Deep TLR PrimedTM T cells induce potent anti-tumor activity without systemic toxicity

Westcott, Nathan; Boesch, Austin; Rybakin, Vasily; Hwang, Ji Young; Jørgensen, Kira; Lassen, Rasmus; Kræmer, Martin; Bak, Martin; Veiga, Gael; Bruun, Jonas

Total number of authors: 15

Publication date: 2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Deep TLR Primed™ T cells induce potent anti-tumor activity without systemic toxicity

Nathan Westcott1, Austin Boesch1, Vasily Rybakin1, Ji Young Hwang1, Kira Jørgensen2, Rasmus Lassen3, Martin Kraemer2, Martin Bak4, Gael Veiga2, Jonas Bruun5, Carlos Tassa1, Harrison Rodts1, Manny Sequeira3, Karsten Sauer2, Thomas L. Andresen3
1Torque Therapeutics, Cambridge, MA; 2Technical University of Denmark, Lyngby, Denmark

Abstract

TLR7 agonists have been shown to augment immune responses in the tumor microenvironment (TME). The agonist work primarily through two mechanisms: antigen presenting cell (APC) engagement and enhancement followed by T cell co-stimulation. However, multiple TLR agonists, including TLR7/8 agonists, have displayed considerable toxicities upon stimulation. Herein, we screened several liposomal formulations containing TLR7/8 agonists, have displayed considerable toxicities upon stimulation. (APC) engagement and enhancement followed by T cell co-stimulation. TLR7 agonists have been shown to augment immune responses. The authors present a novel approach to load TLR agonists onto tumor cells in vitro and to extend TLR agonist release in vivo, which is beneficial for therapeutic interventions in the TME.

Introduction

Deep TLR Agonist

Results

1. TLR agonists 1 and 2 are specific for TLR7

2. Optimal liposome formulation maximizes agonist loading and extends drug release

3. Deep TLR loaded T cells retain viability and extend TLR agonist release

4. Deep TLR Primed™ T cells increase cell expansion and tumor control in vivo

Conclusions

- Torque’s Deep TLR Primed T cells released a potent small molecule agonist of TLR7 over an extended period of time.
- Two TLR7-specific agonists capable of liposome encapsulation were identified.
- Formulation optimization enabled high concentrations of TLR agonists to be loaded onto both mouse and human T cells with extended release.
- The optimal liposomal formulation enabled encapsulation of high concentrations of TLR agonists into liposomes with minimal effect on viability and proliferative capacity.
- Deep TLR Primed T cells remain viable and release TLR agonist slowly over 10 days.
- Deep TLR Primed T cell expansion exceeds that of CD8 T cells alone or co-administered with systemic TLR7 agonist.
- ACT with Deep TLR Primed T cells provides a novel avenue to leverage the immune stimulating potential of TLR agonists for superior anti-tumor efficacy while avoiding systemic exposure and toxicities - key current bottlenecks to successful TLR therapy.
- In the future, agonist delivery via Deep-Primed™ tumor antigen-specific autologous T cells could target a wide variety of tumors and their distinct metastases, enabling a new immunotherapy approach.

References

3. Dowling D. Recent Advances in the Discovery and Delivery of TLR7 Agonists as Vaccine Adjuncts. ImmunoHorizons 2018;0152625.

Acknowledgments

We would like to thank our Torque colleagues for productive discussions and critiques.