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Abstract: Quality factor (Q) and frequency-quality factor (Qf) of prestressed membrane resonators are 

enhanced by topology optimization. The optimization targets the fundamental mode which is more easily 
identified in physical experiments compared to high-order modes embedded in possibly dense frequency 
ranges. Both intrinsic and extrinsic losses are considered in the optimization process. With different 
combinations of the two damping sources, topology optimization yields distinct designs, which reveals that 
damping mechanisms significantly affect the optimal geometry of micro resonators. For optimized designs, 
the Qf in the fundamental mode exceeds the minimum requirement for room-temperature quantum 

optomechanics (6.2×1012 Hz) and reaches 1013 Hz in numerical experiments. 

Keywords: topology optimization, prestressed membranes, resonators, quality factor, frequency-quality 
factor 

1. Introduction 

Optomechanical systems are utilized in optomechanical experiments that push several frontiers of 
contemporary physics, such as quantum-limited accelerometers [1], optomechanics in 3D microwave cavities 
[2], microwave-to-optical wavelength conversion [3], and quadratic coupling in cavity optomechanics [4]. In 
these systems, mesoscopic mechanical resonators with ultrahigh quality factors play an important role in 
coupling light to mechanical motion. However, experiments involving this field have so far been restricted 
by the need for cryogenic precooling [5,6]. One possible way to overcome cryogenic temperatures and make 
realistic quantum experiments feasible at room temperature (298 K) is to enhance the mechanical frequency-

quality factor Qf to a regime where Qf > 𝑘 𝑇 /ℎ  6.2×1012 Hz (h is Planck’s constant, and 𝑘  is the 

Boltzmann constant, 𝑇  is the room temperature) [7,8]. This regime will allow for ground state cooling 
using the radiation pressure force and experiments operating in the quantum domain. 

The most promising mechanical resonators for the purposes of quantum optomechanical experiments 
are devices in the form of high-stress silicon nitride (Si3N4) strings [9], beams [10] and membranes [4]. Even 
though it is understood that the prestress dilutes the dissipation intrinsic to the material (or its surfaces) [11–

13], few resonators under conventional designs can achieve Qf > 6.2×1012 Hz in the fundamental mode at 

room temperature. If it is very hard to exceed this lower limit for Qf in the fundamental mode, exploring 
higher Qf in high-order modes could be a straightforward attempt. At least, the frequency can reach a high 
value. Hitherto, higher Qf has been demonstrated in high-order modes [14,15], but these modes are embedded 
in a dense frequency range full of neighboring modes that make the dynamic background noisy and 
intractable. To avoid disturbance from adjacent modes, prestressed trampoline-like resonators focusing on 

the fundamental mode outperform other conventional designs, reaching a relatively higher Q > 1.0×107 Hz 

[16,17]. Trampoline-like resonators are featured by a square central pad suspended by four thin highly 
tensioned tethers, providing a mismatch mechanism to reduce the radiation losses at the clamping points 
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supported by a very thick silicon substrate as shown in Fig. 1. The mechanical properties of the resonators 
are monitored by reflecting a focused laser off from the central pad. 

 

Fig. 1. A schematic of an advanced trampoline-like resonator reported by Norte et al. [17] and Reinhardt et 
al. [16]. 

Compared to conventional square membrane resonators, these trampoline-like resonators indicate that 
structural topology, including various shapes and sizes, directly affects damping distribution and other 
structural dynamic characteristics, such as frequencies, mass, structural stiffness and especially Q and Qf. 
The impact of geometry on dissipation was also reported by Candler et al. [18]. It is evident that existing 
designs of resonators can be improved through topology optimization, which is a computational methodology 
for optimizing the distribution of material in a given design domain. Various numerical formulations and 
approaches have been proposed throughout the last three decades since the method was conceived by 
Bendsøe and Kikuchi [19]. The enthusiasm for optimizing functional plate or shell structures never recedes 
[20,21]. Recent studies [22–25] demonstrate that topology optimization is a powerful tool to obtain high-Q 
designs. In this work, we numerically model the high-stress membrane structures via the finite element 
method and implement two simple numerical damping models to represent intrinsic and extrinsic damping 
loss, respectively. Density-based approaches are employed to formulate the design problem into a gradient-
based topology optimization form. The optimization objective is the mechanical quality factor Q or 
mechanical frequency-quality factor Qf in the fundamental mode. The optimized results display significant 
improvements both on Q and Qf evaluated numerically, compared to the existing trampoline-like designs [16, 
17,26]. Crucially, all the optimized designs exceed the minimum requirement for room-temperature quantum 

optomechanics, i.e. 6.2×1012 Hz for Qf. 

The remainder of the paper is organized as follows. In Section 2, the numerical approaches used to 
model prestressed membranes are briefly introduced. The formulation for topology optimization is presented 
in Section 3. Finally, design examples are presented and investigated in Section 4 before conclusions are 
drawn in Section 5. 

2. Modelling prestressed membranes 

2.1. Prestressed structures 

To model prestressed membrane resonators, we use the primitive version of the 4-node MITC (Mixed 
Interpolation of Tensorial Components) quadrilateral shell element [27]. The constitutive relation for the 
shell elements follows a plane stress assumption that is customary in shell theory. Based on physical 
observation and numerical experiments, a two-step linear modeling process as suggested by Pedersen [20] is 
adequate. The first step focuses on a linear static analysis to establish the prestressed system, considering the 
element initial stress 𝝈 ,  by solving the equilibrium equation as 



3 
 

𝑲 𝑼 𝑭  

(1) 
𝑲 𝑲 , , 𝑲 , 𝑩 𝑫 𝑩

,

d𝑉 

𝑭 𝑭 , , 𝑭 , 𝑩 𝝈 ,
,

d𝑉 

where BL0 is the linear strain-displacement matrix; 𝑭  is the load vector; 𝑲  is the linear stiffness matrix of 
the system and 𝑫  is the element constitutive matrix. 

The second step aims at investigating the dynamic characteristics of the high-prestress system by solving 
the corresponding eigenvalue problem as 

𝑲 i𝑪 𝜆 𝑴 𝝓 𝟎 

𝜆 𝜔 𝜔 , i𝜔 ,  

𝑓
𝜔 ,

2𝜋
    ,     𝑄

𝜔 ,

2𝜔 ,
, 𝑄𝑓 𝑄

𝜔 ,

2𝜋
 

(2) 

where 𝜆  is the j-th eigenvalue; 𝜔  is the j-th angular frequency which contains the real part 𝜔 ,  and the 

imaginary part 𝜔 ; 𝑓 , 𝑄  and 𝑄𝑓  are the j-th frequency, quality factor and frequency-quality factor, 

respectively; 𝝓  is the j-th eigenvector; 𝑴 ∑ 𝑴  is the consistent mass matrix, using element mass 

density 𝜍  and shape function matrix 𝑵  as 𝑴 𝜍 𝑵 𝑵
,

d𝑉 𝜍 𝑴 ; 𝑲 ∑ 𝑲 ,  is the tangent 

stiffness matrix and the damping matrix 𝑪 will be discussed later. Due to the assumption of small initial 
displacements, 𝑲 ,  can be simplified by only including two parts as 

𝑲 , 𝑩 𝑫 𝑩
,

d𝑉 𝑩 𝝈 𝑩
,

d𝑉 𝑲 , 𝑲 ,  (3) 

where 𝑩  is the nonlinear strain-displacement matrix, cf. Table 6.5 in [28] and 𝝈  is the element stress. The 
second term of (3) is denoted as 𝑲 , , which is also called the “initial stress stiffness matrix” or “geometric 

stiffness matrix”. To assemble 𝑲 , , the stress term 𝝈  in the integral is separated into two parts: the 

contribution from the element initial stress 𝝈 , , and the contribution from the obtained displacement field 

𝑼 ∑ 𝑼 , . The stress term can be expressed by the combination of the current element strain 𝜺  and the 

element constitutive matrix 𝑫  as 

 𝝈   𝑫 𝜺    𝑫 𝜺 𝜺 , 𝐸 𝑫 𝜺 𝑩 𝑼 , 𝝈 , 𝝈 ,  

𝝈 , 𝑫 𝜺 ,  
(4) 

where 𝜺  is the initial strain which corresponds to the element initial stress 𝝈 ,  via 𝝈 ,  = 𝑫 𝜺 , and 𝜺 ,  = 

𝑩 𝑼 ,  is the element strain generated by the static analysis, cf. (1). To relate the element geometric stiffness 

matrix 𝑲 ,  to design variables, the Young’s modulus 𝐸  is separated from 𝑫  as 𝑫  = 𝐸 𝑫. Further, 𝑲 ,  is 

rewritten as the sum of two parts 

𝑲 , 𝐸 𝑩 𝑫𝜺 𝑩
,

𝑑𝑉 𝐸 𝑩 𝑫𝑩 𝑼 , 𝑩
,

𝑑𝑉 (5) 
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𝑲 , 𝑲 ,  

where 𝑲 ,  and 𝑲 ,  represent the contributions from  𝝈 ,  and  𝑼 , , respectively. 

Since the eigenvalues of the prestressed membranes are calculated after the in-plane static analysis, the 
resulting 𝝈  at some regions may contain compressive components that cause instability in the eigenvalue 
analysis. The instability is featured by close-to-zero eigenvalues in (2), and wrinkling-like modal profiles. 
This instability is taken care of in the optimization process as described in Section 3.1. 

2.2. Damping consideration 

Damping is ubiquitous in realistic dynamic systems. Although characteristics like mass and stiffness are 
fairly easy to calculate, damping is considerably harder to estimate with any sort of certainty. In general, 
there are three main sources of damping in micro mechanical resonators [29]: (1) the interaction between a 
resonator and its surrounding medium, e.g. a viscous liquid or a rarefied ballistic gas; (2) boundary damping 
caused by the propagation of elastic waves to the substrate; and (3) intrinsic dissipation mechanisms. Since 
viscous interaction losses can be readily overcome by operation in vacuum, only boundary and intrinsic 
damping are taken into account in the following.  

2.2.1. Boundary damping 

The Si3N4 membrane is commercially deposited upon and suspended from a relatively thick silicon 
wafer, also called the substrate. The suspended structure is held flat by the internal stress (nominally around 
1 GPa). The behavior of mechanical resonators at low frequencies is strongly affected by the boundary 
conditions. It is not possible to provide ideal boundary conditions, i.e. simply supported or clamped, for 
realistic structures. In fact, the silicon substrate that acts as the support of the suspended structure is not rigid 
and shows flexibility to some degree. In addition, the substrate plays an important role in clamping losses for 
out-of-plane fundamental modes [17]. Due to high prestress, the rotation behavior is strongly suppressed 
along the support boundaries. Therefore, the boundaries of the suspended membrane structure are considered 
as elastic support edges and simultaneously provide boundary loss by vertical hysteretic damping, as shown 
in Fig. 2. The boundary conditions are expressed as 

𝑥 𝑙 :  𝛹 0, 𝛹 0, 𝑘 𝑤 𝑄  

𝑥   𝑙 :  𝛹 0,  𝛹 0,   𝑘 𝑤 𝑄  

𝑦   𝑙 :  𝛹 0,  𝛹 0,   𝑘 𝑤 𝑄  

𝑦   𝑙 :  𝛹 0,  𝛹 0,   𝑘 𝑤 𝑄  

𝑄 𝜅𝐺ℎ  𝛹
𝜕𝑤
𝜕𝑥

 

𝑄  𝜅𝐺ℎ  𝛹
𝜕𝑤
𝜕𝑦

 

𝑘 1 i𝜂 𝑘

(6) 

where  𝛹  and 𝛹  are the rotations along x-direction and y-direction, respectively; 𝑄  and 𝑄  are the 

transverse shearing forces; h is the thickness of the membrane; 𝑤 is the deflection; 𝜅 is the shear correction 
factor (𝜅 = 5/6); G is the shear modulus; 𝜂  is the hysteretic damping coefficient; 𝑘  is a constant representing 

the stiffness of elastic supports (𝑘  = 8.315×107 kN/m2). The imaginary part indicates that the damping force 

is proportional to the displacement amplitude but in phase with the velocity. 
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Fig. 2. Schematic of boundary conditions for the shell model including boundary damping. The special 
symbols for boundary condition indicate that boundaries are fixed in all degrees of freedom except the out of 
plane direction that is constrained by springs and dampers. 

2.2.2. Intrinsic damping 

The intrinsic damping is embedded into the eigenvalue problem, cf. (2), through a relaxation mechanism 
described by a complex-valued Young’s modulus 𝐸 1 i𝜂 𝐸  [12,13,30], where 𝜂  is defined as the 
intrinsic loss factor. Due to the complex-valued Young’s modulus, the element constitutive matrix 𝑫  

becomes a complex form as 𝑫 𝐸 𝑫. The imaginary part of 𝑫 , i.e. 𝜂 𝐸 𝑫, indicates that damping forces 
are proportional to material deformation during oscillations. The integral process as the first term in (3) yields 
the element intrinsic damping matrix 𝑪 ,  as 

𝑪 , 𝑩 𝜂 𝐸 𝑫 𝑩
,

d𝑉 𝜂 𝑲 ,  (7) 

Since the element stress 𝝈  in (3) results from the static analysis, cf. (1), 𝝈  is viewed as constant in the 
eigenvalue analysis, cf. (2). Unlike 𝑪 , , 𝑲 ,  has nothing to do with material deformation during 

oscillations. Hence, the imaginary part of 𝑫  never enters (5) when performing interpolations described in 
Section 3. Since the established intrinsic damping is independent of  𝑲  generated by prestress, the quality 
factor of a structure rises when prestress increases. This adheres to the relationship between prestress and Q 
reported in the literature. 

To consider the two damping sources simultaneously, (2) should be supplemented by corresponding 
damping terms. The tangent stiffness matrix 𝑲  in (2) needs to include 𝑲  as 𝑲 𝑲 𝑲 𝑲  
compared to (3), assuming that 𝑲  contains the stiffness contribution from the elastic supports described by 
𝑘  in (6). Also, the damping matrix 𝑪 should combine the boundary damping from 𝜂 𝑘  and the intrinsic 
damping from 𝜂 𝑲 .  

2.2.3. Calibration 

Since the weight between boundary damping and intrinsic damping is unknown, the values of damping 
coefficients 𝜂  and 𝜂  are determined through a calibration process trying to mimic the experimental data of 
the reference design reported by Norte et al. [17], see Fig. 3. The trampoline-like reference design is 
implemented as a numerical model based on shell elements. The membrane thickness is 50 nm. The material 
parameters include Young’s modulus of 250 GPa, Poisson ratio of 0.23, and mass density 𝜍  of 3100 kg/m3, 
which corresponds to Si3N4. The initial stress of 1 GPa for biaxial tension is achieved by using a constant 𝜀  
= 0.00308, cf. (4), in each element. As the specified geometry of the trampoline-like reference design, the 
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edges of the black areas connected to the red lines in Fig. 3 are interpreted as boundaries and support the 
resonator from the four corners. The boundary conditions refer to Fig. 2 and (6).  

In the calibration process, the trampoline-like reference design is numerically evaluated with different 
combinations of 𝜂  and 𝜂  until the Q value is close to the reference Q = 17.16×106. In this way, five cases 
are established to reflect a transition of the dominant damping source from intrinsic damping to boundary 
damping. We define that Case 1 only includes intrinsic damping, i.e. where 𝜂  = 0, whereas Case 5 only 
includes boundary damping, i.e. where 𝜂  = 0. Other information on 𝜂  and 𝜂   for each case is listed in Table 
1. The calibration results are illustrated in Fig. 4 where the curves are smoothed by including more sampling 
points from a cubic spline interpolation on the damping coefficients listed in Table 1 at a fixed interval equal 
to 1/20 of the 𝜂  in Case 5. The transition of the intrinsic damping proportion from Case 1 to Case 5 follows 
a nearly linear decline. 

Table 1 Damping coefficients in each case. 

Case 𝜂  [×10-4] 𝜂  Q [×106] 

1 2.513 0.000 17.1769 
2 1.801 0.095 17.1739 
3 1.140 0.190 17.1507 
4 0.518 0.285 17.1488 
5 0.000 0.380 17.1371 

 
Fig. 3. The trampoline-like reference design suggested by Norte et al. [17]. Red lines indicate the boundary 

conditions specified in Fig. 2. 

 
Fig. 4. Calibration results of the reference design. 

To compare with the experimental data in figure 3 from Norte et al. [17], we sweep the membrane 
thickness in numerical experiments under different damping combinations, from Case 1 (pure intrinsic 
damping) to Case 5 (only boundary damping). The relationship between Qfs and thicknesses is plotted in Fig. 
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5. The Qfs experience a significant increase when the membrane becomes thinner in all cases. The advantage 
of thinner membranes shows insensitivity to the weight between intrinsic damping and boundary damping, 
though Qfs show the fastest growth in Case 1, according to the zoom-in parts in Fig. 5. 

 
Fig. 5. Frequency-quality factor as a function of membrane thickness in numerical experiments. The 

experimental data comes from figure 3 in Norte et al. [17]. 

3. Topology optimization 

3.1. Interpolation scheme 

A “density-based topology optimization approach”, which followed the groundbreaking studies [31,32] 
and became an efficient form in [33,34], is employed to turn a 0-1 distribution problem into a continuous 
distribution problem. A design variable 𝜌  is assigned to each element. The Young’s modulus Ee of element 
e is directly related to the projected physical density �̅�  according to the Rational Approximation of Material 
Properties (RAMP) model [35] as 

𝐸 𝐸
�̅�

1 𝑞 1 �̅�
𝐸 𝐸 , �̅� ∈ 0, 1  (8) 

where q  0 is the penalization parameter; 𝐸  is the Young’s modulus; usually Emin is a very small value 
assigned to void regions in order to prevent the global stiffness matrix from becoming singular;  �̅�  is the 
projected physical density [36] calculated by 

�̅�
tanh 𝛽 𝜂 tanh 𝛽 𝜌 𝜂

tanh 𝛽 𝜂 tanh 𝛽 1 𝜂
 (9) 

where 𝜂 and 𝛽  control the shape of (9) by gradually increasing 𝛽  through the optimization process; 𝜌  is the 
filtered density of element e, which is calculated as 

𝜌
1

∑ 𝐻 ,∈
𝜌 𝐻 ,

∈

 (10) 

where ne is the set of element i for which the center-to-center distance Δ(e, i) to element e is smaller than the 
filter radius rmin, and He,i is a weight factor defined as He,i = max(0, rmin  Δ 𝑒, 𝑖 ). Due to the RAMP scheme, 
𝑫 , 𝑲 , , 𝑲 ,  and 𝑭 ,  in Section 2.1 are connected to design variables. In contrast, the element volume 𝑉  

and mass density 𝜍  follow linear interpolations as 𝑉  = �̅� 𝑉  and 𝜍  = 𝜍 𝜍 𝜍 �̅� , respectively, 
where 𝑉  represents the volume of a shell element and 𝜍  is the mass density of material. 
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The structural layout design towards maximizing natural frequencies has been studied for more than two 
decades, by e.g. [20,37–41]. One basic problem in the topology optimization of eigenvalues using element-
density based approaches is the occurrence of spurious modes, see [20,39] for details. These spurious modes 
are caused by inappropriate stiffness-to-mass ratio in low-density regions, where element densities are close 
to the minimum value. Since element stiffness is lower than element mass, the stiffness-to-mass ratio of these 
elements becomes extremely low compared to solid parts. Therefore, these low-density elements or regions 
may control the lowest eigenmodes of the whole structure. One possible strategy for suppressing spurious 
modes is raising the stiffness-to-mass ratio of low-density elements by modifying the interpolation scheme 
used for stiffness and mass [20,39]. This is achieved by setting Emin = 10-6E0 and 𝜍  = 10-7𝜍  in this study. 

For low-density elements, 𝝈  resulting from the in-plane static analysis, cf. (1), may cause wrinkling-
like instabilities in the eigenvalue analysis due to its compressive components. Adequately suppressing 𝝈 ,  

= 𝑫𝑩 𝑼 ,  in low-density regions can make sure 𝝈  remains in biaxial tension. Therefore, an interpolated 

𝑼 ,  inspired by the literature [42] instead of 𝑼 ,  is employed as  

𝑼 , 𝛼 𝑼 , , 𝝈 ,  𝑫𝑩 𝑼 ,  (11) 

𝛼
tanh 𝜒𝛶 tanh 𝜒

𝐸
𝐸 𝛶

tanh 𝜒𝛶 tanh 𝜒 1 𝛶
 (12) 

where 𝛼  is the scaling factor; 𝛶 and 𝜒 are constant parameters for tuning. In this study, 𝜒 = 30 and 𝛶 = 0.05. 
The displacement interpolation scheme (11) aims at suppressing 𝝈 ,  for the gray elements whose Young’s 

modulus are smaller than 𝛶𝐸  in order to avoid instabilities in the eigenvalue analysis. Also note that, 𝑼 ,  

is equal to 𝑼 ,  for solid elements. 

3.2. Robust formulation 

To promote length-scale control, robustness to manufacturing variations and nearly binary designs, the 
objective function is transformed into a max-min form via the combination of three different realizations 
together following the robust formulation suggested by Wang et al. [36] where the intermediate design can 
be viewed as the blue-print design. The basic requirement of the robust formulation is to maximize the 
minimum Q or Qf among three realizations, corresponding to the eroded, the intermediate (blue-print) and 
the dilated designs. These three structures are represented by one set of design variables 𝝆 but with three 
different thresholds, i.e. 𝜂 , 𝜂  and 𝜂  for the eroded, intermediate and dilated design, respectively, in the 
projection process (9). Its mathematical description is as follows. 

max
𝝆

min ln 𝑄 𝝆 𝑝 ∈ 𝜂 , 𝜂 , 𝜂  

 or 

max
𝝆

min ln 𝑄𝑓 𝝆 𝑝 ∈ 𝜂 , 𝜂 , 𝜂  

 
s.t. : 

𝑲 𝝆 𝑼 𝑭 𝝆 ,        𝑝 ∈ 𝜂 , 𝜂 , 𝜂  

1
𝜔 , 𝝆

𝜔
0, 𝑝 ∈ 𝜂 , 𝜂 , 𝜂  

(13) 
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1
𝛤

∑ 𝑉 𝝆
∑ 𝑉

1 0  

0 𝜌 1 

where 𝝆 , 𝝆  and 𝝆  can be calculated via (9) and (10); 𝛤 ∈ 0,1  is the volume fraction limit; 𝜔  is the 

frequency lower bound prescribed for the three realizations. The three realizations are based on the same 
filtered density 𝝆, and the dilated structure always has the highest volume. Hence, the volume constraint is 
only imposed on the dilated design. For a pure mathematical optimization problem of maximizing Q or Qf, 
neither volume constraint nor frequency constraint is necessary. However, for physical experiments the 
service frequency of the laser beam used to excite the resonators falls into a fixed range. Usually, it should 
be higher than 100 kHz. Also, a very fragile or disconnected structure could be useless for fabrication. 
Unfortunately, numerical experiments indicate that a very fragile structure that is almost disconnected to 
boundaries has an extremely high theoretical Q or Qf. The frequency constraints act as an implicit method to 
provide a reasonable stiffness lower bound avoiding fragile or disconnected designs and ensuring practically 
relevant frequencies.  

3.3. Sensitivity analysis 

The derivative of a specific eigenvalue 𝜆  with respect to a projected physical density �̅� , see the 

Appendix for detailed derivations, can be expressed as 

d𝜆
d�̅�

𝝓
d𝑲
d�̅� 𝑖

d𝑪
d�̅�

𝜕𝑲
𝜕�̅� 𝜆

d𝑴
d�̅� 𝝓 𝜷

d𝑭
d�̅�

d𝑲
d�̅� 𝑼

𝝓 𝑴𝝓
 

(14) d𝑪
d�̅�

𝜂
d𝑲
d�̅�

 

𝜕𝑲
𝜕�̅�

d𝑲
d�̅�

𝜕𝑲

𝜕𝛼
d𝛼
d�̅�

𝜕𝑲

𝜕𝐸
d𝐸
d�̅�

 

where 𝜷 is the adjoint vector that can be calculated through solving the following adjoint equation 

𝑲 𝜷
𝜕 𝑲 𝝓

𝜕𝑼
𝝓  (15) 

The derivative of the specific eigenvalue 𝜆  with respect to a design variable 𝜌  is achieved according to the 

chain rule [43] 

d𝜆
d𝜌

d𝜆
d�̅�

d�̅�
d𝜌

d𝜌
d𝜌

∈

 (16) 

where the definition of ne refers to Section 3.1. Further, the derivatives of the objective function, ln(𝑄 ) or 

ln(𝑄𝑓 ), with respect to design variables are 

d ln 𝑄
d𝜌

1
𝜔 ,

d𝜔 ,

d𝜌
1

𝜔 ,

d𝜔 ,

d𝜌
 

d ln 𝑄𝑓
d𝜌

2
𝜔 ,

d𝜔 ,

d𝜌
1

𝜔 ,

d𝜔 ,

d𝜌
 

(17) 
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where d𝜔 , /d𝜌 , d𝜔 , /d𝜌  can be derived from (2), see detailed expressions in the Appendix. Based on 

observations during the optimization process, the fundamental mode never experiences multiple eigenvalues. 
Techniques targeting multiple eigenvalues are hence unnecessary for this study. 

4. Numerical examples: maximizing Q and Qf 

As shown in Fig. 6, a square design domain with a side length of 700 μm and a thickness of 50 nm has 
a square passive region with a side length of 100 μm at the center. This passive region is filled with solid 
elements. Utilizing symmetry of the square shape, a mesh of 200 200 square shell elements is used to 
discretize a quarter of the design domain. Consequently, this simplification retains the symmetric modes of 
the original structure but excludes the asymmetric ones. In a post-processing step, it has been verified that 
the fundamental mode of resulting designs is always a symmetric mode. The material parameters include 
Young’s modulus of 250 GPa, Poisson ratio of 0.23, and mass density 𝜍  of 3100 kg/m3, which corresponds 
to Si3N4 extensively used to fabricate membrane resonators in physical experiments. The initial stress of 1 
GPa for biaxial tension is achieved by using a constant 𝜀  = 0.00308, cf. (4), in each element. The design 
domain in Fig. 6 is consistent with the reference design in Fig. 3. The boundaries of the design domain are 
indicated by the red lines in Fig. 6. The boundary conditions refer to Fig. 2 and (6). The optimizations are 
performed under different damping combinations. The values of damping coefficients 𝜂  and 𝜂  follow the 
data listed in Table 1. 

The method of moving asymptotes (MMA) introduced by Svanberg [44] plays the role of the optimizer 
to drive the optimization process. The value of 𝛽  gradually goes up to a maximum value of 120. The filter 
radius rmin spans 9 elements. The values of 𝜂 , 𝜂  and 𝜂  are 0.55, 0.50 and 0.45, respectively. The volume 
fraction limit 𝛤  is 0.4, and the frequency lower bound 𝜔  is 240 kHz. The penalization parameter q in (8) is 
3. Cases 1, 3 and 5 start optimizations from a uniform density field, whereas Cases 2 and Case 4 employ the 
optimized results from Case 3 and Case 5 as initial guesses, respectively.  

 
Fig. 6. Schematic of the design domain in optimizations. Red lines indicate the boundary conditions 

specified in Fig. 2. 

The design objectives of the optimized results listed in Tables 2 and 3 correspond to maximizing Q and 
Qf, respectively. Although their design objectives are different, in all cases the optimization targeting Q yields 
similar structures as those targeting Qf except for Case 4. The damping combinations cover the range from 

pure intrinsic loss (Case 1) to pure boundary loss (Case 5)，providing a deeper understanding of the geometry 

transition following varying damping coefficients. In all cases, the feature that a suspended central pad well 
connected to the perimeter via four tethers can be easily identified and is similar to the reference design. 
Nevertheless, the four tethers gradually weaken their connection to the central pad from Case 1 to Case 5. 
Since more material concentrates around the passive domain in Case 1, it looks like that the geometry of the 
central pad significantly extends from a prescribed side length of 100 μm to 133 μm. In contrast, the central 
pads in other cases do not experience an extension in geometric dimensions. 
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Converged designs rarely reach the volume fraction limit 𝛤  = 0.4. Whereas all the eroded designs 
strictly cling to the frequency lower bound 𝜔  = 240 kHz. Due to the frequency lower bound, the optimized 
structures are well connected without any disconnected features that experience a non-physical oscillation 
with extremely high Q when boundary damping dominates. Thanks to the frequency lower bound, the 
optimizations maximizing Q not only enhance Q, but also improve Qf. As a result, the Qf values of all the 
optimized designs circumvent a well-known trade-off between frequency and quality factor to exceed the 

minimum requirement for room-temperature quantum optomechanics, i.e. 6.2×1012 Hz. The optimization 

for the intermediate design accesses its most pronounced efficiency in Case 5, achieving Q = 66×106 and Qf 
= 17.7×1012 Hz that is around 280% and 510% higher than the corresponding values in the reference design. 
This indicates that topology optimization can intensively enhance the Q and Qf in a system which is 
dominated by boundary damping. The topological adaption to different damping conditions is especially 
pronounced at the boundaries. The boundary details are illustrated with enlarged insets in Tables 2 and 3. 
Studying these details reveals that as damping goes from pure intrinsic to pure boundary damping, the support 
topologies go from simple point supports to fully connected solid supports with slits between structure and 
support gradually disappearing in between. Note here that red lines indicate the external damped support as 
illustrated in Fig. 2, whereas all other boundaries are free. These observations confirm our intuition. Pure 
intrinsic damping does not care about boundary losses and hence much of the detrimental bending induced 
damping can be concentrated and isolated in small anchoring points to the substrate. Oppositely, pure 
boundary loss requires fully distributed boundaries to minimize the reaction forces and associated boundary 
damping. 
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Table 2 Optimized structures for maximizing Q. 

 Dilated Intermediate Eroded 

C
as

e 
1 

    
Q = 35.28×106;  f = 260 kHz 
Qf = 9.17×1012 Hz 
Vol. frac. = 0.355 

Q = 35.38×106;  f = 251 kHz 
Qf = 8.90×1012 Hz 
Vol. frac. = 0.341

Q = 35.35×106;  f = 240 kHz 
Qf = 8.49×1012 Hz 
Vol. frac. = 0.328 

C
as

e 
2 

  
Q = 30.41×106;  f = 290 kHz 
Qf = 8.82×1012 Hz 
Vol. frac. = 0.378 

Q = 30.23×106;  f = 270 kHz 
Qf = 8.16×1012 Hz 
Vol. frac. = 0.362

Q = 30.57×106;  f = 240 kHz 
Qf = 7.34×1012 Hz 
Vol. frac.  = 0.343 

C
as

e 
3 

  
Q = 31.05×106;  f = 294 kHz 
Qf = 9.13×1012 Hz 
Vol. frac.  = 0.380 

Q = 31.09×106;  f = 273 kHz 
Qf = 8.48×1012 Hz 
Vol. frac.  = 0.366

Q = 31.11×106;  f = 240 kHz 
Qf = 7.47×1012 Hz 
Vol. frac.  = 0.348 

C
as

e 
4 

  
Q = 35.83×106;  f = 286 kHz 
Qf = 10.23×1012 Hz 
Vol. frac.  = 0.310 

Q = 43.40×106;  f = 268 kHz 
Qf = 11.63×1012 Hz 
Vol. frac.  = 0.299

Q = 57.21×106;  f = 240 kHz 
Qf = 13.73×1012 Hz 
Vol. frac.  = 0.288 

C
as

e 
5 

  
Q = 49.61×106;  f = 268 kHz 
Qf = 14.19×1012 Hz 
Vol. frac.  = 0.313 

Q = 65.79×106;  f = 269 kHz 
Qf = 17.72×1012 Hz 
Vol. frac.  = 0.300

Q = 99.08×106;  f = 240 kHz 
Qf = 23.78×1012 Hz 
Vol. frac.  = 0.288 
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Table 3 Optimized structures for maximizing Qf. 

 Dilated Intermediate Eroded 

C
as

e 
1 

  
Q = 35.01×106;  f = 262 kHz 
Qf = 9.17×1012 Hz 
Vol. frac.  = 0.347 

Q = 36.68×106;  f = 250 kHz 
Qf = 9.16×1012 Hz 
Vol. frac.  = 0.333

Q = 38.21×106;  f = 240 kHz 
Qf = 9.17×1012 Hz 
Vol. frac.  = 0.322 

C
as

e 
2 

  
Q = 26.93×106;  f = 297 kHz 
Qf = 8.00×1012 Hz 
Vol. frac.  = 0.386 

Q = 28.76×106;  f = 279 kHz 
Qf = 8.02×1012 Hz 
Vol. frac.  = 0.371

Q = 33.36×106;  f = 240 kHz 
Qf = 8.01×1012 Hz 
Vol. frac.  = 0.353 

C
as

e 
3 

  
Q = 29.47×106;  f = 301 kHz 
Qf = 8.87×1012 Hz 
Vol. frac.  = 0.382 

Q = 31.83×106;  f = 279 kHz 
Qf = 8.87×1012 Hz 
Vol. frac.  = 0.370

Q = 37.05×106;  f = 240 kHz 
Qf = 8.90×1012 Hz 
Vol. frac.  = 0.356 

C
as

e 
4 

  
Q = 34.66×106;  f = 292 kHz 
Qf = 10.11×1012 Hz 
Vol. frac.  = 0.345 

Q = 42.50×106;  f = 272 kHz 
Qf = 11.57×1012 Hz 
Vol. frac.  = 0.335

Q = 58.46×106;  f = 240 kHz 
Qf = 14.03×1012 Hz 
Vol. frac.  = 0.324 

C
as

e 
5 

  
Q = 50.07×106;  f = 287 kHz 
Qf = 14.34×1012 Hz 
Vol. frac.  = 0.310

Q = 66.32×106;  f = 268 kHz 
Qf = 17.78×1012 Hz 
Vol. frac.  = 0.298

Q = 98.47×106;  f = 240 kHz 
Qf = 23.63×1012 Hz 
Vol. frac.  = 0.287 
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Usually, it is extremely hard to accurately estimate the proportion of intrinsic damping to boundary 
damping in real physical experiments. Due to this uncertainty, fabricated structures seldomly work in the 
same conditions as described in numerical simulations.  It could be interesting to have a glimpse of the 
influence of this uncertainty. The performance of optimized results under different damping combinations is 
investigated and shown in Fig. 7 and Fig. 8. The optimized results (in Case 1) only targeting intrinsic damping 
are very sensitive to boundary damping. Their Q or Qf values descend rapidly once slight boundary damping 
enters their systems. Conversely, the optimizations under pure boundary damping yield designs that always 
experience a lower Q and Qf in a system where intrinsic damping is more pronounced. Unsurprisingly, the 
varying damping combinations exert less influence on the optimized designs arising from Case 3 in which 
intrinsic damping is on par with boundary damping. It demonstrates that simultaneously considering intrinsic 
and boundary damping can make the optimized designs balance the two damping sources well. Nevertheless, 
all the optimized designs beat others in their own cases, though their performance is impaired as damping 
conditions change. Furthermore, the performance gap between the three realizations reduces in a system only 
with pure intrinsic damping. 

All the optimization processes are terminated once the continuation parameter 𝛽  reaches 120. Although 
the bulk of gray elements has been forced into a solid or void state at 𝛽  = 120, there are still a few gray 
elements left in the design domain. Raising 𝛽  to an extremely high value could be followed by unacceptable 
time cost, as well as numerical problems caused by high nonlinearities described by (9). As a post-processing 
verification approach, all the optimized designs are re-evaluated at 𝛽  = 300 to investigate the influence of 
these remaining slightly gray elements, since manufacturing only realizes binary designs that exclude any 
gray regions. The re-evaluation results are shown in Fig. 7(b) and (d) and Fig. 8(b) and (d). A fluctuation can 
be observed according to the comparison of the curves of Q (or Qf) at 𝛽  = 120 and 300. This demonstrates 
that Q or Qf really is quite sensitive to slight structural geometry variations. However, none of the optimized 
designs suffer from sudden decays in the Q (or Qf) curves after post-processing. The robust formulation 
brings out designs that are insensitive to remaining gray elements. Therefore, the optimized designs are 
qualified as promising candidates for fabrication. 

 
(a) (b)
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(c) (d)

Fig. 7. Performance of maximizing-Q designs under different damping combinations: (a) and (c) at 𝛽  = 
120 without post-processing; (b) and (d) re-evaluations at 𝛽  = 300. 

 
(a) (b)

 
(c) (d)
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Fig. 8. Performance of maximizing-Qf designs under different damping combinations: (a) and (c) at 𝛽  = 
120 without post-processing; (b) and (d) re-evaluation at 𝛽  = 300. 

5. Conclusion 

This paper employs a linearized simplified shell model, which benefits optimization and captures 
essential physics, to model and optimize high-stress membrane systems. Topology optimization is conducted 
to enhance the quality factor Q and frequency quality factor Qf in the fundamental mode. The conclusions 
are the following: 

(1) Q and Qf of high-stress membranes are highly sensitive to structural geometry. The upper bound for the 
increment of design variables should be small enough, and fine mesh should be a basic requirement for finite 
element models.  

(2) The robust formulation employed in this study partly introduces robustness to manufacturing variations 
into the designs, partly helps in getting rid of gray regions, and partly introduces a stricter length-scale. Hence, 
the obtained designs arising from the robust formulation are pretty robust and deliver the expected response 
independent of small manufacturing variations, provided that the underlying damping sources are sufficiently 
captured. 

(3) The geometry of the optimized design closely relates to the damping mechanism. The optimizations 
simultaneously considering different damping sources generate results subjected to less influence from 
damping variations.   

(4) All the optimized designs, which have not been devised by physicists and tested in laboratories so far, 
exhibit fundamental modes with frequency-quality factors sufficient to enter the optomechanical quantum 
regime at room temperature. This demonstrates that topology optimization is a useful and powerful tool to 
design functional structures beyond existing design experience. 
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Appendix 

Derivation of sensitivity 

Necessary derivatives required by the gradient-based optimizer is concisely derived. A similar 
derivation is also found in [20]. Taking the derivative of f, Q or Qf with respect to a design variable 𝜌  yields 
the terms including the derivative of 𝑼  with respect to 𝜌 . The adjoint method, see Ref. [45] for a review, is 
employed to avoid solving d𝑼 /d𝜌  in order to reduce computational cost. Taking the derivative of (1) and 

(2) with respect to a projected physical density �̅�  yields 

𝑲 i𝑪 𝜆 𝑴
d𝝓
d�̅�

d 𝑲 i𝑪 𝜆 𝑴
d�̅�

𝝓 𝟎 (18) 
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d𝑭
d�̅�

d𝑲
d�̅�

𝑼 𝑲
d𝑼
d�̅�

𝟎 (19) 

After eliminating the first term in (18) through left-multiplying by 𝝓𝑗
T, the second term of (18) is augmented 

by (19) to arrive at 

𝝓
d 𝑲 𝑲 i𝑪 𝜆 𝑴

d�̅�
𝝓 𝜷

d𝑭
d�̅�

d𝑲
d�̅�

𝑼 𝑲
d𝑼
d�̅�

𝟎 (20) 

where 𝜷 is the adjoint vector and 𝑲  should be interpreted as a function of �̅�  and 𝑼 . Note that d𝑲 /d�̅� = 
𝟎. The derivative of 𝑲  with respect to �̅�  contains two parts as 

d𝑲
d�̅�

∂𝑲
∂𝑼

d𝑼
d�̅�

∂𝑲
∂�̅�

 (21) 

 Substituting from (21) into (20) yields 

d𝜆
d�̅�

𝝓 𝑴𝝓 𝝓
d𝑲
d�̅�

i
d𝑪
d�̅�

𝜕𝑲
∂�̅�

𝜆
d𝑴
d�̅�

𝝓 𝝓
𝜕 𝑲 𝝓

𝜕𝑼
𝜷 𝑲

d𝑼
d�̅�

𝜷
d𝑭
d�̅�

d𝑲
d�̅�

𝑼  

(22) 

In order to eliminate the term containing the implicit derivative of displacements, namely d𝑼 /d�̅� , the 

adjoint equation (16) should be solved. Since 𝜆 𝜔 𝜔 , i𝜔 , , the derivatives of 𝜔 ,  and 𝜔 ,  
with respect to design variables can be expressed as 

d𝜔
d𝜌

1

2 𝜆

d𝜆
d𝜌

 

d𝜔 ,

d𝜌
real

d𝜔
d𝜌

 

d𝜔 ,

d𝜌
imag

d𝜔
d𝜌

 

d𝑄
d𝜌

1
2

𝜔 ,
d𝜔 ,

d𝜌 𝜔 ,
d𝜔 ,

d𝜌
𝜔 ,

 

(23) 
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