Supporting Information for

Facile Electron Transfer to CO₂ throughout Adsorption at the Metal | Solution Interface

Joseph A. Gauthier, Meredith Fields, Michal Bajdich, Leanne D. Chen, Robert B. Sandberg, Karen Chan, and Jens K. Nørskov*

aSUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, United States

bSUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States

†Present Address: Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada

cDepartment of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
Figure S1: Calculated Bader charges on CO$_2$ for structures from Figures 1 and 3 in the main text.

Figure S2: Electric field effect on CO$_2$ adsorption energy. The induced dipole moment is -0.49 eÅ.
Table S1. Tabulated Figure 1 Data. E_{ref} represents the reference energy of the system when CO$_2$ is very far from the surface. We represent this by adding the energy of gas phase CO$_2$ to the energy of an optimized clean slab and solvent layer, where: $E_{\text{clean}} = -141.41459015$ eV $E_{\text{CO2(g)}} = -22.26223813$ eV. All structures and energies for Figures 1-4 are available for download at https://www.catalysis-hub.org/publications/GauthierFacile2019.

<table>
<thead>
<tr>
<th>x-axis (image #)</th>
<th>Raw Energies</th>
<th>y-axis (E - E_{ref} eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-163.7475105</td>
<td>-0.07068222</td>
</tr>
<tr>
<td>1</td>
<td>-163.71015173</td>
<td>-0.03332345</td>
</tr>
<tr>
<td>2</td>
<td>-163.62857459</td>
<td>0.04825369</td>
</tr>
<tr>
<td>3</td>
<td>-163.516071</td>
<td>0.16075728</td>
</tr>
<tr>
<td>4</td>
<td>-163.39262956</td>
<td>0.28419872</td>
</tr>
<tr>
<td>5</td>
<td>-163.26518023</td>
<td>0.41164805</td>
</tr>
<tr>
<td>6</td>
<td>-163.37250524</td>
<td>0.30432304</td>
</tr>
<tr>
<td>7</td>
<td>-163.39387461</td>
<td>0.28295367</td>
</tr>
</tbody>
</table>

Table S2. Tabulated Data of Figure 3 analogous to Table S1. All structures and energies for Figures 1-4 are available at https://www.catalysis-hub.org/publications/GauthierFacile2019.1

<table>
<thead>
<tr>
<th>Diabatic Curve (Linear)</th>
<th>x-axis (image #)</th>
<th>Raw Energies</th>
<th>y-axis (E - E_{ref} eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-163.74751045</td>
<td>-0.07068217</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-163.70984392</td>
<td>-0.03301564</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-163.62736444</td>
<td>0.04946384</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-163.50996462</td>
<td>0.16686366</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-163.3691322</td>
<td>0.30769608</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-162.94906371</td>
<td>0.72776457</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-161.86091396</td>
<td>1.81591432</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-161.62124948</td>
<td>2.0555788</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diabatic Curve (Bent)</th>
<th>x-axis (image #)</th>
<th>Raw Energies</th>
<th>y-axis (E - E_{ref} eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-162.36710234</td>
<td>1.30972594</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-162.38279712</td>
<td>1.29403116</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-162.39349499</td>
<td>1.28333329</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-162.42470949</td>
<td>1.25211879</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-162.53774454</td>
<td>1.13908374</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-162.99744176</td>
<td>0.67938652</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-163.35836356</td>
<td>0.31846472</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-163.39387461</td>
<td>0.28295367</td>
<td></td>
</tr>
</tbody>
</table>