Deep TLR PrimedTM T cells induce potent anti-tumor activity without systemic toxicity

Westcott, Nathan; Boesch, Austin; Rybakin, Vasily; Hwang, Ji Young; Jørgensen, Kira; Lassen, Rasmus; Kræmer, Martin; Bak, Martin; Veiga, Gael; Bruun, Jonas

Publication date: 2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Deep TLR Primed™ T cells induce potent anti-tumor activity without systemic toxicity

Nathan Westcott¹, Austin Boesch¹, Vasily Rybakin¹, Ji Young Hwang¹, Kira Jørgensen², Rasmus Lassen³, Martin Kraemer³, Martin Bak³, Gael Veiga³, Jonas Bruun³, Carlos Tassa¹, Harrison Rodts¹, Manny Sequeira¹, Karsten Sauer¹, Thomas L. Andresen¹

¹Torque Therapeutics, Cambridge, MA ²Technical University of Denmark, Lyngby, Denmark

Abstract

TLR7 agonists have been shown to augment immune responses in the tumor microenvironment (TME). They act primarily through two mechanisms: antigen presenting cell (APC) engagement and enhancement followed by T cell co-stimulation. However, multiple TLR7 agonists, including TLR7/8 agonists, have displayed considerable toxicities upon systemic administration. To circumvent this problem, we developed a T-cell mediated delivery system of TLR7 agonists that can target the TME and lymphoid organs to maximize efficacy while avoiding systemic toxicities. Torque’s Deep Primed™ T cell technology enhances T cell function by tethering an endogenous TLR agonist slowly over 10 days.

Introduction

Deep TLR Agonist

Deep TLR Primed™ T cell

TLR7 agonist

Loading onto antigen-specific CD8 T cells

TLR7 agonist

Activated antigen-specific CD8 T cells

Results

1. TLR agonists 1 and 2 are specific for TLR7? (A) TLR7 reporter assay (B) TLR7 reporter assay

2. Optimal liposome formulation maximizes agonist loading and extends drug release

3. Deep TLR loaded T cells retain viability and extend TLR agonist release

4. Deep TLR Primed™ T cells increase cell expansion and tumor control in vivo

Conclusions

- Torque’s Deep TLR Primed T cells released a potent small molecule agonist of TLR7 over an extended period of time.
- Two TLR7-specific agonists capable of liposome encapsulation were identified.
- Formulation optimization enabled high concentrations of two different TLR7 agonists to be loaded on both mouse and human T cells with extended release.
- The optimal liposomal formulation enabled encapsulation of high concentrations of TLR7 agonist loaded onto MTCs with minimal effect on viability and proliferative capacity.
- Deep TLR Primed T cells remain viable and release TLR agonist slowly over 10 days.
- Deep TLR Primed T cell expansion exceeds that of CD8 T cells alone or co-administered with systemic TLR7 agonist.
- ACT with Deep TLR Primed T cells provides a novel avenue to leverage the immune stimulating potential of TLR agonists for superior anti-tumor efficacy while avoiding systemic exposure and toxicities - key current bottlenecks to successful TLR therapy.

In the future, agonist delivery via Deep-Primed™ tumor antigen-specific autologous T cells could target a wide variety of tumors and their distant metastases, enabling a new immunotherapeutic option.

References

Acknowledgments

We would like to thank our Torque colleagues for productive discussions and critique.