Deep TLR PrimedTM T cells induce potent anti-tumor activity without systemic toxicity

Westcott, Nathan; Boesch, Austin; Rybakin, Vasily; Hwang, Ji Young; Jørgensen, Kira; Lassen, Rasmus; Kræmer, Martin; Bak, Martin; Veiga, Gael; Bruun, Jonas

Total number of authors: 15

Publication date: 2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Presented at the
B66
in a mouse melanoma model. Herein, we screened several liposomal formulations containing TLR7 agonists, have displayed considerable toxicities upon systemics stimulation and efficacy while avoiding systemic toxicities. Torque’s Deep-Primed™ T cell technology enhances T cell function by tethering immune modulators to the T cell before adoptive cell transfer (ACT), and by using Torque’s multi-targeted T cell (MTC) platform that primes the T cells against multiple tumor antigens. Hence, we screened several liposomal formulations containing two different TLR7 agonists for both in vitro agonist loading and release in mouse and human T cells followed by in vivo testing in a mouse melanoma model.

Abstract
TLR agonists have been shown to augment immune responses in the tumor microenvironment (TME). The approachwork primarily through two mechanisms: antigen presenting cell (APC) engagement and enhancement followed by T cell co-stimulation. However, multiple TLR agonists, including TLR7/8 agonists, have displayed considerable toxicities upon systemic drug release in mouse and human T cells. Herein, we developed a T cell mediated delivery system of TLR7 agonists that can target the TME and lymphoid organs to maximize efficacy while avoiding systemic toxicities. Torque’s Deep-Primed™ T cell technology enhances T cell function by tethering immune modulators to the T cell before adoptive cell transfer (ACT), and by using Torque’s multi-targeted T cell (MTC) platform that primes the T cells against multiple tumor antigens. Hence, we screened several liposomal formulations containing two different TLR7 agonists for both in vitro agonist loading and release in mouse and human T cells followed by in vivo testing in a mouse melanoma model.

Introduction
Deep TLR Agonist

Loading onto antigen-specific CDB T cells

Tumor Agonist

Deep TLR Primed T cell

Results

1. TLR agonists 1 and 2 are specific for TLR7?

A

TLR7 HEK reporter assay

B

TLR7 HEK reporter assay

C

1. TLR agonists 1 and 2 are specific for TLR7?

2. Optimal liposome formulation maximizes agonist loading and extends drug release

A

Human T cells

B

Mouse T cells

C

Drug release over 48h

D

Days Post ACT

2. Optimal liposome formulation maximizes agonist loading and extends drug release

3. Deep TLR loaded T cells retain viability and extend TLR agonist release

A

B

C

D

B

4. Deep TLR Primed™ T cells increase cell expansion and tumor control in vivo

A

B

C

D

4. Deep TLR Primed™ T cells increase cell expansion and tumor control in vivo

Conclusions
Torque’s Deep TLR Primed T cells released a potent small molecule agonist of TLR7 over an extended period of time.
• Two TLR7-specific agonists capable of liposome encapsulation were identified.
• Formulation optimization enabled high concentrations of two different TLR7 agonists to be loaded on both mouse and human T cells with extended release.
• The optimal liposomal formulation enabled encapsulation of high concentrations of TLR7 agonist loaded onto MTCs with minimal effect on viability and proliferative capacity.
• Deep TLR Primed T cells remain viable and release TLR agonist slowly over 10 days.
• Deep TLR Primed T cell expansion exceeds that of CDB T cells alone or co-administered with systemic TLR7 agonist.
• ACT with Deep TLR Primed T cells provides a novel avenue to leverage the immune stimulating potential of TLR agonist for superior anti-tumor efficacy while avoiding systemic exposure and toxicities - key current bottlenecks to successful TLR therapy.
• In the future, agonist delivery via Deep-Primed™ Tumor antigen-specific autologous T cells could target a wide variety of tumors and their distant metastases, enabling a new immunotherapy treatment.

References

Acknowledgments
We would like to thank our Torque colleagues for productive discussions and critiques.