Monitoring the dynamics of Kirkendall effect in Cu nanoparticles

Kadkhodazadeh, Shima; Nilsson, Sara; Langhammer, Christoph; Wagner, Jakob B.

Publication date: 2019

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Monitoring the dynamics of Kirkendall effect in Cu nanoparticles

Shima Kadkhodazadeh¹, Sara Nilsson², Christoph Langhammer² and Jakob B. Wagner¹

¹DTU Nanolab, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
²Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden

Studying the oxidation process in Cu nanoparticles is relevant for a number of applications, including microelectronics, catalysis, plasmonics and photovoltaics. Here we use environmental transmission electron microscopy (ETEM) to monitor in-situ the changes occurring to Cu nanoparticles and their localised surface plasmons (LSPRs) during oxidation. Annular dark-field scanning TEM (ADF STEM) imaging is employed to closely examine the dynamics of metal to oxide conversion and electron energy-loss spectroscopy (EELS) is employed to follow the evolution of the LSPRs of the particles.

Summary and future work
- In-situ STEM imaging of Cu nanoparticles during oxidation reveals a combined Valensi-Carter and Kirkendall oxidation mechanism.
- In-situ monitoring of the LSPR shows a continual red-shift of the peak energy followed by broadening and splitting of the LSPR into two peaks before complete loss of the signal at the final stage of oxidation.
- The electron beam significantly accelerates the oxidation process. Additional experiments will be carried out to better understand the role of the electron beam.