 

completeness score would be 67%. Applying weighting factors according to the greenhouse gas contribution in the US 15 

gave a completeness score of 94%. The system-wide data gaps, where representative surrogate data should be applied, 16 

were the CH4 release from composting; electricity generation efficiency of incineration; recovery efficiencies at a 17 

material recovery facility; and composition of the plastic, metal, and paper fractions in the household waste; in these 18 

cases, leaving the gap changed the GWP results by >5%.  19 

Conclusions Completeness evaluation should take into account the relevance and importance of flows; relevance 20 

depends on the considered life cycle impact methods and importance depends on the weighting of the different flows. 21 

The set of expected flows and evaluation of relevance and importance must be documented in a transparent manner. 22 

The choice of surrogate values to fill data gaps depends on the availability of secondary data and on whether the data 23 

gap matters, i.e. significantly affects the LCA results. The suggested method can be used to properly document the 24 

identification of missing flows, and to select and apply surrogate values to fill the data gaps.  25 

    26 

Keywords: Completeness, data gaps, surrogate values, representativeness, waste management, LCA27 
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1 Introduction 28 
There is an increasing need for predictive models to support environmental policy and decision making. The validity of 29 

these models is dependent on the availability of reliable data generated in a valid manner and relevant to the study 30 

context. Life cycle assessment (LCA) is an example of a data intensive modeling framework that is often used for 31 

environmental policy analysis. It is an analytical framework used to estimate and compare the potential environmental 32 

impacts of products, processes, and systems. LCAs cover multiple impact categories (e.g., global warming, resource 33 

use, eutrophication) as well as upstream and downstream processes to assess and explore trade-offs between different 34 

impacts and life cycle stages (e.g., use and end-of-life). The comprehensive nature of LCA implies the need for large 35 

amounts of data representing both foreground and background processes. As a result, missing data (i.e. data gaps) are 36 

common. Data gaps can be defined as values that are unavailable but would improve the accuracy and reliability of 37 

LCA results if they were included (Little et al., 2012). Data gaps that are ignored, i.e. not filled by some alternative 38 

data, may bias the results of an LCA. As described by Zhou et al. (2014), even when data are missing, the goal remains 39 

to make conclusions about the facilities and processes covered by the goal and scope of the analysis. Thus, to ensure 40 

that reliable conclusions are drawn from an LCA study, it is important that the practitioner identifies data gaps and 41 

applies methods to fill them.  42 

Data gaps may occur in the life cycle inventories (LCIs) or life cycle impact assessment (LCIA) methods. The focus of 43 

this study is on data gaps in LCIs, which include entire processes or single data points within a process (Hischier et al., 44 

2001). For example, an LCA practitioner may neglect the emissions and material use related to the process of 45 

constructing a garage when modeling waste collection. A single data point, that is typically unknown and likely 46 

neglected, is the benzene emission associated with waste collection vehicles. There are principally two types of missing 47 

data: complete lack of data and lack of site-specific (i.e. technologically, temporally, and/or geographically 48 

representative) data (Huijbregts et al., 2001). In the case of a complete lack of data, no secondary data are available to 49 

fill the data gap, while in the case of a lack of site-specific data, it is possible to apply secondary data as surrogates. A 50 

common situation in which a lack of data occurs is when novel or future technologies are assessed or when there is a 51 

need to include emissions that are not monitored; complete lack of data can therefore include ‘unknown unknowns’, i.e. 52 

data that are missing without the awareness of the practitioner, due to ignorance about the processes under study (e.g., a 53 

practitioner may be unaware of the potential presence of chlorofluorocarbons (CFCs) in landfill gas [Hodson et al., 54 

2010]). Lack of site-specific data, e.g. measured at the operated process, is frequent in LCA and can include ‘known 55 

unknowns’, as the data need is known but only secondary, potentially non-representative, data are available (e.g., a 56 
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practitioner may be aware of potential CFC emissions in landfill gas, but have no data on the CFC emissions from the 57 

landfill under study). Scarce or missing data in LCAs of waste management systems include complete lack of data, such 58 

as emissions from wastewater treatment plants due to limited substance coverage of monitoring programs (Yoshida et 59 

al., 2014), and lack of site-specific data, such as the physico-chemical composition of local household waste material 60 

fractions (Götze et al., 2016). Thus, missing data is a challenge when modeling waste management systems, particularly 61 

because of the local specificities and the linked nature of the waste composition, collection, and treatment processes. 62 

The ISO 14044 standard requires that missing data is treated by a justified application of a non-zero value, a zero value, 63 

or a calculated value (ISO, 2006). A number of publications have demonstrated methods to fill data gaps, including the 64 

use of proxies, extrapolation methods, regression models, expert elicitation, and input-output data (Canals et al., 2011; 65 

Majeau-Bettez et al., 2011; Moreau et al., 2012; Steinmann et al., 2014; Subramanian and Golden, 2016). These 66 

methods differ in level of sophistication, and previous studies have not yet compared different approaches to fill the 67 

same data gap.        68 

The occurrence of data gaps is closely linked with data completeness. Completeness is a data quality requirement in 69 

ISO 14044, defined as the ‘percentage of flow that is measured or estimated’ (ISO, 2006), which allows for multiple 70 

interpretations. The data quality assessment scheme used for the ecoinvent database evaluates completeness as the 71 

quality of a single flow in terms of whether the data sampling represents variations over time and space (Weidema et 72 

al., 2013). For example, NOx emissions from waste collection fluctuate depending on the type of truck, duty cycle, and 73 

collection system for a specific city, which should ideally be estimated using a sufficient sampling size and period. The 74 

ILCD Handbook (JRC, 2010) and the US Environmental Protection Agency (US EPA) (Edelen and Ingwersen, 2016) 75 

define completeness at the process level as the number of included substances to model a process relative to the number 76 

of expected substances for a process. In this study, we will focus on completeness at the process level. Few publications 77 

describe how to calculate completeness scores for process inventories in practice. The approach by Edelen and 78 

Ingwersen (2016) includes different types of data used to model a unit process (e.g. emissions, raw inputs, and reference 79 

product). It provides a generic method for weighting completeness scores that can be adjusted to consider the relevant 80 

priorities of a project stakeholder (e.g. a study may weigh the completeness of air emissions stronger than the 81 

completeness of intermediate inputs). However, Edelen and Ingwersen (2016) do not offer an approach to identify the 82 

expected flows in the calculation of the completeness score. Other authors provide examples of using the method by 83 

JRC (2010) to calculate the completeness of fuel and electricity datasets regarding substance flows to and from the 84 

environment (Fazio et al., 2015; Garraín et al., 2015a, 2015b). The authors first conducted a sectorial analysis to 85 
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identify the substances that should be included in the process inventory, they then listed the substances actually 86 

included according to how many impact categories they cover, and finally they compared the number of included 87 

substances relative to the number of expected substances per impact category (they did not include weighting). While 88 

publications on process completeness base the estimation of expected substances on expert judgement, substances 89 

identified by environmental regulation and monitoring programs are also relevant. In this study, we suggest a systematic 90 

approach to evaluate completeness that considers current and potential regulations, existing literature, and expert 91 

judgement. 92 

This study addresses foreground process data, and site-specific data gaps that can be identified and filled using 93 

secondary surrogate data to build more complete lifecycle inventories. The aim of this study is to suggest a combined 94 

systematic approach to calculate process completeness, identify missing flows (data gaps), and apply surrogate values to 95 

fill the data gaps. A solid waste management (SWM) scenario is used as case study to illustrate the method. The 96 

specific objectives are to 1) describe methods to fill data gaps and calculate completeness scores, 2) calculate process 97 

completeness scores and identify missing flows for the waste incineration process as an example, and 3) suggest 98 

methods and surrogate values to fill the data gaps for 16 parameters in five SWM processes. The next section describes 99 

methods to fill data gaps and calculate completeness scores, followed by a description of the case study, and a 100 

presentation and discussion of the study results. 101 

2 Methods 102 

2.1 Published methods to fill data gaps  103 
Methods used to approximate the missing data in the SWM case study include deterministic approaches based on 104 

single-point values and intervals as well as stochastic approaches using statistical distributions. Table 1 shows a 105 

glossary of terms for the approaches used to fill data gaps in this study and each is described in this section.       106 

Direct and average proxies require relatively little data (Canals et al., 2011). A direct proxy consists of using another 107 

value from a different process or system in place of the missing value, while an average proxy uses some value of 108 

central tendency (e.g., mean, median, mode) of a set of direct proxies. If more than one proxy representing the same 109 

process is available, an interval can be obtained (e.g. using the standard deviation). Scaled proxies are typically used for 110 

product portfolios, production volumes, and other compositional data. Compositional data contains relative information 111 

about the parts of a whole, given as proportions and percentages. In the SWM field, scaled proxies have been used to 112 

construct food waste composition by defining a set of food item proxies per food category. For example, Tonini et al. 113 
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(2017) used beef, pork, and chicken as proxies for the entire fraction of meat and meat products, where other meats 114 

were considered negligible. Regression techniques can also be used to derive proxies, e.g. Moreau et al. (2012) 115 

predicted material flows for power plants from relationships between properties of different plants.     116 

Min-max intervals cover the extreme observations of a sample. For example, min-max intervals were used to establish 117 

landfill LCIs representing the expected technological and geographical variability within a given scope of study 118 

(Henriksen et al., 2017). Alternatively, statistical distributions may be developed for the input values. When data are 119 

limited, uniform or triangular distributions are often used to create approximate distributions (Bisinella et al., 2017; 120 

Clavreul et al., 2013; Laner et al., 2015). If the sample is sufficiently large, fitting a statistical distribution to the 121 

available data provides an estimate of the uncertainty of the value.  122 

Table 1 Glossary of terms for the methods used to fill data gaps in the case study 123 

Proxy Available surrogate data intended to reasonably represent missing data based on an underlying 
understanding of the process, material, or system 

Direct proxy Use of surrogate data without any modification of its original value(s)  

Average proxy Use of a measure of central tendency of multiple surrogate data values (i.e. arithmetic mean, 
median, mode) 

Scaled proxy Linear scaling of known part of some compositional data to cover an unknown part of the data  

Min-max interval Extremes of a data interval based on measured data, literature, or estimates 

Statistical 
distribution 

Fitting a statistical distribution to a data sample (normal, lognormal, triangular, etc.)  

Leaving a gap A gap in data is neglected because the practitioner is unable or unwilling to use any surrogate 
data to fill a data gap 

 124 

In addition, models can be used to approximate missing data by describing the relationship between independent and 125 

dependent variables. For example, the energy use at material recycling facilities (MRFs) was estimated from mass flows 126 

to each piece of equipment and energy use per unit mass of material processed (Pressley et al., 2015). A limitation of 127 

using models is that detailed information about sub-processes in a facility is required, which – if not available – creates 128 

even more data gaps. Input-output data have been used to address background data gaps (Moberg et al. 2014), but may 129 

overestimate the actual impact when including emissions from other sectorial processes. Finally, leaving a data gap is 130 

an alternative to filling the gap, which, however, may favor the least documented process in an LCA (Moreau et al., 131 

2012).  132 
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2.2 Method to calculate process completeness scores 133 
The applied method to calculate completeness scores follows the principles reported by the US EPA (Edelen and 134 

Ingwersen, 2016)  and ILCD Handbook (JRC, 2010). The basic principle is to calculate process completeness as the 135 

number of included flows relative to the number of expected flows. Flows here are distinguished as elementary 136 

(exchanges with the environment) and intermediate (between industrial processes). In this study, elementary and 137 

intermediate flows are assessed separately, because the former targets the impact coverage of the included data. 138 

Equation 1 is used to calculate the completeness score for process p, and Eq. 2 calculates the system completeness by 139 

dividing the total number of included flows for all P processes by the total number of expected flows for all P processes. 140 

Process and system completeness can be calculated using either elementary or intermediate flows either as a whole or 141 

for specific impact categories.    142 

Process Completenessp =
Number of Included Flowsp

Number of Expected Flowsp
 

 (1) 

System Completeness =
∑ Number of Included Flowsp

P
1

∑ Number of Expected Flowsp
P
1

 
(2) 

Depending on the type of LCI model, Eq. 1 and 2 may also be used to assess the completeness of flows modeled 143 

indirectly, i.e. flows that are a function of parameters such as transfer coefficients and other efficiencies. The set of 144 

expected flows should be identified in a transparent manner and be based on published sources and expert judgement. 145 

The next section describes a decision-support framework for evaluating process or system completeness that includes 146 

the identification of expected flows.    147 

2.3 Decision-support framework   148 
The decision-support framework shown in Figure 1 illustrates the suggested method to evaluate process completeness, 149 

identify missing flows (data gaps), and apply surrogate values to fill the data gaps. The method consists of four steps, 150 

and we recommend that a user sets up a similar diagram when conducting an LCA. Step 1 is the initial modeling of the 151 

processes under study, where the available input and output data are collected. The required data depend on the goal and 152 

scope of the study, e.g., in a carbon footprint study only elementary exchanges of greenhouse gases are required. Step 2, 153 

the identification of the expected flows for a process p, help to establish the required data. Legislative documents 154 

contain lists of monitored substances, which are relevant to the process and should be included in the model, and other 155 

relevant substances can be found in literature and based on expert judgement. In step 3, the included flows and set of 156 

expected flows are used to calculate a process completeness score and identify the missing flows (i.e. data gaps). In step 157 

4, the data gap is characterized as either a complete gap or a site-specific data gap, as this influences the ability to apply 158 
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secondary data as surrogates. If it is a complete data gap, a rough estimate can be used. If it is a site-specific data gap, 159 

secondary surrogate data can be collected; starting with, potentially lower-quality, easily available data. The user should 160 

then further evaluate the data gaps that significantly change the results (e.g., >0.1, 1 or 5% change) if not filled by 161 

surrogate data. Final surrogate data values should be selected for the important data gaps based on a comparison of the 162 

representativeness of the possible surrogate values (site-specific gap) or by refining the rough estimate, e.g. by 163 

consulting an expert (complete gap). For the data gaps not considered important (<0.1, 1 or 5% change), it is sufficient 164 

to use lower quality surrogate data (or to leave the gap un-filled), as this will not significantly alter the LCA results.      165 

 166 

 167 
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 168 

Fig. 1 Decision-support framework diagram with the method applied in this study 169 
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3 Case study  170 

3.1 Solid waste management scenario  171 
A SWM scenario (Figure 2) was modeled to illustrate the application of the suggested method in Figure 1. The scenario 172 

represents the management of household waste in the US, with the functional unit being the collection, transport, and 173 

treatment of 1 metric ton of household waste including disposal of final residues. The included processes are waste 174 

generation and source separation, collection of waste fractions, sorting at a MRF, composting of yard and food waste, 175 

remanufacturing of recyclable materials, and incineration of the residuals with energy recovery. The LCI is documented 176 

in the Supplementary Information (SI). The SI also contains an analysis of an additional SWM scenario where the 177 

residual waste is landfilled. The second scenario was added to ensure generalizability for the proposed approach, and 178 

the SI (section 3) includes a comparison of both scenarios. A consequential modeling approach was applied, hence, 179 

multifunctionality was addressed by system expansion to account for avoided products. Mainly North American data 180 

were used as a baseline, but the outcomes related to filling data gaps and calculating process completeness are generally 181 

applicable to the LCA field. The LCA model EASETECH was applied (Clavreul et al., 2014).  182 

 183 

Fig. 2 Flow diagram for the SWM scenario used as case study. Squares with solid lines indicate waste treatment 184 
processes and ovals indicate material flows. Dotted lines indicate the substitution of marginal energy, virgin materials, 185 
or fertilizer by recovered energy or secondary materials from the waste treatment. Arrows indicate collection from 186 
households and inter-facility transportation. Data gaps are selected for the five processes with bold edges       187 
 188 

The four steps of the decision-support framework shown in Figure 1 was demonstrated as follows: The scenario was 189 

modeled with the included data stemming from available secondary sources (step 1). Next, the waste incineration 190 

process was used as an example to estimate the set of expected flows, calculate the completeness score, and identify the 191 

missing flows (step 2 and 3). Then, 16 different parameters were selected as site-specific data gaps in five processes in 192 
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the scenario to provide multiple examples of applying different approaches and surrogate data to fill data gaps (step 4). 193 

Lastly, final surrogate values were selected based on their representativeness and other data quality aspects (step 4).  194 

To present the results from using surrogate data to fill the data gaps, we applied the global warming potential (GWP) 195 

metric. The purpose of this study was to compare approaches to fill the data gaps, rather than to present a full LCIA. 196 

Thus, a carbon footprint study was adequate to illustrate the methodology. We quantified the GWP using the method 197 

developed by the Intergovernmental Panel on Climate Change as recommended in Hauschild et al. (2012).    198 

3.2 Included and expected flows for the waste incineration process 199 
To identify the missing flows and evaluate the completeness for the waste incineration process, the included and 200 

expected intermediate and elementary flows were identified (Table 2); this corresponds to step 1 and 2 in Figure 1. The 201 

intermediate flows were material inputs to the waste incineration plant, and the elementary flows were air emissions via 202 

the flue gas. Relevant expected flows were identified based on legislative documents.      203 

The reference for the intermediate flows was the former Danish register in which Danish waste incineration facilities 204 

were legally obliged to report annual consumption data (Danish EPA, 2010). The set of expected intermediate flows 205 

was identified based on an internal review of data reported by 10 Danish incineration plants from 1995 to 2016.  206 

Multiple references were used to obtain an aggregated set of expected elementary flows, with and without additions 207 

based on expert judgement. Under the Clean Air Act, the US EPA has developed New Source Performance Standards 208 

for large municipal waste combustors (US EPA, 2006), named ‘US standards’ in Table 2. Within Europe, the Integrated 209 

Pollution Prevention and Control (IPPC) directive regulates emissions from industrial facilities, including dedicated 210 

waste incineration plants (European Parliament and Council, 2010), which contain emission limit values. Also in 211 

Europe, waste incineration plants must comply with the European Pollutant Release and Transfer Register (PRTR) 212 

(European Commission, 2006), which requires reporting of emissions that may or may not be regulated by the IPPC.  213 

The additional flows from expert judgement were provided by Michael Van Brunt (Sr. Director of Sustainability, 214 

Covanta Energy Corporation). The additional flows included emissions that may be regulated in local/regional 215 

jurisdictions in the US (e.g. states and air quality districts), due to specific conditions. For example, individual states 216 

may regulate emissions that are not regulated at the national level. Flows were therefore aggregated into two sets; one 217 

with and one without flows based on expert judgement.    218 
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Table 2 Included input-output flows in the waste incineration model as well sets of expected intermediate and elementary 219 
flows. The full names/chemical formulas are explained in the SI  220 

Included flows 
Intermediate (material use at plant) Elementary (emissions to air)  
Activated carbon, calcium agent (CaCO3, Ca(OH)2), 
electricity, heat, NH3, scrubber (NaOH, HCl), water 

As, Cd, CH4, CO, CO2, Cr, Cu, dioxins, particles, HCl, HF, 
Hg, NH3, Ni, NO2, Pb, PM, Sb, SO2, TOC 

Expected flows 
Intermediate (material use at plant) 

Danish register Activated carbon, calcium agent (CaCO3, CaO, Ca(OH)2), electricity, heat, fuel (gas, oil, 
biomass), NH3, precipitation chemicals (TMT15, FeCl3, FeSO4), scrubber (NaOH, NaHCO3, 
HCl), water 

Elementary (emissions to air)  
US standards  Dioxins/furans, Cd, Pb, Hg, particles, HCl, SO2, NOx, CO, CO2, N2O, CH4  
IPPC directive  As, Cd, Co, Cr, Cu, dioxins, furans, particles, HCl, HF, Hg, Mn, Ni, NO2, Pb, Sb, SO2, Tl, 

TOC, V 
PRTR register As, C6H6, Cd, CH4, CO, CO2, Cr, Cu, dioxins/furans, HCB, HCl, HF, Hg, NH3, Ni, 

NMVOC, N2O, NO2/NOx, PAH, , PM10, Pb, PCB, PeCB, PER, SO2/SOx, C2H3Cl, Zn 
Expert judgement ‘US standards’ + Be, Cr, Cr VI, As, Ni, NH3, HF, Zn, Sb, Se, V, Cu, Mn, C20H12, PAH, 

VOC, F-, HBr, Al, P, PCBs, Sn, Si, Ba, Tl, C2Cl4, CCl4, C2H3Cl, C2HCl3 
Sum without 
experts addition 

Dioxins/furans, Cd, Pb, Hg, particles, HCl, SO2, NO2, PAH, PCB, PeCB, PER, NOx, CO, 
CO2, N2O, CH4, As, Cd, Co, Cr, Cu, HF, Hg, Mn, Ni, NO2, Sb, Tl, TOC, V, C6H6, NH3, 
HCB, Ni, NMVOC, C2H3Cl, Zn  

Sum with experts 
addition 

‘Sum without’ + Be, Se, C20H12, F-, HBr, Al, P, Sn, Si, Ba, C2Cl4, CCl4, C2HCl3  

IPPC=Integrated Pollution Prevention and Control, PRTR=European Pollutant Release and Transfer Register,  221 

3.3 Data gaps in the case study  222 
We selected hypothetical data gaps for 16 parameters in five processes in the SWM scenario (highlighted in Figure 2). 223 

The data gaps are examples of missing site-specific data in the modeling of SWM processes. Some parameters are 224 

included as gaps (e.g. CH4 emissions from composting and MRF recovery rates) to highlight the importance of using 225 

representative surrogates, as SWM models are often sensitive to these parameters. The data gaps are described in this 226 

section. 227 

The waste generation process describes the household waste composition, which influences the environmental impacts 228 

of waste treatment and disposal (Bisinella et al., 2017). The waste composition was developed from a residual waste 229 

sorting study for Wake County, North Carolina, and data on recyclable waste composition for municipalities within the 230 

county (SCS Engineers, 2014). Municipal solid waste composition data are available in the literature, e.g. the World 231 

Bank includes six fractions (Hoornweg and Bhada-Tata, 2012) and other studies include more fractions (Burnley, 2007; 232 

Edjabou et al., 2014, US EPA, 2016). However, detailed waste composition data, e.g. the proportion of different plastic 233 

polymers, is limited, which leads to a frequent use of surrogate data to fill gaps. Consequently, we selected data gaps for 234 

the composition of the food, paper, plastic, ferrous metal, aluminum, and glass fractions. Specific considerations on 235 

how to approach the data gaps were developed for the waste composition. As the data gap is the composition of the 236 
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waste fractions, the proportions of the overall fractions were known, i.e. food (9%), paper (17%), plastic (12%), metal 237 

(4%), and glass (7%). The unknowns were the proportions of the constituents of the fractions; e.g. for food waste, the 238 

proportion of non-meat versus meat. 239 

The MRF process controls the difference between the amount of materials collected for remanufacturing and the 240 

amount sent to remanufacturing. MRF types are single (receiving a commingled recyclables stream), mixed (receiving 241 

mixed waste containing recyclables and non-recyclable wastes), dual (receiving two streams of recyclables [e.g., mixed 242 

containers and presorted paper] for separate treatment), and presorted MRFs (receiving source-separated streams that go 243 

through final sorting and bailing) (Pressley et al., 2015). The performance of MRFs depends on individual design and 244 

operational configurations governed by the waste to be treated, which is why there is no single industry-average dataset 245 

(Pressley et al., 2015). This suggests the need for site-specific data that are often not available. To assess the influence 246 

of MRF data gaps, we selected data gaps for material recovery efficiencies as well as diesel and electricity use.      247 

The paper, plastic, glass, and metal remanufacturing processes in the system are based on relatively old data 248 

representing the US (RTI International, 2003). Data for the conversion of waste materials to secondary products are 249 

generally limited and variable (Brogaard et al., 2014). Hence, we selected data gaps for direct CO2 emissions as well as 250 

electricity and natural gas use in remanufacturing. Instead of analyzing all remanufacturing processes, we used 251 

cardboard remanufacturing as an illustrative example. The influence of using remanufacturing surrogate data for other 252 

types of fiber (newsprint, office paper, etc.) was assessed.   253 

The composting process included food and yard waste from households. Over 60% of yard waste is composted in the 254 

US (US EPA, 2016). Still, LCI data for composting is limited, e.g. material use, energy use, and input-specific 255 

emissions. Furthermore, composting technologies, e.g. open and enclosed, differ in the level of environmental 256 

exchanges (Boldrin et al., 2009). Thus, site-specific composting data is relevant but its availability is often limited. We 257 

selected data gaps for diesel and electricity use as well as input-specific greenhouse gas emissions. The land application 258 

of the finished compost was included in the model and was assumed to substitute commercial fertilizers, similar to other 259 

studies (e.g. Yoshida et al., 2016).   260 

The waste incineration process recovers electricity and metals from the bottom ash. Relevant incineration data are 261 

material consumption, energy recovery, and flue gas emissions. Flue gas emissions are regulated and therefore not 262 

expected to exceed threshold values, e.g. European or US limits (European Parliament and Council, 2010; US EPA, 263 
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2006); thus, in the case of data gaps, emission limits can be used as proxies. The technology and efficiency of energy 264 

recovery is less regulated so a regulation-based proxy is not possible. Energy recovery depends on site-specific 265 

configurations, e.g. combined heat and power production or only heat or power production (Astrup et al., 2014). 266 

Empirical data for the electricity efficiency of 58 incineration facilities in the US – of which two produce combined heat 267 

and power - ranged from 7 to 22% (US EPA, 2017). While data are available for waste incineration, it is challenging to 268 

get site-specific data, which is why we selected electricity recovery as an illustrative data gap.  269 

3.4 Methods to fill the data gaps in the case study 270 
We applied approaches to fill the data gaps based on the type of data gap and availability of surrogate values. The data 271 

gaps described in the previous section were missing site-specific data, thus, secondary data were identified for use as 272 

surrogate values. As shown in Table 3, not all approaches matched with all data gaps. Direct and average proxies 273 

require single surrogate values, and could be paired with the data gaps in all five SWM processes. Scaled proxies are 274 

suitable for compositional data and were therefore only paired with the waste composition data gaps. Min-max intervals 275 

were used when multiple surrogate values were available for the same data gap, enabling an interval consisting of the 276 

extremes of the multiple surrogate values. A sufficiently large number of sampled data were available for the 277 

incineration electricity recovery, which enabled the development of a statistical distribution. Furthermore, arithmetic 278 

mean values and standard deviations for the CO2 emissions from cardboard remanufacturing are available in literature, 279 

and were used for uncertainty propagation of the LCA results (see documentation in the SI).    280 

Table 3 Approaches used to fill the data gaps in the SWM scenario    281 

Solid waste management process Approach to fill data gaps 
Waste generation Direct, average, and scaled proxy 

Cardboard remanufacturing; Incineration Direct and average proxy, min-max interval, statistical distribution 

Material recovery facility;  
Composting 

Direct and average proxy, min-max interval 

 282 

Table 4 shows the applied surrogate data. For ‘leaving gap’, we inserted a zero value in all processes except for the 283 

MRF process, to illustrate the importance of filling a data gap even though it might not be realistic to use a value of zero 284 

in an actual study. In the MRF process, we interpreted leaving the gap as setting the material recovery efficiency to 285 

100%. This interpretation is based on the fact that any input varying from 1 to 0 can be reversed to make 0 or 1 the 286 

appropriate leave-gap value (e.g., if MRF recovery rates are 100%, then residual rates are 0%).  287 
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The waste composition data gaps regarded the constituents, i.e. the sub-fractions of the waste fractions (e.g., meat and 288 

non-meat were constituents of food waste). For waste fractions with two constituents (i.e. food: non-meat and meat; 289 

aluminum: cans and others; ferrous metal: cans and others) or three constituents (i.e. paper: mixed paper, office paper, 290 

and newsprint; glass: brown, green, and clear glass), 291 

a. Leave gap = one constituent set to 100%, the other(s) set to 0% 292 

b. Direct proxy (‘default’) = Proportional split based on US county data (SCS Engineers, 2014)     293 

c. Direct proxy (‘equal’) = equally split between all constituents. 294 

For waste fractions with five constituents (plastic: LDPE, HDPE, PET, mixed, and non-recyclable plastic), 295 

a. Leave gap = one constituent set to 100%, the others set to 0% 296 

b. Direct proxy (‘default’) = Proportional split based on US county data (SCS Engineers, 2014)    297 

c. Direct proxy (‘equal’) = equally split between all constituents  298 

d. Scaled proxy = unknown proportion of two constituents; known proportion of the other three constituents 299 

scaled to 100%.  300 

The applied method for ‘leave gap’ reflected that the functional unit of 1000 kg was maintained to obtain equivalent 301 

functionalities. Furthermore, it reflected that we chose the data gaps at the constituent level, e.g. the unknown 302 

proportion of meat and non-meat. Hence, ‘leave gap’ was interpreted as setting a single constituent to 100% and the 303 

others set to 0%, and the ‘scaling method’ was interpreted as extending the proportions of the known constituents to all 304 

the constituents of a fraction, e.g. the known proportions of PET, Mixed, and Non-recyclable plastic were extended to 305 

the entire plastic fraction. Accuracy of the fractional waste composition is important as it influences the physio-306 

chemical composition of the waste (e.g., more plastic enhances the fossil carbon content).  307 
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Table 4 Applied surrogate values to fill the selected data gaps. Bold values are inserted as default values when the data gap is not analyzed. The square brackets in the 308 
table note contain the type of technologies and data in the literature references. N.A.=not available in literature  309 

SWM process Data gap Applied surrogate data values  
Material recovery 
facility (MRF) 

 Direct proxies Average proxies Min-max intervals Statistical distr.  
Diesel use [kg/kg waste] 0.0007a,b, 0.0008b 0.0008b 0.0007-0.001c - 
Electricity use [kWh/kg input] 0.0047/0.0060/0.0062/0.0078a, 

0.0115/0.0138b 
0.0088a,b, 0.020c, 
0.016d, 0.01735a,b,c,d 

0.009-0.03c, 0.012-0.02d, 
0.0047-0.03a,b,c,d 

- 

Material recovery rates: 
• Cardboard [% input] 
• Paper [% input]  
• Al [% input] 
• Fe [% input] 
• Glass [% input] 
• HDPE-PET [% input] 
• LDPE [% input] 

 
• Cardboard: 54/76/99a 
• Paper: 39/77/98a  
• Al: 87/96/97a  
• Fe: 88/97/98a  
• Glass: 69/93/95a  
• HDPE-PET: 83/97/98a 
• LDPE: 77/98a  

 
• Cardboard: 77/88a 
• Paper: 69a 
• Al: 92a 
• Fe: 93a 
• Glass: 81a   
• HDPE-PET: 90a 
• LDPE: N.A. 

 
• Cardboard: 54-99a 
• Paper: 39-98a  
• Al: 87-100a 
• Fe: 87-100a 
• Glass: 69-95a 
• HDPE-PET: 83-100a 
• LDPE: 77-98a  

- 

Cardboard 
remanufacturing 

Electricity use [kWh/kg input] 0.462/0.589/0.620/1.258e 0.73e 0.589-1.258e - 
Natural gas use [kg/kg input]  0.0243/0.080/0.107/0.175e 0.097e 0.0243-0.175e - 
Direct CO2 emissions [kg/kg input]  1.04/1.06/1.4e 1.2e, 0.73/0.82/0.89f 0.61-1.4e,f, 0.38-1.56f, 

0.22-1.86f, 0.31-1.26f 
Norm(0.82, 0.312)f 

Norm(0.73, 0.412)f 
Norm(0.89, 0.602)f 

Composting Diesel use [kg/kg input] 0.00265g 0.003h 0.0004-0.006h - 
CH4 emission [% kg C transformed] 1.7g 1.7/2.7/7.2/9.3h 2.4-3, 5.1-13.5, 0.8-2.5h - 
N2O emission [% kg N transformed] 0.4g, 1.8h 0.4h 0.1-0.7h - 

Incineration Electricity recovery [% input energy] 18.2/20.9/24.4i 17.2j 7.7-22.2j, 18.2-24.4i Norm(17.2, 2.702)j 

a: Pressley et al. (2015) [single, dual, presorted, and mixed MRF], b: Fitzgerald et al. (2012) [presorted MRF], c: Merrild et al. (2009) [paper MRF], d:Larsen et al. 310 
(2009) [glass MRF], e: RTI International (2003) [newsprint, magazines, office paper, and corrugated cardboard], f: Brogaard et al. (2014) [copy paper, newsprint, 311 
corrugated cardboard, and cardboard], g: Levis and Barlaz (2013) [SWOLF model default values], h: Boldrin et al. (2009) [values from literature review], i: Hodge et 312 
al. (2016) [US estimates], j: US EPA (2017) [US incineration facility data], k: De la Cruz and Barlaz (2010) [default, low, medium, and high decay rates], l: IPCC 313 
(2006) [decay rates for temperate, dry, and wet climate] 314 
 315 

 316 
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4 Results and Discussion 317 

4.1 Completeness scores and missing flows for the incineration process 318 
Table 5 shows the completeness scores calculated for the waste incineration process, which corresponds to step 3 in 319 

Figure 1. A single completeness score was obtained for the intermediate flows, while a score range was obtained for the 320 

elementary flows (with and without expert judgement) as well as an example of a weighted score for the GWP metric.    321 

Table 5 Completeness scores for the waste incineration process in the SWM scenario 322 

Reference of expected flows Completeness score [%]                                                                                             
(included no. flows / expected no. flows)  

Intermediate flows completeness 
Danish register 78 (7/9) 

Elementary flows completeness 
Sum without experts addition 51 (19/37) 
Sum with experts addition 38 (19/50) 

Example of weighted score  
GWP metric 94%  

  323 

The completeness score for the intermediate flows was 78%, as 7 out of 9 flows were included. From Table 2, the 324 

missing intermediate flows were auxiliary fuel and precipitation chemicals which are common material inputs at 325 

incineration plants. Secondary fuel is typically oil with natural gas becoming more common and precipitation chemicals 326 

are e.g. TMT15, FeCl3, and FeSO4. Generic secondary data are available for the production of both fossil oil and FeCl3. 327 

Thus, they are site-specific data gaps for which process data exist; flow amounts can be estimated by expert judgement.   328 

The completeness score for the total elementary flows were between 38% and 51% depending on whether expert 329 

judgement was applied and how many flows were added by the expert. In the case of the score of 38%, all the possible 330 

additional flows by the expert were added (see flows in Table 2). The relatively low score range suggests that the 331 

included air emissions do not sufficiently represent the true number of air emissions from waste incineration plants. 332 

However, the unweighted completeness score does not say anything about the amounts emitted nor the importance or 333 

relevance of the flows. Relevance of the flows can relate to the LCIA methods being investigated in an LCA study. For 334 

example, in a carbon footprint study only greenhouse gases are relevant. The main greenhouse gas emissions from 335 

waste incineration are CO2, CH4, and N2O (Astrup et al., 2009). As CO2 and CH4 are included in the LCI of the waste 336 

incineration process, but N2O is not; this gives a completeness score of 67%. Furthermore, the importance can be 337 

considered by adding weighting factors to the equation. Weighting factors for individual flows may be based on the 338 

contribution of emissions to global warming within the geographical area of interest. For example, in the US, 97.4% of 339 
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the contribution to global warming stems from the emission of CO2 (81.6%), CH4 (10.1%), and N2O (5.7%) given as 340 

percentages based on CO2 eq (US EPA, 2018). Using these numbers as weighting factors gives a completeness score of 341 

94% �i.e. 0.816×1 CO2+ 0.101×1 CH4
0.816×1 CO2+ 0.101×1 CH4+0.057×1 N2O

�, shown in Table 5. This notably higher weighted completeness score seems 342 

appropriate for the waste incineration process, because - despite N2O being a very potent greenhouse gas - the emitted 343 

amounts are significantly smaller compared to CO2 (Astrup et al., 2009; US EPA, 2017), and thus the impact 344 

contribution from CO2 is expected to be larger. We therefore suggest the addition of weighting factors to obtain a more 345 

valid completeness score, which is in alignment with the guidelines suggested by the US EPA (Edelen and Ingwersen, 346 

2016).     347 

4.1.1 Is the subjectivity of the completeness metric a problem? 348 
In the context of data quality assessment, the process completeness scores are usually converted to a quality rating 1-5 349 

based on defined criteria, e.g. 1 (≥95%), 2 (85-95%), 3 (75-85%), 4 (50-75%), and 5 (<50%) (JRC, 2010). Applying 350 

these criteria to the completeness scores in Table 5 give ratings of 3 (intermediate flows) and 2, 4 or 5 (elementary 351 

flows). The completeness metric is influenced by the subjective judgement of the user, which is why we suggest a more 352 

systematic method to estimate the set of expected flows (Figure 1). Furthermore, transparency in the choice of 353 

weighting factors is crucial, e.g. by documentation of references as in the above example with greenhouse gas 354 

contributions in the US. Due to the subjectivity of the completeness metric, it can be argued that a qualitative 355 

assessment of process completeness is just as useful, e.g. scoring completeness as Good, Average, or Poor based on 356 

whether the missing flows were from a priority list or not (van den Berg et al., 1999). However, authors have argued 357 

that data quality criteria do not need to be objective but must be inter-subjective, meaning that multiple individuals 358 

should be able to come up with similar data quality scores based on the same criteria (Funtowicz and Ravetz, 1990). As 359 

the data quality criteria for process completeness equals the set of expected flows, this highlights the importance of 360 

validation and transparency of the identification of the expected flows.  361 

4.2 Carbon footprint results  362 
This section corresponds to the part of step 4 in Figure 1 that evaluates whether the data gaps matter, i.e. if they will 363 

affect the final GWP results if not filled by surrogate data. We have evaluated this by comparing the GWP when 364 

applying a surrogate value with the GWP when leaving the gap for each of the 16 parameters in Table 4; if the 365 

difference between the GWP is larger than 5% then the data gap matters (i.e. is considered important). Section 4.3 then 366 

targets the part of step 4 in Figure 1, where the final surrogate values are selected for the data gaps identified as being 367 

important.   368 
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Figures 3 and 4 illustrate the GWP as a function of the data gap and surrogate value/method. In addition, Figure 5 369 

illustrates the summary data of the results and illustrates the variability of the applied surrogate data from literature. The 370 

applied surrogate data are shown in Table 4, however, it is not possible to identify each specific value in the plots, 371 

which are meant to show the overall trends in the results. It should be mentioned that the GWP results from use of the 372 

statistical data are not shown in the plots, instead they are described in the text below for comparison.  373 

 374 

Fig. 3 Global warming potential (per functional unit) from filling or leaving the data gaps for the 16 parameters in Table 375 
4. The results are shown at scenario level. The symbol shape denotes the method (i.e. type of surrogate data) and the color 376 
denotes the parameter. Horizontal placement of the values is irrelevant 377 

 378 

 379 

Fig. 4 Global warming potential results (per functional unit) from filling or leaving the data gaps for the 16 parameters in 380 
Table 4. The results are shown at process level. The symbol shape denotes the method (i.e. type of surrogate data) and 381 
the color denotes the parameter. Horizontal placement of the values is irrelevant. Note that the y scale of the plots differs 382 
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Figure 3 illustrates the results at the scenario level, i.e. the net scenario results. Regarding the composting process, only 383 

the data gap representing the CH4 emission factor deviated >5% to leaving the gap, when applying maximum and 384 

average proxy values from Boldrin et al. (2009). Thus, the potential anaerobic CH4 generation, occurring locally in the 385 

piled waste, should be modeled accurately. Regarding the incineration process, there is clearly >5% difference between 386 

leaving the gap and applying proxy values, thus, electricity efficiency is an important parameter that should also be 387 

modeled accurately. The outlier in Figure 5 (scenario level) were associated with the minimum value for electricity 388 

recovery from the US EPA (2017). To compare, fitting a normal distribution to the empirical energy recovery data for 389 

the US plants, resulted in -151±45 kg CO2 eq, which corresponds to the average proxy result in Figure 3 with a standard 390 

deviation of 45 kg CO2 eq around it. Regarding the MRF process, the GWP from using the material recovery proxies 391 

for cardboard, paper, and ferrous metal from Pressley et al. (2015) differed >5% to leaving the gaps. This is due to the 392 

linked nature of the processes and data, as differences are only seen for the net scenario (Figure 3) where the values 393 

control how much material can be finally recycled, but the material recovery efficiencies are insignificant when looking 394 

at the MRF process independently (Figure 4.)  Another outcome is that, for cardboard, there were less environmental 395 

savings with 100% recovery (leaving the gap), because the savings from the subsequent cardboard recycling (-0.09 kg 396 

CO2 eq per kg) were lower than the savings from incineration of the non-recovered cardboard (-1.1 kg CO2 eq per kg). 397 

However, this is not a general conclusion but is based on the data for secondary and primary material production used in 398 

this study (RTI International, 2003) as well as the electricity efficiency and marginal electricity fuel (natural gas) 399 

assumed for incineration in the US. In the cardboard remanufacturing process, the difference between using surrogate 400 

values and leaving the gap was >5% for the electricity use and CO2 emissions, with proxies from RTI International 401 

(2003) and Brogaard et al. (2014); using these proxies caused minor outliers (Figure 5). The natural gas data gap gave 402 

differences <5%, thus, an easily available surrogate value is sufficient for this parameter. To compare, the use of 403 

statistical data for the CO2 emissions from three different fiber proxies (Brogaard et al., 2014) resulted in -216±7, -404 

219±9, and -215±13 kg CO2 eq , which are close to the GWP results in Figure 3.    405 

The identified important data gaps in the waste composition (>5% difference) were related to the plastic, metal 406 

(aluminum), and paper fraction in the waste, which were also those proxies causing outliers (Figure 5). For plastic, first, 407 

leaving the gap (i.e. assuming 100% LDPE) reduced the environmental benefits from the scenarios because the GWP 408 

savings per kg recycled material for PET (-2.4 kg CO2 eq/kg) and HDPE (-1.8 kg CO2 eq/kg) were larger than for 409 

LDPE (-0.2 kg CO2 eq/kg). Second, the equal split between the plastic constituents decreased the environmental savings 410 

for the same reason, but to a smaller extent. Third, using the scaled proxy (i.e. assuming unknown proportion of HDPE 411 
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and LDPE) led to larger environmental savings than the default settings, as more PET was recovered giving larger 412 

savings from recycling. For aluminum, the equal split between the constituents differed >5% to leaving the gap (i.e. 413 

assuming only aluminum cans). Leaving the gap gave a biased results in the form of enhanced environmental savings 414 

because aluminum cans had larger recycling benefits than aluminum foil in the model. Leaving the gap for the paper 415 

fraction (i.e. assuming only office paper) gave a bias in the form of reduced environmental savings, because the 416 

assumed energy content in office paper was lower compared to the other paper fractions (larger amount of mineral 417 

fillers), thus, less electricity was generated at the incineration plant.  418 

To summarize, the data gaps identified as important in this case study were the CH4 emission factor in composting; 419 

electricity efficiency in incineration; recovery efficiencies at the MRF; electricity use and CO2 emissions in 420 

remanufacturing; and composition of the plastic, metal, and paper fraction in the household waste. Final surrogate 421 

values must be selected for these parameters, which is done in section 4.3.   422 

 423 

Fig. 5 Boxplots summarizing the GWP results per functional unit for the SWM processes, at process and scenario level. 424 
The 50th (median), 25th and 75th percentile are shown. Outliers (dots) are the values beyond 75th percentile+1.5×IQR and 425 
below 25th percentile-1.5×IQR. Interquartile range (IQR) = 75th percentile-25th percentile        426 
 427 

Figure 4 illustrates the GWP at the process level, i.e. how the data gaps influenced the net results for the processes. 428 

These outcomes are relevant if the user is modeling a single process thoroughly instead of an entire SWM system. The 429 

data gaps with >5% difference between using surrogate data and leaving the gap were the CH4 and N2O emissions as 430 

well as diesel use in the composting process (differs to scenario level results), and the electricity efficiency in the 431 
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incineration process. The latter was important at process level because our incineration module included the avoided 432 

production of marginal electricity. For the MRF process, there was a shift of the important data gaps from the recovery 433 

efficiencies to the electricity use, because the recovery efficiencies only affect the subsequent remanufacturing and 434 

avoided primary production. Finally, for the cardboard remanufacturing process, all the parameters differed >5%, i.e. 435 

also natural gas in contrary to the scenario level results. This highlights the need for assessing the importance of data 436 

gaps with regard to the entire system, and not just aggregated important data gaps at the process level, when modeling a 437 

SWM scenario.  438 

The threshold of 5% was a type of cut-off rule for contribution to impacts, which affected how many data gaps were 439 

considered important to the LCA results. In a comparative LCA study, the threshold level should be decided taking into 440 

account the difference between the scenarios, because the threshold should be smaller than the difference between the 441 

scenarios’ potential impacts. Furthermore, we evaluated the threshold relative to the net impacts, but it could also be 442 

relative to the absolute impacts from a unit process.   443 

4.3 Selection of final surrogate values by evaluation of representativeness 444 
The final surrogate values were selected among the possible values in Table 4, and were those with the best match of 445 

the temporal, geographical, and technological scope of the case study, being 2018-2020 (temporal scope), the US 446 

(geographical scope), and US average (technological scope). Table 6 shows the final surrogate values. In some cases, 447 

the reason for not selecting the other surrogate data in Table 4 was discrepancies with the technological scope of the 448 

case study. For example, the material recovery efficiencies of the other MRF surrogate data represented mixed waste 449 

stream, dual stream, and presorted stream MRFs (Pressley et al., 2015), whereas the case study targeted single stream 450 

MRFs. Also, it was assumed that the composting facility was an aerated pile (open technology) receiving food and yard 451 

waste, while the other surrogate data in Table 4 represented enclosed, home, or pure garden composting (Boldrin et al., 452 

2009). For the incineration process and waste composition data, the selection of final surrogate values was a matter of 453 

representativeness as well as data reliability. The electricity efficiencies for ‘state-of-the-art’, ‘average’ or ‘worse’ 454 

incineration plants are based on expert judgement (Hodge et al., 2016), while the selected final surrogate data are based 455 

on actual measurements (US EPA, 2017). Similarly, the waste composition from SCS Engineers (2014) are based partly 456 

on site-specific data for the Wake County as well as literature data from Riber et al. (2009), which is considered more 457 

valid than the direct and scaled proxies that we assumed for the waste composition. Finally, in the selection of the final 458 

surrogate values for the cardboard remanufacturing process, we prioritized data that were generated to represent 459 

cardboard remanufacturing in the USA, despite the relatively outdated data (from 1990-1992). 460 
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Table 2 Final surrogate values selected to fill the important data gaps in the case study 461 

Process Parameter Final surrogate values  Temporal 
coverage 

Geographical 
coverage 

Technological 
coverage 

Composting CH4 
emission 

g/h:0.8-2.5 (average 
1.7) 

2000-2020 No specific 
area / generic 

Open technologies 

Incineration Electricity 
efficiency 

j: 17.2±2.7 2016 USA Average of 58 plants 

Material recycling 
facility 

Recovery 
efficiency 

a: 100 (cardboard), 99 
(paper), 97 (Al), 98 (Fe), 
90 (LDPE), 98 (HDPE, 
PET), 95 (glass)    

2014 USA Single stream 

Waste generation  Paper, 
plastic, and 
metal  

k: fractional 
composition 

2008 Wake County, 
USA 

Household waste 

Cardboard 
remanufacturing 

Electricity 
use 

e: 0.589 1990-1992 USA Secondary cardboard, 
average of unknown 
technology 
differences 

CO2 
emission 

e: 1.04 1990-1992 USA 

a: (Pressley et al., 2015), e: (RTI International, 2003), g: (Levis and Barlaz, 2013), h: (Boldrin et al., 2009), j: (US EPA, 462 
2017), k: (Riber et al., 2009) 463 

5 Conclusions 464 
In this study, we suggested a method for systematically estimating system and process completeness, identification of 465 

missing flows (data gaps), and application of surrogate values to fill the data gaps. The study targeted foreground 466 

process data and used a solid waste management (SWM) scenario as case study. The expected input and output flows in 467 

a waste incineration model were identified based on legislative documents and expert judgement, after which process 468 

completeness scores were calculated and missing flows identified. The completeness score for the material inputs to 469 

waste incineration was 78%, and the missing flows were auxiliary fuels and precipitation chemicals. The completeness 470 

score for air emissions ranged from 38% and 50%, with and without expert judgement. If only greenhouse gases were 471 

relevant (CO2, CH4, and N2O), the completeness score increased from 38% or 50% to 67%. Further, when impact-based 472 

weighting factors were applied the score increased to 94%, which provided a better reflection of the actual 473 

completeness of the model concerning the coverage of the global warming potential. Thus, the evaluation of 474 

completeness should consider the relevance and importance of flows, depending on the included life cycle impact 475 

methods and the weighting of different flows, respectively. To illustrate the use of approaches and surrogate data to fill 476 

data gaps, data gaps were selected for 16 different parameters in five SWM processes. The global warming potential 477 

was used as the metric to compare the results from the use of surrogate data, and from leaving the gap, to identify the 478 

important data gaps that should be filled by representative surrogates. The important data gaps were the CH4 emission 479 

factor in the composting process; electricity efficiency of incineration; recovery efficiencies at the MRF; electricity use 480 

and CO2 emissions in remanufacturing; and composition of the plastic, metal, and paper fraction in the household 481 
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waste. For these parameters, leaving the gap would change the LCA results >5%. For the other parameters, even the use 482 

of min-max surrogates led to relatively small changes in the results, therefore lower quality surrogate values are 483 

sufficient. It is recommended that practitioners follow the suggested method for a more systematic identification of 484 

missing flows and application of surrogate values in the life cycle inventories process modeling.  485 
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