Incident Angle Modifier Round Robin Updates

Riedel, Nicholas; Santamaria Lancia, Adrian Alejo; Amdemeskel, Mekbib Wubishet; Plag, Fabian; Kröger, Ingo; Slooff, Lenneke H.; Jansen, Mark J.; Carr, Anna J.; Manshanden, Petra; Bliss, Martin

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Incident Angle Modifier (IAM) Round Robin Updates

Nicholas Riedel¹, Adrián A. Santamaria Lancia¹, Mekbib Amdemeskel¹, Fabian Plag², Ingo Kröger², Lenneke H. Slooff³, Mark J. Jansen³, Anna J. Carr³, Petra Manshanden³, Martin Bliss⁴, Tom Betts⁴, Iñigo Petrina Jauregui⁵, Mikel Ezquer Mayo⁵, Jose L. Balenzategui⁶, Ruben Roldan⁷, Ulli Kräling⁸, Ghassan Baarah⁸, Daniel Zirzow⁹, Kyumin Lee⁹, Bruce King¹⁰, Josh Stein¹⁰, Cherif Kedir¹¹, John Watts¹², Kenneth Sauer¹², Sune Thorsteinsson¹, Peter B. Poulsen¹, Gisele A. dos Reis Benatto¹

¹Danmarks Tekniske Universitet
²PVPerformance Modeling Collaborative
Outline

• Incident angle modifier (IAM)
 – Theory and measurement procedure
• IAM round robin history
• Results
 – High level
 – Delta to Fresnel
 – Model fitting
 – Impact on energy rating (IEC 61853)
• Conclusions
The Incidence Angle Modifier (IAM)

- When a PV device is not positioned normal to the sun, a loss of effective irradiance occurs due to geometry and reflection.
- Geometrical effect (Lambert Cosine Law)
 - Reduction of irradiance is proportional to cosine(AOI).

\[
A2 = A1 \times \cos(\theta)
\]

Normal Incidence

AOI (\(\theta\)) = 0°

Non-normal Incidence

AOI (\(\theta\)) > 0°
The Incidence Angle Modifier (IAM)

• The IAM normalizes the cosine effect to isolate reflection losses.
• IAM is obtained by measuring short circuit current (I_{SC}) over a range of AOIs (θ).
 • Normalized to the I_{SC} measured at normal incidence (AOI = 0).
 • Indoor and outdoor test procedures are stipulated in IEC 61853-2:2016

$$IAM(\theta) = \frac{I_{SC}(\theta)}{\cos(\theta) * I_{SC}(0^\circ)} = \frac{Beam \text{ irradi. received by PV Device}}{Total \text{ beam irradi. available to PV Device}}$$

![Graph showing the relationship between AOI and I_{SC}]

![Graph showing the relationship between AOI and Rel. Transmission]
International IAM Round-Robin Recap

The results from 8 European labs showed:

- Five of eight labs were comparable w/in their stated U_C out to $\pm 80^\circ$ AOI [1].

- IAM measurements at $\pm 85^\circ$ AOI are challenging!
 - 75% range + low comparability w/in U_C.

- Two labs w/ suspect measurements due to:
 - Misalignment of DUT w/ axis of rotation.
 - Excessive reflections w/in the test bed.

- Samples w/ identical BoM were sent to these two labs for retest.
 - The two suspect IAM profiles from these labs are not included in this presentation.
 - 1 available retest dataset is presented instead.

International IAM Round-Robin Recap

• In Jan. ’19 the DUTs were shipped to the US.

• Only 1 of 8 European labs performed the IAM measurements outdoors.
 • Comparability of methods?

• 3 of 4 US labs performing the IAM test outdoors.
 • 2 labs have yet to measure the DUTs.

• Labs are asked to measure from ±85° in 5° steps.

• Labs asked to report:
 – IAM for each angle of incidence (AOI) θ
 – U_C (k=2) of IAM(θ)
 • Only 7 of 10 labs provided U_C
Devices Under Test (DUTs)

• Common characteristics among all DUTs:
 – Cell size: 156 mm x 156 mm
 – Glass: 3.2 mm thick, finely textured PV glass
 ▪ No anti-reflective coating (ARC)
 – Encapsulant: ethylene-vinyl acetate (EVA)
 – The glass edges were covered with tape

• Three different cell surface textures
 1. Standard mono-silicon (Mono-Si)
 2. mc-Si black silicon textured under reactive ion etch (RIE) treatment (Black-Si A)
 3. mc-Si black silicon textured under atmospheric pressure dry etching (ADE) treatment (Black-Si B)

All DUTs have the same glass, so the IAM measurements [not surprisingly] show little difference.

Only the measurements of the Mono-Si sample will be presented here.
Participating Laboratory Measurement Systems

- Five unique light sources.
- Light sources represent different illumination levels and spectral distributions.
- Various approaches for rotating the DUTs.
 - From single cells -> mini modules -> full-sized modules.
- Two labs w/ outdoor test systems remain to measure the DUTs (end of summer ‘19?).
- Labs have been assigned anonymous ID#s

<table>
<thead>
<tr>
<th>Light Source</th>
<th>Automated Rotation Stage</th>
<th>Manual Rotation Stage</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xe Flash (Pasan)</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Sunlight</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Halogen</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Laser driven Xe plasma</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Tuneable laser</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>
The following slides will refer to the Fresnel model.

- This is a simplified approach to calculating the IAM using Snell’s law and the Fresnel equations [2].

- For the single slab model (no ARC) $n_2 = 1.523$.
- For the two slab model (ARC) $n_2 = 1.3$ and $n_3 = 1.523$.
- Unpolarized light (50% p-polarized, 50% s-polarized).

Results – All Labs

- 8 of 9 labs show IAM differences of < 2% at ±80°
 - (Symmetry requirement of IEC 61853-2)
- Lab No. 1 shows IAM symmetry of 2.3% at ±80°
- If Lab 1’s measurement at 85° AOI is excluded:
 - The measurement range at 85° decreases from 40% to 10%.

Results from the Mono-Si sample.
Results – Delta to Fresnel Model w/o ARC

\[\Delta = \left(IAM(\theta)_{lab} - IAM(\theta)_{Fresnel} \right) \times 100 \]

- Median IAM(\theta) shows agreement w/in ±1% of Fresnel no ARC model out to 75° AOI.
Δ = \left(IAM(θ)_{lab} - IAM(θ)_{RR Median} \right) \cdot 100

- IAM results not dependent on test location (i.e. indoor vs. outdoor).
- ‘Outdoor 2’ IAM measurements tend to follow Fresnel ARC model.
Results – Delta to Median by Light Source

\[\Delta = \left(IAM(\theta)_{lab} - IAM(\theta)_{RR Median} \right) \cdot 100 \]

- IAM results not dependent on light source used.
- 5 Xe Flash systems show no clear tendency toward agreement with a particular Fresnel model.
Angular Loss Models

1. **ASHRAE**
 - Single parameter \((b_0)\)

2. **Martin and Ruiz**
 - Single parameter \((a_r)\)

3. **Sandia**
 - 5\(^{th}\) order polynomial fit (5 coefficients)

4. **Physical model (DeSoto)**
 - Based on Snell’s and Bougher’s laws.
 - Two coefficients \((K\) and \(L\))

\[
IAM(\theta) = 1 - b_0 \left(\frac{1}{\cos \theta} - 1 \right)
\]

\[
IAM(\theta) = \frac{1-\exp(\cos \theta / a_r)}{1-\exp(-1/a_r)}
\]

\[
IAM(\theta) = e^{-\frac{KL}{\cos \theta_r}} \left[1 - \frac{1}{2} \left(\frac{\sin^2 \theta_r - \theta}{\sin^2 \theta_r + \theta} + \frac{\tan^2 \theta_r - \theta}{\tan^2 \theta_r + \theta} \right) \right] e^{-KL} \left[1 - \left(\frac{1 - n}{1 + n} \right)^2 \right]
\]

\[
\theta_r = \sin^{-1}\left(\frac{1}{n} \sin \theta \right), n = 1.523
\]

Model coefficients are extracted from the measured IAM data using a Gauss-Newton fitting method.
Model Fitting Results

Coefficients and goodness of fit summary for ASHRAE and Martin & Ruiz models

<table>
<thead>
<tr>
<th>Lab</th>
<th>a_r</th>
<th>b_0</th>
<th>a_r RMSE</th>
<th>b_0 RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.221</td>
<td>0.089</td>
<td>0.073</td>
<td>0.016</td>
</tr>
<tr>
<td>2</td>
<td>0.157</td>
<td>0.056</td>
<td>0.013</td>
<td>0.027</td>
</tr>
<tr>
<td>3</td>
<td>0.155</td>
<td>0.053</td>
<td>0.025</td>
<td>0.035</td>
</tr>
<tr>
<td>4</td>
<td>0.163</td>
<td>0.058</td>
<td>0.007</td>
<td>0.026</td>
</tr>
<tr>
<td>5</td>
<td>0.169</td>
<td>0.059</td>
<td>0.007</td>
<td>0.028</td>
</tr>
<tr>
<td>6</td>
<td>0.155</td>
<td>0.055</td>
<td>0.013</td>
<td>0.025</td>
</tr>
<tr>
<td>7</td>
<td>0.149</td>
<td>0.052</td>
<td>0.019</td>
<td>0.028</td>
</tr>
<tr>
<td>8</td>
<td>0.165</td>
<td>0.058</td>
<td>0.011</td>
<td>0.027</td>
</tr>
<tr>
<td>9</td>
<td>0.178</td>
<td>0.062</td>
<td>0.008</td>
<td>0.033</td>
</tr>
</tbody>
</table>

- Table shows average a_r and b_0 coefficients from the forward (+AOI) and reverse (-AOI) measurement directions.

- Variability chart shows goodness of fit results from fitting 4 models to 9 labs’ measurements of the mono-si sample.
- RMSE from fitting forward and reverse directions shown.
- Orange dots represent Lab Outdoor 1.
IAM U_C Impact on Energy Rating (IEC 61853-3)

- The climate specific energy rating (CSER) was calculated using the IAM data measured by the RR labs and IEC CDV 61853-3 procedures.

- DTU measured spectral response (SR), multi-G (@25°C) and multi-T (@1000 W/m²).

- Assumptions made for U_0 and U_1 based on [4].
 - $U_0 = 26$ W/m²·K, $U_1 = 6$ W·s/m³·K

- All calculations done for South facing 20° tilt.

Beam

$\text{Beam}_{\text{AOI,corr}} = IAM(\theta) \cdot DNI \cdot \cos(\theta)$

Diff

$\text{Diff}_{\text{AOI,corr}} = \text{Diff}_{P0A} \cdot \int_A IAM(\theta) \cdot \cos(\theta) \, d\omega \int_A \cos(\theta) \, d\omega$

Where:

- $\omega =$ solid angle of incident diffuse irradiance.
- $A =$ range of ω visible to PV

IAM U_C Impact on Energy Rating (IEC 61853-3)

Climate Specific Energy Rating (CSER) = module performance ratio (MPR)

$$\text{CSER} = \frac{\text{EY} \cdot 1000 \frac{W}{m^2}}{P_{STC} \cdot H}$$

EY = Annual energy yield [Wh]
H = Annual insolation in array plane [Wh/m²]
P_{STC} = Power at STC [W]

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Lat./Long.</th>
<th>Climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38° N, 3° W</td>
<td>Mediterranean</td>
</tr>
<tr>
<td>2</td>
<td>48° N, 12° E</td>
<td>Temperate continental</td>
</tr>
<tr>
<td>3</td>
<td>54° N, 24° E</td>
<td>Continental (Central Europe)</td>
</tr>
<tr>
<td>4</td>
<td>56° N, 4° W</td>
<td>Temperate coastal</td>
</tr>
</tbody>
</table>

The four reference climates suggested by [5].

IAM U_c Impact on Energy Rating (IEC 61853-3)

- When the reported IAM measurements are used to calculate CSER:
 - CSER varies by 0.9-1.2%
 - If lab 1 is excluded
 - CSER varies by 2.3-3.5%
 - if lab 1 is included.

Red dot below lower whisker represents lab 1.
Conclusions

• Improved agreement in IAM measurements compared to 2018 RR results.
 • Retests and filtering of suspect measurement profiles.

• Differences in robust IAM measurements from 8 international laboratories cause
 ~1% difference in climate specific energy rating.

• Median IAM agrees w/in $\pm 1\%$ of Fresnel model when $\text{AOI} \leq 75^\circ$
 • The simple Fresnel model can be reasonably used in this range as a sanity check
 when measuring DUTs with smooth glass.
 • To Do: Calculate angular losses via ray trace simulations w/ ISFH.

• IAM results not dependent on type of measurement system used.
 • Suggests that experience can count for something.
Thank you!

1. Department of Photonics Engineering, Technical University of Denmark (DTU), Roskilde, Denmark
2. Physikalisches Technisches Bundesanstalt (PTB), Braunschweig, Germany
3. Energy Research Centre of the Netherlands (ECN>TNO), Petten, The Netherlands
4. Centre for Renewable Energy Systems Technology (CREST), Loughborough University, Loughborough, UK
5. Spanish National Renewable Energy Centre (CENER), Sarriguren (Navarra), Spain
6. Ciemat, Department of Energy, Madrid, Spain
7. University of Applied Sciences and Arts of Southern Switzerland, (SUPSI - ISAAC), Canobbio, Switzerland
8. Fraunhofer Institute for Solar Energy Systems ISE, CalLab PV Modules, Freiburg, Germany
9. CFV Solar Test Laboratory, Albuquerque, NM, USA
10. Sandia National Laboratories, Albuquerque, NM, USA
11. Renewable Energy Test Center (RETC), Fremont, CA, USA
12. PV Evolution Labs (PVEL), Berkeley, CA, USA