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Preface 
The work presented in this thesis has been performed at the Department of Health              
Technology, in the Immunoinformatics and Machine Learning group at the Technical           
University of Denmark under the supervision of professor Morten Nielsen and associate            
professor Paolo Marcatili. The work was carried out between July 2016 and August 2019.  

The work was supported by the Technical University of Denmark and the federal funds from               
the National Institute of Allergy and Infectious Diseases, National Institutes of Health,            
Department of Health and Human Services, under Contract No. HHSN272201200010C. 

The thesis consists of three parts: An introduction explaining essential concepts for            
understanding the scope of the thesis, four research manuscripts and an epilogue discussing             
the impact and perspectives of each manuscript.  

Kamilla Kjærgaard Munk  

Kongens Lyngby, August 2019 
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Abstract 
The last decades have seen a rapid increase in our understanding of the immune system, but                
there are still many unsolved problems. Solving some of these could be invaluable for future               
advances in drug development and cancer immunotherapy. This thesis introduces methods for            
understanding an important interaction in the adaptive immune system. 
One of the key events in the adaptive immune system is the interaction between T-cell               
expressed receptors (TCRs) and peptides bound to major histocompatibility complexes          
(pMHCs). If the TCR recognizes a pMHC, the T-cell is activated and the peptide driving this                
activation is called a T-cell epitope. Predicting T-cell epitopes has been a long standing              
challenge within the field of immunoinformatics. There are two strategies to solve the             
problem. One is to use the protein sequences, and the other is to use the structures. Data on                  
protein structures is usually quite limited, so developing reliable tools that use just the              
sequences is of great interest to the field. 

A commonly used measure for identifying T-cell epitopes is the pMHC binding strength, as              
this quantity can be used to limit the number of potential peptide candidates. 
In the first project of this thesis, we develop an improved method for predicting such               
peptide-MHC binding strengths by training a neural network on an extended dataset of             
peptide binding affinities. Further, we show that the updated methods have superior            
performance when used for detecting T-cell epitopes. 

However, not all MHC presented peptides are immunogenic. So in order to truly understand              
what makes a peptide immunogenic we need to understand the interaction between TCRs and              
pMHCs. One way to do this is to build structural models of the TCR-pMHC complex and use                 
these structures to predict the TCR-pMHC binding strength. 
In the second project, we develop an automated tool for building such structural models of the                
TCR-pMHC complex using only the amino acid sequence as input. The tool utilizes             
comparative modeling techniques and generates accurate models within minutes.  

In the third project, we investigate the TCR recognition of pMHCs using an experimental              
technique which measures the relative binding affinity between TCRs and pMHC variants.            
The relative binding affinities can be translated into TCR motifs, named TCR fingerprints,             
and these can be used to identify which peptides can be cross-recognized by the TCR.               
Structural modeling is used in this project to investigate how the TCR recognition is affected               
by conformational changes in the peptides.  
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In the fourth and last project, we present preliminary results on improving structural models              
of TCRs by using state-of-the-art machine learning techniques to generate the peptide-binding            
loops. 

Collectively, the four projects of the thesis provide improved methods for predicting T-cell             
epitopes and for structural modeling of the TCR-pMHC complex. We hope that these             
methods can increase our understanding of T-cell immunogenicity and serve as a foundation             
for developing improved methods for rational T-cell epitope predictions. 
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Dansk resumé 

I de seneste årtier har vores forståelse af immunsystemet udviklet sig drastisk, men der er               
stadig mange uløste problemer. Hvis vi løser nogle af disse, kan det have uvurderlige              
konsekvenser for fremtidens udviklingen af ny medicin og immunterapi til kræftbehandling. I            
denne afhandling introduceres metoder til at undersøge en af de vigtigste interaktioner i det              
adaptive immunforsvar. 
En af de mest betydningsfulde begivenheder i det adaptive immunforsvar er interaktionen            
mellem en T-cellereceptorer (TCR) og et peptid bundet til et MHC molekyle (major             
histocompatibiliy complexes), forkortet pMHC. Hvis en TCR genkender et pMHC, aktiveres           
T-cellen, og det peptid der driver denne aktivering, kaldes en T-celle epitop. En af de store                
udfordringer i immunoinformatik er at forudsige T-celle epitoper, og der er her to mulige              
strategier til at gøre dette. Den første er at bruge proteinsekvensen, og den anden er at bruge                 
strukturen. Mængden af data på proteinstrukturer er forholdsvis begrænset, så der er derfor             
stor interesse for at udvikle pålidelige metoder, der kun gør brug af sekvenserne. 
  
Når man skal identificere T-celleepitoper, bruger man ofte den såkaldte pMHC           
bindingsstyrke, til at begrænse antallet af potentielle peptider. 
I det første projekt udvikler vi en forbedret metode til at forudsige disse peptid-MHC              
bindingsstyrker, ved at træne et neuralt netværk på et udvidet datasæt af bindingsaffiniteter             
for forskellige peptider. Vi viser her, at den opdaterede metode både er bedre til at forudsige                
bindingsaffiniteter, samt bedre til at forudsige T-celleepitoper. 
  
Som nævnt ovenfor er det ikke alle MHC præsenterede peptider der er immunogene. Så for               
virkelig at forstå, hvad der gør et peptid immunogent, er vi nødt til at forstå interaktionen                
mellem TCR'er og pMHC'er. En måde at gøre dette på er at bygge strukturelle modeller af                
TCR-pMHC-komplekset,  og  bruge  disse  strukturer  til  at  forudsige TCR-pMHC-bindings- 
styrken. 
I det andet projekt udvikler vi et automatiseret værktøj til at bygge sådanne strukturelle              
modeller af TCR-pMHC-komplekset ved kun at bruge aminosyresekvensen som input.          
Værktøjet bruger komparative modelleringsteknikker og genererer nøjagtige modeller inden         
for få minutter. 
  
I det tredje projekt undersøger vi hvordan en TCR genkender pMHC’er ved hjælp af en               
eksperimentel teknik, som måler den relative bindingsaffinitet mellem en TCR og pMHC            
varianter. De relative bindingsaffiniteter kan oversættes til TCR-motiver, som kan bruges til            
at identificere hvilke peptider, der kan krydsgenkendes af en TCR. Vi bruger her strukturel              
modellering til at undersøge, hvordan TCR genkendelse af pMHC’er påvirkes af           
konformationelle ændringer i peptiderne. 
  



I det fjerde og sidste projekt viser vi de foreløbige resultater fra en metode der kan forbedre                 
den strukturelle modellering af TCR'er. Denne metode bruger avancerede machine learning           
teknikker til at forudsige strukturen af den del af TCR’en der er ansvarlig for bindingen til                
pMHC’erne. 

Samlet set omhandler de fire projekter i afhandlingen forbedrede metoder til at forudsige             
T-celleepitoper og til at lave strukturelle modeller af TCR-pMHC-komplekset. Vi håber, at           
disse metoder kan øge vores forståelse af interaktionen mellem TCR-pMHC-komplekset og          
fungere som et fundament for at udvikle forbedrede metoder til at forudsigelse           
T-celleepitoper.
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Scope of thesis 

The main focus of the adaptive immune system is to keep the host healthy by eliminating                
pathogenic infections and malfunctioning cells [1]. One of the key players in the adaptive              
immune system is the T-cell. These cells monitor the health of the host using T-cell receptors                
(TCRs) that interact with peptides presented by major histocompatibility complexes (MHCs)           
found on the surface of antigen-presenting cells. If a specific T-cell recognizes a peptide              
presented by an MHC, the T-cell can become activated. T-cell activation results in T-cell              
proliferation, which in turn eliminates the threat of the pathogen-infected or malfunctioning            
cell [2] . Thus, some of the main challenges for our understanding of cellular immunity and               
T-cell activation are to understand which peptides are presented by the MHC, and to              
understand the interplay between TCRs and peptide-MHC (pMHC) complexes. Gaining a           
better understanding of these key events in the adaptive immune system could lead to the               
development of advanced T-cell based immunotherapies and rational vaccines [3] . 
 
The activation of T-cells are primarily driven by two processes: Peptide presentation on MHC              
molecules and T-cell receptor recognition of these MHC-bound peptides [4, 5]. Peptides with             
the ability to activate an effective T-cell response are called T-cell epitopes.  
Today T-cell epitopes are mainly found using experimental methods, but these are both             
time-consuming and expensive. The development of less time-consuming, more cost effective           
and more reliable tools for predicting T-cell epitopes would therefore be of considerable             
interest to the industry and in research. 
The overall aim of this PhD thesis was therefore to develop methods for improved prediction               
of T-cell epitopes and to enhance our understanding of the molecular interactions found             
between MHC-presented peptides and TCRs. 
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The thesis is structured in the following way: 
 
Chapter 1 covers the background of the biology together with a description of existing              
methods with a discussion of the key advantages and disadvantages for each. 
 
Chapter 2 introduces the first scientific paper of this thesis. The main aim of the project                
behind this paper was to develop improved methods for predicting peptide-MHC binding for             
MHC class II molecules. This was done by updating NetMHCII [6] and NetMHCIIpan [7],              
using a new data set obtained from the Immune Epitope Database (IEDB). The paper shows               
that training with this new data set improved the performance for the peptide-MHC binding              
predictions for both NetMHCII and NetMHCIIpan.  
 
Chapter 3 introduces the second scientific paper. The main aim of the project behind this               
paper was to develop an automated computational tool for structural modeling of the             
TCR-pMHC complex using only the amino acid sequence as input. The resulting tool, named              
TCRpMHCmodels, utilizes comparative modeling to generate accurate TCR-pMHC models         
within a few minutes.  
 
Chapter 4 introduces the third scientific paper. The main aim of the project behind this paper                
was to investigate the TCR recognition of pMHCs using an experimental technique developed             
by Amalie K. Bentzen. My main contribution to this scientific paper was visualization of the               
experimental results, generation of sequence motifs, and an investigation of the TCR-pMHC            
interaction using structural models. 
 
Chapter 5 presents an ongoing project of applying a Generative Adversarial Network (GAN)             
architecture [8] to predict antigen-binding loops in T-cell receptors and B-cell receptors.            
Preliminary results from this project indicate that the GAN is capable of learning structural              
features from these loops, but the accuracy of the generated loops needs to be improved.  
 
Chapter 6 provides a summary of the PhD thesis and reflects on all four projects and 
provides future perspectives. 
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Chapter 1: Introduction 

Immune system 
The immune system is a host’s defense mechanism against threats such as pathogenic             
invasions from bacteria, viruses and malfunctioning cells. The immune system can broadly be             
divided into two subsystems - the innate and the adaptive immune system [1] . The innate               
immune system is fast and non-specific, while the adaptive immune system is slower but              
highly specific. This thesis focuses on the adaptive immune system.  
In the adaptive immune system, there are two major types of cells: T-cells, and B-cells. The                
purpose of T-cells is to activate other immune cells and eliminate infected cells, whereas              
B-cells are responsible for producing antibodies with the ability to bind pathogens and flag              
them for destruction [9] . Both B-cells and T-cells have the ability to develop long-term              
protection, whereby the immune system can quickly and efficiently respond to re-exposure of             
the same threat.  

 
Figure 1: Schematic representation of the activation of the adaptive immune response. See             
text for further explanation.  
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The main function of the adaptive immune system is to recognize antigens and generate              
specific immune responses toward these. An antigen is a foreign macromolecule that reacts             
with and stimulates B-cells and T-cells.  
Antigens are presented to the immune system by major histocompatibility complexes (MHC).            
There are two major classes of MHC molecules: MHC class I and MHC class II [10] . MHC                 
class I molecules are found on all nucleated cells where they present fragments of antigens               
from pathogens or malfunctioning cells. These antigenic fragments can then be recognized by             
T-cells from the adaptive immune system. MHC class II molecules are primarily found on             
specialized antigen-presenting cells (APCs) where they present antigen fragments from the          
extracellular space. When the host is attacked by a pathogen the APCs will engulf the              
pathogen and digest it into antigen fragments, which are loaded onto the MHC molecule.             
MHC-presented antigens have the ability to activate T-cells and B-cells, which will lead to              
pathogenic clearance [1]. An illustration of the T-cell and B-cell activation is shown in Figure               
1. 

T-cell and B-cell activation
T-cells are initially produced in the bone marrow, but once produced, they migrate to the              
thymus where they mature into naive CD8+ T-cells (cytotoxic T-cells) or naive CD4+ T-cells             
(T-helper cells), expressing either CD8 or CD4 co-receptors [11]. Depending on the type of             
co-receptor, the T-cell can be activated when its T-cell receptor (TCR), found on the surface              
of the T-cell, interacts with antigens bound to MHC molecules of either class I or class II,                
found on the surface of antigen-presenting cells [1] . Naive CD8+ T-cells are activated when             
the TCR interacts with an antigen bound to an MHC class I molecule, while the CD4+ T-cells                
are activated when the TCR interacts with an antigen bound to an MHC class II molecule.
For long-lasting T-cell activation and differentiation, other signals such as co-stimulation and           
differentiation signals are also required [1]. The co-stimulation signal is responsible for the            
long-term survival of T-cells and this signal is mainly triggered when a B7 molecule from an                
antigen-presenting cell interacts with a CD28 molecule from the T-cell [12] . The            
differentiation signal is mainly driven by cytokines produced by the antigen-presenting cells            
and depends on the type of cytokines. In the activation process, naive CD4+ T-cells are               
stimulated to differentiate into different T-helper cells, while naive CD8+ T-cells are            
stimulated to become cytotoxic T-cells. The function of cytotoxic T-cells is to identify and              
eliminate pathogen-infected cells, while the function of T-helper cells is the activation of both              
cytotoxic T-cells and B-cells. 

B-cells are also produced in the bone marrow, but unlike T-cells, B-cells remain in the bone               
marrow where they mature into naive B-cells. The activation of naive B-cell begins when the              
B-cell receptor (BCR), found on the cell surface of the B-cell, interacts with extracellular             
proteins from a pathogen. After the initial interaction, the pathogen is engulfed by the B-cell              
and digested into antigens which are then presented on the cell surface by MHC class I               
molecules. Activated T-helper cells then register antigens presented by the B-cell, after which            
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the B-cell is activated. Activated B-cells migrate to the lymph nodes where they proliferate              
into antibody-producing plasma cells, which primary function is to eliminate extracellular           
pathogens such as pathogenic bacteria and viruses by neutralizing them or marking them for              
destruction by other immune cells [1] .  
 
The main aim of this thesis was to develop prediction methods for improved understanding of               
the TCR-peptide-MHC interaction and the following sections will therefore give an in-depth            
description of the individual components taking part in this interaction.  

MHC molecules: Structure and diversity 
As described earlier the MHC molecules can be divided into two classes called MHC class I                
and class II (see Figure 2). Both classes are transmembrane molecules and their structures are               
very conserved both within and between MHC classes [1, 13]. 

 
Figure 2: MHC class I and class II molecules. Panel A) and B) show schematic               
representations of MHC molecules of class I and class II, respectively. The regions indicated              
by α and β refer to MHC chains described in the main text. Panel C) and B) depicts structural                   
representation of the MHC molecules of class I and class II, respectively. The structural              
representations were made in PyMOL with the use of PDB structures 1OGA and 3C5Z.  
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The MHC class I molecule is composed of two chains: A membrane-spanning α chain and a                
β2-microglobulin (β2m) chain. The α chain folds into three domains: α 1, α2 and α3. The region                
between the α1 and α 2 domains is called the peptide binding groove, and it is here peptides                 
bind to the molecule [1] . For MHC class I molecules the binding groove is relatively narrow                
at the ends and the length of peptides binding to this MHC class is therefore usually short.                 
The typical peptide length is between 8 and 11 residues long, with peptides of 9 residues                
being the most abundant [14]. As the peptide length increases, the narrow ends of the binding                
groove forces the central residues of the peptide up and out of the groove to accommodate the                 
length of the peptide. Peptides presented by the MHC class I molecule will therefore generally               
assume a centrally bulged conformation, which can then be recognised by the TCR. Peptides              
binding to MHC class I molecules are selected based on their ability to bind to two specific                 
MHC pockets within the binding groove of the molecule, termed P2 and P9 [15] (See Figure                
3). Peptide residues interacting with these positions are termed anchor residues.  
The MHC class II molecule is composed of two chains, named the α-chain and β-chain [1].                
Both chains are membrane-spanning and they each contain two domains: α1, α2, β 1 and β2.               
Compared to the MHC class I molecule, the MHC class II molecule has a peptide binding                
groove which is open at both ends, enabling this MHC class to bind longer peptides. The most                 
common peptide lengths for this class is between 13 and 25 residues, with peptides of 15                
residues being the most abundant [16]. The peptide binding specificity of MHC class II              
molecule is defined by four binding pockets named P1, P4, P6 and P9 [15] (See Figure 3).                 
The part of the peptide interacting with these binding pockets is called the peptide binding               
core, while the parts of the peptide extending out of the binding groove is called the peptide                 
flanking regions (PFRs).  
 
MHC molecules varies both within each individual person and within the population as a              
whole. This characteristic ensures a broad immunological protection against any pathogen.  
 
In humans, MHC molecules are encoded in the human leukocyte antigen (HLA) locus [17].              
There are three MHC class I α-chain genes, called HLA-A, HLA-B and HLA-C, and there are                
three pairs of α- and β-chain genes called HLA-DR, HLA-DP and HLA-DQ. Thus, the              
presence of several different genes of each MHC class ensures that any one individual              
possesses different MHC molecules. 
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Figure 3: Peptide binding groove of the MHC class I and class II. The part of the peptide that                   
interacts with the MHC is called the peptide core and the rest is called the peptide flanking                 
regions (PFRs). The MHC is shown in purple and the peptide in orange. Circles represent               
individual amino acids of the peptide. Panel A) and B) depict the structural representation of               
the binding groove of an MHC molecule of class I and class II, respectively. C) Schematic                
representation of the peptide binding groove of the MHC class I molecule showing the              
binding pockets P2 and P9. D) Schematic representation of the peptide binding groove of              
MHC class II molecules showing the binding pockets P1, P4, P6 and P9. Structural              
representations were made in PyMOL with the use of PDB structures 1OGA and 3C5Z.  
 
Furthermore, each MHC molecule has the ability to present a large amount of highly diverse               
peptides. This is achieved by having only a few interactions between specific residues in the               
peptide and residues found in MHC binding pockets. The diversity of the residues at different               
positions in the peptide can be visualized using sequence logos (see Figure 4). Sequence logos               
are visual representations of residues essential for the binding of a given peptide to a given                
MHC molecule. Here, we see that peptide binding to MHC class I molecules have a specific                
amino acid preference at the 2nd and 9th positions, while MHC class II molecules tend to                
bind peptides with a specific amino acid preference at the 1st, 4th, 6th and 9th position.                
Positions which are non-influential on binding have higher diversity and therefore lower            
information.  
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Figure 4: Sequence motifs showing the predicted peptide binding preference for different            
HLAs. A) Peptide binding specificity for three MHC class I molecules. B) Peptide binding              
specificity for three MHC class II molecules. The logos shown in the figure was generated               
using the motif viewer from NetMHCpan-4.0 [18] and NetMHCIIpan-3.2 [19].          
Over-represented amino acids are shown on the positive y-axis and under-represented amino            
acids on the negative y-axis.  
 
Within the population as a whole, the number of different MHC molecules is even larger as                
the MHC genes are highly polymorphic [17]. In humans the HLA locus is the most               
polymorphic region in the human genome, with more than 130,000 HLA variations identified             
and cataloged in the Allele Frequency Net Database http://www.allelefrequencies.net. 

T-cell receptors: Structure and diversity 
The T-cell receptor (TCR) is a heterodimeric protein composed of two transmembrane chains             
with the ability to recognise peptides presented by the MHC molecule. In humans, around              
95% of T-cells express TCRs with α- and β-chains, whereas around 5% of T-cells express               
TCRs with γ- and δ-chains [20]. In this thesis we only worked with the αβ TCRs and the                  
following section will therefore exclusively focus on these .  
Each of the TCR chains has a variable and constant region. Located within the variable               
regions are three complementarity determining regions (CDRs), named CDR1, CDR2 and           
CDR3 (see Figure 5). The CDRs consist of loops, and they account for the interaction with                
the pMHC complex.  
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Figure 5: Structure of the T-cell receptor. A) Schematic representation of the T-cell receptor.              
B) Side view of the structural representation of the T-cell receptor. C) Top view of the                
structural representation of the T-cell receptor, showing the location of the complementary            
determining regions (CDRs). Structural representations were made in PyMOL with the use of             
the PDB structure 1OGA. 
 
During early T-cell development each chain within the TCR is generated through a process              
known as somatic V(D)J recombination [21, 22] . The result of this process is highly variable               
CDRs which grant T-cells the ability to recognize and respond to a large variety of antigens                
and thereby specifically target many different pathogens and malfunctioning cells. The           
somatic recombination process can theoretically generate more than 10 15 T-cell variants [23] ,            
but only a sizable fraction of these, around 10 6 to 10 8, are expressed at any given time in the                   
human organism [24].  
The most variable part of the TCR is the CDR3 loop [22] . This loop is found in the center of                    
the antigen binding site of the TCR and it interacts with the peptide, thus accounting for most                 
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of the TCR specificity. CDR1 and CDR2 loops are less variable and these parts of the TCR                 
mostly interact with the MHC [25]. When predicting the TCR-pMHC interaction, it is             
therefore important to focus on the CDR loops as they have a huge impact on the TCR                 
binding specificity.  

TCR-pMHC complexes: Structure and binding 
TCR recognition of peptides presented by either MHC class I or class II molecules has been                
demonstrated in several X-ray crystallographic studies [13] . These show how the TCR            
binding orientation is similar for TCRs, irrespective of whether they are recognizing peptides             
presented by the MHC class I and MHC class II molecules (See Figure 6).  
 

 
Figure 6: Structural representation of the TCR-pMHC complex for the TCR binding to the              
peptide presented by either A) the MHC class I or B) the MHC class II molecule. The                 
structural representations were made in PyMOL with the use of PDB structures 1OGA and              
3C5Z. 
  
In both cases, the TCR is oriented approximately directly on top of the pMHC and the                
variable part of the TCR is in contact with the peptide and the MHC molecule. For a more                  
thorough review of the TCR and MHC interactions see Gruta et al. [26] and Rudolph et al.                 
[13].  
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Machine learning  
Machine learning algorithm s are mathematical models which can be trained to identify            
non-obvious patterns in a dataset and use these patterns to understand the dataset or to               
develop predictive models [27]. In the last decades, many different machine learning            
techniques have been developed and successfully applied to solve complex problems,           
including image recognition [28, 29] and natural language processing tasks, such as speech             
recognition [30] and language translation [31] . Many of these machine learning techniques are             
now being used to solve biological problems within the field of bioinformatics [32, 33].  

Dataset preparation  
When using machine learning to solve biological problems it is extremely important to             
remove redundancy within the dataset, encode non-numerical data points and minimize           
overfitting by splitting the dataset into different partitions. Since these tasks are of such              
critical importance, we will devote a few short sections to explain them in greater detail.  

Data redundancy  
A machine learning model usually adapts to the distribution of the training data, and removing               
redundant data is therefore important to ensure that the model is not trained to overrepresent               
one type of data.  
Methods for eliminating redundant protein sequences in a data set include clustering            
algorithms such as Hobohm [34] , CD-HIT [35] , PISCES [36] and UCLUST [37] . These             
clustering methods use sequence similarity between data points to generate clusters of similar             
sequences, and a non-redundant dataset can then be made using only a single datapoint from               
each of the clusters. For example, in project I redundant peptides containing different             
peptide-MHC binding values were clustered and an average of these values were used in the               
final dataset for training.  

Feature extraction and encoding  
For most biological data, additional domain-specific features can be extracted to provide more             
information for training. Within structural biology, this could be extracting structural features,            
such as backbone angles and distances between atoms.  
After cleaning the dataset and extracting additional features, all non-numerical data points,            
such as protein sequences, need to be encoded as numbers. Protein sequences are usually              
encoded using one-hot or BLOSUM encoding. In one-hot encoding, each amino acid is             
encoded using a vector of 20 bits where the number 1 represents the current amino acid while                 
the remaining bits are zeros. BLOSUM encoded sequences uses the so-called BLOSUM score             
to encode each amino acid [38].  
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Overfitting and cross validation 
One of the most common mistakes in machine learning is to overestimate the model              
performance. This usually happens if data points used for testing the model performance have              
also been used during the training process [39] . In this case, the model could have learned the                 
noise or random fluctuations in the training data instead of general concepts. If this has               
happened the network is said to be overfit. An overfit model will therefore have a good model                 
performance on the training data, but will fail to make accurate predictions for data points,               
which have not been part of the training process.The main problem with overfitting is that we                
cannot know how well a model will perform on new data until we actually test it.  
A common approach to solve this problem is to either split the dataset into three independent                
subsets, called training set, validation set and test set, or to use a technique called cross                
validation.  
Cross validation techniques can be used to assess how the neural network model will              
generalize to an independent data set [40] . The idea behind cross validation techniques is to               
train the network model on one subset of the dataset while validating the model performance               
on another.  
One of the most popular implementation of this technique is known as K-fold cross validation,               
where K is the number of subsets. K – 1 of the K partitions are used for network training while                    
the K’th partition is used to validate the model performance. This process is then repeated K                
times, such that each partition has been used once as a validation set.  
Other cross-validation techniques includes leave-p-out, where a number p of observations are            
left out of the training set and used as the validation set. A special case of this is used in                    
project I, where we wanted to test the networks ability to predict peptide binding of               
uncharacterized MHC class II molecules. In this case we left out any data points belonging to                
a specific MHC class. The remaining data was used for training a network, and its               
performance was evaluated using the data which was left out of the training set.  
 
One of the most commonly used machine learning techniques is called artificial neural             
networks. In project I of this PhD thesis, artificial neural networks have been used to predict                
peptide-MHC binding affinities. In this project, the main task was to train the neural networks               
to learn the underlying mechanism for peptide-MHC binding to MHC class II molecules.  

Artificial neural networks 
Artificial neural networks are multi-layered networks, capable of learning patterns within a            
given dataset [41] . The artificial neural network architecture consists of an input layer, one or               
more hidden layers and an output layer (See Figure 7 A). Each layer consists of nodes                
connected by weights. Most nodes are fully connected, meaning that there is a link between               
all the nodes. The only exception is the bias node, which is only connected to the next layer in                   
the network. The output value for each neuron in the network is calculated by a weighted sum                 
of the input values plus the bias, after which this value is reshaped using an activation                
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function (See Figure 7 B). Multiple activation functions exist, but the sigmoid activation             
function is the most commonly used for artificial neural networks (see Figure 7 C).  
 

 
Figure 7: Illustration of a simple neural network and its activation function. A) Example of a                
neural network architecture. B) Function of a single neuron. C) The sigmoid activation             
function.  
 
When training the neural network, the main objective is to optimize the network weights, so               
that the network can predict the correct output value given any input. This training process               
consists of two steps: i) Forward propagation, which generates a prediction based on an input               
and ii) backward propagation, which adjusts the weights of the network (see Figure 8).  
 

 
Figure 8: Principle of neural network training. Each iteration of the training consists of two               
steps: Forward- and backward propagation. In forward propagation, the network predicts an            
output based on a specific input. The predicted output is then compared to the target and a                 
loss function quantifies the difference between these two. Based on the loss, the backward              
propagation is performed to adjust the network weights. 
  
In the forward propagation step, a random input variable from the dataset is passed through               
the network to calculate the corresponding network prediction. After this the backward            
propagation is performed to adjust the weights of the network based on the error between the                
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predicted output and the true value (called the target). The error between the network              
prediction and the target is calculated using a loss function and the weights are adjusted using                
a weight optimization algorithm. In neural networks, the most common loss function is the              
mean squared error function, and the most common weight optimization method is called             
stochastic gradient descent (SGD) [42]. The gradient over all network weights is calculated             
based on the error between the network prediction and the target value, and the weights are                
then adjusted based on the gradient. In neural networks, gradients are usually multiplied by a               
learning rate which controls the size of the gradients.  
 
In the last decade, many other network types have been developed including recurrent neural              
networks (RNNs) [43, 44], convolutional neural networks (CNNs) [45] and generative           
adversarial networks (GANs) [8] . In project IV we used a GAN to predict the structure of                
CDR3 loops, and an introduction to this type of network is therefore given in the following                
section.  

Generative adversarial networks 
A generative adversarial network (GAN) essentially consists of two networks, a Generator            
and a Discriminator, trying to outsmart one another [8] . The Generator produces artificial             
samples from random noise, while the Discriminator determines if a given sample is real or               
fake (see Figure 9). If the Discriminator makes a correct prediction, the Generator network is               
updated in order to generate better fake samples which will be able to fool the Discriminator.                
If the Discriminator prediction is incorrect, the Discriminator network is updated to avoid             
similar mistakes in the future. This process is performed iteratively until the Generator has              
learned to consistently generate samples which look real enough to fool the Discriminator.  

 
Figure 9: The general principle of conditional generative adversarial networks. The Generator            
(G) attempts to fool the Discriminator (D) by generating realistic looking samples, while the              
Discriminator tries to figure out if a given sample is real or fake.  
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Challenges with GAN and suggested improvements  
In the traditional GAN the Generator is trained to produce samples which look real. These               
samples may belong to different classes. For instance, the GAN may be designed to generate               
images of handwritten numbers between 0 and 9, in which case the numbers represent              
different classes. For traditional GANs, it is impossible to control which class the produced              
samples should belong to. This problem can be solved by using a conditional generative              
adversarial network (cGAN), where the Generator is trained using an additional input in the              
form of a class label, which allows the Generator to produce samples belonging to a specific                
class [46]. The principles from the conditional GANs were used in project IV, where the               
protein sequence was used as class label to generate loop structures for a specific sequence.  
 
Another problem with traditional GANs, is that the Generator has a tendency to get stuck               
during training, after which it will start producing samples which are either identical or have               
limited diversity, regardless of the input. This problem is typically referred to as mode              
collapse. Furthermore, traditional GANs are also highly sensitive to the choice of network             
architecture and hyperparameters. This makes it hard to train successful models where the two              
networks converge.  
 
The last problem with the traditional GANs is that the values from the loss function is not                 
easy to interpret and it does not correlate with the quality of the generated samples.               
U nderstanding the progress of training therefore requires to save samples during training,            
after which the quality is usually determined by visual inspection. 
 
There have been many attempts to solve the aforementioned problems and some of the most               
successful are called Wasserstein GAN (WGAN) [47] and WGAN with gradient penalty            
(WGAN-GP) [48].  
The main idea behind the WGAN is to implement a new loss function, which has a smoother                 
gradient. Arjovsky et al. [47] used the so-called Wasserstein distance to calculate the loss.              
With this the authors showed that a WGAN should theoretically reduce the risk of mode               
collapse, while providing meaningful learning curves which can be used for debugging and             
finding the best hyperparameters. The Wasserstein distance is defined through an           
optimization over a set of functions constrained to be 1-Lipschitz. Since a function which is               
1-Lipschitz has a limited rate of change, this constraint ensures the stability of the WGAN.               
While it is an unsolved problem to perform the optimization over all 1-Lipschitz functions,              
there are several ways to implement the constraint approximately. WGANs use weight            
clipping to restrict the maximum weight value in the network. 
Even though WGAN solved many of the original problems of GAN, they are still highly               
sensitive to the choice of hyperparameters, which makes it hard to optimize them during              
training and get the network to converge. Gulrajani et al. [48] found that this issue is often                 
caused by the weight clipping, and they proposed a new network called WGAN-GP, where              
the 1-Lipschitz constraint is imposed by penalizing the norm of the gradient instead. This              

15

https://paperpile.com/c/BhAXbg/51ln
https://paperpile.com/c/BhAXbg/cpJB
https://paperpile.com/c/BhAXbg/ujid
https://paperpile.com/c/BhAXbg/cpJB
https://paperpile.com/c/BhAXbg/ujid


 

optimization of the loss function dramatically improved the stability of learning, and made it              
less sensitive to the choice of network architecture and hyperparameters, while still            
m inimizing the problem with mode collapse. Due to this, we chose to use WGAN-GP in               
project IV.  

Performance measures for Machine Learning 
There are many different measurements used to estimate the performance of machine learning             
models and neural networks, such as Accuracy (ACC), Pearson Correlation 
Coefficient (PCC) and Matthew Correlation Coefficient (MCC).  

Area under the ROC curve 
One of the most common measurements for model evaluation within the field of             
bioinformatics is the area under the ROC curve (AUC) [49] . The Receiver Operating             
Characteristic (ROC) curve is generated by plotting the true positive rate (TPR) against the              
false positive rate (FPR), as seen in Figure 10.  

 
Figure 10: Illustration of the general principle behind calculating the AUC using the ROC              
curve. The area under the ROC curve is highlighted in light blue and the AUC is shown in the                   
lower right corner of the plot. The diagonal line illustrates a randomly performing model.  
  
After plotting the ROC curve the AUC is calculated as the area under the curve. An AUC of 1                   
indicates that the model has a perfect performance, where all the predictions are classified              
correctly, whereas a model with an AUC of 0.5 has a random performance.  

Frank score 
To investigate a methods ability to predict T-cell epitopes a score known as Frank is usually                
used [18]. Frank is calculated by first extracting the source protein from which the T-cell               
epitope was obtained. The sequence from the source protein is then used to generate possible               
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peptides with the same length as the epitope. A machine learning model is used to rank each                 
of these peptides based on their predictions and Frank is then the relative number of               
predictions with a score higher than the true T-cell epitope. In this way, a perfect prediction                
would give a Frank score of 0 as the T-cell epitope in this case is ranked at the top of the list,                      
while a Frank score of 0.5 would correspond to a random prediction.  

Structural modeling 
When the structure of a protein is not known, there are multiple methods for building a                
structural model using only the information contained within the amino acid sequence. The             
most successful method for building structural models is template-based modeling, which           
uses experimentally determined structures as templates for modeling the structure of a target             
protein. This method is based on the assumption that the protein structure is more conserved               
than the protein sequence [50, 51] . 
 

 
 
Figure 11: Illustration of the general principles of template-based methods for structural            
modeling. At first, structural templates of experimentally determined structures of proteins           
related to the target sequence are identified. Secondly, a target-template alignment is            
constructed and the structural framework of the model is build using this alignment. Finally,              
missing regions are generated and the side-chain atoms are added.  
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Template-based methods have five essential steps: i) Template selection, ii) target-template           
alignment, iii) model construction, iv) loop modeling and v) side chain modeling [52] . Figure              
11 illustrates the general principles of template-based modeling.  
In the first step the sequence from the target protein is used to identify experimentally               
determined structures which can be used as templates. In the second step, the target sequence               
is aligned to the sequences from the identified templates. In the third step the structural               
frameworks of the model is built by copying the aligned regions or by satisfying the spatial                
restraints from the templates. In the final two steps the unaligned loop regions are generated               
and the side-chain atoms are added.  
The most commonly used tool for generating structural models using template-based methods            
are HHpred [53], SWISS-MODEL [54], I-TA SSER [55] and MODELLER [56].  
 
The main problem with template-based modeling methods is that they rely on the existence of               
good templates. When this condition is not met, alternative methods, such as ab initio              
modeling can be used, but a common limitation of these methods is that they are both time                 
consuming and usually less accurate than template-based methods [52].  
 
The progress of the different template-based and ab initio methods is evaluated biennial in the               
Critical Assessment of protein Structure Prediction (CASP) experiment [57].  

Structural modeling performance measurements 
The structural similarity between proteins is mostly determined using the root mean square             
deviation (RMSD) [58] and/or the template modeling score (TM-score) [59] .  
The RMSD is a measure of the average distance between the atoms of two structurally aligned                
proteins, and can be calculated using either the Cα atoms, the backbone heavy atoms C, N , O ,                 
and Cα or all atoms [58]. The RMSD value of identical structures is zero and as the values                  
increase the two structures become more different. While RMSD is a commonly used             
measurement for structural similarity, it has two limitations [60]. The first limitation is that              
the RMSD is dominated by the largest deviation and it might therefore overlook substructural              
similarities. This can happen if two structures are identical with the exception of a single loop                
or flexible N- or C-terminus, as this would result in large RMSDs. The second limitation is                
that the RMSD is dependent on the length of the protein sequence, and it is therefore difficult                 
to compare structures of different lengths. This means that there is no universal threshold              
which can be used for quality classification.  
In comparison to the RMSD, the TM-score is a length-independent metric developed for             
measuring structural similarity for models generated using template-based methods and the           
experimentally found structure. The TM-score is calculated using the following formula:  
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where LN is the number of residues the native structure, LT is the number of residues in the                  
template structure, d i is the distance between the i ’th pair of aligned residues and              

 is a scale to normalize the TM-score [59] ..8  d0 = 1.24 √3 L 5N − 1 − 1  
The TM-score ranges between 0 and 1, where a TM-score of 1 indicates a perfect match                
between two structures. A TM-score below 0.2 corresponds to randomly choosing an            
unrelated protein and a TM-score higher than 0.5 implies that the two structures roughly have               
the same structural fold.  
When evaluating the performance of structural models both the RMSD and TM-score is used              
to measure the structural difference between a model and its naive structure, which is usually               
determined by X-ray crystallography.  
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Chapter 2: Paper I 
In the last decade, machine learning methods for predicting peptide binding to MHC class II               
molecules have vastly improved [6, 7, 61–63] . These methods are trained on data obtained              
from the Immune Epitope Database (IEDB), which constantly collects and catalogs           
experimental data from peptide-MHC binding studies. As this database gradually increases,           
methods tained on the latest data set usually have an improved overall performance and an               
improved MHC coverage. 
In this chapter, we present NetMHCII-2.3 and NetMHCIIpan-3.2, two improved methods for            
predicting peptide-MHC binding affinity for MHC class II molecules. Both methods were            
trained using the NNAlign algorithm and are based on ensembles of artificial neural networks.              
The updated methods were trained using a data set of peptide binding affinity measurements              
from the IEDB with extended MHC coverage and peptide volume compared to earlier data              
sets. The updated methods show improved performances for predicting peptide binding           
affinities and for detecting T-cell epitopes, when compared to the previous versions of the              
methods.  
 
The tools are available at:  
http://www.cbs.dtu.dk/services/NetMHCII/  
http://www.cbs.dtu.dk/services/NetMHCIIpan/ 
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Summary

Major histocompatibility complex class II (MHC-II) molecules are
expressed on the surface of professional antigen-presenting cells where
they display peptides to T helper cells, which orchestrate the onset and
outcome of many host immune responses. Understanding which peptides
will be presented by the MHC-II molecule is therefore important for
understanding the activation of T helper cells and can be used to identify
T-cell epitopes. We here present updated versions of two MHC–II–peptide
binding affinity prediction methods, NetMHCII and NetMHCIIpan. These
were constructed using an extended data set of quantitative MHC–peptide
binding affinity data obtained from the Immune Epitope Database cover-
ing HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show
that training with this extended data set improved the performance for
peptide binding predictions for both methods. Both methods are publicly
available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/se
rvices/NetMHCIIpan-3.2.

Keywords: affinity predictions; immunogenic peptides; MHC binding
specificity; peptide–MHC binding; T-cell epitope.

Introduction

Major histocompatibility complex class II (MHC-II)
molecules are found on the surface of antigen-presenting
cells where they present peptides derived from extracellu-
lar proteins to T helper cells.1 Many peptide–MHC com-
plexes are presented on the surface of antigen-presenting
cells, but only peptides recognized by T-cell receptors will
trigger an immune response, and are referred to as T-cell
epitopes. Identifying T-cell epitopes is important for the

general understanding of cellular immunity and the
design of peptide-based diagnostics, therapeutics and vac-
cines.2 The MHC-II molecule is a heterodimeric glyco-
protein that consists of an a-chain and a b-chain. In
humans, these two chains are encoded in the human leu-
cocyte antigen (HLA) gene complex in one of three loci
called HLA-DR, -DP and -DQ.3 In mice, the MHC-II
chains are encoded in the histocompatibility 2 (H-2)
locus. Each locus is comprised of many different allelic
variants, which makes the MHC-II molecule highly

Abbreviations: AUC, area under the receiver operating characteristics curve; H-2, histocompatibility 2; HLA, human leucocyte
antigen; IEDB, Immune Epitope Database; LOMO, leave-one-molecule-out; MHC-II, MHC class II; MHC-I, MHC class I; MHC,
major histocompatibility complex; PFR, peptide flanking regions; UPGMA, unweighted pair group method with arithmetic mean
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polymorphic.4 Peptides presented by the MHC-II mole-
cule bind to a binding groove formed by residues of the
MHC a- and the b-chains. The peptide binding groove is
open at both ends and therefore allows binding of pep-
tides with different lengths.5 Even though the MHC-II
molecule can accommodate peptides of variable lengths
the most abundant peptides found in nature are between
13 and 25 residues long.6 The part of the peptide ligand
that primarily interacts with the MHC binding groove is
called the peptide binding core and is usually nine amino
acids long7 with anchor residues at positions P1, P4, P6
and P9.8 The peptide–MHC binding affinity is primarily
determined by the amino acid sequence of the peptide
binding core. However, it has been shown that peptide
flanking regions (PFRs) on either side of the binding core
affect peptide–MHC binding and, thereby ultimately also
influence the peptide immunogenicity.7,9

There are therefore many factors that make it difficult to
predict peptide binding affinities to MHC-II molecules,
including the polymorphic nature of MHC-II molecules,
the variations in peptide length, the influence of the PFRs
and the identification of the correct peptide binding core.
All these factors complicate the task of predicting peptide
binding affinities to MHC-II molecules; most methods
therefore still have a low performance compared with
MHC class I (MHC-I) peptide binding prediction methods.
Earlier work has demonstrated that the prediction perfor-
mance of both NetMHCII and NetMHCIIpan is dependent
on the amount of peptide binding data10,11 and one would
therefore expect the two methods to improve in perfor-
mance if retrained on an extended peptide binding data set.
We have here investigated if this is indeed the case.
Identifying T-cell epitopes is difficult because of the large

diversity in potentially binding peptides. However, as pep-
tide-MHC binding is a prerequisite for T-cell immuno-
genicity, multiple studies have shown that there is a strong
correlation between MHC peptide binding strength and
peptide immunogenicity.12–14 It is therefore desirable to
have accurate and reliable peptide binding affinity predic-
tion methods that can be used for in silico screening pep-
tides with the purpose of identifying T-cell epitopes that
match MHC-II molecules in a given host. Given this, many
different methods have been developed, including NetMH-
CII,15 NetMHCIIpan,16 TEPITOPE,17 TEPITOPEpan,18

PROPRED,19 RANKPEP20,21 and SVRMHC.22 Both
NetMHCII15 and NetMHCIIpan16 have been shown to be
among the best methods for predicting binding affinities to
MHC-II molecules.2,8,23 These two methods are trained
using the NNAlign framework15,24,25 and are based on
ensembles of artificial neural networks that are trained on
quantitative peptide binding affinity data from the Immune
Epitope Database (IEDB).26 One of the main differences
between NetMHCII and NetMHCIIpan is that NetMHCII
is a collection of individual networks for each MHC mole-
cule whereas NetMHCIIpan contains a single universal

network that can predict peptide binding affinities for all
MHC molecules of known protein sequence.
NetMHCII and NetMHCIIpan predict peptide binding

affinities to MHC-II molecules covering HLA-DR, HLA-
DQ, HLA-DP and H-2 mouse molecules. The main dif-
ference between the two methods is that NetMHCII only
predicts peptide binding affinities to MHC molecules for
which it has been trained, whereas NetMCHIIpan can
predict peptide binding affinities to any MHC molecule
with a known protein sequence. As mentioned above
there is a strong correlation between MHC binding
strength and peptide immunogenicity and the two meth-
ods have been used extensively as a guide to identify T-
cell epitopes that can be used in the design of peptide-
based diagnostics, therapeutics and vaccines.
In this paper, we present updated versions of our bind-

ing affinity prediction methods, NetMHCII and NetMH-
CIIpan, trained on an extended data set of > 100 000
quantitative peptide binding measurements from IEDB,26

covering 36 HLA-DR, 27 HLA-DQ, 9 HLA-DP, as well as
8 mouse MHC-II molecules. We then evaluate the perfor-
mance of these new versions using a set of large-scale
benchmarks to investigate how the extended data set
improves the predictive performance of the two methods.

Materials and methods

Data sets

The data set used to generate the new versions of
NetMHCII and NetMHCIIpan contains peptide–MHC II
binding affinities retrieved from the IEDB (www.iedb.org)
in 2016. All data points are experimental IC50 binding
values, which were log-transformed to fall in the range
between 0 and 1 using the relation 1!log(IC50 nM)/log
(50 000) as explained by Nielsen et al.27. The 2016 data
set contains 134 281 data points, covering 36 HLA-DR,
27 HLA-DQ, 9 HLA-DP and 8 H-2 molecules. The data
set was split into five groups by clustering the common
motif of peptides as described by Nielsen et al.28 and
these five groups were used for a five-fold cross-valida-
tion. This 2016 data set is publicly available at www.cbs.d
tu.dk/suppl/immunology/NetMHCIIpan-3.2. The data set
used to develop the previous versions of NetMHCII and
NetMHCIIpan is available at www.cbs.dtu.dk/suppl/im
munology/NetMHCIIpan-3.0.
A summary of the data included in the 2013 and 2016

data sets is shown in Table 1 and a description of the full
2016 data set is available in the Supplementary material
(Table S1).

Network training

The NetMHCII method was implemented as described by
Nielsen and Lund15 and the NetMHCIIpan method was
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implemented as described by Andreatta et al.16 NetMHCII
is an allele-specific method that contains a specific predic-
tor for each MHC molecule in the data set and it can there-
fore only predict binding affinities for MHC molecules
found in the training data, whereas NetMHCIIpan is a
pan-specific method that can make predictions for any
MHC molecule with a known protein sequence. To achieve
its pan-specificity, NetMHCIIpan incorporates information
about the MHC-II molecule, using a pseudo sequence con-
sisting of residues that are considered important for pep-
tide binding. This pseudo sequence is constructed using the
method described by Karosiene et al.11 and is composed of
34 residues: 15 from the a-chain and 19 from the b-chain.
Both methods were trained using a five-fold cross-valida-
tion set-up. For each fold, we generate a network ensemble
of individual networks trained without early stopping for
500 cycles with 10, 15, 40 and 60 hidden neurons using 10
different initial configurations, generating a total of 40 net-
works. This was done for each of the five training/test set
combinations leading to a total of 200 networks. The pep-
tide and the MHC pseudo sequence were encoded using
the BLOSUM50 matrix and the PFR was encoded using the
average BLOSUM scores on a maximum window of three
amino acids at either end of the binding core.29 For each
peptide core, the input to the neural network therefore
consisted of the peptide core (9 9 20 = 180 inputs), the
PFRs (2 9 20 = 40 inputs), the peptide length (2 inputs),
the length of the C-terminal and N-terminal PFRs
(2 9 2 = 4 inputs), resulting in a total of 226 input values
for NetMHCII and 906 for NetMHCIIpan (an additional
34 9 20 = 680 input values from the pseudo sequence).

Binding core predictions

To improve the binding core predictions, we include the
offset correction step to both NetMHCII and NetMHCII-
pan. We followed the procedure described by Andreatta
et al.16 and we evaluated the performance of this offset
correction using the benchmark data set of 51 crystal
structures of peptide–MHC-II complexes.

Performance measures

The predictive performance of the different methods was
measured using the area under the receiver operating

characteristics curve (AUC). To classify peptides into bin-
ders and non-binders, a binding threshold of 500 nM was
used, classifying all peptides with an IC50 binding value
< 500 nM as binders. All performance values shown in
this paper are averages of the AUC performance per
MHC molecule using only molecules with more than 20
peptides and at least four binders.

Leave-one-molecule-out network training

To assess the predictive performance of NetMHCIIpan in
the situation where a molecule is not part of the training
data, a leave-one-molecule-out (LOMO) approach was
applied.
To estimate LOMO performance for MHC molecule X,

the NetMHCIIpan networks were trained using the five-
fold cross-validation set-up from above. In the LOMO
cross-validation set-up all binding data from molecule X
were removed from the training sets and all test sets only
include binding data from molecule X. This set-up
ensures that the method is trained without peptides bind-
ing to molecule X and it can therefore be used to evaluate
the ability of the method to predict peptide binding of
uncharacterized MHC-II molecules.

Nearest neighbour distance calculation

The nearest neighbour distance is estimated from the
alignment score of the HLA pseudo sequences using the
relation d ¼ ðsðA,BÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðA,AÞ % sðB,BÞ

p" #
. In this equa-

tion s(A,B) is the BLOSUM50 alignment score between
the pseudo sequences for MHC molecules A and B,
respectively.29 Nearest neighbours are found from the
subset of molecules characterized with at least 50 data
points and at least 10 binders.

Sequence logos

Sequence logos were constructed from the predicted
binding cores of the top 1% strongest predicted binders
using 200 000 natural random 15-mer peptides and was
visualized using SEQ2LOGO30 with default settings.

Generation of HLA-II distance trees

The HLA-II distance tree was generated for each of the
HLA-DR, -DQ and -DP molecules in our data set using
MHCCLUSTER.31 To make the tree we first predicted the
binding affinity for 200 000 natural random 15-mer pep-
tides using the new version of NetMHCIIpan. We then
used MHCCLUSTER to find the functional similarity
between any two MHC molecules. MHCCLUSTER calcu-
lates the similarity between two MHC molecules by corre-
lating the union of the predicted top 10% strongest
binding peptides. Using the bootstrap method in

Table 1. Description of the two MHC class II peptide binding data

sets

Data set 2013 Data set 2016

# Data points 52062 134281

Type of alleles 24 HLA-DR 36 HLA-DR

6 HLA-DQ 27 HLA-DQ

5 HLA-DP 9 HLA-DP

2 H-2 8 H-2
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MHCCLUSTER we generated 100 distance matrices and
converted these to distance trees using the unweighted
pair group method with arithmetic mean clustering.
These trees were then combined into a consensus tree
and visualized in SPLITSTREE.32 Sequence logos were con-
structed as explained above.

T-cell epitope benchmark

A set of MHC-II restricted T-cell epitopes identified by
multimer/tetramer staining assays was downloaded from
IEDB. Only fully typed restrictions were included; that is,
fully typed a- and b-chains for HLA-DQ and HLA-DP,
and a fully typed b-chain for HLA-DR (where the a-chain
is invariant). Epitopes with non-natural amino acids were
excluded. Also, epitopes with identical match to the pep-
tides in the training data were excluded. The source pro-
tein sequence for each epitope was identified by mapping
the annotated IEDB protein ID to the NCBI protein data-
base. The final validation data set consisted of 1698 epi-
topes, restricted to 33 distinct MHC-II molecules. For
performance evaluation, the epitope source protein was
split into overlapping peptides of the length of the epi-
tope, and AUC and Frank values were calculated for each
epitope–MHC pair annotating the epitopes as positive
and all others as negatives. Here, Frank is the ratio of the
number of peptides with a prediction score higher than
the positive peptide to the number of peptides contained
within the source protein. Hence, the Frank value is 0 if
the positive peptide has the highest prediction value of all
peptides within the source protein and a value of 0%5 in
cases in which an equal number of peptides has a higher
and lower prediction value compared with the positive
peptide.

Results

Comparing NetMHCII and NetMHCIIpan on a
shared evaluation set

Using the data set from 2016, we retrained NetMHCII15

and NetMHCIIpan11 using a five-fold cross-validation
setup to generate two new versions of these methods,
named NetMHCII-2.3 and NetMHCIIpan-3.2. We then
investigated how these new versions performed compared
with the previous versions, which are NetMHCII-2.2 and
NetMHCIIpan-3.1, trained on the 2013 data set. To make
the comparison, we used the same fivefold cross-valida-
tion set-up and compared peptide data points in com-
mon between the 2013 and 2016 data sets. The result
from this analysis in shown in Table 2.
The new versions of NetMHCII and NetMHCIIpan

improved performance compared with the older versions
(Table 2); but the performance gain was not statistically
significant (P > 0%1 in both cases). Another interesting

point is that the allele-specific NetMHCII-2.3 obtained a
higher average performance than the pan-specific
NetMHCIIpan-3.2, but this effect will be discussed later.

Performance of NetMHCIIpan on new data points for
common MHC molecules

Using the five-fold cross-validation setup, we then evalu-
ated the performance of the two versions of NetMHCII
and NetMHCIIpan using only the subset of new peptides
for the MHC molecules common between the old and
new data sets. The result of this analysis is shown in
Table 3 and it demonstrates a significant gain in predic-
tive performance of the new versions (NetMHCII,
P < 0%001 and NetMHCIIpan, P < 0%0003, using paired
t-test). This result underlines the importance of expand-
ing the size of the training data even for previously
characterized MHC molecules. [Correction added on 02
April 2018, after first online publication: In the preceding
sentence, P < 0%005 and P < 0%001 was corrected to
P < 0%001 and P < 0%0003 respectively.]

Binding core predictions

We evaluated the accuracy for binding core identification
of the two updated MHC-II binding prediction methods
on the data set of peptide–MHC crystal structures
described by Andreatta et al.16 Overall we find that (i)
the inclusion of the offset correction has a substantial
impact on the accuracy of binding core identification for
both methods, and (ii) the overall accuracy of both meth-
ods is improved compared with the earlier version. For
details see the Supplementary material (Table S2).

Performance of a consensus method

For predicting binding affinities to MHC-I, it has been
shown that a simple combination of the predictions from
NetMHC27 and NetMHCpan10 gives a higher perfor-
mance than using each method individually.33 We there-
fore made a similar combination of the predictions from
NetMHCII-2.3 and NetMHCIIpan-3.2 to investigate if the
performance could be improved for MHC-II using this
consensus approach. In the consensus method, we use an
average of the prediction scores (values between 0 and 1)
from NetMHCII-2.3 and NetMHCIIpan-3.2 to define the
consensus method. The result of this analysis is shown in
Fig. 1 and detailed performance values are found in the
Supplementary material (Table S3). Figure 1(a) shows
that the combination of NetMHCII-2.3 and NetMCHII-
pan-3.2 has a significantly improved performance com-
pared with each individual method and Fig. 1(b) shows
that NetMHCIIpan-3.2 outperforms NetMHCII-2.3, espe-
cially for MHC molecules where only a few peptides are
found in the data set.
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Performance of NetMHCIIpan for previously
uncharacterized MHC molecules

For NetMHCIIpan, we also tested the performance on
MHC molecules that were not part of the 2013 data set
(see Table 4). As expected, we observed that the new ver-
sion of NetMHCIIpan had a significant increase in the
predictive performance when compared with the previous
version of NetMHCIIpan (P = 3%6 9 10!5, using a paired
t-test); this result therefore demonstrates the importance
of expanding the allotypic coverage of the training data.

Leave-one-molecule-out performance

The pan-specific method is capable of making predictions
for uncharacterized MHC molecules, so to assess the pre-
dictive performance of the NetMHCIIpan method in these
situations we conducted a LOMO experiment. In the
LOMO, the binding data for the MHC molecule in ques-
tion were excluded from training and the resulting model
was then evaluated using only binding data for the MHC
molecule in question (for details see the Materials and

methods). The LOMO experiment was made for all MHC
molecules shared between the 2013 and the 2016 data sets,
and the performance was evaluated on peptides shared
between the two data sets. The result of this LOMO
benchmark is shown in Table 5, together with the pseudo
distances of the MHC molecule to each of the two train-
ing data sets estimated from the nearest neighbour
sequence similarity as described in Materials and methods.
Table 5 shows an increased performance for NetMHCII-

pan-3.2-LOMO compared with netMHCIIpan-3.1-LOMO.
This gain is in general most pronounced for the MHC mole-
cules that share a decrease in the pseudo sequence distance.
To further investigate this last observation, the LOMO

performance evaluation was extended to include all MHC
molecules in the 2016 data set. The result from this anal-
ysis is shown in Fig. 2 with a scatterplot of the relation-
ship between the distance to the nearest neighbour in the
training data set and the LOMO performance. The com-
plete data used to create Fig. 2 can be found in Table S4.
The figure shows that the HLA-DQ and the HLA-DP
molecules have close nearest neighbours whereas the
HLA-DR and H-2 molecules tend to have more distant

Table 2. Comparing predictions from the old and the new versions of NetMHCII and NetMHCIIpan trained using a fivefold cross-validation on

the set of data points common between the two data sets

Molecule #Peptides #Binders NetMHCII-2.2 NetMHCII-2.3 NetMHCIIpan-3.1 NetMHCIIpan-3.2

DRB1_0101 2754 2635 0%817 0%822 0%828 0%830
DRB1_0301 1403 379 0%832 0%826 0%829 0%835
DRB1_0401 1639 695 0%801 0%791 0%804 0%798
DRB1_0404 542 331 0%783 0%768 0%813 0%810
DRB1_0405 1438 595 0%862 0%860 0%852 0%844
DRB1_0701 1619 806 0%858 0%857 0%852 0%857
DRB1_0802 1310 400 0%757 0%767 0%753 0%749
DRB1_0901 841 560 0%746 0%761 0%777 0%779
DRB1_1101 1604 730 0%876 0%876 0%875 0%876
DRB1_1302 1351 463 0%811 0%823 0%801 0%810
DRB1_1501 1601 672 0%818 0%820 0%817 0%831
DRB3_0101 1266 267 0%835 0%846 0%835 0%824
DRB4_0101 1329 467 0%840 0%841 0%832 0%817
DRB5_0101 1606 765 0%852 0%847 0%855 0%846
H-2-IAb 525 125 0%850 0%857 0%849 0%868
H-2-IAd 100 24 0%718 0%809 0%734 0%808
HLA-DPA10103-DPB10401 1075 458 0%957 0%960 0%956 0%961
HLA-DPA10201-DPB10101 1180 558 0%949 0%949 0%949 0%948
HLA-DPA10201-DPB10501 1114 415 0%957 0%954 0%949 0%948
HLA-DPA10301-DPB10402 1193 498 0%958 0%957 0%957 0%952
HLA-DQA10101-DQB10501 990 246 0%856 0%890 0%834 0%857
HLA-DQA10102-DQB10602 1121 503 0%838 0%901 0%877 0%887
HLA-DQA10301-DQB10302 1461 330 0%824 0%820 0%796 0%774
HLA-DQA10401-DQB10402 1436 516 0%919 0%923 0%915 0%903
HLA-DQA10501-DQB10201 1386 477 0%898 0%901 0%886 0%883
HLA-DQA10501-DQB10301 1274 530 0%893 0%873 0%881 0%860
Average 0%856 0%863 0%856 0%858

For each MHC molecule, we show the total number of peptides, the number of binders, the AUC performance. The different methods included

are the NetMHCII and NetMHCIIpan methods training on the original 2013 data set (versions 2.2 and 3.1), and the versions of the two methods

trained on the extended 2016 data set (versions 2.3 and 3.2). The highest performance for NetMHCII and NetMHCIIpan is highlighted in bold.
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neighbours. This figure also demonstrates a weak but sta-
tistically significant (P = 0%04 with exact permutation
test) correlation between the LOMO performance and the
distance to the nearest neighbour in the training data.
This is in agreement with earlier findings for both MHC-
I and MHC-II molecules10,11 and shows how the predic-
tive performance of the pan-specific method depends on
the distance to the nearest neighbour.

Distance tree for HLA molecules

Having arrived at the final retrained versions of NetMH-
CIIpan, we next use the MHCCLUSTER method31 to evalu-
ate the similarities of binding motifs between the HLA
molecules included in the 2016 training data. In short,
the MHCCLUSTER method estimates the similarity between
two MHC molecules using the correlation between pre-
dicted binding values for a large set of random natural
peptides. The similarity is 1 if the two molecules have a
perfect binding specificity overlap and !1 if the two

molecules share no specificity overlap (for details see
Materials and methods). Comparing the binding pattern
similarity between any two HLA class II molecules in the
2016 training data, we constructed the distance tree
shown in Fig. 3. This figure confirms the earlier findings
by Karosiene et al.:11 (i) the different loci show limited
overlap in binding preference, (ii) HLA-DP is less diverse
compared with HLA-DQ and HLA-DR, and (iii) the
diversity of HLA-DQ can largely be split into three
groups; one with preference for negatively charged amino
acids towards the C-terminus, one with a preference for
positively charged amino acids towards the C-terminus,
and one with a preference for small amino acids at the
anchor positions.

T-cell epitope benchmark

We next evaluated the predictive performance of the two
NetMHCIIpan methods on an IEDB T-cell epitope data
set. We queried the IEDB for MHC-II-restricted epitopes

Table 3. Comparing predictions from the old (versions 2.2 and 3.1), and the new version (versions 2.3 and 3.2), of NetMHCII and NetMHCpan

using the fivefold cross-validation setup and evaluating on the subset of new peptides using only MHC molecules shared between the 2013 and

2016 data sets

Allele #Peptides #Binders NetMHCII-2.2 NetMHCII-2.3 NetMHCIIpan-3.1 NetMHCIIpan-3.2

DRB1_0101 7658 3741 0%850 0%815 0%836 0%823
DRB1_0301 3949 1078 0%799 0%813 0%779 0%812
DRB1_0401 4678 2327 0%771 0%798 0%770 0%811
DRB1_0404 3115 1521 0%710 0%788 0%761 0%810
DRB1_0405 2524 1059 0%798 0%828 0%809 0%817
DRB1_0701 4706 2650 0%822 0%882 0%825 0%880
DRB1_0802 3155 1636 0%797 0%845 0%825 0%853
DRB1_0901 3477 1604 0%842 0%844 0%833 0%840
DRB1_1101 4441 1937 0%826 0%865 0%820 0%862
DRB1_1302 3126 1786 0%853 0%907 0%860 0%907
DRB1_1501 3249 1435 0%806 0%840 0%817 0%836
DRB3_0101 3367 1148 0%898 0%913 0%898 0%906
DRB4_0101 2632 1073 0%796 0%834 0%804 0%822
DRB5_0101 3519 1665 0%836 0%851 0%841 0%851
H-2-IAb 1268 306 0%936 0%894 0%919 0%902
H-2-Iad 674 297 0%762 0%819 0%799 0%820
HLA-DPA10103-DPB10201 782 140 0%968 0%909 0%954 0%916
HLA-DPA10103-DPB10401 1650 328 0%887 0%900 0%885 0%898
HLA-DPA10201-DPB10101 1267 301 0%819 0%830 0%828 0%845
HLA-DPA10201-DPB10501 1356 298 0%849 0%858 0%817 0%858
HLA-DPA10301-DPB10402 1448 423 0%839 0%840 0%841 0%844
HLA-DQA10101-DQB10501 1956 569 0%930 0%930 0%922 0%920
HLA-DQA10102-DQB10602 1626 753 0%856 0%913 0%880 0%902
HLA-DQA10301-DQB10302 1650 238 0%850 0%868 0%838 0%832
HLA-DQA10401-DQB10402 1454 412 0%781 0%858 0%781 0%857
HLA-DQA10501-DQB10201 1511 397 0%831 0%874 0%833 0%871
HLA-DQA10501-DQB10301 2311 1282 0%909 0%944 0%921 0%943
Average 0%838 0%861 0%841 0%861

For each MHC molecule, we show the total number of peptides, the number of binders and the AUC performance for the different versions.

Highlighted in bold is the highest performance between the two NetMHCII and NetMHCIIpan methods.

[Correction added on 02 April 2018, after first online publication: Table 3 has been updated in this version.]
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identified by tetramer/multi-mer staining, which is the
reference standard for epitope identification with known
MHC restriction. For each epitope–MHC-II pair, we cal-
culated AUC and Frank values for the two NetMHCIIpan
methods by predicting binding affinities to the MHC-II
restriction element of the epitope for all overlapping pep-
tides with the same length as the epitope in the source
protein sequence, annotating the epitope as positive and
the remaining peptides as negative. This annotation is
very stringent because peptides that share the same ligand
binding-core are counted as negatives even though they
could be presented by the human MHC molecule; the
set-up will therefore most likely underestimate the predic-
tive performance. The details from this analysis are found
in Table S5 and the results are summarized in Fig. 4.
The Frank value is 0 if the positive peptide has the

highest prediction value of all peptides within the source
protein, and a value of 0%5 in cases where an equal
number of peptides has a higher and lower prediction
value compared with the positive peptide. Figure 4(a)
shows that the Frank score for NetMHCIIpan-3.1 is sig-
nificantly lower than NetMHCIIpan-3.1. It further shows
that NetMHCIIpan-3.2 has a median < 0%2 indicating
that the positive peptide was found among the top 20%
of the peptides from the source protein if sorted on
their predicted peptide binding affinity. Figure 4(b)
demonstrates a significant improvement in the AUC per-
formance of NetMHCIIpan-3.2 compared with NetMH-
CIIpan-3.1. We speculate that the gain in predictive
performance of NetMHCIIpan-3.2 could be attributed to

at least two factors, the inclusion of binding data for
additional MHC-II molecules in the training data, and
the expansion of the number of data points for MHC-II
molecules already included in the old training data. Fig-
ure 4(c,d) quantifies that both of these factors indeed
contribute to the performance gain. Figure 4(c) shows
the performance gain as a function of the change in dis-
tance of the query molecule to the nearest neighbour of
the training data. From this plot, we see that the gain
in predictive performance is related to a decrease in the
nearest neighbour distance, and hence directly related to
the inclusion of binding data for additional MHC-II
molecules in the new data set. Figure 4(d) shows the
performance gain as a function of the change in the
number of data points between the two data sets used
for training. We here only include molecules shared
between the two data sets used for training NetMHCII-
pan-3.1 and NetMHCIIpan-3.2, as we in the previous
analysis demonstrated how the distance to the nearest
neighbour influences the performance. Figure 4(d) shows
that the gain in performance is correlated to change in
the number of data points for the given MHC mole-
cules. This indicates that the performance gain of the
new NetMHCIIpan version is also driven by the increase
in the number of data points for molecules already
included in the 2013 data set. The one data point in
Figure 4(c,d) with increased nearest neighbour distance
and decreased number of data points corresponds to the
HLA-DPA10103-DPB10201 molecule for which faulty
data were removed in the 2016 data set.
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Figure 1. Performance of NetMHCII-2.3 and NetMHCIIpan-3.2 together with the combination method. (a) The average performance per MHC

molecule of NetMHCII-2.3, NetMHCIIpan-3.2 and the combination method, including the significance between the methods. P-values where

found using a paired t-test using the predictions per molecule found in Table S3 (see the Supplementary material). (b) The average predictive perfor-

mance of the MHC molecules in the data set as a function of the number of peptides. [Colour figure can be viewed at wileyonlinelibrary.com]
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Discussion

The genomic region encoding the MHC-II molecule is
extremely polymorphic comprising several thousand alle-
les and it is therefore difficult to produce enough experi-
mental data to characterize the peptide binding
preference for all existing MHC-II molecules. Because of
this, most MHC-II molecules are still only represented
with very few or no binding data, limiting the coverage
and performance of previous binding affinity prediction
methods. We have therefore updated our two binding
affinity prediction methods, NetMHCII and NetMHCII-
pan using updated and extended data sets. For several

large-scale benchmarks, this improved the predictive
performance for both methods.

Comparing NetMHCII and NetMHCIIpan

Using the data points shared by the old and updated data
sets, we first compared the different versions of NetMH-
CII and NetMHCIIpan. We showed how the new versions
of the methods outperformed the previous versions for
both NetMHCII and NetMHCIIpan. We then evaluated
the performance of the two versions of the methods using
only ‘new’ peptides, for the MHC molecules covered both
by the old and the updated data sets. The result of this

Table 4. Comparing predictions from the old and the new version of NetMHCIIpan using the fivefold cross-validation setup on the set of MHC

molecules found in the 2016 data set but not in the 2013 data set

Molecule #Peptides #Binders NetMHCIIpan-3.1 NetMHCIIpan-3.2

DRB1_0103 42 4 0%664 0%678
DRB1_0402 53 19 0%680 0%701
DRB1_0403 59 14 0%767 0%841
DRB1_0801 937 390 0%839 0%844
DRB1_1001 2066 1521 0%907 0%923
DRB1_1104 27 5 0%682 0%791
DRB1_1301 1034 520 0%727 0%857
DRB1_1502 23 7 0%688 0%652
DRB1_1602 1699 989 0%827 0%883
DRB3_0202 3334 1055 0%789 0%869
DRB4_0103 846 525 0%786 0%841
H-2-IAk 115 4 0%426 0%635
H-2-IAs 190 48 0%438 0%825
H-2-IAu 56 22 0%790 0%765
H-2-IEd 245 28 0%623 0%754
H-2-IEk 68 40 0%881 0%853
HLA-DPA10103-DPB10301 1563 575 0%588 0%902
HLA-DPA10103-DPB10402 45 9 0%815 0%710
HLA-DPA10103-DPB10601 584 282 0%996 0%995
HLA-DPA10201-DPB11401 2302 849 0%696 0%930
HLA-DQA10102-DQB10501 833 458 0%606 0%839
HLA-DQA10102-DQB10502 800 158 0%825 0%835
HLA-DQA10103-DQB10603 462 90 0%802 0%861
HLA-DQA10104-DQB10503 883 105 0%787 0%805
HLA-DQA10201-DQB10202 944 119 0%779 0%814
HLA-DQA10201-DQB10301 827 374 0%813 0%849
HLA-DQA10201-DQB10303 761 265 0%743 0%894
HLA-DQA10201-DQB10402 768 241 0%529 0%860
HLA-DQA10301-DQB10301 207 66 0%822 0%839
HLA-DQA10303-DQB10402 567 117 0%483 0%820
HLA-DQA10501-DQB10302 847 203 0%772 0%822
HLA-DQA10501-DQB10303 564 179 0%809 0%876
HLA-DQA10501-DQB10402 749 337 0%584 0%868
HLA-DQA10601-DQB10402 565 133 0%498 0%848
Average 0%719 0%826

For each molecule, we show the total number of peptides, the number of binders and the AUC performance for the two NetMHCIIpan versions.

In bold is highlighted the highest performance of the two versions 3.1 and 3.2 of NetMHCIIpan. Highlighted in bold is the highest performance

between the two methods.
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analysis showed that both methods on this data set
gained a significant improvement in the predictive perfor-
mance, supporting the importance of expanding the size
of the training data even for MHC molecules already
characterized by binding data. When evaluating new pep-
tides one has to keep in mind that MHC binding predic-
tors are often used to select peptides for experimental
validation and new data sets may be less diverse than his-
toric data sets generated sampling the entire space of a
given set of protein sequences.34

The main difference between NetMHCII and NetMH-
CIIpan is that NetMHCII is an allele-specific method
trained separately for each MHC molecule, whereas
NetMHCIIpan is a pan-specific method that contains a
single ensemble of networks using information from all
MHC molecules in the data set. We would therefore
expect that the allele-specific method outperforms the
pan-specific method for MHC molecules where sufficient

data are available to accurately characterize the binding
motif, and we would expect the pan-specific method to
outperform the allele-specific method when data are scar-
cer. This is exactly what we observed when we compared
the predictive performances of NetMHCII-2.3 and
NetMHCpan-3.2. Earlier work has shown a similar result,
namely that when allele-specific neural network predic-
tion algorithms rely on a sufficient number of peptide
binders to achieve high predictive performances.33,35 This
illustrates how the allele-specific method is preferable
only if a large amount of data is available for the MHC
molecule in question, but highlights the strength of the
pan-specific methods, which can benefit from the data of
related MHC molecules to make reliable predictions for
MHC molecules with limited data. Because of this differ-
ence between the allele-specific and pan-specific methods,
we implemented a simple combination of two methods
as this has been shown to improve the predictive

Table 5. Comparing LOMO predictions from the old and the new method on the set of data points common between the two data sets

Allele #Peptides #Binders

NetMHCIIpan-3.1-LOMO NetMHCIIpan-3.2-LOMO

AUC Pseudo distance 2013 AUC Pseudo distance 2016

DRB1_0101 2754 2635 0%742 0%22 0%768 0%16
DRB1_0301 1403 379 0%727 0%11 0%736 0%14
DRB1_0401 1639 695 0%761 0%04 0%768 0%04
DRB1_0404 542 331 0%775 0%06 0%774 0%03
DRB1_0405 1438 595 0%825 0%04 0%817 0%04
DRB1_0701 1619 806 0%821 0%28 0%821 0%27
DRB1_0802 1310 400 0%676 0%03 0%701 0%03
DRB1_0901 841 560 0%709 0%25 0%730 0%25
DRB1_1101 1604 730 0%713 0%06 0%772 0%06
DRB1_1302 1351 463 0%652 0%06 0%663 0%05
DRB1_1501 1601 672 0%721 0%20 0%790 0%13
DRB3_0101 1266 267 0%690 0%12 0%700 0%14
DRB4_0101 1329 467 0%747 0%27 0%718 0%00
DRB5_0101 1606 765 0%802 0%20 0%800 0%20
H-2-IAb 525 125 0%698 0%34 0%725 0%34
H-2-IAd 100 24 0%793 0%34 0%805 0%34
HLA-DPA10103-DPB10201 5 1 1%000 0%06 1%000 0%06
HLA-DPA10103-DPB10401 1075 458 0%945 0%06 0%953 0%06
HLA-DPA10201-DPB10101 1180 558 0%938 0%07 0%933 0%07
HLA-DPA10201-DPB10501 1114 415 0%935 0%07 0%939 0%07
HLA-DPA10301-DPB10402 1193 498 0%934 0%09 0%938 0%11
HLA-DQA10101-DQB10501 990 246 0%742 0%23 0%681 0%02
HLA-DQA10102-DQB10602 1121 503 0%570 0%23 0%809 0%07
HLA-DQA10301-DQB10302 1461 330 0%635 0%19 0%623 0%09
HLA-DQA10401-DQB10402 1436 516 0%880 0%26 0%703 0%02
HLA-DQA10501-DQB10201 1386 477 0%555 0%27 0%767 0%07
HLA-DQA10501-DQB10301 1274 530 0%451 0%19 0%648 0%06
Average 0%757 0%781

For each molecule, we show the number of peptides, the number of binders, the AUC performance for the old (3.1) and new (3.2) methods, and

the distance to the nearest neighbor for the old and new data set. Nearest neighbors are found from the subset of molecules in the training data

characterized with at least 50 data points and at least 10 binders. Highlighted in bold is the highest performance between the two methods.

[Correction added on 02 April 2018, after first online publication: Table 5 has been updated in this version.]
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performance for MHC-I molecules.33 This analysis
showed that NetMHCIIpan-3.2 outperforms NetMHCII-
2.3 for MHC molecules, which has been trained with very

few peptides, but that a combination of the predictions
from the two MHC-II methods still outperformed each
individual method.

Leave-one-molecule-out performance for
NetMHCIIpan

One of the main powers of the NetMHCIIpan method is
that it can predict binding affinities for uncharacterized
MHC molecules. To assess the performance of the
method in such a task, we constructed a LOMO experi-
ment where we tested the performance of the NetMHCII-
pan method for predicting binding affinity for MHC
molecules not included in the training data for the
method. From this analysis, we could show that the pan-
specific method is capable of prediction binding affinity
for MHC molecules where no binding affinity data are
available and further demonstrate that the predictive per-
formance is dependent on the distance to the nearest
neighbour. This last observation indicated that the predic-
tive performance of the NetMHCIIpan method could be
further improved by including more uncharacterized
MHC molecules into the training data and it is therefore
important to generate experimental peptide binding affin-
ity data points in a targeted fashion for MHC molecules
not yet characterized.
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Figure 3. Distance tree for all HLA molecules found in our data set generated using the MHCCLUSTER method. Sequence logos shows the motif

of the predicted binding core for each HLA and were generated using Seq2Logo.30 [Colour figure can be viewed at wileyonlinelibrary.com]
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Distance tree for HLA class II molecules

To understand the different groups of HLA class II mole-
cules, we generated a fictional distance tree using
NetMHCIIpan-3.2. The groups shown in this distance
tree can be used to understand how peptides interact with
different MHC molecules and can be used to discriminate

between binders and non-binders. The distance tree can
also be used to identify T-cell epitopes with similar prop-
erties important for the design of epitope-based vaccines.
Another aspect that can be observed for the tree is that
most MHC molecules have strong anchor positions at P1,
P4, P6 and P9, which have also been observed in previous
studies.8
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the data.
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T-cell epitope benchmark

Accurate predictions of peptide binding affinities to MHC
molecules are important for understanding the cell-
mediated immune response and for generating better
screening methods for cost-effective identification of
immunogenic peptides. We therefore wanted to test the
predictive performance of the two versions of NetMHCII-
pan on a T-cell epitope data set, and doing this we
demonstrated how the new version of NetMHCIIpan
obtained a significantly improved predictive performance
compared with the earlier version. Two main factors
explain this performance gain: (i) including data for new
MHC-II molecules decreases the distance to the nearest
neighbour, (ii) including an increased number of data
points allows the method better characterizing the speci-
ficity of a given MHC-II molecule.
In conclusion, we believe that NetMHCII and

NetMHCIIpan can be used to improve MHC-II binding
predictions and reduce experimental costs for immunol-
ogists working within the field of epitope-based vaccine
design, and to improve our knowledge about the pep-
tide–MHC interaction, a key event in the cellular
immune response.
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Chapter 3: Paper II 
One of the unsolved problems in the field of immunoinformatics is the prediction of T-cell               
epitopes. Most existing tools for identifying T-cell epitopes predict the peptide-MHC binding            
strength and uses this to select potential peptide candidates when searching for T-cell             
epitopes. However, beyond being presented by the MHC, a peptide also needs to find a               
matching T-cell in order to become immunogenic. So to truly understand what makes a              
peptide immunogenic, we need to understand the interaction between TCRs and           
peptide-MHC complexes. A first step to achieve this, is to build structural models of the               
TCR-pMHC complex and use these structures to characterize and potentially predict           
TCR-pMHC binding.  
 
In this chapter, we therefore present TCR-pMHCmodels, an automated tool for modeling the             
structure of TCR-pMHC complexes.  
 
The tool is available at:  
http://www.cbs.dtu.dk/services/TCRpMHCmodels/ 
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Abstract 

The interaction between the class I major histocompatibility complex (MHC), the peptide 
presented by the MHC and the T-cell receptor (TCR) is a key determinant of the cellular 
immune response. Here, we present TCRpMHCmodels, a method for accurate structural 
modelling of the TCR-peptide-MHC (TCR-pMHC) complex. This TCR-pMHC modelling 
pipeline takes as input the amino acid sequence and generates models of the TCR-pMHC 
complex, with a median Cα RMSD of 2.31Å. TCRpMHCmodels significantly outperforms 
TCRFlexDock, a specialised method for docking pMHC and TCR structures.   
TCRpMHCmodels is simple to use and the modelling pipeline takes, on average, only two 
minutes. Thanks to its ease of use and high modelling accuracy, we expect TCRpMHCmodels 
to provide insights into the underlying mechanisms of TCR and pMHC interactions and aid in 
the development of advanced T-cell-based immunotherapies and rational design of vaccines. 
The TCRpMHCmodels tool is available at: 
http://www.cbs.dtu.dk/services/TCRpMHCmodels/. 
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Introduction 

As part of the adaptive immune response, T-cells recognise and kill pathogenic or pathogen-
infected cells1,2. Understanding the mechanisms of such immune responses is therefore 
important for the development of cancer immunotherapies and rational vaccine design 3–9. The 
activation of T-cell immunity is primarily driven by the interaction between peptides presented 
by major histocompatibility complexes (pMHCs) and T cell receptors (TCRs) 1,10,11. TCRs are 
found on the surface of T-cells where they recognise protein fragments, named antigens, when 
these are presented by the MHC on the cell surface of antigen presenting cells. TCRs consist 
of two membrane-bound chains, which can be either α and β chains or γ and δ chains 12. The 
majority of T-cells expresses αβ-TCRs and these T-cells can be further subdivided into 
cytotoxic T-cells and T-helper cells 13. Cytotoxic T-cells interact with the MHC class I 
molecules and are involved in direct killing of pathogen-infected cells, whereas T-helper cells 
interact with the MHC class II molecules after which they directly or indirectly activate other 
immune cells to combat the pathogenic infection 14. In this work, we focus on modelling the 
TCR-pMHC complex of αβ-TCRs and MHC class I molecules, as these constitute the majority 
of the available structural complexes. 
The TCR-pMHC complex consists of three components, namely the TCR, the MHC and the 
MHC-bound peptide 2. The MHC class I molecule is a heterodimeric glycoprotein that consists 
of an α chain and a β2-microglobulin chain. The α chain is composed of three globular domains 
named α1, α2 and α3 which are highly polymorphic, allowing the MHC variants to 
accommodate a diverse range of peptides of different lengths and compositions 2.  
Each of the two chains in the αβ-TCR has a variable (V) and constant (C) domain. Located 
within the variable domains are three complementarity determining region (CDR) loops and 
these account for the main interaction with the pMHC 15. The sequence of the CDR loops are 
determined by a recombination process which leads to a highly diverse set of T-cells with 
different TCRs 16. It is assumed that the recombination process can theoretically generate more 
than 1015 T-cell variants 17, but only a minor fraction of these, 106 to 108, are actually expressed 
at any given time in the human organism 15. Despite the high variability in the CDR loop 
sequence, it has been shown that most CDRs only adopt a limited number of main chain 
conformations named canonical structures and that these canonical structures can usually be 
identified by specific sequence features 18–20. 
In the past, numerous sequence- and structure-based tools have been developed to predict and 
model the structure of and/or the interaction between the peptide and the MHC class I molecule 
21–27. Several structure-based tools for modelling the TCR have likewise been developed in the 
past 18,28. In recent years, there has been an increased focus on the TCR-pMHC binding 
accompanied by the development of tools for predicting the interaction between the pMHC 
and the TCR 29–32. In particular, previous work has demonstrated how a simple force-field-
based approach can be used to identify the cognate pMHC target of a TCR given the availability 
of structural models of the TCR-pMHC complex 33. Additionally, structural models have been 
used to analyse how mutations in the peptide affect the binding to a specific TCR 34. While 
tools to deal with peptide-MHC binding and predicting T-cell epitopes have been developed 
over the last decade 14–17, limited work has been dedicated to the task of generating accurate 
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TCR-pMHC models. In order to aid this development, we present a novel framework for 
automated modelling of TCR-pMHC complexes. The modelling pipeline, named 
TCRpMHCmodels, utilises the amino acid sequences of the MHC, peptide and TCR α and β 
chains. In a fully automated manner, the pipeline applies a series of simple comparative 
modelling steps to construct structural models of the pMHC, the TCR, and, subsequently, the 
pMHC-TCR complex. The tool does not include any assessment of the binding energy or 
prediction and ranking of potential T-cell epitopes; however, we believe that the models 
produced by our tool in combination with refined binding energy models can be used to provide 
valuable insights into the mechanisms underlying the interaction between TCR and pMHC. 
Thus, the models can guide the refined prediction of T cell epitopes extending beyond 
prediction of MHC antigen presentation. 

Here, we report the large-scale benchmark evaluation of different modelling strategies, 
including single- versus multi-template modelling, as well as different similarity measures for 
optimal template selection, to arrive at the optimal method implemented in TCRpMHCmodels. 
The performance of TCRpMHCmodels is benchmarked against TCRFlexDock 29, a specialised 
protein docking method for identifying the correct orientation between the TCR and pMHC 
structure. Lastly, we test the performance of TCRpMHCmodels on 14 TCR-pMHC structures 
deposited in the Protein Data Bank (PDB) 35 after the generation of the TCR-pMHC template 
database. 

Results 

TCRpMHCmodels is an automated modelling pipeline for generating structural models of a 
TCR-pMHC complex using only the amino acid sequence as input. This method adopts a 
template-based modelling approach, generating a structural model of a given protein sequence 
(target), using one or more experimentally determined structures of related homologous 
proteins (templates).  
The initial steps in the TCRpMHCmodels pipeline involves the modelling of the TCR and the 
pMHC separately. These two models are then combined when building the final TCR-pMHC 
complex. The TCR is generated with LYRA 18, using templates from a TCR database (see 
Method section), while the pMHC is generated with MODELLER 36, using templates from a 
pMHC database (see Method section). The full TCR-pMHC model is then generated with 
MODELLER using the TCR and pMHC model as templates together with one or more 
templates from the TCR-pMHC database (see Method section, Figure 1). 
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Figure 1: Flowchart of the computational framework for modelling TCR-pMHC complexes, 
from the input sequence to the final TCR-pMHC model. The MHC molecule is depicted in 
blue and the peptide in orange, while the two chains of TCR, α and β, are represented in light 
and dark grey, respectively.  

MODELLER is a comparative modelling tool for predicting the three-dimensional structure of 
proteins 37. The tool needs an initial alignment of the sequence to be modelled and one or more 
known structures. Based on the alignment, MODELLER automatically extracts spatial 
features, such as Cα-Cα distances, hydrogen bonds, and main chain and side chain dihedral 
angles, and transfers these from the templates to the target. Lastly, the three-dimensional model 
is obtained by satisfying all spatial restraints as accurately as possible. 
LYRA is a tool that can predict the structure of TCRs. The tool starts by selecting the best 
framework template for each chain in the TCR, after which it uses the canonical structure 
model to select the best templates for each of the CDRs. The CDRs are then grafted onto the 
framework templates which is then merged and the side chains are repacked to generate the 
final TCR model.    
To ensure good model quality of the TCR-pMHC complex, we have optimised each of the 
steps in TCRpMHCmodels. The results from these optimisations are described in the following 
sections. All RMSDs, unless otherwise specified, are calculated on Cα atoms only. 

pMHC model optimisation 

The first step in the TCRpMHCmodels method is building a structural model of the pMHC. In 
order to assess the model quality of this step, we have generated structural models for each 
structure in the pMHC database using a leave-one-out (LOO) approach and evaluated the 
quality of the generated models by comparing them to their native structure found in the pMHC 
database. For the model optimisation process, we imposed four different template-target 
sequence identity thresholds of 99.9%, 95%, 90% and 80%, selecting only structural templates 
with a sequence identity below the given threshold (see the Method section). By using different 
sequence identity thresholds, we thereby generate a more diverse set of structural models with 
both high and low sequence identity to the template database.  
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Using the LOO approach with the four sequence identity thresholds, we generated four 
structural models for each target in the pMHC database. When modelling the pMHC, we also 
investigated four different template selection methods, which we denote OneWeighted, 
OneUnweighted, MultiWeighted and MultiUnweighted, to evaluate the effect of using a single 
or multiple templates as well as using an unweighted or weighted sequence identity score for 
template selection. The four different template selection methods were further compared with 
a random baseline. For more details on the template selection methods and the random baseline 
(see the Method section). The results of this analysis are illustrated in Figure 2 and 
Supplementary Figure S2. 

Figure 2: RMSD accuracy for the different template selection methods. A) The RMSD for the 
pMHC complex. B) The RMSD for the peptide. For each target in the template database, we 
generate four models using the four different sequence identity thresholds. The 
OneUnweighted method uses only a single pMHC template with no weights on the sequence 
identity. The MultiUnweighted also have no weights on the sequence identity but this method 
uses multiple templates. The OneWeighted method uses only a single pMHC template and a 
weighted sequence identity. The MultiWeighted method uses the weighted sequence identity 
and multiple templates. The four different template selection methods are compared with a 
random baseline (see the Method section for more details). The p-values were obtained using 
the Wilcoxon signed-rank test.  

From Figure 2 A and B, we observe that the MultiWeighted method performed significantly 
better than the other methods, both when comparing the RMSD of the pMHC and the peptide. 
The median RMSD values of the pMHC and the peptide in the MultiWeighted method are 
0.54Å and 0.50Å, respectively. For comparison, the median RMSD values of the Random 
method are 0.88Å and 1.44Å for the pMHC and the peptide, respectively. The improved 
accuracy of the peptide RMSD shows that the MultiWeighted method is capable of accurately 
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modelling this part of the pMHC complex, which is less conserved and fundamental for the 
TCR specificity. Similar conclusions were obtained using the TM-score (see Supplementary 
Figure S1). Due to the improved accuracy, we therefore selected the MultiWeighted method 
as the default method for building the pMHC in TCRpMHCmodels.  

In Figure 3, we display the accuracy of the MultiWeighted method in a more detailed manner, 
showing how the modelling accuracy of the pMHC and the peptide depends on the sequence 
identity to the best template, using a Chothia-Lesk plot 38. From this figure, it is clear that the 
modelling accuracy for the pMHC complex is in general very high (less than 1Å), even in 
situations where the best template shares very limited similarity to the target. However, it is 
also clear that this high accuracy is driven by the very conserved structure of the MHC, and 
that the picture is very different when focusing only on the peptide. 

Figure 3: Benchmark results for the pMHC models generated using the MultiWeighted 
method. Chothia-Lesk plot showing the RMSD accuracy for the pMHC (orange) and the 
peptide (red) against the sequence identity to the best template.  

To further investigate this, we analysed how the pMHC model accuracy depends on the peptide 
length and the sequence identity. Supplementary Figure S3 demonstrates (as expected) that 
longer peptides tend to have higher peptide RMSDs. The same tendency is observed when 
investigating models generated using different sequence identity thresholds for template 
selection, see Supplementary Figure S4. 
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TCR model accuracy 

The TCR subunit of the TCR-pMHC complex is modelled using LYRA 18. LYRA is an 
automated method for modelling TCRs and it generates models of high accuracy with a 1.48Å 
global RMSD and 2.13Å binding site RMSD. The main advantage of LYRA is that it uses the 
so-called canonical structure method to select the best templates for the CDR loops. The 
canonical structures are conserved and limited in conformations of CDR loops that can usually 
be identified by sequence-based rules. The canonical structure model has been proven valid for 
both antibodies and TCRs 18–20 and LYRA is the only automated method that uses the canonical 
structure method for building structural models of the TCR. 

TCR-pMHC model optimisation 

The final task of TCRpMHCmodels is to find the optimal approach for assembling the TCR 
and pMHC model to form the TCR-pMHC complex. In our TCR-pMHC modelling pipeline, 
this is achieved with MODELLER using the TCR and pMHC model as templates together with 
one or more templates from the TCR-pMHC database.  
In order to assess the model quality of this step, we generated structural models for each 
structure in the TCR-pMHC database using a LOO approach, and we then evaluated the quality 
of the generated models by comparing them to their native structure found in the TCR-pMHC 
database. 
Using the LOO approach with the four different sequence identity thresholds, we then 
generated four models for each target in the TCR-pMHC database. When modelling the TCR-
pMHC, we investigated three different template selection methods, which we denote 
OneUnweighted, OneWeighted and MultiWeighted, to evaluate the effect of using a single or 
multiple templates as well as using an unweighted or weighted sequence identity score for 
template selection. The results from this analysis are depicted in Figure 4. 
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Figure 4: The TCR-pMHC RMSD accuracy for the different template selection methods. For 
each target in the template database we generated four models using the four different sequence 
identity thresholds and evaluated the generated models using the RMSD for the TCR-pMHC 
complex. The OneUnweighted method uses only a single TCR-pMHC template with no 
weights on the sequence identity. The OneWeighted method uses only a single TCR-pMHC 
template and a weighted sequence identity. The MultiWeighted method uses the weighted 
sequence identity and multiple templates. The three different template selection methods are 
compared with a random baseline shown in grey. The p-values were obtained using the
Wilcoxon signed-rank test. The RMSD accuracy of the TCR, the pMHC and the peptide are 
shown in Supplementary Figure S5.     

From Figure 4, we observe that the MultiWeighted method has a lower median than the other 
methods and we therefore used this method as the default template selection method in the final 
TCRpMHCmodels pipeline. We also show the TM-scores (see Supplementary Figure S6) and 
the Chochia-Lesk plot (see Supplementary Figure S7). The MultiWeighted method has a 
median TCR-pMHC RMSD of 2.31Å which shows that model accuracy for the TCR-pMHC 
complex is in general very high. Comparing the median TCR-pMHC RMSD from the 
MultiWeighted method with the median RMSD of the Random method, we see an 86% 
improvement in the accuracy.  

Figure 5 shows the accuracy of the MultiWeighted method in a more detailed manner, by 
plotting the model accuracy based on the sequence identity to the best template, using a 
Chothia-Lesk plot. 
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Figure 5: RMSD accuracy for the TCR-pMHC models generated using the MultiWeighted 
method. Chothia-Lesk plot showing the RMSD accuracy for the TCR-pMHC (grey), the TCR 
(blue), the pMHC (orange) and the peptide (red) against the sequence identity to the best 
template. 

From Figure 5 we see that the modelling of final TCR-pMHC complexes is much more 
dependent on the sequence identity to the templates compared to the pMHC and the TCR 
subunits. This could be explained by the fact that the conformation of the TCR-pMHC is much 
more variable than the conformation of the TCR or the pMHC alone. 

Benchmark against TCRFlexDock 

Our optimised TCRpMHCmodels pipeline was benchmarked against the TCRFlexDock 
method, a specialised protein docking method for finding the correct orientation between the 
TCR and pMHC to form the final TCR-pMHC complex (see the Method section). The 
TCRFlexDock protocol applies a set of iterative Monte Carlo moves and side chain packing, 
combined with refinement of both peptide and CDR loop conformations 29. The TCRFlexDock 
docking protocol was run 1000 times to generate 1000 TCR-pMHC models, which were then 
scored using ZRANK 39 to select the best models. 
To compare the quality of the models produced by the two different methods we used both 
RMSDs and DockQ scores 40. The result of the benchmark analysis is shown in Figure 6. 
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Figure 6: Benchmark analysis of the TCR-pMHC models. A) Shows the TCR-pMHC RMSD 
accuracy between the models produced by TCRpMHCmodels and TCRFlexDock. B) Shows 
the DockQ scores between the models produced by TCRpMHCmodels and TCRFlexDock. 
The statistical comparison was performed using the Wilcoxon signed-rank test.  

We compared the accuracy of the models produced with the TCRpMHCmodels pipeline and 
the TCRFlexDock protocol, using RMSDs and DockQ scores (see Figure 6). The RMSD is a 
measure of the average distance between the Cα atoms from the model and the Cα atoms in the 
native structure solved using X-ray crystallography. This measure, while accounting for the 
overall accuracy of the model, does not take into account side-chain placement which is critical 
for identifying molecular interactions and the TCR-pMHC interface as a whole. This is 
partially accounted for by using the DockQ score, a model quality measure derived by 
combining Fnat, LRMS, and iRMS, three measures of model quality proposed and standardised 
by the Critical Assessment of PRedicted Interactions (CAPRI) community 41. Fnat is the 
fraction of native and non-native residue-residue contacts in the interface, LRMS is the RMSD 
of the backbone atoms in the ligand after superimposing only the receptor from the native and 
non-native structure, and iRMS is the backbone atoms of all interface residues 42. The DockQ 
score ranges from 0 to 1 and can be used to assign the quality of a model into the four classes: 
Incorrect (DockQ score < 0.23), Acceptable (DockQ score ≥ 0.23 and DockQ score < 0.49), 
Medium (DockQ score ≥ 0.49 and DockQ score < 0.80) and High (DockQ score ≥ 0.80) 40. 
From Figure 6, we observe that the models generated with TCRpMHCmodels were 
significantly more accurate than the models generated using the TCRFlexDock protocol, both 
in terms of RMSDs and DockQ scores. The median RMSD values of TCRpMHCmodels and 
TCRFlexDock were 2.31Å and 3.73Å, respectively, while the median DockQ scores were 0.50 
and 0.3, respectively. Looking only at the DockQ scores we see that almost all the models 
produced by the TCRpMHCmodels pipeline had an acceptable, medium or high model quality, 
whereas the models produced using the TCRFlexDock protocol had an incorrect, medium or 
acceptable model quality. The model quality measure Fnat, LRMS, and iRMS is shown in 
Supplementary Figure S8. This indicates that the TCRFlexDock protocol is less accurate at 

44



identifying the correct conformation of the TCR-pMHC complex compared to 
TCRpMHCmodels, even though the TCRFlexDock protocol optimises both the TCR 
orientation, the CDR loop conformation and the MHC bound peptide conformation during 
docking. 

To better understand the quality of the models generated by TCRpMHCmodels and 
TCRFlexDock, we made a visual inspection of the models with the highest and lowest quality 
for each method (see Supplementary Figure S9). We here observe that the models produced by 
TCRpMHCmodels are better at predicting the interface between the TCR and pMHC compared 
to TCRFlexDock. The model with the lowest quality from TCRpMHCmodes had a Fnat score 
of 0.38, indicating that around 38 % of the native residue-residue contacts in the interface where 
correctly predicted. The model with the lowest quality from TCRFlexDock had Fnat score of 
0.02. This low Fnat score would be classified as an incorrectly predicted interface as only 
around 2% of the native residue-residue contacts in the interface where correctly predicted. 
Looking at this low-quality model generated by TCRFlexDock, it can be observed that the 
CDR loops of the TCR is mainly interacting with one of the sides in the MHC molecule instead 
of interacting with the peptide as would be expected (see Supplementary Figure S9). 

We further investigated the CDR loop accuracy between the models generated by 
TCRFlexDock and TCRpMHCmodels and compared these to the initial TCR model produced 
by LYRA (see Figure 7). Looking only at the RMSD for the CDR loops, we observe that the 
models generated with TCRpMHCmodels have a slightly better loop accuracy compared to the 
initial TCR models. Generating the final TCR-pMHC complex must therefore change the loop 
conformation of the CDRs to better fit the peptide-MHC, thereby generating CDR loops which 
are closer to the loops found in the native TCR-pMHC complex. In comparison to 
TCRpMHCmodels, the CDR loop accuracy of the model generated with TCRFlexDock 
decreases, both compared to the initial TCR model and the models generated with 
TCRpMHCmodels.  
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Figure 7: CDR accuracy of the TCR-pMHC models from the benchmark analysis. Shows the 
CDR RMSD accuracy between the TCR-pMHC models produced by the TCRpMHCmodels 
pipeline and TCRFlexDock protocol, compared to the initial TCR model produced by the TCR-
pMHC pipeline.  

Benchmark against new structures 

TCRpMHCmodels was benchmarked using 14 TCR-pMHC structures deposited in IEDB after 
the TCR-pMHC template database was created. Note that 4 additional structures were 
available, that could not be modelled; two due to lack of available CDR templates and two due 
to lack of available TCR-pMHC templates with the correct peptide length. For each of the 14 
cases, we generated a single model using TCRpMHCmodels. The average RMSDs for the 
TCR-pMHC, TCR, pMHC and peptide were 3.20Å, 1.81Å, 0.69Å and 0.77Å, respectively. For 
more details see Supplementary Figure S6 and Supplementary Table S1. This data suggests 
that TCRpMHCmodels generates accurate models for both the TCR and pMHC complex but 
is less accurate at predicting the TCR orientation over the pMHC and these predictions should 
therefore not be over-interpreted. The model accuracy for these new structures is comparable 
to the results shown in Figure 6, with the exception of one structure (PDB ID: 5TEZ 43). The 
5TEZ complex has a high sequence identity of 81% to the best TCR-pMHC template (PDB 
ID: 5EUO), but the resulting model has a relatively poor accuracy (TCR-pMHC RMSD = 
5.66Å). The 5EUO and 5TEZ are both complexes of TCRs bound to the HLA-A2-restricted 
Influenza A GIL peptides, and hence share 100% identity to the peptide and the MHC. 
However, the two TCRs are very different (sequence identity of 37% for the α chain and 52% 
for the β chain), resulting in the TCR of 5TEZ adopting a non-canonical binding orientation to 
the pMHC 43. Modelling the 5TEZ structure is, therefore, a highly challenging case, as there 
are no good templates found in our template database.  
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Discussion 

Here, we present TCRpMHCmodels, an automated pipeline for building structural models of 
TCR-pMHC complexes. Using as input only the amino acid sequence of a target TCR-pMHC, 
TCRpMHCmodels automatically identifies the best structural templates, generates the best 
target-template sequence alignment and builds a structural model of the target using 
comparative modelling. The structural models have a high quality and are generated within a 
computational time of only 2 minutes. 

It has been suggested that using multiple templates can increase the model accuracy for 
comparative models 44, especially when modelling protein complexes with multiple chains 45,46. 
Using multiple templates is harder than it appears, since finding the optimal combination of 
templates is non-trivial 47. Including all suitable template candidates usually leads to 
accumulation of noise and wrong templates which decreases the model quality 33,46. However, 
each additional template increases the probability of detecting a template with the correct 
structural conformation. Finding the right balance is therefore very important when using 
multiple templates.  

In this study, we have evaluated different template selection methods, including single versus 
multi template modelling. Comparing single versus multi template modelling of the TCR-
pMHC complex, we found that using multiple templates produced the most accurate models. In 
our multiple template selection method, we always included the template with highest sequence 
identity; additional templates were added if they had an identity of less than 95% to any 
template already selected and their identity to the target was at least 80% of the identity of the 
best scoring template. By doing this, we ended up with a non-redundant list of templates which 
were then used for the multi template modelling. This both decreases the number of templates 
used and increases the chance of selecting structures with the correct conformation.     

In the present study, we evaluated the effect of using a weighted sequence identity score by 
changing the weight of the different chains in the TCR-pMHC complex. We here showed that 
this weighted identity score achieved the best model accuracy, both when modelling the pMHC 
and the TCR-pMHC complex.  

TCRpMHCmodels first models the pMHC and the TCR separately, after which these are 
assembled in an additional modelling step to form the full TCR-pMHC complex. The reasoning 
for modelling the TCR and the pMHC as separate units is that there are more structures of the 
TCR and the pMHC as separate units, than for the full TCR-pMHC complex. By modelling 
the TCR and the pMHC separately, we have a larger number of templates which can be used 
in the comparative modelling step, resulting in more accurate models. This is especially true 
when modelling the TCR CDR loops and the MHC bound peptide, as these parts are more 
variable and therefore more difficult to model. In the final modelling step, the two models of 
the TCR and pMHC are used as templates, together with one or more templates of the full 
TCR-pMHC complex. Using this additional modelling step is a simple way of assembling the 
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TCR and pMHC, and we here show that this approach gives more accurate models than using 
the more traditional docking approach.  

We compared TCRpMHCmodels with TCRFlexDock 29 and showed that TCRpMHCmodels 
significantly outperformed TCRFlexDock, both at predicting the full TCR-pMHC complex, 
the TCR-pMHC interface and the CDR loop conformations. The two methods use a different 
approach for modelling the TCR-pMHC complex. TCRFlexDock uses a flexible backbone 
docking protocol based on RosettaDock 48 to perform TCR-pMHC docking and uses ZRANK 
39 to identify the best TCR-pMHC complexes. The TCRFlexDock protocol was optimised 
using structures of crystallized TCR and pMHC complexes for which a crystallized structure 
of the full TCR-pMHC complex also existed. After optimising the TCRFlexDock protocol, the 
authors of TCRFlexDock then show how the protocol can also produce accurate TCR-pMHC 
complexes using TCR and pMHC models instead of crystallized structures. TCRpMHCmodels 
on the other hand is based on a comparative modelling approach and no explicit docking is 
performed. To make our tool accessible we have implemented TCRpMHCmodels into a web 
server, which is both fast and easy to use. In contrast to this, the TCRFlexDock protocol is not 
readily implemented or available as a web server and is both time and computationally 
intensive as it takes on average 130 CPU hours to run the complete protocol on a single 
complex. Finally, as the authors of the TCRFlexDock method mention, using TCR and pMHC 
models is more challenging than using crystal structures, so one reason for the relatively low 
accuracy of TCRFlexDock in this study could be that we have here only used TCR and pMHC 
models rather than crystal structures as the initial input for the TCRFlexDock protocol. 

A key factor in determining the accuracy of TCRpMHCmodels is the availability of templates 
suitable for the comparative modelling steps. The current implementation of 
TCRpMHCmodels is limited to model structures where the length of the bound peptide 
matches the length of the structures in the pMHC and TCR-pMHC template databases. In 
practice, this limits the application of the current tool to only model structures with 8-11mer 
peptides bound in the peptide-binding groove. Also, the accuracy of the tool was demonstrated 
(as is the case for all comparative modelling approaches) to depend strongly on the sequence 
identity between the target entry and the template used for modelling. Due to the availability 
of only a relatively small number of known structures, this dependency has the most 
pronounced effect when it comes to the full TCR-pMHC template database. This was 
demonstrated in the case of the 5TEZ PDB structure, where TCRpMHCmodels was shown to 
achieve an unexpected low predictive performance imposed by the lack of a suitable TCR-
pMHC template sharing the non-canonical TCR binding orientation of 5TEZ. This problem 
could potentially be resolved in the future by including new TCR-pMHC structures into our 
internal template database as soon as these are deposited into IEDB (https://www.iedb.org/).  

It has been shown that structural features of the pMHC complex can shape the TCR repertoire, 
indicating that key features for TCR recognition may come from the combined structure of the 
pMHC complex 49. Furthermore, it is known that a given TCR has the potential to recognise 
different pMHC complexes, in a process known as T-cell cross-reactivity 49. Understanding T-
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cell cross-reactivity is very important for TCR-based immunotherapies, as cross-reactive T-
cells can cause serious or even fatal side effects 50,51. Unfortunately, the available structural 
data for cross-reactive TCRs and pMHCs is not large enough to draw any conclusions on the 
ability of our tool to model such cases, but as an illustrative example, we have included the 
modelling of some cross-reactive peptides and TCRs in Supplementary Figures S11 and 
Supplementary Figures S12. In all cases, the accuracy of the models is similar to or marginally 
worse than the average accuracy of the tool. Future work regarding integration of structural 
modelling of the TCR-pMHC interaction interface with refined binding energy models might 
aid in defining such cross-reactivities and allow the development of corresponding predictive 
models. 

Here, we have shown that TCRpMHCmodels generates accurate structural models of the TCR-
pMHC complex and that it outperforms TCRFlexDock, a specialised docking protocol for 
assembling TCR and pMHC molecules. We believe that this work has generated the foundation 
for future work within the prediction of TCR-pMHC interactions, and we expect the model 
performance to increase as more structural and sequence data describing TCR-pMHC 
interactions becomes available. 

Method 

Template databases 

TCRpMHCmodels applies three structural databases which are used for modelling the pMHC, 
the TCR, and the complete TCR-pMHC complex, respectively. At each step, one or more 
templates are selected from each database according to their sequence identity. In the sections 
below, we describe the generation of these structural template databases. 

The pMHC database 
The pMHC database included 455 non-redundant pMHC structures. The structures found in 
the database were identified using the Immune Epitope Database (IEDB) 52–54, with a few 
additional pMHC structures from the Protein Data Bank (PDB) 35. Using the sequence from 
these structures we then generated an in-house Hidden Markov Model (HMM) profile for the 
MHC class I chain. The in-house HMM was generated using the HMMER software (version 
3.1) http://hmmer.org/ with the HMM profile from Pfam 55 called MHC_I.hmm (accession 
number: PF00129). This HMM profile includes the α1 and α2 domains of the MHC class I 
family. We first used hmmsearch to identify PDB entries with a sequence that matched the 
HMM profile obtained from Pfam. To remove false positive “hits”, we used an E-value 
threshold of 10-5 and only selected entries with a full sequence bit score larger than 250. This 
yielded 700 PDB entries. All identified entries were then aligned to the MHC class I HMM 
profile from Pfam using hmmalign to generate a multiple sequence alignment (MSA). We here 
included the options --trim to exclude residues at the protein terminals that did not fit the HMM 
model. By performing a manual analysis of the MHC molecules in the database, we found that 
some of the entries included uncommon insertions at specific positions. These few insertions 
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were primarily found in chicken and canine and, to include these in the HMM, we therefore 
constructed an in-house HMM profile matching all the identified entries. This new HMM 
profile was made using hmmbuild using the --symfrac 0 option. The resulting HMM profile 
contained 181 positions and included all the uncommon insertions, and it identified the same 
set of pMHC molecules as the original Pfam profile.  
The database was next cleaned up by removing pMHC structures without a peptide or with 
missing residues in the peptide. This reduced the database to 645 pMHC structures. We then 
used CD-HIT 56 with a global sequence similarity threshold of 100% to ensure that that the 
final database only contained unique pMHC structures.  

The TCR database 
The TCR database was obtained from LYRA 18. This database consisted of 105 paired TCR 
chains, two individual α chains and nine individual β chain structures. For more details see 18.  

The TCR-pMHC database 
The TCR-pMHC database included 61 non-redundant TCR-pMHC structures. These were 
identified using IEDB 52–54, with a few additional structures from the Protein Data Bank (PDB). 
The additional TCR-pMHC structures were found by aligning each entry in the PDB database 
to the in-house MHC class I HMM profile, plus the HMM profile for the TCR α and β chain. 
We then used PISCES server 57 on all the identified TCR-pMHC structures to exclude 
redundant entries and to remove structures with a resolution above 3Å. Furthermore, we 
removed PDB structures with missing residues in the peptide.  

An overview of the different databases is shown in Figure 8. From Figure 8 A, we observe that 
the pMHC database contains the largest amount of structures, followed by the TCR database 
and lastly the TCR-pMHC database. Figure 8 B and C show the distribution of structures based 
on the length of the peptide found in the pMHC database and the TCR-pMHC database.  
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Figure 8: Database visualization. A) Number of structures in each template database. B) The 
peptide length distribution of structures in the pMHC database. C) The peptide length 
distribution of structures in the TCR-pMHC database. 

Modelling the TCR-pMHC complex 

The models produced by the TCRpMHCmodels method were generated using the automodel 
class from MODELLER v9.18 36 with default settings. The automodel class takes two inputs: 
i) one or multiple template structures, and ii) an alignment of the target sequence and the
sequence of the selected templates, in PIR format. In TCRpMHCmodels both the template
selection and the alignment are generated automatically.
To calculate sequence identities, all sequences were aligned to the most similar HMM profile 
(either MHC, TCR α or TCR β) before calculating the sequence identity. These alignments 
were further used in the alignment file, after selecting the best templates. Using the structural 
templates and the alignment, MODELLER then builds a structural model of the target by 
optimally satisfying spatial restraints derived from the alignment. 

Template selection 

Template selection for the pMHC 
When modelling the pMHC, we investigated four different template selection methods: i) 
OneUnweighted, ii) OneWeighted, iii) MultiWeighted and iv) MultiUnweighted. In each of 
these template selection methods, we only used templates with the same peptide length. Using 
the in-house MHC class I HMM profile, we aligned the MHC chain of the target to templates 
found in the pMHC database (see pMHC database for further details about the class I HMM 
profile). The alignment was generated using hmmalign with the --trim option. After the 
alignment, we calculated the sequence identity between the target and each of the templates, 
excluding all insertions. 
In the OneUnweighted method, the sequence identity was calculated by summing the identities 
from the peptide and the MHC alignment, dividing with sum of the peptide and HMM 
alignment lengths (excluding gaps). The templates were next sorted based on the sequence 
identity and the template with the highest sequence identity used for modelling.  
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The MultiUnweighted method uses the same approach to calculate the sequences identity, but 
instead of selecting only the single template with the highest identity score, this method selects 
multiple templates for model building. The selection of these multiple templates was done 
using a Hobohm1-like 58 approach similarly to what we have described earlier 33 by first sorting 
the templates according to sequence identity as described for method OneUnweighted. Next, 
the template with the highest sequence identity was selected and considered the best template. 
This template was always included. Next, looping through the sorted template list, additional 
templates were included if 1) they had an identity of less than 95% to any template already 
selected, and 2) their identity to the target was at least 80% of the identity of the top scoring 
best template. 
In the OneWeighted method, the sequence identity measure was calculated by introducing a 
weight to the peptide and MHC sequence so that they each contributed equally to the sequence 
identity. Using the weighted sequence identity, we then selected the single template with the 
highest sequence identity. 
In the MultiWeighted method, we used the weighted sequence identity, but selected multiple 
templates with the algorithm described above for the MultiUnweighted method.    

Template selection for the TCR-pMHC 
When modelling the TCR-pMHC, we investigated three different template selection methods, 
named: i) OneUnweighted, ii) OneWeighted and iii) MultiWeighted. These three methods were 
performed as explained above, the only difference was the calculation of the weighted sequence 
identity. Here, the weighted sequence identity was calculated by introducing a weight to the 
peptide, MHC, TCR α and TCR β sequence so that the peptide and the MHC contributed to ⅓ 
of the sequence identity, while the TCR α and TCR β contributed to ⅙ of the sequence identity, 
respectively.    

Model validation 

In order to assess the model accuracy of TCRpMHCmodels in situations where the structure is 
not known, we performed a leave-one-out (LOO) assessments of all structures in our template 
database. For each structure in the template database, we removed that structure from the 
database and built a structural model using the remaining templates. To further increase the 
model variability in terms of sequence identity of the adopted templates, we furthermore 
imposed four different template-target sequence identity thresholds of 99.9%, 95%, 90% and 
80%, thereby removing any template having an identity higher than the selected threshold. For 
each structure in the template database, we therefore generated four different structural models 
imposing the four different sequence identity thresholds. The resulting models were then 
evaluated by comparing them to their native structure from the template database. This LOO 
assessments was used to evaluate the performance of both the pMHC and the final TCR-pMHC 
models.  
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Random performance 

In order to estimate a baseline performance value, we, for each structure in the template 
database, randomly selected another template from the database using the four different 
sequence identity thresholds as described above. 

TCRFlexDock 

Protein-protein docking is a common method for assembling multi-chain proteins 59, 60. Thus, 
we compared TCRpMHCmodels with the CDRPep protocol from TCRFlexDock protocol 29. 
TCRFlexDock is a specialised protein docking method for predicting the correct orientation 
between the TCR and pMHC molecules. While docking, the TCRFlexDock CDRPep protocol 
allows for some flexibility in the CDR loops and the MHC bound peptide. For each TCR-
pMHC complex in the TCR-pMHC template database we modelled the TCR and the pMHC, 
and we then used the TCRFlexDock protocol to assemble these two models. As described in 
the TCRFlexDock protocol, we created 1000 docking decoys and each decoy was subsequently 
scored using ZRANK 39. The decoy with the lowest ZRANK score was selected as the best 
TCR-pMHC complex from the protocol, and this complex was evaluated by comparing it to 
the native structure from the template database.  

Model performance 

To assess the quality of the structural models, we used the root-mean-square deviation (RMSD) 
between the Cα atoms from the model and the Cα atoms in the native structure from the 
template database, after making a structural alignment of the model and the template. The 
structural alignment was made using the Superimposer class from BioPython 61 minimising the 
distance between the Cα atoms in the model and the structural template before calculating the 
RMSD. To evaluate the model accuracy of the different parts in TCR-pMHC complex we 
generated four RMSD values, the TCR-pMHC RMSD, the TCR RMSD, the pMHC RMSD 
and the peptide RMSD. Each of these RMSD values were defined by calculating the RMSD 
after structural alignment of the different TCR-pMHC, the TCR, the pMHC and the peptide, 
respectively.     
After superimposing, we used the template modelling score (TM-score), calculated as 
described by Y. Zhang et. al. 62 between all the Cα atoms. The TM-score is a length-
independent metric used for measuring structural similarity between two proteins. The TM-
score ranges between 0 and 1, where a TM-score of 1 indicates a perfect match between two 
structures. A TM-score below 0.2 corresponds to randomly choosing an unrelated protein and 
a TM-score higher than 0.5 assumes that the two structures roughly have the same structural 
fold.  
To evaluate the model quality of the docking models from the TCRFlexDock protocol, we used 
the DockQ score calculated with the DockQ tool 40. The DockQ score is made by combining 
Fnat, LRMS, and iRMS to a single score ranging between 0 and 1 that can be used to assess 
the quality of protein docking models. 
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Chapter 4: Paper III 
In this chapter, we present an experimental method for determining the exact molecular             
interaction points of a TCR with peptides presented in an MHC molecule. The experimental              
method measures the relative binding affinity between clonal TCRs and different           
peptide-MHC variants. The peptide-MHC variants are constructed from an identified TCR           
target, and includes single amino acid variations of this peptide. For each peptide variant              
individual DNA barcode-labeled MHC multimers are generated, pooled and incubated with           
the clonal T-cells. After incubation, the DNA barcodes are sequenced and the distribution and              
relative counts of the barcode reads reflects the TCR-pMHC binding hierarchy. To determine             
the TCR interaction points, the TCR binding can be translated into a TCR motif (referred to as                 
a TCR fingerprint). The TCR fingerprint illustrates the amino acids essential for the             
interaction between the TCR and the peptide-MHC complex. 

In this chapter, we use this experimental method to investigate different TCR-pMHC            
interactions. This was done by generating TCR fingerprints of TCRs binding to different             
peptide-MHC variants and utilizing these to predict and validate cross-recognized peptides           
from the human proteome. This suggests that the TCR fingerprints presented here, can be              
used both as a screening tool for understanding the molecular interactions of TCRs and for               
selecting TCRs intended for adoptive T-cell therapy. 
To gain a deeper understanding of the peptide-MHC binding specificity, we also generated             
structure-based models of the identified pMHC target and used these models to investigate             
how the different peptide variations affect the peptide-MHC binding.  

This project was carried out in a collaboration with Sine Reker Hadrup’s group at DTU. The                
underlying experimental strategy was predominantly developed by Amalie K. Bentzen and           
Andrea M. Marquard and the experimental results shown in the paper were predominantly             
performed by Lina Such and Amalie K. Bentzen. My primary contribution to the work was               
the visualization of the experimental results, generation of sequence motifs, as well as the              
generation of the structural models used for understanding of the peptide-MHC binding            
specificity. 
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Chapter 5: Paper IV 
Many methods for modeling the structure of BCRs and TCRs exist, but due to the high                
variability in particular of the CDR3 loop in these receptors, the structural accuracy for              
modeling this loop is usually low [64]. Traditionally these CDR loops are modeled using              
either template-based or ab initio methods. The main limitation with the template-based            
methods is that they rely on the limited amount of experimentally determined structures.             
Given the diversity of the CDR3 loops in terms of structure, sequence and length, these               
experimentally determined structures cover only a marginal fraction of all possible loop            
conformations. The biggest limitation of the ab initio methods is that they are slow, as they                
usually have to generate many possible loop conformations, which then need to be ranked to               
find the best loop. In this project, we wanted to improve the speed and accuracy of the ab                  
initio methods, by using a recently developed deep neural network architecture called            
generative adversarial network (GAN). The main idea is to teach the GAN how to generate               
accurate and diverse CDR3 loops using the dihedral angles, from which the loop structure can               
be built.  

In this chapter, we present the preliminary results from this project.  
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Structural modeling of lymphocyte receptor loops using 
Generative Adversarial Networks 
 
Kamilla Kjærgaard Munk, Morten Nielsen, and Paolo Marcatili  
Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark 

Abstract  
The antigen-binding sites of B-cell receptors (BCRs) and T-cell receptors (TCR) consist of             
hypervariable loops, known as complementarity-determining regions (CDRs). In particular,         
the CDR3 loop of the heavy chain for BCRs and the CDR3 loop of the beta chain for TCRs,                   
are the most variable parts of the two receptor systems, both in terms of sequence variability,                
length, and conformation. Because of this, current loop modeling techniques usually fail at             
building high-quality structural models for these loops. Here, we use Generative Adversarial            
Networks (GANs) to generate accurate and diverse structures of the CDR3 loop given only              
the sequence. The GAN is trained using the backbone dihedral angles from the CDR3 loop               
structures, and the preliminary results show that it is possible to generate diverse CDR3 loop               
structures, but that the network still needs to learn essential structural features, such as loop               
closure.  

Introduction  
The accurate structural modeling of B-cell receptors (BCRs) and T-cell receptors (TCRs) is             
fundamental to gaining a detailed insight into the mechanisms underlying immunity,           
understanding the B- and T-cell receptor specificity towards their cognate targets, and to             
develop new drugs and therapies [1–4]. The binding sites of both BCRs and TCRs comprises               
six loops called complementarity determining regions (CDRs). Each of the chains contribute            
with three loops, named CDR1, CDR2 and CDR3. The CDR3 loop of the heavy chain in                
BCRs (denoted H3) and the CDR3 loop of the beta chain in TCRs (denoted B3), comprise the                 
antigen-binding site and they have the largest sequence diversity [5, 6] . Previous studies have              
shown that five of the six CDR loops mainly assume limited structural conformations, named              
canonical structures, which can be used to predict the structure of these loops [7–9].              
However, the H3 and B3 loop defy these standard classification attempts, and the model              
accuracy for these loops is therefore usually much lower compared to the remaining CDR              
loops [10] . The main problem when modeling the CDR3 loop arises due to the variability in                
loop lengths and the high diversity of both the sequence and structure. The traditional way of                
modeling CDR loops is based on template-based modeling, which uses experimentally           
determined structures as templates for modeling. The problem with this type of method is that               
it relies on the limited amount of experimentally known structures for BCR and TCR              
available in the Protein Data Bank [11] . Given the diversity of structure, sequence and length               
of the CDR3 loops, these known structures cover only a marginal fraction of all possible loop                
conformations.  
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Another way to model the CDR loops is to use ab initio methods. These methods are                
template-free and seek to predict the loop conformation without the use of structural             
templates. Ab initio methods generate possible loop conformations (called decoys) by           
sampling the conformational space, after which the generated decoys are ranked using energy             
functions or the size of conformational clusters to select the best decoy. Methods that              
combine ab initio and template-based techniques also exist. Specific tools for predicting both             
TCR and BCR structures include LYRA [9] , for predicting the TCR structures there is 
TCRmodels [12], and tools for predicting BCR structures include RosettaAntibody [13] ,            

ABodyBuilder [14] and PIGS [15, 16]. The currently available tools for predicting the CDR3              
loop found in BCR structures are H3Loopred [17] and the H3-specific version of Sphinx              
[18].
When modeling TCR and BCR structures, it is only the CDR regions that pose a significant                
challenge, since these vary greatly from case to case. The rest of the molecule, called the                
framework, is highly conserved. Therefore, when predicting a CDR loop structure it is             
important to keep in mind that the generated loop has to eventually be connected to the                
framework. The framework residues at which the loop is attached are termed anchor residues,              
and if the generated loop cannot be connected to the anchors in a geometrically consistent               
way, the loop structure has to be adjusted to fit this requirement. This problem is referred to                 
as the loop closure problem and is usually solved with loop closure algorithms, such as cyclic                
coordinate descent (CCD) [19], random tweak [20]  or kinematic closure (KIC) [21] .  
Algorithms which use an ab initio approach have two major limitations. The first limitation is               
that they are computationally demanding as generating enough decoys to sufficiently sample            
the conformational space of a single loop takes time. As an implication of this, ab initio                
prediction accuracy usually decreases as the loop length increases. This is because the             
number of degrees of freedom increases with the loop length.The second problem is that even               
if the conformational space can be adequately explored and decoys that are close to the loop                
native conformation can be generated, an accurate energy or scoring function is required to              
select the best from a multitude of decoys. In recent years, thanks to improvements in the                
energy functions [22] and by exploiting deep learning techniques [23] , consistent           
improvements in the accuracy of these functions has been observed, however, even with             
these advances the accuracy remains moderate.  
To solve the first limitation of the ab initio methods, we here use generative adversarial               
networks (GANs) to generate diverse and accurate decoys of the CDR3 loop in a fast and                
efficient way. The GAN architecture was originally proposed by Goodfellow et al. [24] , but              
since then many different GAN implementations and network architectures have been           
proposed [25–29] . Here, we used the WGAN-GP architecture proposed by Ishaan Gulrajani            
et al. [29] to generate structures of CDR3 loops of BCRs and TCRs from the primary protein                 
sequence.  
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Method 

Dataset 
A structural dataset consisting of 330 TCR structures and 2,529 BCR structures was obtained              
by using TCR and BCR specific Hidden Markov Model (HMM) profiles from LYRA [9] to               
scan the Protein Data Bank (PDB) [11] and identify the CDR3 sequences. All structures with               
missing atoms in the CDR3 loop structure were removed, as well as CDR3 structures with               
uncommon characteristics, such as cis peptide bonds and structures with unconventional loop            
closure. For the BCR dataset, structures with CDR loops shorter than 3 residues were also               
removed. To avoid redundancy, the same CDR3 sequence was only allowed to appear             
multiple times in the dataset if the corresponding loop structures differed. To be precise, we               
use the TM-score as a measure of structural similarity, and only included identical CDR3              
sequences in the dataset if the TM-score between its corresponding structure, and any other in               
the dataset with the same sequence, was greater than 0.6.  
Lastly, we generated an independent benchmark set for model evaluation. For the BCR             
structures, we used the Rosetta Antibody (RA) benchmark dataset [30] and for the TCR, we               
used any structure released into the PDB after the 1st of August 2018. To avoid overfitting,                
all CDR3 structures with sequences identical to any of the CDR3 structures found in the               
benchmark set were also removed from the final dataset. As a result, we were left with 129                 
TCR structures and 1339 BCR structures for network development. 

Feature Extraction  
For each residue in the CDR3 structure, we calculated the backbone dihedral angles phi ( φ ),               
psi (ψ), omega (ω ), and the distance between the C α atom of that given residue to the Cα atom                   
of the C- and N-terminal residues. All feature extractions were performed using BioPython             
[31]. The φ, ψ and ω angles were each encoded as a vector of length 2, where the first                   
element is the sine of the angle and the second element is the cosine. This encoding reduces                 
the effect of the periodicity of the angles [32] . 

Network architecture 
In this study, we decided to use the WGAN-GP method as proposed by Ishaan Gulrajani et                
al. [29], since this method has been shown to dramatically improve the stability of learning ,               
while reducing the risk of mode collapse. The WGAN-GP models were built in Python 3.6               
using Pytorch [33]. A GAN network consists of two networks, called the Generator and the               
Discriminator. The Generator is trained to generate samples, while the Discriminator tries to             
determine if a given sample is made by the Generator or is a true sample from the dataset. In                   
our case, the Generator has two inputs consisting of the CDR3 loop sequence and some               
random noise, and for each residue in the input sequence, the Generator outputs five values,               
consisting of three angles, φ , ψ , ω, and two distances, one to the C-terminal and one to the                  
N-terminal. The input to the Discriminator is either artificially produced by the Generator or              
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true samples from the dataset, while the output is a single value between 1 and 0 determining                 
if a given input is real or fake [24]. During training, the two networks are fine-tuned by                 
adjusting network parameters. The Discriminator is updated to get better at discriminating            
between real and fake samples, while the Generator is updated to produce real looking              
samples. A schematic representation of the training process and the specific network            
architecture of the Generator and the Discriminator can be found in Figure 1.  

 
Figure 1: Network training process and architecture for the WGAN-GP model. A) The             
general method of training the WGAN-GP network. B) Network architecture for the            
Generator and Discriminator. Each vertical box in the network represents the different layers             
and the corresponding number of neurons of that layer.  
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The input layer of the Generator model consists of a one-hot encoded CDR3 sequence (the               
maximum length of the CDR3 sequence is 32, the size of the amino acid vocabulary is 20,                 
totaling 180 inputs) plus the noise generated using 100 random numbers drawn from a              
standard normal distribution, giving a total of 280 inputs. These inputs are then connected to               
an artificial neural network (ANN) with four fully connected (FC) layers of size 128, 256 and                
512, 1024, using the LeakyReLU activation function, and an output layer of size 256 using               
the Tanh activation function. The output includes the dihedral angles φ, ψ, and ω, for each                
residue in the CDR3 loop sequence (the maximum length is 32, there are 3 angles, each               
encoded with sine and cosine, totaling 192 outputs) and the C- and N-terminal C α distances               
(the maximum length is 32, and there are two distances, totaling 64 outputs), giving a total of                
256 outputs.  
The input layer of the Discriminator model consists of either the fake sample (the predicted               
output from the Generator) or a real sample, plus the one-hot encoded CDR3 sequence (the               
maximum length is 32, the size of the amino acid vocabulary is 20, totaling 180 inputs),               
giving a total of 436 inputs. This input is then connected to an ANN with two FC layers of                   
size 112 and 56, using the LeakyReLU activation function and an output layer of size 1 using                 
the Sigmoid activation function. The Discriminator returns a single output value between 0             
and 1, which describes the probability of the given input being real. When training GANs, the                
discriminator seeks to maximize the probability of correctly classifying real and fake            
samples, while the generator seeks to fool the Discriminator by generating samples that look              
real.  

Network training 
Before training, the dataset was randomly divided such that 80% of the dataset was chosen               
for training, leaving the remaining 20% of the dataset for validation. By doing this we are                
able to find optimal hyperparameters and test different network architectures. The final            
network can then be evaluated on the independent benchmark set, leaving the reported             
performances of this unbiased. 
For training, we used batch normalization with mini-batches of size 30 and the individual              
learning rate of each neuron was optimized using the Adam function [34]. The WGAN-GP              
model was trained over a series of epochs (full pass over the training set), measuring the                
model performance using only the first mini-batch from the training and validation set for              
each epoch (See Figure 3). 

Loop building  
There are three backbone dihedral angles in the protein chain, φ, ψ and ω, from which φ and                  
ψ can essentially determine the backbone geometry of the protein chain. This is because ω is                
restricted by the planarity of the peptide bond it is usually fixed around 180° [35] . From the                 
predicted backbone dihedral angles, we used PeptideBuilder [36] to reconstruct the loop            
structure.  
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Evaluation  
The final WGAN-GP models were tested on the independent TCR and BCR benchmark             
dataset, which contained only unique CDR3 loop sequences with no overlap to the CDR              
loops present in the validation data.  
We used different metrics to capture the overall quality of the predicted CDR3 loop              
structures: The mean absolute error (MAE) in degrees for φ and ψ angles, the root mean                
squared deviation (RMSD) between all backbone atoms and the distance between the C α atom              
of the N- and C-terminal residue. 
To visualize energetically allowed regions for φ and ψ angles of amino acid residues in the                
protein structure, we used a Ramachandran plot as described by Ramachandran et al. [37] .  
We also investigated how much the predicted angles differ when the Generator is given the               
same input sequence but different random noise. We therefore produced 50 different outputs             
for each loop sequence in the benchmark dataset and calculated the standard deviation of the               
φ and ψ angles for each residue in each sequence.  
It takes around 4 seconds to generate 50 outputs, so it would take less than 2 minutes to                  
generate 1000 possible loop conformations, which is the most common number of decoys for              
ab initio structure prediction methods. For comparison, most of these ab initio methods takes              
hours or even days to generate that many decoys [21, 38, 39] .  
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Results  
The WGAN-GP network is trained to generate backbone dihedral angles, φ and ψ, for each               
residue of the CDR3 sequence, from which the loop structure is built using PeptideBuilder              
[36].  

 
Figure 2: Dataset visualization. Panel A) and B) show CDR3 loop length distribution of TCR               
and BCR structures, respectively. Panel C) and D) show the conformational space of CDR3              
loops in TCR and BCR structures, respectively.  
 
The two datasets used for training the WGAN-GP network contain 129 TCR CDR3             
structures and 1339 BCR CDR3 structures. Panel A and B in Figure 2 show that CDR3 loops                 
from the BCR dataset are both shorter and longer than CDR3 loops found in the TCR dataset,                 
while panel C and D show the conformational space of CDR3 loops in both TCR and BCR                 
structures. From Figure 2 it is evident that CDR3 loops are diverse both in loop length and                 
structure.  
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Figure 3: The distribution of the backbone φ (phi) and ψ (psi) angles and the Ramachandran                
plot for the CDR3 loops from the TCR and BCR dataset. A) Distribution of angles in the                 
BCR dataset. B) The Ramachandran plot for the BCR dataset. C) Distribution angles in the               
TCR dataset. D) The Ramachandran plot for the TCR dataset. In the ramachandran plot dark               
and light blue represent favoured and allowed regions for the φ and ψ angles, based on the                 
findings by Lovell et. al. [40] . 
 
The φ and ψ angles for the TCR and BCR loops used for network training are displayed in                  
Figure 3. From panel A and C, it is observed that the φ and ψ angles in BCR and TCR CDR3                     
loops follow the same distribution, while φ angles have a major peak around -100° and a                
small peak around 70°, and ψ angles have a major peak around 140° and a smaller peak                 
around -30°. Furthermore, the ψ angles seem to have a broader distribution than the φ angles.                
Panel B and C illustrate that most of the φ and ψ angles are found in the favoured regions in                    
the Ramachandran plot, indicating that the backbone angles of the CDR3 loops are similar to               
those of other proteins. When training the WGAN-GP, we expect that the network will learn               
this background distribution of backbone angles.  
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Figure 4: Training and validating CDR3 loop accuracy over 300 epochs for the TCR and               
BCR dataset. Panel A) and D) show the MAE in degrees for φ (phi) and ψ (psi) . Panel B)                    
and E) show the distance between the Cα atom of the N- and C-terminal residue in the CDR3                  
loop. Panel C) and F) show the RMSD between the predicted CDR3 loop and the true CDR3                 
loop structure.  
 
For training, the dataset was randomly divided into a training and a validation set, after which                
the WGAN-GP model was fitted for 300 epochs and evaluated for each epoch using both the                
training and the validation set (see Figure 4). From Figure 4 panel A and D, it is observed that                   
the MAE for φ is lower than the MAE for ψ. This is expected, as the φ angles have a broader                     
distribution compared to the ψ angle. From Figure 4 panel B and E we see the N- to                  
C-terminal distance is around 25Å and from panel C and F we see that the RMSD is around                  
7Å. The N- to C-terminal distance in the crystal structures for CDR3 loops is around 9Å so it                  
is clear that the network has not learned to generate loops in with the correct distance                
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between the N- to C-terminal residue, and the RMSD values also indicate that the generated               
loops are not close the original crystal structure.  
When taking a closer look at the two different networks shown in Figure 4, we see that the                  
network trained on BCR loops seems more stable than the network trained on TCR loops.               
This is most likely because the BCR network is trained using a large data set, compared to the                  
TCR network. Furthermore, we see that RMSD and the loop closure distance is still              
decreasing around 300 epochs, which could indicate that training the network using a larger              
number of epochs could improve the results.  

Benchmarking 
The ability of the Generator network to generate diverse and accurate CDR3 loops was tested               
using the independent benchmark datasets. This benchmark dataset includes unique CDR3           
loops from 50 BCR structures and 11 TCR structures. For each CDR3 loop, we used the                
Generator network from the trained WGAN-GP to build 50 structures. An example of such              
50 predicted CDR3 loops is illustrated in Figure 5 together with the true structure (PDB id                
1BQL ).  

 
Figure 5: Example of the 50 CDR3 loops made using the Generator from the trained               
WGAN-GP. In the figure, all predicted CDR3 loops are shown with colors, while the CDR3               
loop and the framework of the true structure are shown in black and grey, respectively. All                
generated structures were aligned using only the first three residues. Structural           
representations were made in PyMOL. 
 
Figure 5 illustrates one of the major limitations with the current network, which is the loop                
closure problem. The network can predict φ and ψ angles which are quite diverse, and a                
majority of the generated structures seem to have understood that the loop should bend back               
toward the framework, but none of the predicted loops have the correct distance between the               
N- and C-terminal residues.  
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Figure 6: Network performance on the independent benchmark dataset evaluated by           
generating 50 different predictions for each of the CDR3 loops. A) Distribution of angles for               
the predicted BCR loops. B) The Ramachandran plot for the predicted BCR loops. C)              
Distribution of the standard deviation for φ (phi) and ψ (psi) angles for each residue in the                 
BCR loop among 50 predictions. D) Distribution angles for the predicted TCR loops. E) The               
Ramachandran plot for the predicted TCR loops. F) Distribution of the standard deviation for              
the φ and ψ angles for each residue in the TCR loop among 50 predictions . In the                 
ramachandran plot dark and light blue represents favoured and allowed regions for the φ and               
ψ angles, based on the findings by Lovell et al. [40] .  
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From Figure 6, it is observed that the predicted angles tend to follow the same background                
distribution as shown in Figure 3, indicating that the network learned to generate CDR3 loops               
which follow the same rules as the biological data. From the Ramachandran plot in Figure 6,                
it is observed that paired φ and ψ predictions for each residue are less correct as many of                  
them are within the unfavoured part of the Ramachandran plot. A common problem when              
training a GAN is that the Generator has a tendency to always produce the same or very                 
similar output for all inputs - this problem is typically referred to as mode collapse. To test                 
the Generator’s ability to generate diverse outputs, we plotted the distribution of standard             
deviations for φ and ψ angles for each residue in the CDR3 loop among the 50 predictions for                  
each structure in the benchmark dataset. Figure 6 C and F show the distribution of these                
standard deviations, and we note that each angle tends to deviate with approximately 5°              
between the 50 different outputs generated for each loop sequence in the benchmark dataset.              
For longer loops, the predicted structures may therefore vary quite significantly, which is also              
observed in Figure 5. Furthermore, this indicates that the Generator is capable of producing              
diverse outputs, meaning that the network does not suffer from mode collapse.  

Discussion and perspectives  
In this paper, we have described a first attempt to apply GANs to solve one of the main                  
bottlenecks of ab initio CDR3 loop modeling for BCR and TCR structures; namely to              
generate diverse and accurate decoys in a computationally effective manner. The overall            
conclusion from our work, is that the GAN network is capable of predicting backbone              
dihedral angles for the CDR3 loop, which follow the background distribution of real             
structures, but that building the loop using these predicted angles produces structures which             
do not resemble true CDR3 loop structures. In the following sections, we discuss different              
issues that explain the limited performance of our current network. 

Loop closure problem 
One of the problems of the current WGAN-GP network is that the N- and C-terminal of the                 
predicted CDR3 loops do not close. This problem can be solved using loop closure              
algorithms, but these algorithms are time-consuming and it would therefore be more ideal if              
the network could learn this feature. One possible solution is to include the loop closure               
distance in the Generator output. By including this distance in the output, it will be passed on                 
to the Discriminator and it would thereby be included in the network optimization. Another              
solution is to implement different network architectures, both for the Generator and the             
Discriminator. Here, it could be interesting to try convolutional neural networks (CNNs) [41]             
and bidirectional long short-term memory (LSTM) networks [42] . The CNNs uses           
convolutional filters to detect short local motifs within the sequence, while the bidirectional             
LSTMs scan the sequence in both directions, extracting spatial dependencies between amino            
acids. Using these types of networks therefore has the potential to detect sequential motifs              
important for learning the underlying mechanism of loop closure. 
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Another approach is to include more training examples, by generating alternative loop            
conformations using general loop modeling methods such as Loopy [43], PLOP [44],            
LoopBuilder [45], Rosetta [38], LEAP [39] , or Sphinx [18], to increase the number of              
training examples. These alternative loops could either be included directly into the training             
dataset or used to pre-train the network before training on the true CDR loop structures.               
Increasing the number of training examples might by itself improve the accuracy of the              
network predictions, as the network will be trained on loops covering a larger conformational              
space.  

PeptideBuilder limitations 
When reconstructing the loop structure using only the backbone dihedral angles, the resulting             
loop structure might not be identical to the native loop structure, as tight turns and               
unstructured loops have small deviations in backbone bond angles which can have a major              
impact on where in the three-dimensional space downstream secondary structure elements are            
located [36]. In this project, we used PeptideBuilder to reconstruct the loops and this tool is                
also affected by this limitation. Especially for longer loops, PeptideBuilder fails to obtain             
accurate reconstructions without adjusting all backbone bond angles, including planar angles.  

Other structural problems  
Aside from the loop closure problem, the predicted structures can also have other structural              
problems such as main-chain and side-chain clashes and we have also observed cases where              
the resulting structure is twisted. As these features are not biological, we also need some               
good metrics for evaluating and detecting such cases [46].  

Selection problem  
Before looking into the selection problem, we need to retrain the Generator network to solve               
some of the aforementioned problems, but when we have a Generator that can produce              
accurate and diverse outputs, we need a method for selecting the best loop among a pool of                 
generated structures. Our idea here is to use the Discriminator to solve the problem of               
selecting the best loops. The Discriminator is trained to distinguish between loops made by              
the Generator and true loops from the training data, and the Discriminator score might              
therefore be useful for ranking and selecting the best loops. 
When we have a finalized method for both generating and selecting the best CDR3 loops the                
plan is to compare the accuracy of the generated loops with other state-of-the-art             
template-based methods, such as LYRA [9] , ab initio methods, such as KIC [21], and              
combination methods using both template-based and ab initio methods, such as Sphinx [18] .  
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Conclusion  
In this work, we have demonstrated that we can train GANs to generate diverse CDR3 loop                
structures, where the predicted dihedral angles follow the same distribution as real CDR3             
structures. But the network still needs to learn how to generate more accurate structures with               
loop closure. 
 

  

82



References 
[1] L. A. Clark et al., “Affinity enhancement of an in vivo matured therapeutic antibody 

using structure-based computational design,” Protein Science, vol. 15, no. 5. pp. 
949–960, 2006. 

[2] R. Diskin et al. , “Increasing the potency and breadth of an HIV antibody by using 
structure-based rational design,” Science, vol. 334, no. 6060, pp. 1289–1293, Dec. 2011. 

[3] S. M. Lewis et al. , “Generation of bispecific IgG antibodies by structure-based design of 
an orthogonal Fab interface,” Nat. Biotechnol., vol. 32, no. 2, pp. 191–198, Feb. 2014. 

[4] N. Liddy et al., “Monoclonal TCR-redirected tumor cell killing,” Nat. Med. , vol. 18, no. 
6, pp. 980–987, Jun. 2012. 

[5] P. Alzari, “Three-Dimensional Structure Of Antibodies,” Annual Review of 
Immunology , vol. 6, no. 1. pp. 555–580, 1988. 

[6] R. M. MacCallum, A. C. Martin, and J. M. Thornton, “Antibody-antigen interactions: 
contact analysis and binding site topography,” J. Mol. Biol., vol. 262, no. 5, pp. 
732–745, Oct. 1996. 

[7] V. Morea, A. Tramontano, M. Rustici, C. Chothia, and A. M. Lesk, “Conformations of 
the third hypervariable region in the VH domain of immunoglobulins,” J. Mol. Biol., 
vol. 275, no. 2, pp. 269–294, Jan. 1998. 

[8] B. North, A. Lehmann, and R. L. Dunbrack Jr, “A new clustering of antibody CDR loop 
conformations,” J. Mol. Biol., vol. 406, no. 2, pp. 228–256, Feb. 2011. 

[9] M. S. Klausen, M. V. Anderson, M. C. Jespersen, M. Nielsen, and P. Marcatili, “LYRA, 
a webserver for lymphocyte receptor structural modeling,” Nucleic Acids Research, vol. 
43, no. W1. pp. W349–W355, 2015. 

[10] A. Teplyakov et al., “Antibody modeling assessment II. Structures and models,” 
Proteins, vol. 82, no. 8, pp. 1563–1582, Aug. 2014. 

[11] H. M. Berman et al., “The Protein Data Bank,” Nucleic Acids Res., vol. 28, no. 1, pp. 
235–242, Jan. 2000. 

[12] R. Gowthaman and B. G. Pierce, “TCRmodel: high resolution modeling of T cell 
receptors from sequence,” Nucleic Acids Res., vol. 46, no. W1, pp. W396–W401, Jul. 
2018. 

[13] A. Sircar, E. T. Kim, and J. J. Gray, “RosettaAntibody: antibody variable region 
homology modeling server,” Nucleic Acids Res., vol. 37, no. Web Server issue, pp. 
W474–9, Jul. 2009. 

[14] J. Leem, J. Dunbar, G. Georges, J. Shi, and C. M. Deane, “ABodyBuilder: Automated 
antibody structure prediction with data-driven accuracy estimation,” MAbs, vol. 8, no. 7, 
pp. 1259–1268, Oct. 2016. 

[15] P. Marcatili, P. P. Olimpieri, A. Chailyan, and A. Tramontano, “Antibody modeling 
using the prediction of immunoglobulin structure (PIGS) web server [corrected],” Nat. 
Protoc., vol. 9, no. 12, pp. 2771–2783, Dec. 2014. 

[16] R. Lepore, P. P. Olimpieri, M. A. Messih, and A. Tramontano, “PIGSPro: prediction of 
immunoGlobulin structures v2,” Nucleic Acids Res., vol. 45, no. W1, pp. W17–W23, 
Jul. 2017. 

[17] M. A. Messih, R. Lepore, P. Marcatili, and A. Tramontano, “Improving the accuracy of 
the structure prediction of the third hypervariable loop of the heavy chains of 
antibodies,” Bioinformatics, vol. 30, no. 19. pp. 2733–2740, 2014. 

[18] C. Marks et al. , “Sphinx: merging knowledge-based and ab initio approaches to improve 

83

http://paperpile.com/b/w8NA9g/k22j
http://paperpile.com/b/w8NA9g/k22j
http://paperpile.com/b/w8NA9g/k22j
http://paperpile.com/b/w8NA9g/k22j
http://paperpile.com/b/w8NA9g/k22j
http://paperpile.com/b/w8NA9g/k22j
http://paperpile.com/b/w8NA9g/k22j
http://paperpile.com/b/w8NA9g/9ObU
http://paperpile.com/b/w8NA9g/9ObU
http://paperpile.com/b/w8NA9g/9ObU
http://paperpile.com/b/w8NA9g/9ObU
http://paperpile.com/b/w8NA9g/9ObU
http://paperpile.com/b/w8NA9g/9ObU
http://paperpile.com/b/w8NA9g/f4wy
http://paperpile.com/b/w8NA9g/f4wy
http://paperpile.com/b/w8NA9g/f4wy
http://paperpile.com/b/w8NA9g/f4wy
http://paperpile.com/b/w8NA9g/f4wy
http://paperpile.com/b/w8NA9g/f4wy
http://paperpile.com/b/w8NA9g/b04z
http://paperpile.com/b/w8NA9g/b04z
http://paperpile.com/b/w8NA9g/b04z
http://paperpile.com/b/w8NA9g/b04z
http://paperpile.com/b/w8NA9g/b04z
http://paperpile.com/b/w8NA9g/b04z
http://paperpile.com/b/w8NA9g/bq9R
http://paperpile.com/b/w8NA9g/bq9R
http://paperpile.com/b/w8NA9g/bq9R
http://paperpile.com/b/w8NA9g/bq9R
http://paperpile.com/b/w8NA9g/KuL0
http://paperpile.com/b/w8NA9g/KuL0
http://paperpile.com/b/w8NA9g/KuL0
http://paperpile.com/b/w8NA9g/KuL0
http://paperpile.com/b/w8NA9g/KuL0
http://paperpile.com/b/w8NA9g/UWEB
http://paperpile.com/b/w8NA9g/UWEB
http://paperpile.com/b/w8NA9g/UWEB
http://paperpile.com/b/w8NA9g/UWEB
http://paperpile.com/b/w8NA9g/UWEB
http://paperpile.com/b/w8NA9g/VLsJ
http://paperpile.com/b/w8NA9g/VLsJ
http://paperpile.com/b/w8NA9g/VLsJ
http://paperpile.com/b/w8NA9g/VLsJ
http://paperpile.com/b/w8NA9g/a0fw
http://paperpile.com/b/w8NA9g/a0fw
http://paperpile.com/b/w8NA9g/a0fw
http://paperpile.com/b/w8NA9g/a0fw
http://paperpile.com/b/w8NA9g/a0fw
http://paperpile.com/b/w8NA9g/glip
http://paperpile.com/b/w8NA9g/glip
http://paperpile.com/b/w8NA9g/glip
http://paperpile.com/b/w8NA9g/glip
http://paperpile.com/b/w8NA9g/glip
http://paperpile.com/b/w8NA9g/cUzt
http://paperpile.com/b/w8NA9g/cUzt
http://paperpile.com/b/w8NA9g/cUzt
http://paperpile.com/b/w8NA9g/cUzt
http://paperpile.com/b/w8NA9g/cUzt
http://paperpile.com/b/w8NA9g/cUzt
http://paperpile.com/b/w8NA9g/6PIY
http://paperpile.com/b/w8NA9g/6PIY
http://paperpile.com/b/w8NA9g/6PIY
http://paperpile.com/b/w8NA9g/6PIY
http://paperpile.com/b/w8NA9g/6PIY
http://paperpile.com/b/w8NA9g/O9iA
http://paperpile.com/b/w8NA9g/O9iA
http://paperpile.com/b/w8NA9g/O9iA
http://paperpile.com/b/w8NA9g/O9iA
http://paperpile.com/b/w8NA9g/O9iA
http://paperpile.com/b/w8NA9g/oEy1
http://paperpile.com/b/w8NA9g/oEy1
http://paperpile.com/b/w8NA9g/oEy1
http://paperpile.com/b/w8NA9g/oEy1
http://paperpile.com/b/w8NA9g/oEy1
http://paperpile.com/b/w8NA9g/2tIM
http://paperpile.com/b/w8NA9g/2tIM
http://paperpile.com/b/w8NA9g/2tIM
http://paperpile.com/b/w8NA9g/2tIM
http://paperpile.com/b/w8NA9g/2tIM
http://paperpile.com/b/w8NA9g/FBu4
http://paperpile.com/b/w8NA9g/FBu4
http://paperpile.com/b/w8NA9g/FBu4
http://paperpile.com/b/w8NA9g/FBu4
http://paperpile.com/b/w8NA9g/FBu4
http://paperpile.com/b/w8NA9g/bW8x
http://paperpile.com/b/w8NA9g/bW8x
http://paperpile.com/b/w8NA9g/bW8x
http://paperpile.com/b/w8NA9g/bW8x
http://paperpile.com/b/w8NA9g/bW8x
http://paperpile.com/b/w8NA9g/mS2b
http://paperpile.com/b/w8NA9g/mS2b
http://paperpile.com/b/w8NA9g/mS2b


protein loop prediction,” Bioinformatics, vol. 33, no. 9, pp. 1346–1353, May 2017. 
[19] A. A. Canutescu and R. L. Dunbrack Jr, “Cyclic coordinate descent: A robotics 

algorithm for protein loop closure,” Protein Sci., vol. 12, no. 5, pp. 963–972, May 2003. 
[20] P. S. Shenkin, D. L. Yarmush, R. M. Fine, H. J. Wang, and C. Levinthal, “Predicting 

antibody hypervariable loop conformation. I. Ensembles of random conformations for 
ringlike structures,” Biopolymers, vol. 26, no. 12, pp. 2053–2085, Dec. 1987. 

[21] D. J. Mandell, E. A. Coutsias, and T. Kortemme, “Sub-angstrom accuracy in protein 
loop reconstruction by robotics-inspired conformational sampling,” Nat. Methods, vol. 
6, no. 8, pp. 551–552, Aug. 2009. 

[22] R. F. Alford et al., “The Rosetta All-Atom Energy Function for Macromolecular 
Modeling and Design,” J. Chem. Theory Comput., vol. 13, no. 6, pp. 3031–3048, Jun. 
2017. 

[23] K. Uziela, D. Menéndez Hurtado, N. Shu, B. Wallner, and A. Elofsson, “ProQ3D: 
improved model quality assessments using deep learning,” Bioinformatics, vol. 33, no. 
10, pp. 1578–1580, May 2017. 

[24] I. Goodfellow et al., “Generative Adversarial Nets,” in Advances in Neural Information 
Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. 
Q. Weinberger, Eds. Curran Associates, Inc., pp. 2672–2680, 2014. 

[25] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation Learning with 
Deep Convolutional Generative Adversarial Networks,” arXiv [cs.LG] , 19-Nov-2015. 

[26] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” arXiv [cs.LG], 
06-Nov-2014. 

[27] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley, “Least Squares 
Generative Adversarial Networks,” arXiv [cs.CV] , 13-Nov-2016. 

[28] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein Generative Adversarial 
Networks,” in Proceedings of the 34th International Conference on Machine Learning, 
vol. 70, pp. 214–223, 2017. 

[29] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved 
Training of Wasserstein GANs,” arXiv [cs.LG], 31-Mar-2017. 

[30] A. Sivasubramanian, A. Sircar, S. Chaudhury, and J. J. Gray, “Toward high-resolution 
homology modeling of antibody Fv regions and application to antibody-antigen 
docking,” Proteins, vol. 74, no. 2, pp. 497–514, Feb. 2009. 

[31] P. J. A. Cock et al., “Biopython: freely available Python tools for computational 
molecular biology and bioinformatics,” Bioinformatics, vol. 25, no. 11, pp. 1422–1423, 
Jun. 2009. 

[32] J. Lyons et al., “Predicting backbone Cα angles and dihedrals from protein sequences by 
stacked sparse auto-encoder deep neural network,” J. Comput. Chem., vol. 35, no. 28, 
pp. 2040–2046, Oct. 2014. 

[33] A. Paszke et al. , “Automatic differentiation in PyTorch,” in NIPS-W, 2017. 
[34] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” 22-Dec-2014. 
[35] R. Improta, L. Vitagliano, and L. Esposito, “Peptide bond distortions from planarity: 

new insights from quantum mechanical calculations and peptide/protein crystal 
structures,” PLoS One , vol. 6, no. 9, p. e24533, Sep. 2011. 

[36] M. Z. Tien, D. K. Sydykova, A. G. Meyer, and C. O. Wilke, “PeptideBuilder: A simple 
Python library to generate model peptides,” PeerJ , vol. 1, p. e80, May 2013. 

[37] G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, “Stereochemistry of 
polypeptide chain configurations,” J. Mol. Biol., vol. 7, pp. 95–99, Jul. 1963. 

[38] A. Stein and T. Kortemme, “Improvements to robotics-inspired conformational 

84

http://paperpile.com/b/w8NA9g/mS2b
http://paperpile.com/b/w8NA9g/mS2b
http://paperpile.com/b/w8NA9g/mS2b
http://paperpile.com/b/w8NA9g/9Aa4
http://paperpile.com/b/w8NA9g/9Aa4
http://paperpile.com/b/w8NA9g/9Aa4
http://paperpile.com/b/w8NA9g/9Aa4
http://paperpile.com/b/w8NA9g/Q8g7
http://paperpile.com/b/w8NA9g/Q8g7
http://paperpile.com/b/w8NA9g/Q8g7
http://paperpile.com/b/w8NA9g/Q8g7
http://paperpile.com/b/w8NA9g/Q8g7
http://paperpile.com/b/w8NA9g/jw9g
http://paperpile.com/b/w8NA9g/jw9g
http://paperpile.com/b/w8NA9g/jw9g
http://paperpile.com/b/w8NA9g/jw9g
http://paperpile.com/b/w8NA9g/jw9g
http://paperpile.com/b/w8NA9g/Ug0I
http://paperpile.com/b/w8NA9g/Ug0I
http://paperpile.com/b/w8NA9g/Ug0I
http://paperpile.com/b/w8NA9g/Ug0I
http://paperpile.com/b/w8NA9g/Ug0I
http://paperpile.com/b/w8NA9g/Ug0I
http://paperpile.com/b/w8NA9g/Ug0I
http://paperpile.com/b/w8NA9g/DWFF
http://paperpile.com/b/w8NA9g/DWFF
http://paperpile.com/b/w8NA9g/DWFF
http://paperpile.com/b/w8NA9g/DWFF
http://paperpile.com/b/w8NA9g/DWFF
http://paperpile.com/b/w8NA9g/ARy7
http://paperpile.com/b/w8NA9g/ARy7
http://paperpile.com/b/w8NA9g/ARy7
http://paperpile.com/b/w8NA9g/ARy7
http://paperpile.com/b/w8NA9g/ARy7
http://paperpile.com/b/w8NA9g/ARy7
http://paperpile.com/b/w8NA9g/ARy7
http://paperpile.com/b/w8NA9g/j8eDh
http://paperpile.com/b/w8NA9g/j8eDh
http://paperpile.com/b/w8NA9g/j8eDh
http://paperpile.com/b/w8NA9g/j8eDh
http://paperpile.com/b/w8NA9g/6bZ8B
http://paperpile.com/b/w8NA9g/6bZ8B
http://paperpile.com/b/w8NA9g/6bZ8B
http://paperpile.com/b/w8NA9g/6bZ8B
http://paperpile.com/b/w8NA9g/7J88B
http://paperpile.com/b/w8NA9g/7J88B
http://paperpile.com/b/w8NA9g/7J88B
http://paperpile.com/b/w8NA9g/7J88B
http://paperpile.com/b/w8NA9g/7J88B
http://paperpile.com/b/w8NA9g/x61eQ
http://paperpile.com/b/w8NA9g/x61eQ
http://paperpile.com/b/w8NA9g/x61eQ
http://paperpile.com/b/w8NA9g/x61eQ
http://paperpile.com/b/w8NA9g/x61eQ
http://paperpile.com/b/w8NA9g/cZPg
http://paperpile.com/b/w8NA9g/cZPg
http://paperpile.com/b/w8NA9g/cZPg
http://paperpile.com/b/w8NA9g/cZPg
http://paperpile.com/b/w8NA9g/MVN3
http://paperpile.com/b/w8NA9g/MVN3
http://paperpile.com/b/w8NA9g/MVN3
http://paperpile.com/b/w8NA9g/MVN3
http://paperpile.com/b/w8NA9g/MVN3
http://paperpile.com/b/w8NA9g/LalA
http://paperpile.com/b/w8NA9g/LalA
http://paperpile.com/b/w8NA9g/LalA
http://paperpile.com/b/w8NA9g/LalA
http://paperpile.com/b/w8NA9g/LalA
http://paperpile.com/b/w8NA9g/LalA
http://paperpile.com/b/w8NA9g/LalA
http://paperpile.com/b/w8NA9g/Bm4t
http://paperpile.com/b/w8NA9g/Bm4t
http://paperpile.com/b/w8NA9g/Bm4t
http://paperpile.com/b/w8NA9g/Bm4t
http://paperpile.com/b/w8NA9g/Bm4t
http://paperpile.com/b/w8NA9g/Bm4t
http://paperpile.com/b/w8NA9g/Bm4t
http://paperpile.com/b/w8NA9g/dImY
http://paperpile.com/b/w8NA9g/dImY
http://paperpile.com/b/w8NA9g/dImY
http://paperpile.com/b/w8NA9g/dImY
http://paperpile.com/b/w8NA9g/dImY
http://paperpile.com/b/w8NA9g/nbz1
http://paperpile.com/b/w8NA9g/C06r
http://paperpile.com/b/w8NA9g/C06r
http://paperpile.com/b/w8NA9g/C06r
http://paperpile.com/b/w8NA9g/C06r
http://paperpile.com/b/w8NA9g/C06r
http://paperpile.com/b/w8NA9g/Ncde
http://paperpile.com/b/w8NA9g/Ncde
http://paperpile.com/b/w8NA9g/Ncde
http://paperpile.com/b/w8NA9g/Ncde
http://paperpile.com/b/w8NA9g/lowu
http://paperpile.com/b/w8NA9g/lowu
http://paperpile.com/b/w8NA9g/lowu
http://paperpile.com/b/w8NA9g/lowu
http://paperpile.com/b/w8NA9g/9bH0


sampling in rosetta,” PLoS One, vol. 8, no. 5, p. e63090, May 2013. 
[39] S. Liang, C. Zhang, and Y. Zhou, “LEAP: highly accurate prediction of protein loop 

conformations by integrating coarse-grained sampling and optimized energy scores with 
all-atom refinement of backbone and side chains,” J. Comput. Chem., vol. 35, no. 4, pp. 
335–341, Feb. 2014. 

[40] S. C. Lovell et al., “Structure validation by Calpha geometry: phi,psi and Cbeta 
deviation,” Proteins, vol. 50, no. 3, pp. 437–450, Feb. 2003. 

[41] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to 
document recognition,” Proceedings of the IEEE, vol. 86, no. 11. pp. 2278–2324, 1998. 

[42] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, 
vol. 9, no. 8. pp. 1735–1780, 1997. 

[43] Z. Xiang, C. S. Soto, and B. Honig, “Evaluating conformational free energies: the 
colony energy and its application to the problem of loop prediction,” Proc. Natl. Acad. 
Sci. U. S. A., vol. 99, no. 11, pp. 7432–7437, May 2002. 

[44] M. P. Jacobson et al. , “A hierarchical approach to all-atom protein loop prediction,” 
Proteins, vol. 55, no. 2, pp. 351–367, May 2004. 

[45] C. S. Soto, M. Fasnacht, J. Zhu, L. Forrest, and B. Honig, “Loop modeling: Sampling, 
filtering, and scoring,” Proteins, vol. 70, no. 3, pp. 834–843, Feb. 2008. 

[46] P. Chys and P. Chacón, “Random Coordinate Descent with Spinor-matrices and 
Geometric Filters for Efficient Loop Closure,” J. Chem. Theory Comput. , vol. 9, no. 3, 
pp. 1821–1829, Mar. 2013. 

 

85

http://paperpile.com/b/w8NA9g/9bH0
http://paperpile.com/b/w8NA9g/9bH0
http://paperpile.com/b/w8NA9g/9bH0
http://paperpile.com/b/w8NA9g/vY07
http://paperpile.com/b/w8NA9g/vY07
http://paperpile.com/b/w8NA9g/vY07
http://paperpile.com/b/w8NA9g/vY07
http://paperpile.com/b/w8NA9g/vY07
http://paperpile.com/b/w8NA9g/vY07
http://paperpile.com/b/w8NA9g/nofl
http://paperpile.com/b/w8NA9g/nofl
http://paperpile.com/b/w8NA9g/nofl
http://paperpile.com/b/w8NA9g/nofl
http://paperpile.com/b/w8NA9g/nofl
http://paperpile.com/b/w8NA9g/nofl
http://paperpile.com/b/w8NA9g/cS3y
http://paperpile.com/b/w8NA9g/cS3y
http://paperpile.com/b/w8NA9g/cS3y
http://paperpile.com/b/w8NA9g/cS3y
http://paperpile.com/b/w8NA9g/ecGp
http://paperpile.com/b/w8NA9g/ecGp
http://paperpile.com/b/w8NA9g/ecGp
http://paperpile.com/b/w8NA9g/ecGp
http://paperpile.com/b/w8NA9g/XihZ
http://paperpile.com/b/w8NA9g/XihZ
http://paperpile.com/b/w8NA9g/XihZ
http://paperpile.com/b/w8NA9g/XihZ
http://paperpile.com/b/w8NA9g/XihZ
http://paperpile.com/b/w8NA9g/IO3W
http://paperpile.com/b/w8NA9g/IO3W
http://paperpile.com/b/w8NA9g/IO3W
http://paperpile.com/b/w8NA9g/IO3W
http://paperpile.com/b/w8NA9g/IO3W
http://paperpile.com/b/w8NA9g/WXY3
http://paperpile.com/b/w8NA9g/WXY3
http://paperpile.com/b/w8NA9g/WXY3
http://paperpile.com/b/w8NA9g/WXY3
http://paperpile.com/b/w8NA9g/mqgd
http://paperpile.com/b/w8NA9g/mqgd
http://paperpile.com/b/w8NA9g/mqgd
http://paperpile.com/b/w8NA9g/mqgd
http://paperpile.com/b/w8NA9g/mqgd


 

Chapter 6: Epilogue  
The different research projects described in this thesis all concern the development of             
methods for improving our understanding of the molecular interactions between MHC           
molecules, peptides and T-cell receptors. The expectation is that these methods can be used in               
the future to improve predictions of T-cell epitopes and thereby assist the development of              
advanced T-cell based immunotherapies  and rational vaccines [3]. 

Paper I 
In this first project, we updated two in-house methods for predicting peptide binding affinity              
to MHC class II molecules. The two updated methods, named NetMHCII-2.3 and            
NetMHCIIpan-3.2, were trained using an expanded dataset from the Immune Epitope           
Database, enabling prediction of peptide binding to an extended number of MHC II             
molecules. The paper showed how training with this expanded dataset improved the            
performance for the peptide binding affinity predictions and for detecting T-cell epitopes for             
both NetMHCII-2.3 and NetMHCIIpan-3.2, when compared to the previous versions of the            
methods.  
The peptide binding affinity data used in this project is generated using in vitro binding assays                
[65], but other types of data exist including peptide-MHC stability data and mass             
spectrometry (MS) data from MHC eluted peptides. As peptide-MHC stability is a measure of              
the half-life of the peptide-MHC complex, an immunological perspective is that such data             
could carry more relevant information compared to binding affinity. However, including this            
type of data when predicting the peptide-MHC binding have up to now manifested only              
marginal improvements [66] .  
Recent advancements in the field of MS have enabled the development of high-throughput             
assays, in which a single experiment can identify thousands of MHC eluted peptides (see              
review by Caron et al. [67]). Since this type of data is generated in vivo , it contains essential                  
biological information about the peptide presentation pathway and the length distribution of            
naturally presented peptides.  
When predicting the peptide-MHC binding it has been shown that including in vivo generated              
MS data improves performance for MHC class I molecules [18]. Similar results have been              
found for MHC class II molecules on a limited dataset [68] and it could therefore be                
interesting to train on a larger dataset and make an updated version of the NetMHCIIpan               
webserver.  
 
The current version of NetMHCIIpan is trained using conventional feedforward artificial           
neural networks, but in recent years many new types of network architectures have been              
developed, including convolutional neural networks (CNNs) [45] and Recurrent neural          
networks (RNNs) [43, 44] and using these new network architectures might improve the             
peptide-MHC binding predictions. Especially, the use of CNNs could be interesting as this             
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type of network allows for inputs of variable lengths. Since peptides and MHC sequences              
differ in length, this is a promising tool for predicting peptide-MHC binding affinities. CNNs              
have already been implemented for predicting peptide-MHC binding to MHC class I            
molecules [69, 70] and it could be interesting to train similar networks for predicting              
peptide-MHC binding to MHC class II molecules. 

Paper II 
In this project, we developed an automated tool for building structural models of the              
TCR-pMHC complex using only the amino acid sequence as input. In the paper we showed               
how the models produced by our tool have a higher accuracy than models produced using the                
TCRFlexDock method. 
 
In this work, we focused on modelling the TCR-pMHC complex of αβ-TCRs and MHC class               
I molecules, as these constitute the majority of the available structural complexes. As more              
structural data is deposited in the Protein Data Bank, we hope to expand the tool to include                 
TCR-pMHC complexes of MHC class II molecules.  
One of the challenging parts in this project was to find a good way to select the best                  
templates, especially when modeling the TCR-pMHC complex. In this project, we used the             
target-template sequence similarity for selecting the best templates, and we tried different            
ways of adjusting the contribution of each chain in the TCR-pMHC complex by introducing              
sequence weights. We showed that using weighted sequence similarity scores achieved the            
best modeling accuracy.  
 
In the project we also selected multiple templates in the modeling step, as it has been                
suggested that using multiple templates can increase the model accuracy, especially when            
modelling protein complexes with multiple chains [71, 72] . But finding the most optimal             
combination of templates is a non-trivial task, since including too many templates usually             
leads to accumulation of noise. We therefore generated a method for selecting non-redundant             
templates, which decreases the number of selected templates, while still increasing the chance             
of selecting structures with a correct conformation. In the paper, we show that using this way                
of selecting multiple templates improves the accuracy of the generated models. 
Another way to solve the problem of selecting the best templates could be to use machine                
learning methods trained for this task. The main idea of such an approach could be to train a                  
model to predict the structural distances (eg. using TM-scores) between a target and all its               
potential templates, after which the template predicted to have the most similar structure to              
the target would be used to build the structural model. In this case, the input to the model                  
would be the target sequence and the model should learn to predict the structural similarity to                
all the templates found in the template database. The template predicted to have the best               
structural similarity would be used for building the final model. 
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To predict T-cell immunogenicity, we need to understand how the TCR recognizes a specific              
pMHC. We expect that the structural models of the TCR-pMHC complex will serve as an               
important component for resolving this, and for characterizing properties of TCR-pMHC           
binding. This could be done by generating structural models of TCRs known to recognize              
specific pMHCs (binders) and compare these to structural models of TCRs and pMHCs which              
do not interact (non-binders). A machine learning model can be trained to predict the              
TCR-pMHC binding strengths either by using an energy function, as the one developed by              
Rosetta [73], or by using alternative refined force fields as suggested by Lanzarotti et al. [74] .                
If we can reliably predict the TCR-pMHC binding, we can utilize such a tool to provide                
valuable insights into the mechanisms underlying the interaction between TCR and pMHC,            
and ultimately predict  T-cell specific epitopes.  

Paper III 
In this project, we investigated the TCR recognition profile using an experimental technique             
which measures the relative binding affinity between clonal TCRs and pMHC variants. By             
utilizing this experimental technique, the TCR binding can be translated into a TCR motif,              
called the TCR fingerprint, which can be used to predict cross-recognized peptides from the              
human proteome.  
 
Understanding how TCRs cross-recognize structurally related pMHCs is extremely important          
within the field of adoptive T-cell therapy, as it can be used to identify self-reactive TCRs. It                 
has been shown that genetically modified TCRs with high affinity for the pMHC can mediate               
self-reactivity [75–78] , which in some cases can cause serious or even fatal side effects [79] .               
Due to these serious side effects of genetically modified TCRs, it has been proposed that these                
TCRs should be engineered to optimize the TCR-peptide binding while decreasing the            
TCR-MHC binding to avoid self-reactive TCRs [80] .  
Having an experimental technique for describing the molecular interaction points of the TCR             
can be used to advance the process of developing genetically modified TCRs and to select               
TCRs intended for adoptive T-cell therapy.  
 
In the past, available data linking TCRs to their target pMHCs has been very limited, but                
recently more data of this type is being generated using high-throughput sequencing            
techniques [81–83] . It could be interesting to utilize such data to train both structure-based              
and sequence-based models to predict the interaction between TCRs and their target pMHCs,             
hopefully enabling the prediction of T-cell specific epitopes, and identification of           
immunogenic and non-immunogenic pMHCs.  

PAPER IV 
In the final project, we investigated the possibility of using generative adversarial networks             
(GANs), to improve the accuracy of structural models for CDR3 loops found in TCRs and               
BCRs. We showed that it is possible to train GANs to learn the background distribution of                
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dihedral angles within the CDR3 loop, but the current network architecture still needs further              
development to learn essential structural features, such as the loop closure. 
 
In recent years, many different GAN methods have been proposed for improving the network              
stability and performance [46–48, 84, 85] . We decided to use the WGAN-GP method [48] as               
this method has been shown to dramatically improve the stability of learning , while reducing              
the risk of mode collapse. Both the Discriminator and Generator network in our current              
network, are traditional feed forward neural networks, but many other network types exist,             
and it could be interesting to see if the implementation of other network types could improve                
the accuracy of the generated CDR3 structures. Within the field of bioinformatics, it has been               
shown that using convolutional neural networks (CNNs) [45] followed by bidirectional long            
short-term memory (LSTM) networks [44] is a very powerful architecture for capturing both             
sequential and structural information within the protein sequence [86–88] . The idea behind            
this architecture is that the CNNs can detect local motifs in the input sequence, while the                
bidirectional LSTM can capture long range sequence dependencies [89]. Because of this,            
these types of networks have the potential to capture the underlying mechanism of loop              
closure, which makes implementing them a very interesting subject for future research. 
 
There are currently only 330 TCR structures and 2,529 BCR structures in the Protein Data               
Bank, for which some have identical CDR3 loops. Given the diversity of CDR3 loops, these               
experimentally determined structures only cover a small fraction of all possible CDR3 loop             
conformations. The limited amount of data used for training our current network could             
therefore be expanded by generating alternative loop conformations for each of the loops in              
our dataset. By increasing the amount of data we would expect an increase in the network                
performance as the network will be trained on CDR3 loops covering a larger conformational              
space.  
 
The CDR3 structures generated by the current networks are not very accurate, but with the               
suggestions mentioned above, we expect to improve the accuracy of the generated CDR3             
structures in the future. If the final network is capable of generating accurate structures, it can                
be used to improve tools like LYRA and TCRmodels for predicting TCR and             
RosettaAntibody [90] , ABodyBuilder [91] and PIGS [92] for BCR structures, as well as the              
TCRpMHCmodels tool described in project II for predicting the structure of TCR-pMHC            
complexes.  
 
The potential of GANs is huge and it could be interesting to apply it to solve other biological                  
problems. Using the GAN architecture we could, for example, train a network to generate              
artificial TCR sequences for specific pMHC complexes. The input to the Generator for such a               
network would be the randomly generated noise plus a label in the form of the peptide and                 
MHC sequence. Based on the random noise, the Generator should then learn to generate TCR               
sequences with the potential to recognize specific pMHCs. The Discriminator would be            
presented with a pMHC as well as either a fake TCR sequence produced by the Generator or a                  
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real TCR sequence. The Discriminator should then learn to distinguish between real and fake              
TCR-pMHC combinations, which will ideally pressure the Generator to produce artificial           
TCR sequences that recognize the pMHCs. If we can successfully train a network to generate               
TCR sequences with the potential to recognize specific pMHCs, we could utilize such a              
network to design TCRs used in adoptive T-cell therapy.  
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Supplementary  
 
Suppl Table 1: Description of the full 2016 data set. The #peptides indicates the total number of peptides 
present for each MHC molecule and the #binders indicate the number of peptides that have a log-transformed 
IC50 value above 0.5.   
 

Molecules  #peptides #binders 
DRB1_0101 10412 6376 
DRB1_0102 8 3 
DRB1_0103 42 4 
DRB1_0301 5352 1457 
DRB1_0302 37 0 
DRB1_0401 6317 3022 
DRB1_0402 53 19 
DRB1_0403 59 14 
DRB1_0404 3657 1852 
DRB1_0405 3962 1654 
DRB1_0406 14 1 
DRB1_0411 2 2 
DRB1_0701 6325 3456 
DRB1_0801 937 390 
DRB1_0802 4465 2036 
DRB1_0803 8 1 
DRB1_0804 3 3 
DRB1_0901 4318 2164 
DRB1_1001 2066 1521 
DRB1_1101 6045 2667 
DRB1_1104 27 5 
DRB1_1201 2384 759 
DRB1_1301 1034 520 
DRB1_1302 4477 2249 
DRB1_1402 1 0 
DRB1_1501 4850 2107 
DRB1_1502 23 7 
DRB1_1503 1 1 
DRB1_1602 1699 989 
DRB3_0101 4633 1415 
DRB3_0202 3334 1055 
DRB3_0301 884 510 
DRB4_0101 3961 1540 
DRB4_0103 846 525 
DRB5_0101 5125 2430 
DRB5_0102 2 2 
H-2-IAb 1794 431 
H-2-IAd 774 321 
H-2-IAk 115 4 
H-2-IAq 31 0 
H-2-IAs 190 48 
H-2-IAu 56 22 
H-2-IEd 245 28 
H-2-IEk 68 40 
HLA-DPA10103-DPB10201 787 141 
HLA-DPA10103-DPB10301 1563 575 
HLA-DPA10103-DPB10401 2725 786 
HLA-DPA10103-DPB10402 45 9 
HLA-DPA10103-DPB10601 584 282 
HLA-DPA10201-DPB10101 2447 859 
HLA-DPA10201-DPB10501 2470 713 
HLA-DPA10201-DPB11401 2302 849 
HLA-DPA10301-DPB10402 2641 921 
HLA-DQA10101-DQB10501 2946 815 
HLA-DQA10102-DQB10501 833 458 
HLA-DQA10102-DQB10502 800 158 
HLA-DQA10102-DQB10602 2747 1256 
HLA-DQA10102-DQB10604 61 0 
HLA-DQA10103-DQB10302 6 0 
HLA-DQA10103-DQB10603 462 90 
HLA-DQA10104-DQB10503 883 105 
HLA-DQA10201-DQB10201 23 0 
HLA-DQA10201-DQB10202 944 119 
HLA-DQA10201-DQB10301 827 374 
HLA-DQA10201-DQB10303 761 265 
HLA-DQA10201-DQB10402 768 241 
HLA-DQA10301-DQB10201 4 0 
HLA-DQA10301-DQB10301 207 66 
HLA-DQA10301-DQB10302 3111 568 
HLA-DQA10302-DQB10303 6 0 
HLA-DQA10302-DQB10401 27 0 
HLA-DQA10303-DQB10402 567 117 
HLA-DQA10401-DQB10402 2890 928 
HLA-DQA10501-DQB10201 2897 874 
HLA-DQA10501-DQB10301 3585 1812 
HLA-DQA10501-DQB10302 847 203 
HLA-DQA10501-DQB10303 564 179 
HLA-DQA10501-DQB10402 749 337 
HLA-DQA10505-DQB10301 1 0 
HLA-DQA10601-DQB10402 565 133 
Total: 134281 55883 
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Suppl table 2: NetMHCII and NetMHCIIpan predictions of peptide binding cores. The offset correction is used 
to improve the identification of the right peptide binding core. To evaluate the effect of introducing this offset 
correction in our two methods, we benchmarked our results using 51 crystal structures of peptide-MHC class II 
complexes from the PDB database. Core (PDB) is the validated binding register as observed in the PDB crystal 
structures. Incorrect core predictions are highlighted in grey. 
 

    

NetMHCII-2.2 
(with 
offset) 

NetMHCII-2.2 
(without 
offset) 

NetMHCII-2.3 
(with 
offset) 

NetMHCIIpan-
3.1 (with 
offset) 

NetMHCIIpan-
3.2 (without 
offset) 

NetMHCIIpan-
3.2 (with 
offset) 

PDB Allele Antigen 
Core 
(PDB) 

Predicted 
core 

Predicted 
core 

Predicted 
core 

Predicted 
core 

Predicted 
core 

Predicted 
core 

1T5X DRB1*01:01 AAYSDQATPLLLSPR YSDQATPLL YSDQATPLL SDQATPLLL SDQATPLLL YSDQATPLL YSDQATPLL YSDQATPLL 
2FSE DRB1*01:01 AGFKGEQGPKGEPG FKGEQGPKG FKGEQGPKG FKGEQGPKG FKGEQGPKG FKGEQGPKG FKGEQGPKG FKGEQGPKG 
3L6F DRB1*01:01 APPAYEKLSAEQSPP YEKLSAEQS YEKLSAEQS YEKLSAEQS YEKLSAEQS YEKLSAEQS YEKLSAEQS YEKLSAEQS 
1KLG DRB1*01:01 GELIGTLNAAKVPAD IGTLNAAKV IGTLNAAKV IGTLNAAKV IGTLNAAKV IGTLNAAKV IGTLNAAKV IGTLNAAKV 
4OV5 DRB1*01:01 GSDARFLRGYHLYA ARFLRGYHL ARFLRGYHL ARFLRGYHL ARFLRGYHL ARFLRGYHL ARFLRGYHL ARFLRGYHL 
3PGD DRB1*01:01 KMRMATPLLMQALPM MRMATPLLM KMRMATPLL MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM 
3PDO DRB1*01:01 KPVSKMRMATPLLMQALPM MRMATPLLM KMRMATPLL MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM 
4AEN DRB1*01:01 MPLAQMLLPTAMRMKM MLLPTAMRM LAQMLLPTA LAQMLLPTA MLLPTAMRM MLLPTAMRM MLLPTAMRM MLLPTAMRM 
1SJH DRB1*01:01 PEVIPMFSALSEG VIPMFSALS VIPMFSALS VIPMFSALS VIPMFSALS VIPMFSALS VIPMFSALS VIPMFSALS 
1SJE DRB1*01:01 PEVIPMFSALSEGATP VIPMFSALS VIPMFSALS VIPMFSALS VIPMFSALS VIPMFSALS VIPMFSALS VIPMFSALS 
1FYT DRB1*01:01 PKYVKQNTLKLAT YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL 
3QXA DRB1*01:01 PVSKMRMATPLLMQA MRMATPLLM KMRMATPLL MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM 
1AQD DRB1*01:01 VGSDWRFLRGYHQYA WRFLRGYHQ WRFLRGYHQ WRFLRGYHQ WRFLRGYHQ WRFLRGYHQ WRFLRGYHQ WRFLRGYHQ 
4I5B DRB1*01:01 VVKQNCLKLATK VVKQNCLKL VKQNCLKLA VVKQNCLKL VVKQNCLKL VKQNCLKLA VKQNCLKLA VKQNCLKLA 
1PYW DRB1*01:01 XFVKQNAAALX FVKQNAAAL FVKQNAAAL FVKQNAAAL FVKQNAAAL FVKQNAAAL FVKQNAAAL FVKQNAAAL 
2IPK DRB1*01:01 XPKWVKQNTLKLAT WVKQNTLKL WVKQNTLKL WVKQNTLKL WVKQNTLKL WVKQNTLKL WVKQNTLKL WVKQNTLKL 
1A6A DRB1*03:01 PVSKMRMATPLLMQA MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM 
4MD4 DRB1*04:01 ATEYRVRVNSAYQDK YRVRVNSAY YRVRVNSAY EYRVRVNSA YRVRVNSAY YRVRVNSAY YRVRVNSAY YRVRVNSAY 
2SEB DRB1*04:01 AYMRADAAAGGA MRADAAAGG YMRADAAAG YMRADAAAG YMRADAAAG YMRADAAAG YMRADAAAG YMRADAAAG 
4MCZ DRB1*04:01 GVYATRSSAVRLR YATRSSAVR YATRSSAVR VYATRSSAV VYATRSSAV VYATRSSAV VYATRSSAV VYATRSSAV 
1J8H DRB1*04:01 PKYVKQNTLKLAT YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL 
4MCY DRB1*04:01 SAVRLRSSVPGVR VRLRSSVPG VRLRSSVPG VRLRSSVPG VRLRSSVPG VRLRSSVPG VRLRSSVPG VRLRSSVPG 
4IS6 DRB1*04:01 WNRQLYPEWTEAQRLD LYPEWTEAQ LYPEWTEAQ LYPEWTEAQ LYPEWTEAQ LYPEWTEAQ LYPEWTEAQ LYPEWTEAQ 
4MDI DRB1*04:02 SAVRLRSSVPGVR VRLRSSVPG    VRLRSSVPG VRLRSSVPG VRLRSSVPG 
4MD5 DRB1*04:04 SAVRLRSSVPGVR VRLRSSVPG VRLRSSVPG AVRLRSSVP AVRLRSSVP VRLRSSVPG VRLRSSVPG VRLRSSVPG 
1BX2 DRB1*15:01 ENPVVHFFKNIVTPR VHFFKNIVT VVHFFKNIV VHFFKNIVT VHFFKNIVT VHFFKNIVT VVHFFKNIV VHFFKNIVT 
1YMM DRB1*15:01 ENPVVHFFKNIVTPRGGSGGGGG VHFFKNIVT VVHFFKNIV VHFFKNIVT VHFFKNIVT VHFFKNIVT VVHFFKNIV VHFFKNIVT 
2Q6W DRB3*01:01 AWRSDEALPLGS WRSDEALPL WRSDEALPL WRSDEALPL WRSDEALPL WRSDEALPL WRSDEALPL WRSDEALPL 
4H25 DRB3*03:01 QHIRCNIPKRIGPSKVATLVPR IRCNIPKRI    IRCNIPKRI IRCNIPKRI IRCNIPKRI 
4H1L DRB3*03:01 QHIRCNIPKRISA IRCNIPKRI    IRCNIPKRI IRCNIPKRI IRCNIPKRI 
3C5J DRB3*03:01 QVIILNHPGQISA IILNHPGQI    IILNHPGQI IILNHPGQI IILNHPGQI 
4H26 DRB3*03:01 QWIRVNIPKRI IRVNIPKRI    IRVNIPKRI IRVNIPKRI IRVNIPKRI 
1H15 DRB5*01:01 GGVYHFVKKHVHES YHFVKKHVH YHFVKKHVH YHFVKKHVH YHFVKKHVH YHFVKKHVH YHFVKKHVH YHFVKKHVH 
1FV1 DRB5*01:01 NPVVHFFKNIVTPRTPPPSQ FKNIVTPRT FFKNIVTPR FFKNIVTPR FFKNIVTPR FKNIVTPRT FFKNIVTPR FKNIVTPRT 
1HQR DRB5*01:01 VHFFKNIVTPRTP FKNIVTPRT FFKNIVTPR FFKNIVTPR FFKNIVTPR FKNIVTPRT FFKNIVTPR FKNIVTPRT 
1ZGL DRB5*01:01 VHFFKNIVTPRTPGG FKNIVTPRT FFKNIVTPR FFKNIVTPR FFKNIVTPR FKNIVTPRT FFKNIVTPR FKNIVTPRT 
4P23 H-2-IAb FEAQKAKANKAVD AQKAKANKA AQKAKANKA FEAQKAKAN FEAQKAKAN AQKAKANKA FWIDLFETI AQKAKANKA 
1MUJ H-2-IAb PVSKMRMATPLLMQA MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM FWIDLFETI MRMATPLLM 
2IAD H-2-IAd HATQGVTAASSHE TQGVTAASS HATQGVTAA TQGVTAASS TQGVTAASS TQGVTAASS YDGKDYIAL TQGVTAASS 
1IAO H-2-IAd ISQAVHAAHAEI SQAVHAAHA QAVHAAHAE SQAVHAAHA SQAVHAAHA SQAVHAAHA FHYLPFLPS SQAVHAAHA 
4P4K DPA1*01:03-DPB1*02:01 QAFWIDLFETIG FWIDLFETI FWIDLFETI FWIDLFETI FWIDLFETI FWIDLFETI KVTVAFNQF FWIDLFETI 
4P57 DPA1*01:03-DPB1*02:01 QAFWIDLFETIGGGSLV FWIDLFETI FWIDLFETI FWIDLFETI FWIDLFETI FWIDLFETI TKVSWAAVG FWIDLFETI 
4P5M DPA1*01:03-DPB1*02:01 QAYDGKDYIALKG YDGKDYIAL YDGKDYIAL YDGKDYIAL YDGKDYIAL YDGKDYIAL EQPEQPFPQ YDGKDYIAL 
3LQZ DPA1*01:03-DPB1*02:01 RKFHYLPFLPSTGGS FHYLPFLPS FHYLPFLPS RKFHYLPFL FHYLPFLPS FHYLPFLPS EGSFQPSQE FHYLPFLPS 
3WEX DPA1*02:01-DPB1*05:01 KVTVAFNQFGGS KVTVAFNQF VAFNQFGGS KVTVAFNQF XKVTVAFNQ VAFNQFGGS EALYLVCGE KVTVAFNQF 
1UVQ DQA1*01:02-DQB1*06:02 MNLPSTKVSWAAVGGGGSLV LPSTKVSWA VSWAAVGGG VSWAAVGGG VSWAAVGGG TKVSWAAVG PELPYPQPG TKVSWAAVG 
4D8P DQA1*03:01-DQB1*02:01 PQPEQPEQPFPQP EQPEQPFPQ    EQPEQPFPQ LQPFPQPEL EQPEQPFPQ 
4GG6 DQA1*03:01-DQB1*03:02 QQYPSGEGSFQPSQENPQ EGSFQPSQE EGSFQPSQE EGSFQPSQE EGSFQPSQE EGSFQPSQE AQKAKANKA EGSFQPSQE 
1JK8 DQA1*03:03-DQB1*03:02 LVEALYLVCGERGG EALYLVCGE    EALYLVCGE MRMATPLLM EALYLVCGE 
4OZG DQA1*05:05-DQB1*02:01 APQPELPYPQPGS PQPELPYPQ    PQPELPYPQ TQGVTAASS PELPYPQPG 
1S9V DQA1*05:05-DQB1*02:01 LQPFPQPELPY PFPQPELPY    LQPFPQPEL SQAVHAAHA LQPFPQPEL 
    27/42 30/42 32/42 45/51 28/51 45/51 
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Suppl Table 3: Performance for NetMHCII-2.3, NetMHCIIpan-3.2 and the combined method. The combined 
method is made using a simple average of the prediction scores from NetMHCII-2.3 and NetMHCIIpan-3.2.  
 

      
Molecule #peptide #binders NetMHCII-2.3 NetMHCIIpan-3.2 Combined 
DRB1_0101 10412 6376 0.829 0.832 0.838 
DRB1_0103 42 4 0.250 0.678 0.599 
DRB1_0301 5352 1457 0.816 0.816 0.826 
DRB1_0401 6317 3022 0.798 0.809 0.813 
DRB1_0402 53 19 0.633 0.701 0.649 
DRB1_0403 59 14 0.644 0.841 0.787 
DRB1_0404 3657 1852 0.787 0.812 0.808 
DRB1_0405 3962 1654 0.839 0.827 0.846 
DRB1_0701 6325 3456 0.877 0.875 0.885 
DRB1_0801 937 390 0.834 0.844 0.854 
DRB1_0802 4465 2036 0.834 0.834 0.844 
DRB1_0901 4318 2164 0.832 0.833 0.843 
DRB1_1001 2066 1521 0.912 0.923 0.924 
DRB1_1101 6045 2667 0.867 0.864 0.873 
DRB1_1201 2384 759 0.891 0.868 0.892 
DRB1_1301 1034 520 0.828 0.857 0.856 
DRB1_1302 4477 2249 0.889 0.885 0.895 
DRB1_1501 4850 2107 0.833 0.834 0.842 
DRB1_1602 1699 989 0.879 0.883 0.888 
DRB3_0101 4633 1415 0.898 0.888 0.900 
DRB3_0202 3334 1055 0.887 0.869 0.886 
DRB3_0301 884 510 0.824 0.840 0.845 
DRB4_0101 3961 1540 0.837 0.822 0.844 
DRB4_0103 846 525 0.839 0.841 0.861 
DRB5_0101 5125 2430 0.849 0.849 0.858 
H-2-IAb 1794 431 0.884 0.894 0.895 
H-2-IAd 774 321 0.819 0.819 0.829 
H-2-IAk 115 4 0.628 0.635 0.685 
H-2-IAs 190 48 0.761 0.825 0.814 
H-2-IAu 56 22 0.830 0.765 0.820 
H-2-IEd 245 28 0.730 0.754 0.762 
H-2-IEk 68 40 0.836 0.853 0.864 
HLA-DPA10103-DPB10201 787 141 0.910 0.917 0.921 
HLA-DPA10103-DPB10301 1563 575 0.914 0.902 0.916 
HLA-DPA10103-DPB10401 2725 786 0.935 0.935 0.939 
HLA-DPA10103-DPB10402 45 9 0.497 0.710 0.636 
HLA-DPA10103-DPB10601 584 282 0.996 0.995 0.995 
HLA-DPA10201-DPB10101 2447 859 0.903 0.903 0.909 
HLA-DPA10201-DPB10501 2470 713 0.914 0.911 0.919 
HLA-DPA10201-DPB11401 2302 849 0.937 0.930 0.938 
HLA-DPA10301-DPB10402 2641 921 0.906 0.904 0.910 
HLA-DQA10101-DQB10501 2946 815 0.917 0.900 0.917 
HLA-DQA10102-DQB10501 833 458 0.867 0.839 0.874 
HLA-DQA10102-DQB10502 800 158 0.850 0.835 0.859 
HLA-DQA10102-DQB10602 2747 1256 0.905 0.890 0.906 
HLA-DQA10103-DQB10603 462 90 0.816 0.861 0.855 
HLA-DQA10104-DQB10503 883 105 0.844 0.805 0.844 
HLA-DQA10201-DQB10202 944 119 0.851 0.814 0.853 
HLA-DQA10201-DQB10301 827 374 0.864 0.849 0.871 
HLA-DQA10201-DQB10303 761 265 0.887 0.894 0.899 
HLA-DQA10201-DQB10402 768 241 0.858 0.860 0.875 
HLA-DQA10301-DQB10301 207 66 0.761 0.839 0.814 
HLA-DQA10301-DQB10302 3111 568 0.849 0.810 0.842 
HLA-DQA10303-DQB10402 567 117 0.836 0.820 0.855 
HLA-DQA10401-DQB10402 2890 928 0.894 0.883 0.897 
HLA-DQA10501-DQB10201 2897 874 0.889 0.876 0.888 
HLA-DQA10501-DQB10301 3585 1812 0.922 0.915 0.924 
HLA-DQA10501-DQB10302 847 203 0.831 0.822 0.840 
HLA-DQA10501-DQB10303 564 179 0.884 0.876 0.892 
HLA-DQA10501-DQB10402 749 337 0.857 0.868 0.876 
HLA-DQA10601-DQB10402 565 133 0.845 0.848 0.872 
Average   0.833 0.847 0.855 
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Suppl Table 4: The performance of the Leave-one-molecule-out (LOMO) benchmark analysis of 
NetMHCIIpan-3.2 including information about distance to nearest neighbor.  
 
 
 

Molecule #peptides #binders AUC Distance  
HLA-DQA10601-DQB10402 565 133 0.636 0.019 
HLA-DQA10501-DQB10402 749 337 0.824 0.063 
HLA-DQA10501-DQB10303 564 179 0.864 0.039 
HLA-DQA10501-DQB10302 847 203 0.802 0.039 
HLA-DQA10501-DQB10301 3585 1812 0.800 0.064 
HLA-DQA10501-DQB10201 2897 874 0.779 0.073 
HLA-DQA10401-DQB10402 2890 928 0.666 0.019 
HLA-DQA10303-DQB10402 567 117 0.680 0.055 
HLA-DQA10301-DQB10302 3111 568 0.648 0.086 
HLA-DQA10301-DQB10301 207 66 0.814 0.055 
HLA-DQA10201-DQB10402 768 241 0.840 0.047 
HLA-DQA10201-DQB10303 761 265 0.873 0.064 
HLA-DQA10201-DQB10301 827 374 0.835 0.055 
HLA-DQA10201-DQB10202 944 119 0.789 0.073 
HLA-DQA10104-DQB10503 883 105 0.765 0.042 
HLA-DQA10103-DQB10603 462 90 0.837 0.066 
HLA-DQA10102-DQB10602 2747 1256 0.786 0.066 
HLA-DQA10102-DQB10502 800 158 0.694 0.032 
HLA-DQA10102-DQB10501 833 458 0.618 0.016 
HLA-DQA10101-DQB10501 2946 815 0.678 0.016 
HLA-DPA10301-DPB10402 2641 921 0.889 0.090 
HLA-DPA10201-DPB11401 2302 849 0.896 0.059 
HLA-DPA10201-DPB10501 2470 713 0.880 0.070 
HLA-DPA10201-DPB10101 2447 859 0.880 0.070 
HLA-DPA10103-DPB10601 584 282 0.993 0.070 
HLA-DPA10103-DPB10402 45 9 0.719 0.022 
HLA-DPA10103-DPB10401 2725 786 0.921 0.039 
HLA-DPA10103-DPB10301 1563 575 0.840 0.059 
HLA-DPA10103-DPB10201 787 141 0.882 0.022 
H-2-IEk 68 40 0.854 0.328 
H-2-IEd 245 28 0.646 0.207 
H-2-IAu 56 22 0.739 0.241 
H-2-IAs 190 48 0.514 0.437 
H-2-IAk 115 4 0.383 0.241 
H-2-IAd 774 321 0.725 0.339 
H-2-IAb 1794 431 0.780 0.339 
DRB5_0101 5125 2430 0.765 0.202 
DRB4_0103 846 525 0.794 0.000 
DRB4_0101 3961 1540 0.726 0.000 
DRB3_0301 884 510 0.734 0.123 
DRB3_0202 3334 1055 0.756 0.123 
DRB3_0101 4633 1415 0.801 0.142 
DRB1_1602 1699 989 0.866 0.133 
DRB1_1501 4850 2107 0.780 0.133 
DRB1_1302 4477 2249 0.701 0.046 
DRB1_1301 1034 520 0.731 0.046 
DRB1_1201 2384 759 0.800 0.209 
DRB1_1101 6045 2667 0.767 0.057 
DRB1_1001 2066 1521 0.905 0.158 
DRB1_0901 4318 2164 0.791 0.251 
DRB1_0802 4465 2036 0.765 0.028 
DRB1_0801 937 390 0.804 0.028 
DRB1_0701 6325 3456 0.830 0.266 
DRB1_0405 3962 1654 0.799 0.045 
DRB1_0404 3657 1852 0.791 0.031 
DRB1_0403 59 14 0.862 0.031 
DRB1_0402 53 19 0.789 0.070 
DRB1_0401 6317 3022 0.766 0.045 
DRB1_0301 5352 1457 0.699 0.142 
DRB1_0103 42 4 0.711 0.069 
DRB1_0101 10412 6376 0.783 0.069 
Average      0.731   
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Suppl table 5: The predictive performance for NetMHCIIpan-3.1 and NetMHCIIpan-3.2 on the IEDB T-cell 
epitope data set. For each epitope in this data set, we calculated AUC and Frank values for the two 
NetMHCIIpan methods by predicting binding affinities for all overlapping peptides in the source protein 
sequence with the same length as the epitope, annotating the epitope as positive and the remaining peptides as 
negatives. For each MHC molecule, we calculated the average AUC performance. Also, shown in the table is the 
difference in the performance, as well as the difference in the nearest neighbor  
distance and the difference in the number of data points in the data sets used for training NetMHCIIpan- 
3.1 and NetMHCIIpan-3.2.   
 

 
 
 
 
 

Molecule  Number of 
epitopes per 
MHC 

Average 
Frank 
(3.1) 

Average 
Frank 
(3.2) 

Average 
AUC (3.1) 

Average 
AUC (3.2) 

∆ AUC 
perfor-
mance 

Nearest 
neighbor 
distance 

(3.1) 

Nearest 
neighbor 
distance 

(3.2) 

∆ distance 
to nearest 
neighbor  

Number of 
data points 

in 2013 
data set 

Number of 
data points 

in 2016 
data set 

∆ number 
of data 
points 

DRB1_0101 240 0.19 0.181 0.809 0.818 0.009 0 0 0 7685 10412 2727 
DRB1_0102 5 0.14 0.142 0.86 0.858 -0.001 0.066 0 -0.066 0 0 0 
DRB1_0103 43 0.319 0.206 0.681 0.794 0.113 0.069 0 -0.069 0 42 42 
DRB1_0301 101 0.161 0.14 0.838 0.86 0.022 0 0 0 2505 5352 2847 
DRB1_0401 232 0.22 0.195 0.779 0.804 0.025 0 0 0 3116 6317 3201 
DRB1_0402 3 0.286 0.206 0.712 0.793 0.081 0.07 0 -0.07 0 53 53 
DRB1_0404 146 0.235 0.19 0.764 0.81 0.046 0 0 0 577 3657 3080 
DRB1_0405 3 0.055 0.03 0.934 0.964 0.031 0 0 0 1582 3962 2380 
DRB1_0701 197 0.208 0.179 0.791 0.821 0.029 0 0 0 1745 6325 4580 
DRB1_0801 22 0.273 0.24 0.726 0.76 0.034 0.028 0 -0.028 0 937 937 
DRB1_0803 3 0.3 0.305 0.696 0.693 -0.002 0.034 0 -0.034 0 0 0 
DRB1_0818 1 0.568 0.469 0.425 0.525 0.1 0.063 0.028 -0.034 0 0 0 
DRB1_0901 40 0.301 0.326 0.696 0.672 -0.024 0 0 0 1520 4318 2798 
DRB1_1001 10 0.355 0.328 0.644 0.672 0.027 0.158 0 -0.158 0 2066 2066 
DRB1_1101 196 0.177 0.14 0.822 0.859 0.037 0 0 0 1794 6045 4251 
DRB1_1104 44 0.169 0.156 0.831 0.844 0.013 0.045 0 -0.045 0 0 0 
DRB1_1201 2 0.114 0.086 0.887 0.914 0.027 0 0 0 117 2384 2267 
DRB1_1301 12 0.423 0.245 0.576 0.754 0.178 0.046 0 -0.046 0 1034 1034 
DRB1_1302 3 0.553 0.547 0.447 0.45 0.003 0 0 0 1580 4477 2897 
DRB1_1401 20 0.226 0.206 0.773 0.795 0.021 0.029 0.115 0.086 0 0 0 
DRB1_1501 122 0.218 0.184 0.781 0.815 0.034 0 0 0 1769 4850 3081 
DRB1_1502 16 0.139 0.098 0.861 0.902 0.041 0.044 0 -0.044 0 0 0 
DRB1_1503 2 0.241 0.296 0.759 0.7 -0.059 0.03 0 -0.03 0 0 0 
DRB3_0101 4 0.17 0.068 0.83 0.932 0.102 0 0 0 1501 4633 3132 
DRB3_0202 7 0.432 0.149 0.566 0.85 0.284 0.088 0 -0.088 0 3334 3334 
DRB4_0101 3 0.411 0.372 0.589 0.628 0.039 0 0 0 1521 3961 2440 
DRB5_0101 120 0.151 0.17 0.849 0.83 -0.019 0 0 0 3106 5125 2019 
H-2-IAb 85 0.12 0.129 0.879 0.87 -0.009 0.05 0 -0.05 660 1794 1134 
H-2-IAd 11 0.399 0.216 0.599 0.785 0.186 0.052 0 -0.052 379 774 395 
HLA-DPA10103-
DPB10201 

1 0.015 0.02 0.985 0.98 -0.005 0 0 0 1404 787 -617 

HLA-DQA10102-
DQB10602 

2 0.108 0.051 0.891 0.948 0.058 0.056 0 -0.056 1629 2747 1118 

HLA-DQA10201-
DQB10201 

2 0.535 0.467 0.462 0.533 0.07 0.129 0 -0.129 0 0 0 

Average   0.257 0.211 0.742 0.789               
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Additional Information 

Supplementary figures  

 
Supplementary Figure S1: TM-score performances for the different template selection 
methods. A) The TM-score performance for the pMHC complex. B) The TM-score for the 
peptide. For each target in the template database we generate four models using the four 
different sequence identity thresholds. Method OneUnweighted uses only a single template 
with a weighted sequence identity, while method MultiUnweighted uses multiple templates 
with a weighted sequence identity. Method OneWeighted used a single template and the 
weighted sequence identity. MultiWeighted uses multiple templates and the weighted sequence 
identity. The four different template selection methods are compared with a random baseline 
(see method for more details). Statistical comparison was performed using the Wilcoxon 
signed-rank test.  
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Supplementary Figure S2: Chothia-Lesk plot showing the RMSD performance for the pMHC 
models generated using the different template selection methods (see Method section). A) 
Shows the RMSD performance for the pMHC complex. B) Shows the RMSD performance for 
the peptide. The sequence identity to the best template is calculated using the unweighted 
sequence identity.     
                                                                                     
 

 
 
Supplementary Figure S3: A) Peptide RMSD performance for the pMHC models based on 
peptide length and B) the TM-score for the peptide for the pMHC models based on peptide 
length. Each pMHC model were produced using the MulitWeighted method for template 
selection. 
 

104



	 3	

 
 
Supplementary Figure S4: A) Peptide RMSD accuracy for each pMHC model based on 
peptide length binned according to the sequence identity to the best template. B) TM-scores 
for the peptide for each pMHC model based on peptide length binned according to the sequence 
identity to the best template. THe results shown in these plots are based on the pMHC models 
produced using the MulitWeighted method for template selection.  
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Supplementary Figure S5: The RMSD accuracy for the different template selection methods 
using A) the TCR RMSD, B) the pMHC RMSD and C) the peptide RMSD. For each target in 
the template database we generate four models using the four different sequence identity 
thresholds and evaluate the generated models using the RMSD for the TCR-pMHC complex. 
The OneUnweighted method uses only a single TCR-pMHC template with no weights on the 
sequence identity. The OneWeighted method uses only a single TCR-pMHC template and a 
weighted sequence identity. The MultiWeighted method uses the weighted sequence identity 
and multiple templates. The three different template selection methods are compared with a 
random baseline shown in grey. Statistical comparison was performed using the Wilcoxon 
signed-rank test. 
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Supplementary Figure S6: The TCR-pMHC TM-score accuracy for the different template 
selection methods. For each target in the TCR-pMHC template database we generate four 
models using the four different sequence identity thresholds and evaluate the generated models 
using the RMSD for the TCR-pMHC complex. The OneUnweighted method uses only a single 
TCR-pMHC template with no weights on the sequence identity. The OneWeighted method 
uses only a single TCR-pMHC template and a weighted sequence identity. The MultiWeighted 
method uses the weighted sequence identity and multiple templates. The three different 
template selection methods are compared with a random baseline shown in grey. Statistical 
comparison was performed using the Wilcoxon signed-rank test.  
 
 

 
 
Supplementary Figure S7: Chothia-Lesk plot showing the RMSD accuracy for the TCR-
pMHC models generated using the different template selection methods (see method section 
for more details). A) Shows the TCR-pMHC RMSD accuracy. B) Shows the pMHC RMSD 
accuracy. C) Shows the peptide RMSD accuracy. The sequence identity to the best template is 
calculated using the unweighted sequence identity.    
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Supplementary Figure S8: Benchmark analysis of the TCR-pMHC models, showing different 
performance values between the models produced by TCRpMHCmodels and TCRFlexDock. 
A) Shows the Fnat accuracy B) Shows the iRMS accuracy and C) shows the LRMS accuracy. 
The statistical comparison was performed using the Wilcoxon signed-rank test and the dashed 
line indicates the thresholds for the four quality classes: High (H), Medium (M), Acceptable 
(A) and Incorrect (I) (see Method section).      
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Supplementary Figure S9: Visualisation of high and low quality models generated by 
TCRpMHCmodels and TCRFlexDock. The orange and blue structures in the figure are models 
generated by TCRpMHCmodels and TCRFlexDock respectively, and native structures are 
shown in gray. To get a good view of the TCR orientation to the pMHC we superimposed only 
the pMHC, but the the RMSDs shown in the figure was calculated by superimposing all the C-
alpha atoms in the TCR-pMHC model with all the C-alpha atoms in the native structure after 
which the RMSD was calculated for all C-alpha atoms. A) High quality model generated with 
TCRpMHCmodels, PDB id: 1mwa, RMSD: 0.52 and Fnat: 0.719. B) Low quality model 
generated with TCRpMHCmodels, PDB id: 5euo, RMSD: 6.36 and Fnat: 0.377. C) High 
quality model generated with TCRFlexDock, PDB id: 1mwa, RMSD: 1.07 and Fnat: 0.484. D) 
Low quality model generated with TCRFlexDock PDB id: 5hho, RMSD: 10.26 and Fnat: 
0.020. Structural representations were made in PyMOL. 
 

 
 

Supplementary Figure S10: The RMSD accuracy for the TCR-pMHC models generated 
using TCRpMHCmodels. The TCR-pMHC RMSD (grey), the TCR RMSD (blue), the pMHC 
RMSD (orange) and the peptide RMSD (read).  
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Supplementary Figure S11: Visualisation of a case where the same TCR binds different 
peptides. The native structures are shown in gray, while the models generated with 
TCRpMHCmodels are shown in orange. A) Shows the TCR-pMHC complex with the TCR55, 
PDB id: 6bj3. B) Shows the TCR-pMHC complex with the TCR589, PDB id: 6bj2. To get a 
good view of the TCR-pMHC models we superimposed only the pMHC, but the RMSDs 
shown in the figure was calculated by superimposing the C-alpha atoms in the TCR-pMHC 
model with the C-alpha atoms in the native structure. Structural representations were made in 
PyMOL. 
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Supplementary Figure S12: Visualisation of a case where the same TCR binds different 
peptides. The native structures are shown in gray while the models generated with 
TCRpMHCmodels are shown in orange. A) Shows the TCR-pMHC complex with the 
SLYNTIATL peptide, PDB id: 5nmf. B) Shows the TCR-pMHC complex with the 
SLFNTIAVL peptide, PDB id: 5nmg. To get a good view of the TCR-pMHC models we 
superimposed only the pMHC, but the RMSDs shown in the figure was calculated by 
superimposing the C-alpha atoms in the TCR-pMHC model with the C-alpha atoms in the 
native structure. Structural representations were made in PyMOL. 
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Supplementary tables 

Supplementary table S1: The RMSD accuracy for the TCR-pMHC models generated using 
TCRpMHCmodels for the 14 TCR-pMHC structures not found in the TCR-pMHC database.  
 

PDBid TCR-pMHC 
rmsd 

TCR rmsd pMHC rmsd Peptide rmsd Sequence identity of best template 

5isz 1.62 1.01 0.40 0.29 88.84 

5ivx 5.51 1.96 0.64 0.52 53.43 
5jzi 3.47 2.22 0.72 0.37 61.17 
5nme 2.76 1.71 0.53 0.51 60.76 
5nmf 2.05 1.00 0.53 0.53 64.46 
5nmg 2.27 1.51 0.45 0.44 60.76 
5tez 5.66 2.35 0.82 0.36 81.46 

5wkf 2.14 1.43 0.60 1.47 49.03 
5wkh 2.92 1.83 0.80 1.64 50.69 
5wlg 3.83 1.54 0.95 0.46 52.12 
5xot 3.63 2.14 0.87 1.37 50.96 
6bj2 3.54 1.77 0.82 0.85 50.76 
6bj3 3.03 2.54 0.82 1.07 50.96 
6bj8 2.43 2.30 0.78 0.85 48.47 
Mean 3.20 1.81 0.69 0.77 58.85 
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