The Outdoor Bifacial PV Testing Facility and Technical University of Denmark

Riedel, Nicholas; Aguilar Protti, Alexander Corazon de; Jakobsen, Michael Linde; Pedersen, Henrik Chresten; Thorsteinsson, Sune; Poulsen, Peter Behrensdorf; Santamaria Lancia, Adrian Alejo; Benatto, Gisele Alves dos Reis; Demurtas, Giorgio; Arrighi, Fabio

Publication date: 2019

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The Outdoor Bifacial PV Testing Facility at Technical University of Denmark

Nicholas Riedel1, Alexander Aguilar Protti2, Michael L. Jakobsen1, Henrik C. Pedersen1, Sune Thorsteinsson3, Peter B. Poulsen1, Adrian A. Santamaria Lancia1, Gisele A. dos Reis Benatto1, Giorgio Demurtas2, Fabio Arrighi2, Djaber Berrian3, Jan Vedde4

1DTU Fotonik, Roskilde, 4000, Denmark; 2Startak, Hvidovre, 2650, Denmark; 3ISC Konstanz, Konstanz, 78467, Germany; 4European Energy A/S, Søborg, 2860, Denmark

Background: Since summer 2018, European Energy A/S and DTU have measured the performance of bifacial PV strings mounted on trackers and fixed tilt systems located in Northern Europe (55.6° N, 12.1° E). A new publically funded project is underway with the intent to evaluate in-house and commercially available bifacial PV performance models. The facility includes several sub-systems where the conditions known to affect bifacial performance are varied including tracker spacing (GCR), albedo (ρ) and module tilt (β).

Equipment and Layout
• Monofacial and bifacial strings of similar front side power mounted side-by-side.
• Horizontal East-West (HSAT) trackers (x8) and south facing 2V racks with adjustable tilt angle (x8).
• Tilted single axis trackers (x2) and dual axis tracker (x1).
• Multiple ground covers under test:
 - Seasonal grass
 - Coarse sand
 - Medium-size gravel
 - White polymeric tarp
 - µ-structured reflector

Sensors and Detailed Monitoring
Max-power current (I_{max}) and voltage (V_{max}) measurements on 64 individual strings.
Monitoring independent inverter measurements
DC Power meters with isolated surface mount resistors and digital filtering
Four panels with 10 individually measured 5” mono-Si cells for studying distribution of rear side irradiance.

Tracker error monitor for single axis trackers.

Albedo sensors at four locations around the facility.

Performance Modeling
We are using the onsite meteorological data as inputs to bifacial PV models. The model’s output is then compared to our electrical measurements. View factor models under consideration currently include MoBiDiG (ISC Konstanz), PVsyst, and SAM. Ray trace models currently being tested include Zemax and Radiance.

Measured Model Inputs
• DHI, DNI, Albedo, GHI, Tamb and Windspeed
• PV electrical parameters
• Shade Scene, tracker features

Model Assumptions
- DC+AC power
- Transposed irradiance
- Cell temperature (Tcell)

Obtain Model Outputs
Simulation
Compare to Field Measurements
- DC+AC power
- Plane of array irradiance (front and rear)
- Tcell (currently only mono-fi)

HSATs at 15m pitch
(GCR = 0.22)

South facing fixed-tilt rows with adjustable tilt angle (GCR = 0.40)

Spectrally resolved reflectance can be measured in the DTU Fotonik laboratories.

Distribution of back of module irradiance on the center modules within the ‘2V’ module string during a clear sky conditions (top (left) and bottom (right) modules in the 2V configuration are shown.

Acknowledgements
The work is supported by the Danish Energy Technology Development and Demonstration Program (EUDP) under project contract 64018-0634 which is gratefully acknowledged. We are also grateful for European Energy’s financial support for most of the capital equipment at the facility.

Partners