Correction of turbulent flow moments measured by Langmuir probes in the vicinity of the L-H transition in COMPASS

COMPASS Team; Grover, O.; Seidl, J.; Adamek, J.; Vondracek, P.; Havlicek, J.; Tomek, M.; Weinzettl, V.; Naulin, Volker; Rasmussen, Jens Juul

Publication date:
2019

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Correction of turbulent flow moments measured by Langmuir probes in the vicinity of the L-H transition in COMPASS

1 Institute of Plasma Physics, The Czech Academy of Sciences, Prague, Czechia
2 Faculty of Nuclear Sciences and Engineering, Czech Technical University in Prague, Czechia
3 Faculty of Mathematics and Physics, Charles University, Prague, Czechia
4 Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark

The analysis of turbulent flows in the edge region of tokamak plasmas requires the measurement of time-averaged turbulent stresses and fluxes such as the Reynolds stress (RS), which has been identified in recent models and experiments [1] as a likely driver of poloidal zonal flows expected to play a key role in the L-H transition. However, the common method of using floating potential fluctuations measured by Langmuir probes (LP) \tilde{V}_{LP} suffers from being contaminated by electron temperature fluctuations \tilde{T}_e [2, 3]. For the interpretation of such experiments it is worth-while to seek a correction of \tilde{V}_{LP} statistics by the exploitation of additional knowledge of \tilde{T}_e statistics offered by e.g. the combination of LP with ball-pen probes (BPP) [4].

A proof-of-principle correction scheme for the RS measured by LP was found for experimental data measured in the COMPASS tokamak with the modified Reynolds stress probe head [5]. The correction scheme is based on the decomposition of RS into statistical moments such as variance and poloidal and radial covariances of \tilde{V}_{LP} measured by LP with statistical moments of \tilde{T}_e from BPP measurements. The correction scheme was further compared with the relationships between the associated statistical moments in comparable turbulent HESEL [6] simulations.

The correction scheme was further tested for the time-evolving phenomena of Limit Cycle Oscillations (LCO) observed in the vicinity of the L-H transition in the COMPASS tokamak [5]. The LCO typically have a frequency of 3-5 kHz. Their frequency is observed to scale inversely with the plasma density as well as with other global parameters.

References