The Outdoor Bifacial PV Testing Facility and Technical University of Denmark

Riedel, Nicholas; Aguilar Protti, Alexander Corazon de; Jakobsen, Michael Linde; Pedersen, Henrik Chresten; Thorsteinsson, Sune; Poulsen, Peter Behrensdorf; Santamaria Lancia, Adrian Alejo; Benatto, Gisele Alves dos Reis; Demurtas, Giorgio; Arrighi, Fabio

Publication date: 2019

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The Outdoor Bifacial PV Testing Facility at Technical University of Denmark

Nicholas Riedel¹, Alexander Aguilar Protti², Michael L. Jakobsen², Henrik C. Pedersen², Sune Thorsteinsson³, Peter B. Poulsen³, Adrian A. Santamaria Lancia³, Gisele A. dos Reis Benatto³, Giorgio Demurtas⁴, Fabio Arrighi⁵, Djaber Berrian⁶, Joris Libal⁶, Dale Barnard⁶, Jan Vedde⁶

¹DTU Fotonik, Roskilde, 4000, Denmark; ²Startak, Hvidovre, 2650, Denmark; ³ISc Konstanz, Konstanz, 78467, Germany; ⁴European Energy A/S, Søborg, 2860, Denmark

Background: Since summer 2018, European Energy A/S and DTU have measured the performance of bifacial PV strings mounted on trackers and fixed tilt systems located in Northern Europe (55.6° N, 12.1° E). A new publically funded project is underway with the intent to evaluate in-house and commercially available bifacial PV performance models. The facility includes several sub-systems where the conditions known to affect bifacial performance are varied including tracker spacing (GCR), albedo (ρ) and module tilt (β).

Equipment and Layout
- Monofacile and bifacial strings of similar front side power mounted side-by-side.
- Horizontal East-West (HSAT) trackers (x8) and south facing 2V racks with adjustable tilt angle (x8).
- Tilted single axis trackers (x2) and dual axis tracker (x1).
- Multiple ground covers under test:
 - Seasonal grass
 - Coarse sand
 - Medium-size gravel
 - White polymeric tarp
 - μ-structured reflector

Sensors and Detailed Monitoring
- Max-power current (I_{max}) and voltage (V_{MP}) measurements on 64 individual strings.
- DC Power meters with isolated surface mount resistors and digital filtering.
- Fixed tilt and HSAT production profile.
- Windspeed measurements on 64 individual strings.
- Spectral pyranometer to measure plane of array irradiance in two directions.
- Micro-radar and wind speed measurements.
- Albedo sensors at four locations around the facility.
- Albedo of grass as measured by Class A pyranometers vs. Class C photodiodes.
- Trackerr error monitor for single axis trackers.
- Trackerr error monitor for single axis trackers.
- Trackerr error monitor for single axis trackers.

Performance Modeling
We are using onsite meteorological data as input to bifacial PV models. The model output is then compared to our electrical measurements. View factor models under consideration currently include MoBiDiG (ISC Konstanz), PVsyst, and SAM. Ray trace models currently being tested include Zemax and Radiance.

Measur Model Outputs
- DC+AC power
- Transposed irradiance
- Cell temperature (T_{cell})

Model Assumptions
- Simulated structural geometry (right).
- Measured DC Power (W).
- Modelled DC Power (W).
- Obtained Model Outputs.
- Non-sequential ray tracing in Zemax (left). Simulated structural geometry (right).
- Module efficiency vs. measured power of four rows of 25° fixed tilt bifacial systems mounted on seasonal grass over 6 months (Jan. - Jul. ’19).
- Measured model output compared to field measurements.
- Modelled vs. Measured power of four rows of 25° fixed tilt bifacial systems mounted on seasonal grass over 6 months (Jan. - Jul. ’19).

Acknowledgements
The work is supported by the Danish Energy Technology Development and Demonstration Program (EUDP) under project contract 64018-0624 which is gratefully acknowledged. We are also grateful for European Energy’s financial support for most of the capital equipment at the facility.

Partners