Fabrication of Carbon Micro Electrodes by Local Laser Pyrolysis

Ludvigsen, Emil; Pedersen, Nina Ritter; Zhu, Xiaolong; Marie, Rodolphe; Mackenzie, David; Petersen, Dirch Hjorth; Kristensen, Anders; Emnéus, Jenny; Keller, Stephan Sylvest

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Fabrication of Carbon Micro Electrodes by Local Laser Pyrolysis

Emil Ludvigsen¹, Nina Ritter Pedersen¹, Xiaolong Zhu², Rodolphe Marie², David M.A. Mackenzie³, Dirch H. Petersen³, Anders Kristensen², Jenny Emnéus⁴, Stephan Sylvester Keller⁴

¹National Centre for Nanofabrication and Characterization, DTU Nanolab, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
²Department of Physics, DTU-Photon, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
³Department of Nanobioscience, DTU Nanolab, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
⁴Department of Biotechnology and Bioscience, DTU Nanolab, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark

emil@dtu.dk

Motivation and Aim

Local laser pyrolysis (LLP) has previously been demonstrated as a method for writing carbon micro-electrodes in polyimide, to make flexible electronics and micro super-capacitors [1-3].

The aim of this study was i) To demonstrate LLP of absorber-modified SU-8. ii) To gain knowledge of the LLP process as a gateway to pyrolyse other polymers via direct laser writing.

Process overview of laser pyrolysis

SU-8, modified to absorb light at 800 nm wavelength, is spin coated onto a boron glass wafer. A collimated laser beam with a very narrow peak intensity at 806 nm is then used for locally pyrolysing the SU-8, essentially enabling direct writing of conductive carbon micro electrodes.

Fig 1. Overview of the laser pyrolysis process of absorber modified SU-8. a) SU-8 mixed with the absorber, Pro-Jet 800NP (FujiFilm), is spin-coated onto a boron glass wafer. b) A laser, operating at 806 nm, is used to locally pyrolyse the SU-8 under a nitrogen atmosphere. c) electrical evaluation of the written line.

Laser-written, pyrolysed structures

Various conducting, laser written structures. As can be seen, laser writing allows for very high design flexibility, but requires that the substrate can absorb the light.

Electrical measurements

Electrical measurements on the written lines and structures. The degree of carbonization, evaluated through a resistivity measurement, can be seen to follow a declining power series with increasing laser power. The resistance is directly proportional to the path length but independent of the number of nodes and intersects on its way, confirming the seamless joining of lines.

Fig 3. Effect of various parameters on the resistance through the line. a) Resistance per line width vs. laser power. The corresponding estimated conductance is about 2.26 ± 0.27 S/cm for the lines written at 80 mW laser power. b) Resistance vs. path length. As expected, the resistance increases linearly with path length. c) Resistance per path length vs. no. of nodes or intersects. As evident, intersecting or joining lines does not obstruct the current flow.

Conclusion

We have demonstrated localized laser pyrolysis by direct laser writing in absorber-modified SU-8. The SU-8 will not interact with the laser unless the absorber is added. The design flexibility is very high and lines can be joined together without added resistance. The highest, estimated conductance achieved is 2.26 ± 0.27 S/cm.

References


The authors would like to acknowledge the European Research Council for funding the project (PHOENEEX).

Presenting author

Emil Ludvigsen
Ph.D. Student
DTU Nanolab
emilu@dtu.dk