
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 04, 2024

Lower bound multiscale element for in situ cast joints in triaxial stress

Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao; Jensen, Jesper Frøbert

Published in:
Engineering Structures

Link to article, DOI:
10.1016/j.engstruct.2017.12.054

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Herfelt, M. A., Poulsen, P. N., Hoang, L. C., & Jensen, J. F. (2018). Lower bound multiscale element for in situ
cast joints in triaxial stress. Engineering Structures, 167, 340-350.
https://doi.org/10.1016/j.engstruct.2017.12.054

https://doi.org/10.1016/j.engstruct.2017.12.054
https://orbit.dtu.dk/en/publications/d8a842cb-d9d0-4660-9960-10ac32c66922
https://doi.org/10.1016/j.engstruct.2017.12.054


Lower bound multiscale element for in-situ cast joints in

triaxial stress

Morten A. Herfelta,b, Peter N. Poulsenb, Linh C. Hoangb, Jesper F. Jensena

aNIRAS A/S, Sortemosevej 17, 3450 Allerød, Denmark
bDepartment of Civil Engineering, Technical University of Denmark, Brovej, Building

118, 2800 Kgs. Lyngby, Denmark

Abstract

In practice, precast concrete structures are often being designed by manual
methods and linear finite element analysis in the ultimate limit state. This
practice leads to suboptimal structures, and the behaviour of the in-situ cast
joints are unaccounted for. More accurate and efficient means of design are
therefore needed, and a framework based on finite element limit analysis is
being developed. In this paper, a one-dimensional multiscale joint element is
presented, and a mechanical model is proposed as the yield function of the
macro element. The scope of the model is to capture the behaviour of joints
in three dimensions subjected to triaxial stress, and the resulting mathemat-
ical optimisation problem fits the format of semidefinite programming. The
presented joint element is analysed and a real size example of a four-storey
stairwell subjected to shear and torsion of precast concrete is presented. The
influence of the joints on the behaviour of the stairwell is assessed.

Keywords: In-situ cast joints, Precast concrete, Finite element limit
analysis, Semidefinite programming, Yield function, Multiscale

1. Introduction

Precast concrete elements are widely used in the construction industry as
they provide a number of benefits, however, joints cast on the construction
site to connect the precast elements pose several challenges. The current
practice is to design the joints as the weakest part of the structure. This
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makes analysis and design by general purpose finite element software inac-
curate as the behaviour of the joints is unaccounted for.

Several types of joints are used in precast concrete structures, e.g. slab-
to-beam joints, beam-to-column joints, and panel-to-panel joints, see Fig. 1.
The panel-to-panel joints, also called shear joints, are of particular interest
as the lateral stability usually is ensured by shear walls composing of pre-
cast wall panels. During the 1970s and 80s several papers were published
on the topic of shear joints including several experimental studies [1, 2, 3],
however, to the best knowledge of the authors, no experimental studies on
the behaviour of joints in three-dimensions have been published. The Eu-
rocode 2 [4] uses a simple, empirical design equation, which only considers
the interface and not the actual stress state within the joint. Both types of
joints shown in Fig. 1 transfer shear from one structural plane to another,
and must therefore experience a triaxial stress field which is not accounted
for by current design methods.

(a) (b)

Figure 1: a) Vertical section of slab-to-panel joint reinforced with U-bar loops and em-
bedded rebars. b) Horizontal section of panel-to-panel T-joint reinforced with U-bar loops
extruding from all three panels.

The experiments by Hansen and Olesen [3] featured several specimens,
where the U-bar loops were placed with a considerable distance. These ex-
periments displayed a lower capacity and the core of the joint was completely
destroyed upon failure. A detailed model based on finite element limit anal-
ysis captured this behaviour to a satisfactory degree [5]. The joint model
presented in this paper will attempt to account for this behaviour in three
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dimensions, as the reinforcement layout necessarily will affect the capacity
of joints in triaxial stress as well.

Manual limit analysis is widely used in practice as a tool for assessment
of the ultimate limit state behaviour of precast concrete structures. The
framework is based on the extremum principles [see e.g. 6, 7, 8], and several
methods have been developed within this framework, e.g. the yield line
theory [9]. Models for shear joints based on limit analysis have likewise been
developed; these models include both upper bound models [10, 11, 12] and
lower bound models [11, 13], however, these models are only concerned with
the two-dimensional case, i.e. joints between precast elements in the same
plane.

Finite element limit analysis is based on the same extremum principles as
the manual limit analysis and the element discretisation of the finite element
method, and it can be considered as a special case of the general finite element
method. The method was developed in the late 1960s and 70s [14, 15] and
since then several researchers have contributed to the further development
of the field [16, 17, 18, 19, 20]. Herfelt et al. [5] presented a detailed model
for two-dimensional shear joints and the findings were used to develop a one-
dimensional multiscale joint element with a mechanical submodel as the yield
criterion capable of modelling two-dimensional shear joints [21].

In this paper a one-dimensional multiscale joint element for three-dimen-
sional analysis is presented analogous to the joint element developed for two-
dimensional shear joints [21]. The joint element is compatible with the gen-
eralised plane stress element [22] and uses a simplified mechanical model as
the yield criterion. The general concept is visualised for the two-dimensional
case in Fig. 2 where three scales are shown, namely the structural level, the
element level, and the submodel level.

Due to the triaxial stress state, the yield function submodel will be for-
mulated for semidefinite programming and second-order constraints. A brief
introduction to semidefinite programming as well as second-order cone pro-
gramming will be given in Sec. 2, where the conic representation of the
Mohr-Coulomb criterion will be given as well. The behaviour of the multi-
scale element will be analysed and compared to the equation in the Eurocode
2. Finally, a real size structure is analysed using the proposed joint element
and the generalised plane stress element [22], and the influence of the joint
elements is discussed.
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In-situ joints

Plane stress elements

Joint element

Corbel mechanism

(a) (b) (c)

Figure 2: The general concept of the multiscale joint element shown in two dimensions:
a) Precast concrete structure on the structural level, b) Joint element and plane stress
elements on the element level, c) corbel mechanisms and load path on the submodel level.

2. Convex optimisation

Convex optimisation is used in many fields of engineering and an extensive
research effort has gone into developing efficient algorithms for solving these
classes of problems [23, 24, 25]. Second-order cone programming (SOCP)
and semidefinite programming (SDP) are subclasses of convex optimisation
that have been used in the field of finite element limit analysis for more than
a decade [26, 27].

First and foremost, we introduce the k-dimensional second-order cone
defined as the set

Qk =

{
x | x ∈ Rk, x1 ≥

√
x22 + · · ·+ x2k

}
(1)

The standard form of a second-order cone program is commonly stated as

maximise cTx

subject to Ax = b

xi ∈ Qki , i = 1, 2, . . . , q

(2)
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where the x is the optimisation variables and q is the number of second-
order cones. SOCP is a generalisation of linear programming (LP), and (2)
is reminiscent of the well-known standard form of LP.

Semidefinite programing uses so-called matrix variables, symmetric ma-
trices which are required to be positive-semidefinite, i.e. a n × n matrix F
satisfies

xTFx ≥ 0 for all x ∈ Rn

A curved inequality sign � is often used to denote that a matrix is positive
semidefinite, e.g. F � 0. Vandenberghe and Boyd [28] uses the following,
very compact form of the semidefinite program:

maximise cTx

subject to F(x) � 0
(3)

with

F(x) = F0 +
m∑
i=1

Fixi

where Fi are symmetric matrices. F(x) � 0 is a so-called linear matrix in-
equality (LMI), which makes it possible to impose constraints on the eigen-
values of symmetric matrices, e.g. the stress tensor.

2.1. Conic representation of the Mohr-Coulomb criterion

The Mohr-Coulomb criterion is commonly used for concrete and soils. In
principal stresses the criterion including tension cut-off is given as

σ1 ≤ ft (4a)

kσ1 − σ3 ≤ fc (4b)

where σ1 ≥ σ2 ≥ σ3 are the principal stresses, ft is the uniaxial tensile
strength, and fc is the uniaxial compressive strength. k is a friction parameter
defined as

k =
(√

µ2 + 1 + µ
)2

(5)

with µ = tan θ, where θ is the internal angle of friction. k = 4 corresponding
to µ = 0.75 and θ ≈ 37◦ is commonly used for normal strength concrete.

The principal stresses are the eigenvalues of the concrete stress tensor
σc, thus, (4) can be represented using linear matrix inequalities [26, 29, 30].
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Utilising that F � 0 means that the smallest eigenvalue of F must be non-
negative, and that −F � 0 means that the largest eigenvalue of F must be
non-positive, the separation criterion (4a) can be rewritten as

−σc + ftI � 0 (6)

where I is the identity matrix. The sliding criterion (4b) uses two principal
stresses and it is therefore necessary to introduce an auxiliary variable α1, to
obtain

−σ1 + α1 ≥ 0

σ3 − kα1 + fc ≥ 0

and

−σc + α1I � 0

σc + (fc − kα1)I � 0
(7)

using the stress tensor σc. The three LMIs of (6) and (7) can be reduced
to two, and the Mohr-Coulomb criterion with a tension cut-off (4) can be
stated as

−σc + α2I � 0

σc + (fc − kα1)I � 0

α2 − α1 ≥ 0

α2 − ft ≥ 0

(8)

For plane stress problems (8) can be used, however, it is more efficient in this
case to use the second-order cone representation instead. In plane stress, the
criterion including tension cut-off is given as

σ1 ≤ ft

kσ1 − σ2 ≤ fc

−σ2 ≤ fc

(9)

where σ1 ≥ σ2 are the two principal stresses given as

σ1
σ2

}
=
σx + σy

2
±

√(
σx − σy

2

)2

+ τ 2xy
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Introducing the auxiliary variables

pm = −σx + σy
2

, σd =
σx − σy

2

and the second-order constraint

ϕ ≥
√
σ2
d + τ 2xy

the Mohr-Coulomb criterion for plane stress can be rewritten as

−pm + ϕ ≤ ft

(1− k)pm + (k + 1)ϕ ≤ fc

pm + ϕ ≤ fc

(10)

and the criterion for plane stress requires a total of five linear constraints
and one second-order constraint.

3. Finite element limit analysis

The presented joint element is to be implemented in a framework based
on finite element limit analysis for design of precast concrete structures. The
mathematical optimisation problem of lower bound limit analysis can be
stated as:

maximise λ

subject to B̂T σ̂ = p̂λ+ p̂0
f(σ̂i) ≤ 0, i = 1, 2, . . . ,m

(11)

where σ̂ represents the global discretised stress field, B̂T is commonly denoted
the equilibrium matrix, and f is the yield function. The optimisation problem
(11) represents the global problem, e.g. the entire structure, and the scope of
the problem is to find a statically admissible stress field that maximises the
load carrying capacity of the structure for a given load action described by
a constant part p̂0 and a scalable part p̂λ, where the load factor λ is sought
to be maximised. A stress field that satisfies equilibrium is ensured by the
linear equations B̂T σ̂ = p̂λ+ p̂0, and a stress field that does not violate the
yield criterion in any points is ensured by the inequalities f(σ̂i) ≤ 0.

For the joint element presented in Sec. 4, the yield function f will rep-
resent a submodel, i.e. an advanced yield function comprising a mechanical
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model and sub-element level stress fields. By expanding the yield function
f , the lower bound problem (11) can be stated as:

maximise λ

subject to B̂T σ̂ = p̂λ+ p̂0
Ĉσσ̂ + Ĉαα̂+ Ĉγγ̂ = Ĉ0

Êσσ̂ + Êαα̂+ Êγγ̂ ≤ Ê0

F̂
(i)
α α̂i + F̂

(i)
0 � 0, i = 1, 2, . . . ,m

γ̂j ∈ Qkj , j = 1, 2, . . . , q

(12)

The matrices Ĉσ, Ĉα, and Ĉγ defines the equality constraints of the submod-

els, while Êσ, Êα, and Êγ defines the inequality constraints. The variables α̂
and γ̂ are discretised quantities similar to the stress field associated with the
yield function, whereas γ̂ is used to define the second-order constraints, and
α̂ is used to define the linear matrix inequalities together with the symmetric
matrices F̂

(i)
α and F̂

(i)
0 . The scalar m is the number of linear matrix inequali-

ties for the submodels while q is the number of second-order constraints. The
matrices will only be given implicitly in the following.

The submodel presented in Sec. 5 comprises both triaxial stress states as
well as plane stress states, hence, both formulations of the Mohr-Coulomb
criterion given in Sec. 2 will be utilised at the stress level of the submodel.
The problem (12) comprises therefore both semidefinite constraints as well
as second-order constraints.

4. Macro finite element

This section introduces a lower bound macro finite element for analysis
and design of 3D structures. The general modelling concept of the element
was illustrated in two dimensions in Fig. 2, where a precast concrete wall
is modelled using plane stress elements and multiscale elements. On the
element level, the proposed macro element is compatible with the plane stress
element, and the stress states in the macro joint element are treated using a
so-called submodel which incorporates corbel mechanisms to transfer shear.

The lower bound plane stress element has a linear stress field, hence, a safe
stress field can be ensured by checking the yield function in the vertexes of
the element. Moreover, to ensure a lower bound solution traction continuity
has to be satisfied, and for the plane stress element the tractions are given
in global coordinates, see Fig. 3.
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Figure 3: a) The element and tractions illustrated in the local coordinate system (adapted
from [19]). b) The generalised plane stress element including local coordinate system and
tractions in global coordinates for one of the element boundaries.

The joint is concerned with the transfer of shear forces, and the axial
forces in the longitudinal direction are omitted in the present paper for sim-
plicity. The joint element for two-dimensional shear joints [21] treated this
as well, and a similar model can be added to the submodel criterion for the
proposed joint element presented in the following section. Similarly, the nec-
essary equilibrium equations to facilitate longitudinal forces can be added as
well.

The submodel criterion to be presented in Sec. 5 assumes that the adja-
cent elements are oriented in right angles, which covers the vast majority of
joints in practice, see e.g. the joints in Fig. 1. The formulation of the macro
element, however, is general and applicable to any configuration of adjacent
plane stress panels.

The joint element consists of a number of strips, one for each adjacent
plane stress element, see Fig. 4. The strips are assumed to be in plane stress
and balance the tractions of the adjacent plane stress triangles as well as
internally within the joint. For the stress fields of the strips to be compatible
with the plane stress elements, a linear variation is prescribed along the joint
element.

Each strip has two stress components given in local coordinates, namely
σy and τxy, hence, four stress variables are needed to describe the linear stress
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field. The element stress vector σ̂el is given as:

σ̂el =

 σ̂1

...

σ̂N


where N is the number of strips and σ̂i denotes the stress vector of strip i
given as:

σ̂i =

[
σ̂i1
σ̂i2

]
=


σyi1
τxyi1
σyi2
τxyi2

 (13)

1

2

n2

n3

n1

ex1

ey1

ex2
ey2

ez2

ey3

ez3

Strip 1

Strip 2Strip 3

Figure 4: Sketch of a joint element with three adjacent plane stress elements: Local
coordinate systems for the three joint strips are shown.

For consistent orientation, a local coordinate system for each strip is
defined. The local x-axis is in the longitudinal direction of the joint element,
while the y-axis is in the plane of the adjacent plane stress element. Given
the vectors v12 going from node 1 to node 2 in Fig. 4 and v1ni

going from
node 1 to ni, where ni is the third node of the adjacent triangular element,
the basis of the local coordinate system can be defined as:

exi =
v12
‖v12‖2

, ezi =
v12 × v1ni

‖v12 × v1ni
‖2
, eyi = ezi × exi (14)
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where ‖v‖2 is the Euclidean norm of the vector v. The transformation matrix
for the ith strip can be stated as Ei =

[
exi eyi ezi

]
.

The contributions to traction continuity in global coordinates for strip i
at node j can be stated as:

qij = Ei

 0 til

til 0

0 0

[σyij
τxyij

]
= P̃T

i σ̂ij (15)

where qij is the generalised nodal forces vector, l is the length of the joint
element, and ti is the thickness of strip i. (15) also defines P̃T

i implicitly.
Due to the linear stress field it is necessary to enforce traction continuity at
the ends of the strip.

Internal traction equilibrium for the N strips of the joint element is like-
wise enforced, which can be stated as:

−P̃T
1 σ̂1j − · · · − P̃T

N σ̂Nj = 0, j = 1, 2 (16)

where j is the node number. Equilibrium on the element level for an joint
element with N adjacent plane stress elements can now be stated as follows:

qel =



P̃T
1

P̃T
1

. . .
. . .

P̃T
N

P̃T
N

−P̃T
1 . . . . . . −P̃T

N

−P̃T
1 . . . . . . −P̃T

N



 σ̂1

...

σ̂N

 = B̂T
elσ̂el (17)

where B̂T
el is the element equilibrium matrix, and qel contains the contribu-

tions to the global equilibrium equations of the joint element. The number
of stress variables and equations of the joint element depends on the number
of adjacent plane stress elements, N , as seen in (17).

5. Joint model

We now consider a unit section of the joint in the shape of a rectangu-
lar box. This unit section is reinforced with U-bar loops from up to four
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boundaries which are placed in positions defined by u, uy1 and uz1 according
to Fig. 5. The length of the unit section is s and the widths are given as
ty and tz. oy and oz are the overlap of the U-bars. The distances between
the U-bar pairs in the y and z-directions, respectively, are assumed to be
identical, i.e. u = uy1 +uy2 = uz1 +uz2, which reduce the number of possible
stress combinations inside the submodel greatly.

U-bar

Concrete

u

u

s

tz

ty

oz

oy

x

z

y

(a)

s

uy1 uy2

uz1 uz2

oz tz

z

xy

(b)

Figure 5: Submodel for the three-dimensional joint element: a) three-dimensional repre-
sentation of the geometry including U-bar loops, b) two-dimensional sketch of the U-bar
placement.

Joints are in practice always reinforced with a so-called locking bar in the
longitudinal direction. In the present model, however, we assume that the
considered unit section is adjacent to similar unit sections, hence the resulting
forces are in equilibrium with these adjacent sections and the locking bar does
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not affect the behaviour of the unit section. Near the ends of a shear joint,
no adjacent unit section is present, hence, a locking bar is needed to activate
the corbels locally, but it is not considered in the present model. Likewise,
contributions from dowel action or similar is neglected as the reinforcement
generally only provide dissipation in the longitudinal direction.

Each of the four boundaries reinforced with U-bars can be subjected to
a normal stress and a shear stress, σy and τxy, or σz and τzx, depending
on the orientation. The stresses on the element level σ̂el are given in the
local coordinate systems of the particular strip, hence, a common coordinate
system is needed, and all stresses are transformed to the coordinate system
of strip 1:

S̃ij = ET
1 EiSijE

T
i E1 (18)

where Ei is the transformation matrix of strip i, and Sij is the stress tensor
of strip i at node j, e.g. for strip 1 at node 2 - which is always chosen for the
common coordinate system - we have

S12 =

 0 τxy12 0

τxy12 σy12 0

0 0 0


Most of the components in Sij are equal to zero as the strips only have
two stress components, which simplifies the calculations. The shear stress
component of S̃ is used for the corbels presented in the following section.
The equilibrium equations of the element ensures that the normal stress
components of S̃ij are balanced, and the normal stresses are simply added to
the final stress field of the submodel, which must satisfy the Mohr-Coulomb
criterion.

5.1. Local shear transfer via corbels

A mechanical model for the transfer of shear from one plane to another,
e.g. from τxy to τzx, is needed. For this purpose a concrete corbel is consid-
ered. The corbel utilises the transverse reinforcement of the joint, i.e. the
U-bar loops, to transform the shear stress (from Ŝ) acting on the boundary
of the joint to a normal stress in the core of the joint. This is illustrated in
Fig. 6(a).

Fig. 6(b) shows a corbel subjected to a shear stress τzx from the trans-
formed stress state of the particular strip of the macro element. The loop
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(a)

τzx

τzx

σz

σz

σx

V T2

T1xy

z

l

tz − oz
2

oz

(b)

Figure 6: a) Sketch of two corbel mechanisms working in two-dimensions. b) Two-
dimensional representation of a corbel in the xz-plane transforming a shear stress τzx
to a normal stress σx. Positive directions of forces and stresses are shown. The panels
indicated by gray has a out-of-plane thickness of oy.

reinforcement is activated and the stringer force T in the reinforcement bal-
ances the stress σz and the stringer force V . The rectangular panel will have
constant shear stress, while the triangle will be in uniaxial compression. For
a single corbel, see Fig. 6(b), we have the following variables:

αi =
[
σ
(i)
x , σ

(i)
z , τ

(i)
zx , T

(i)
1 , T

(i)
2 , V (i)

]T
(19)

or

αi =
[
σ
(i)
x , σ

(i)
y , τ

(i)
xy , T

(i)
1 , T

(i)
2 , V (i)

]T
(20)

depending on the orientation of the corbel. The following system of equilib-
rium equations can be derived for a single corbel:

ozoy 0 −loy 0 0 0

0 −loy 0 0 −1 −1

0 −loy ozoy 0 0 0

0 0 −tz − oz
2

oy 0 0 −1

0 0 −tz − oz
2

oy 1 −1 0

0 0 −ozoy −1 0 0





σx

σz

τzx

T1

T2

V


= 0 (21)
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The first three equations in (21) ensure vertical, horizontal, and moment
equilibrium, while the last three ensure equilibrium for the stringers. The
stresses σx and σz will practically always be negative, i.e. compressive, and
the same goes for the stringer force V . No reinforcement is located at the
position of the leftmost stringer, hence, the stringer is a so-called compression
stringer which cannot take any tension.

A single corbel transforms a shear stress into a normal stress in the core
of the joint. Several corbels are therefore needed to transfer shear from one
plane to another. Moreover, the corbels are given a predefined length l, see
Fig. 6, however, the optimal value of l depends on the reinforcement and
loading. Four corbels for each of the four boundaries of the joint is therefore
used, thus, the complete submodel features up to 16 corbels, four for each
U-bar loop in the considered joint section.

uy1s
2 − uy1

s/2s/2

y

xz

Figure 7: Four corbel models around a single U-bar: The length is fixed at s/2 for the
two largest, while the length of the two smallest depends on the position of the U-bar in
the unit joint section. Dashed lines indicate the load path through the triangular corbels.
Some of the corbels overlap and their stress fields are added to obtain the actual stress
state.

Fig. 7 shows the four corbels around a U-bar. As shown in Fig. 7, some
of the corbels overlap, and it is therefore necessary to add the stress fields
together to obtain the actual stress field of the submodel. Each of the corbels
can transfer a shear stress to a normal stress in the centre of the joint, which
then can be transferred to a shear stress in a different plane via another
corbel. This is illustrated schematically in Fig. 8 for two corbels.

Combining the up to 16 corbels requires four equations - one for each
U-bar loop - which enforce equilibrium for the normal stresses σx according
to the positions of the corbels together with four transfer boxes, see Fig. 8.

Fig. 9 shows the transfer of normal stresses σx schematically, where each
set of arrows is located at the position of an U-bar loop. The four equilibrium
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u oy
s−u
2

s−u
2

oz
Transfer boxxy

z

Figure 8: Shear transfer from one plane to another via two corbels. The central transfer
box will experience uniaxial compression in the x-direction. Equilibrium of the corbels is
ensured by stringer forces and confinement not shown here.

t4 t1 t2 t3 t4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 9: Interaction of the 16 corbels and four transfer boxes illustrated schematically:
The triangles represent a corbel mechanism, while the rectangles represent the transfer
boxes. Each set of arrows represent an equilibrium equation. The size and locations of
corbels are not to scale.

equations are given as

σ(1)
x + σ(2)

x − σ(3)
x − σ(4)

x + σt4x − σt1x = 0,

σ(5)
x + σ(6)

x − σ(7)
x − σ(8)

x + σt1x − σt2x = 0,

σ(9)
x + σ(10)

x − σ(11)
x − σ(12)

x + σt2x − σt3x = 0,

σ(13)
x + σ(14)

x − σ(15)
x − σ(16)

x + σt3x − σt4x = 0,

(22)

where σ
(i)
x is the stress in the x-direction associated with the ith corbel, see

Fig. 6. The first four corbels are associated with the first U-bar loop, the
next four with the second U-bar loop and so on, see Fig. 9 for the numbering.
σtjx is the normal stress of the jth transfer box. Two corbels associated with
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the same U-bar, e.g. the two corbels on the left-hand side in Fig. 7, can
work together, each transferring a fraction of the total shear force.

The stress states of the 16 corbels are combined to obtain the actual
stress field within the unit joint section. The corbels overlap to some degree,
see Fig. 7 where some of the corbels in the same plane overlap, and it is
therefore necessary to superimpose the appropriate stress states. Depending
on the values of u, uy1, and uz1 up to ten triaxial stress states are present
inside the unit section. Each of these stress states are given by three normal
stresses and two shear stresses.

τyz is zero for all strips in their local coordinate system. The transforma-
tion from the local coordinate system of any strip to the coordinate system of
strip 1 is equivalent to rotating the coordinate system about the local x-axis,
hence, τyz will remain zero. The triaxial stress states in the joint concrete
must satisfy the Mohr-Coulomb criterion presented in Sec. 2. Moreover, the
rectangular panels in the corbels will experience plane stress, which must
satisfy the Mohr-Coulomb criterion for plane stress also presented in Sec. 2.

The U-bar loops are subject to tension in order to activate the corbel
mechanisms, and the tensile stress must be below the tensile strength:

0 ≤ Ti ≤ fyAsu (23)

where fy is the yield strength and Asu is the cross sectional area. It is
assumed that the reinforcement only carries tension as seen in (23). The
compression stringers illustrated in Fig. 6 must be in compression, i.e. V
must be non-positive:

V ≤ 0

The submodel requires second-order constraints as well as semidefinite con-
straints since the concrete experience both plane stress and triaxial stress.
The macro joint element and submodel are implemented in Matlab and the
commercial optimisation solver MOSEK [31].

6. Analysis and discussion

6.1. Corner joint subject to shear

First, a corner joint subjected to shear is analysed using a single joint
element with the submodel criterion, and the results are compared to the
current design criterion of the Eurocode 2. Comparison to experimental
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Figure 10: a) Corner joint connecting two reinforced concrete panels subject to pure shear
analysed using a single joint element. b) Dimensions of the considered joint: s takes the
values of 100 mm, 200 mm, or 400 mm, while u is varied.

results would be preferable, however, as mentioned experimental results for
corner joints have not been published to the best knowledge of the authors.

Fig. 10 shows the corner joint connecting two precast concrete panels as
well as the loading, which is applied such that the joint is loaded in pure shear.
For the Eurocode 2, the shear capacity of a keyed joint can be calculated as:

τ = cft
Akey
Ac

+ µρfy ≤
1

2
νfc

Akey
Ac

(24)

where c = 0.5 is a parameter which relates the tensile strength ft to the
cohesion, and µ = 0.9 is the friction coefficient used for keyed joints. Akey is
the area of the keys and Ac is the total area of the joint. ρ is defined as

ρ =

∑
Asu
Ac

ν is the so-called effectiveness factor, which accounts for microcracking and
softening when using a rigid-plastic material model for concrete. An effec-
tiveness factor of ν = 0.7− fc/200 (fc in MPa) is used for the comparison.
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The joint is analysed for varying value of u, see Fig. 5, with u/2 = uz1 =
uy1. The following parameters are used:

ft = 0 MPa, tz = ty = 50 mm, oz = oy = 40 mm

Moreover, the angle of internal friction is taken as 37◦, i.e. k = 4, which
is commonly used for reinforced concrete. In practice, mortar with low ag-
gregate size is often used, which may reduce the angle of friction. For the
Eurocode 2 design formula (24), ft = 0.21f

2/3
c and Akey/Ac = 0.5 are used.

Three different types U-bar loops commonly used in practice are analysed
using different values of U-bar spacing, s.
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Figure 11: Characteristic shear capacity of the corner joint with fc = 20 MPa and different
values of s: The results of the joint element is represented using solid lines, while the
capacity predicted using the Eurocode 2 is shown with dashed lines.

Fig. 11 and 12 show the shear capacity of the corner joints for the three
types U-bar loops. It is observed that the values of u and s affect the capacity
of the joint element and submodel to some degree. Moreover, the concrete
strength heavily affects the capacity for the joints with Ø7 and Ø6 U-bars
(blue and black lines).

The shear capacity estimated with the Eurocode 2 design equation is
somewhat similar to the shear capacity of the joint element, however, for low
values of s the Eurocode underestimate the capacity, while it overestimates
the capacity for larger values of s depending on u compared to the joint
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Figure 12: Characteristic shear capacity of the corner joint with fc = 35 MPa and different
values of s: The results of the joint element is represented using solid lines, while the
capacity predicted using the Eurocode 2 is shown with dashed lines.

element. Based on the analysis it can be concluded that it is necessary to
consider the stress field inside the joint for design.

6.2. Four-storey stairwell with door openings

Herfelt et al. [22] analysed a four-storey stairwell with door openings
subjected to shear and torsion using the generalised plane stress element.
The stairwell is now considered as a precast concrete structure, and the
corners are modelled using the presented joint element.

The stairwell including the positions of the joints are seen in Fig. 13.
The dimensions of the wall as well as meshes for the model are also given in
the figure. The door openings have a height of 2.10 metres and a width of
0.90 metres. The precast concrete panels have a thickness of 180 mm and are
reinforced with two layers of Ø8 rebars per 150 mm in both directions. The
reinforcement has a design yield strength of fyd = 458 MPa, and the con-
crete has a design compressive strength of fcd = 21.4 MPa, while the tensile
strength is taken as zero. Considering a single U-bar loop, the reinforcement
ratio is given as

Φ =
Asufy
s t fc
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Figure 13: Four-storey stairwell subjected to bending and torsion: a) Sketch showing
loading and joints located in the vertical corners are modelled using the joint element[22],
b) coarse mesh with 864 triangular elements, c) fine mesh with 11,379. All dimensions are
given in metres.

For the joints, a thickness of tz = ty = 180 mm is used with an overlap of
oz = oy = 50 mm and s = 300 mm, see Fig. 10(b). fcd = 21.4 MPa, ft = 0,
and k = 4 are used for the joint concrete as well. The reinforcement ratio of
the joint is varied and the results are illustrated in Fig. 14 for two meshes
generated using GiD v12 [32]; a coarse mesh with 864 plane stress elements,
and a fine mesh with 11, 379 plane stress element, see Fig. 13(b) and (c).
Moreover, the stairwell is analysed for two values of u to assess the effect of
the reinforcement layout.

Fig. 14 shows that the capacity depends on the joint reinforcement to
some degree, however, the joints will hardly affect the capacity provided
sufficient reinforcement, i.e. Φ ≥ 0.004 corresponding to Ø5 U-bar loops per
544 mm assuming a design strength of 214 MPa which is far below what is
typically used in practice. It is seen that the model with the joint elements
approach the capacity of the model without the joint from below, which is to
be expected from a lower bound element. It is also seen that the fine mesh
predicts a larger capacity.

From Fig. 15 it can be seen that the joints push the structure to-
wards a more evenly distribution of the shear stresses across the corner. For

21



0 2 4 6 8 10

·10−3

0

20

40

60

80

100

Φ [-]

p
R
d

[k
N

/
m

]

u/s = 0.1

u/s = 0.5
Monolithic

(a) Coarse mesh

0 2 4 6 8 10

·10−3

0

20

40

60

80

100

Φ [-]

p
R
d

[k
N

/m
]

u/s = 0.1

u/s = 0.5
Monolithic

(b) Fine mesh

Figure 14: Design capacity of the stairwell as a function of the reinforcement ratio of the
joints for two different values of u.
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Figure 15: Comparison of the smallest principal stress for the wall with the door openings
using the fine mesh with and without joints (u/s = 0.5).
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Φ = 0.001 shown in Fig. 15(a), large compressive stresses are observed near
the bottom door opening. This is due to the fact that the joints do not have
sufficient shear capacity and the stresses have to be transferred to the foun-
dations via the wall itself. Fig. 15(c) shows large compressive stresses above
20 MPa near the bottom door opening which is possible since no criterion is
enforced on the stresses in the corner of the structure.
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Figure 16: Shear stress distribution over the height of the structure in the joints near
adjacent to the slender wall with the door openings. The shear stress is shown for four
different reinforcement degrees Φ using the fine mesh and u/s = 0.5 for the joints. The
wall structure is shown in the centre.

Fig. 16 shows that for Φ = 0.001 and 0.004, the shear stress in the joints
near the door openings will be constant over the entire height. In order
to activate the joints over the entire height, significant ductility is needed.
Increasing the reinforcement degree means that only a small portion of the
joints are utilised fully, hence, the requirement to the ductility is lower, and
the structure is more robust. The effect of the door openings on the shear
stress is clearly shown in Fig. 16 for Φ = 0.007 and 0.010. The forces
are primarily transferred as diagonal compression in the panels, hence, this
jagged pattern of shear stresses is generated. The effect of the door openings
is also seen to some degree for the joint to the right of the wall, where an
almost wave-like distribution is observed for Φ = 0.007 and 0.010.
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The analysis has shown that the proposed multiscale joint element makes
modelling of real size structures possible. Moreover, the stairwell model using
the fine mesh only required a CPU time of approximately 65 seconds on a
desktop PC with an Intel Xeon CPU W3565 with 8 CPUs and 3.2 GHz clock
frequency. The low computational time is a major advantage over general
non-linear finite element models.

7. Conclusion

In practice, design and analysis of precast concrete structure in the ulti-
mate limit state is primarily done using simple manual methods and linear
finite element analysis. The manual methods are often based on limit anal-
ysis and provide efficient tools for assessment of the capacity. For complex
structures, however, it becomes difficult to obtain a decent solution - espe-
cially for structures in three dimensions. Moreover, it is rather difficult to
account for the behaviour of the in-situ cast joints.

A lower bound multiscale joint element was presented. The element was
designed for interaction with a generalised plane stress element with the
scope of modelling of real life precast concrete structures. A mechanical
submodel was proposed as the yield function of the macro joint element. The
submodel used corbels to transfer shear stresses from one plane to another
and the resulting triaxial stress field within the joint was checked against the
Mohr-Coulomb criterion.

Unfortunately, no experiments of joints in three dimensions have been
published, thus, the joint element and submodel was analysed by comparison
to the Eurocode criterion. The results of the joint element and the Eurocode
design equation were somewhat close and for heavily reinforced joints, the
joint element predicted a larger capacity.

A four-storey precast concrete stairwell with door openings was analysed.
The precast panels were connected by in-situ cast joints in the corners, and
it was observed that the capacity of the joints are crucial to the overall
behaviour of the wall. The reinforcement of the joints heavily affects the
capacity, especially at low degrees of reinforcement. The joints also affected
the stress field considerably, and the shear stresses were distributed more
evenly across the corner joint. Higher levels of reinforcement increase the
robustness of the structure considerably and lower the requirement to the
ductility of the joints and panels.
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The proposed multiscale joint model has shown significant potential, how-
ever, validation by comparison to experimental results is necessary. It can be
concluded that the presented framework and model will enable optimisation
of precast concrete structures, and the lower bound property of the model is
highly desirable for practical design.
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