Ingredients from Saccharina latissima to improve physical and oxidative stability of omega-3 delivery emulsions

Hermund, Ditte Baun; Yesiltas, Betül; Anagnostara, Ioanna; Caindec, Alyssa Marie Soria; Hou, Xiarou; Neerup, Randi; Huang, Yuhong; Anasontzis, George E.; Lange, Lene; Jacobsen, Charlotte

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Ingredients from *Saccharina latissima* to improve physical and oxidative stability of omega-3 delivery emulsions

Ditte Baun Hermund1*, Betül Yesiltas1, Ioanna Anagnostara1, Alyssa Marie Soria Caindec1, Xiarou Hou2, Randi Neerup3, Yuhong Huang3, George E. Anasonitzis3, Lene Lange3, and Charlotte Jacobsen1

1National Food Institute, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
2Danish Technological Institute, DK-2630 Taastrup, Denmark
3DTU Chemical Engineering, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
*Corresponding author: dbala@food.dtu.dk

Abstract

The protection of long-chain (LC) omega-3 polyunsaturated fatty acids (PUFAs) against oxidation when added into food matrices could be achieved by the development of fish-oil delivery emulsions and by the addition of antioxidants.

Commercial alginate, a brown algae polysaccharide, in combination with sodium caseinate (NaCas), is widely used by the food industry to stabilize emulsions. Moreover, previous studies have reported that laminarin and fucoidans, both brown-algae polysaccharides, show antioxidant activity.

In this work, alginate (NaAlg), fucoidan, and laminarin were extracted from the brown alga *Saccharina latissima* (kindly provided by Ocean Rainforest, Faeroe Islands) and examined for their stabilizing properties. The potential of these polysaccharides in preventing lipid oxidation and in maintaining the physical stability of 70% (w/w) fish oil-in-water emulsions were studied. The polysaccharides were formulated in different concentration (0-0.4%, w/w) together with NaCas (0.23%, w/w) into the aqueous phase. The physical (e.g. creaming, droplet-size distribution, and apparent viscosity) and oxidative (peroxide value and secondary oxidation products) stability of the emulsions, were evaluated during 12 days of storage in the dark at 20°C.

Results showed that the antioxidant activity of fucoidan, laminarin and NaAlg derived from *S. latissima* in emulsion systems was only observed for laminarin and for some concentrations of NaAlg. It was found that laminarin was the most promising polysaccharide to enhance the oxidative stability of the emulsions. However, the physical stability of the emulsions added laminarin was poor at low concentrations. Hence, it can be recommended to use laminarin extracts for stabilizing 70% (w/w) fish oil-in-water emulsions both physically and oxidatively at a concentration of 0.3% (w/w) together with 0.23% (w/w) NaCas.