Alkali Earth Metal Molybdates - Selectivity and Stability as Catalysts for the Selective Oxidation of Methanol to Formaldehyde

Thrane, Joachim; Høj, Martin; Thorhauge, Max; Mentzel, Uffe Vie; Jensen, Anker Degn

Publication date: 2019

Document Version
Peer reviewed version

Citation (APA):
Alkali Earth Metal Molybdates - Selectivity and Stability as Catalysts for the Selective Oxidation of Methanol to Formaldehyde

Joachim Thrane¹, Martin Høj⁴, Max Thorhauge², Uffe Via Mentzel¹ and Anker Degn Jensen¹*
¹Technical University of Denmark, Kongens Lyngby, Denmark
²Haldor Topsøe A/S, Kongens Lyngby, Denmark
*joathr@kt.dtu.dk or aj@kt.dtu.dk

Introduction

Formaldehyde is the most important aldehyde commercially available as it is an irreplaceable C₂ building block for higher-valued products [1]. The annual global production of formaldehyde is expected to increase with 4.8-5.8% per year and reach 36.6 million tons by 2026 [2, 3]. Formaldehyde is mainly produced through either the silver process or the Formox process [1].

In the Formox process, methanol is selectively oxidized over an iron molybdate catalyst (MoO₃/Fe₂(MoO₄)₃), which achieve high selectivities (92-95%) at high conversions (>99%) [2]. Formaldehyde is mainly produced through either the silver process or the Formox process [1].

Table 1. Catalyst system and its characterizations. M = Mg, Ca, Sr or Ba.

<table>
<thead>
<tr>
<th>Cation</th>
<th>Mo:M</th>
<th>MoMoO₄ wt%</th>
<th>SSA [m²/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>1.1</td>
<td>95.5</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>100</td>
<td>45.3</td>
</tr>
<tr>
<td>Ca</td>
<td>1.1</td>
<td>94.9</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>100</td>
<td>34.3</td>
</tr>
<tr>
<td>Sr</td>
<td>1.1</td>
<td>81.1</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>90.5</td>
<td>6.0</td>
</tr>
<tr>
<td>Ba</td>
<td>1.1</td>
<td>69.6</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>35.1</td>
<td>2.8</td>
</tr>
</tbody>
</table>

In the Formox process, methanol is selectively oxidized over an iron molybdate catalyst (MoO₃/Fe₂(MoO₄)₃), which achieve high selectivities (92-95%) at high conversions (>99%) [1]. The catalyst is however not stable under the reaction conditions due to formation of volatile molybdenum compounds [4]. The alkali earth molybdates have been reported to have high thermal stability [5], with expected lower volatility of Mo in MeOH atmosphere, and their properties as catalysts for selective oxidation of methanol are scarcely investigated in the literature.

Materials and Methods

The catalysts (MMoO₄, M:Mo = 1.0 and 1.1, M = Mg, Ca, Sr and Ba) were synthesized by a citric acid, sol-gel method from C₆H₄O₇·H₂O (Sigma Aldrich, ≥ 99.0%), (NH₄)₆Mo₇O₂₄·4H₂O (Merek, 99.3-101.3%), Sr(NO₃)₂ (Sigma-Aldrich, ≥ 99.0%), Ba(NO₃)₂ (VWR, ≥ 99.0%), Ca(NO₃)₂·4H₂O (Sigma-Aldrich, ≥ 99-103%), Mg(NO₃)₂·6H₂O (VWR, ≥ 98.0%). The samples were calcined at 500 °C.

The catalysts were in vestigated in a lab scale fixed bed reactor setup described elsewhere [6]. Samples were characterized by BET and XRD.

Results and Discussion

MMoO₄ (M = Mg, Ca, Sr, Ba) catalyst samples with stoichiometric amounts and 10 mol% Mo in excess were prepared by sol-gel synthesis. It was found by XRD, that phase pure samples were synthesized for the Mg and Ca (including a molybdenum oxide phase in case of Mo excess), but carbonate phases as well as other M:Mo oxide phases formed for Sr and Ba. The surface area of the samples decreased when going down the group II elements, and was higher for the stoichiometric samples than when Mo was in excess, see Table 1. The samples with excess molybdenum had superior selectivity compared to the samples which were stoichiometric (Figure 1a, the Sr and Ba catalysts were far less active and are not shown here). Furthermore, it can be seen that the Mo:Ca = 1.1 and Mo: Mg = 1.1 samples have the same selectivity as function of conversion. The activity of the catalysts with excess Mo was also superior to stoichiometric catalysts, even though the surface areas were much lower, as seen in Table 1. This shows that the excess Mo also have a significant role w.r.t. the activity and selectivity for the oxidation of methanol to formaldehyde. The excess Mo excess has an irreplaceable C₂ building block for higher-valued products [1]. The annual global production of formaldehyde is expected to increase with 4.8-5.8% per year and reach 36.6 million tons by 2026 [2, 3].

Significance

This investigation contributes to the knowledge necessary to mitigate the problem of low catalyst stability in the Formox process by investigation new materials.

References

3. transparenteomarketresearch.com/formaldehyde-market.html, Accessed: 10.11.2018
4. B. I. Popov, V. N. Bibin, B. K. Boreskov, Kin. i Kat. 17 (1976), p. 371