Deep TLR PrimedTM T cells induce potent anti-tumor activity without systemic toxicity

Westcott, Nathan; Boesch, Austin; Rybakin, Vasily; Hwang, Ji Young; Jørgensen, Kira; Lassen, Rasmus; Kræmer, Martin; Bak, Martin; Veiga, Gael; Bruun, Jonas

Publication date: 2019

Citation (APA): Westcott, N., Boesch, A., Rybakin, V., Hwang, J. Y., Jørgensen, K., Lassen, R., ... Andresen, T. L. (2019). Deep TLR Primed™ T cells induce potent anti-tumor activity without systemic toxicity. Poster session presented at AACR Special Conference on Tumor Immunology and Immunotherapy, Boston, United States.
Introduction

TLR7 agonists have been shown to augment immune responses in the tumor microenvironment (TME). The agonist work primarily through two mechanisms: antigen presenting cell (APC) engagement and enhancement followed by T cell co-stimulation.1–3 However, multiple TLR agonists, including TLR7/8 agonists, have displayed considerable toxicities upon systemic administration.4 To circumvent this problem, we developed a T cell mediated delivery system of TLR7 agonists that can target the TME and lymphoid organs to maximize efficacy while avoiding systemic toxicities. Torque’s Deep Primed™ T cell technology enhances T cell function by tethering immune modulators to the T cell before adoptive cell transfer (ACT), and by using Torque’s multi-platform that primes the T cells against multiple tumor antigens.

Primed™ T cell technology enhances T cell function by tethering immune modulators to the T cell before adoptive cell transfer (ACT). Torque's multi-platform that primes the T cells against multiple tumor antigens.

Abstract

TLR7 agonists have been shown to augment immune responses in the tumor microenvironment (TME). The agonist work primarily through two mechanisms: antigen presenting cell (APC) engagement and enhancement followed by T cell co-stimulation.1–3 However, multiple TLR agonists, including TLR7/8 agonists, have displayed considerable toxicities upon systemic administration.4 To circumvent this problem, we developed a T cell mediated delivery system of TLR7 agonists that can target the TME and lymphoid organs to maximize efficacy while avoiding systemic toxicities. Torque’s Deep Primed™ T cell technology enhances T cell function by tethering immune modulators to the T cell before adoptive cell transfer (ACT), and by using Torque’s multi-platform that primes the T cells against multiple tumor antigens.

Results

1. TLR agonists 1 and 2 are specific for TLR7?

![Figure 1.](image1.png)

A TLR agonist 1 and 2 are specific for TLR7.

B TLR agonist 1 and 2 are specific for TLR7.

2. Optimal liposome formulation maximizes agonist loading and extends drug release

![Figure 2.](image2.png)

A Optimal liposome formulation maximizes agonist loading and extends drug release.

B Optimal liposome formulation maximizes agonist loading and extends drug release.

3. Deep TLR loaded T cells retain viability and extend TLR agonist release

![Figure 3.](image3.png)

A Deep TLR loaded T cells retain viability and extend TLR agonist release.

B Deep TLR loaded T cells retain viability and extend TLR agonist release.

4. Deep TLR Primed™ T cells increase cell expansion and tumor control in vivo

![Figure 4.](image4.png)

A Deep TLR Primed™ T cells increase cell expansion and tumor control in vivo.

B Deep TLR Primed™ T cells increase cell expansion and tumor control in vivo.

Conclusions

- Torque’s Deep TLR Primed T cells released a potent small molecule agonist of TLR7 over an extended period of time.
- Two TLR7-specific agonists capable of liposome encapsulation were identified.
- Formulation optimization enabled high concentrations of two different TLR agonists to be loaded on both mouse and human T cells with extended release.
- The optimal liposomal formulation enabled encapsulation of high concentrations of TLR agonist loaded onto MITCs with minimal effect on viability and proliferative capacity.
- Deep TLR Primed T cells remain viable and release TLR agonist slowly over 10 days.
- Deep TLR Primed T cell expansion exceeds that of CD8 T cells alone or co-administered with systemic TLR7 agonist.
- ACT with Deep TLR Primed T cells provides a novel avenue to leverage the immune stimulating potential of TLR agonists for superior anti-tumor efficacy while avoiding systemic exposure and toxicities - key current bottlenecks to successful TLR therapy.
- In the future, agonist delivery via Deep-Primed™ tumor antigen-specific autologous T cells could target a wide variety of tumors and their distant metastases, enabling a new immunotherapeutic strategy.

References

Acknowledgments

We would like to thank our Tongue colleagues for productive discussions and critiques.