Rh/ZSM-5 as a Sulfur Tolerant Catalyst for Methane Oxidation

Zhang, Yu; Christensen, Jakob Munkholt; Jensen, Anker Degn; Glarborg, Peter; Johansen, Keld

Publication date: 2019

Document Version
Peer reviewed version

Link back to DTU Orbit

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Rh/ZSM-5 as a Sulfur Tolerant Catalyst for Methane Oxidation

Yu Zhang, Jakob Munkholt Christensen, Anker Degn Jensen, Peter Glarborg, DTU Chemical engineering, Technical University of Denmark (DTU), Kgs. Lyngby, DK-2800, Denmark;
Keld Johansen, Haldor Topsoe A/S, Kgs. Lyngby, DK-2800, Denmark

Introduction
Natural gas can be an alternative fuel for ships in coastal zones to minimize the emissions of CO₂, NOₓ, and particulates from diesel engines. However, unburnt methane can slip from the engine, causing another emission problem. CH₄ is a green-house gas with an atmospheric potential of 26-28 times that of CO₂ [1] and it need to be mitigated from the exhaust gas. Converting CH₄ to CO₂ and H₂O catalytically in the after treatment system can be promising. However, an efficient catalyst that remains sufficiently active under real exhaust gas conditions (350-550 °C, 5-10 vol.% H₂O and 1-2 ppm SO₂) is still being sought. Pd based catalysts are the most active in the absence of H₂O and SO₂[2], but they deactivate severely by SO₂ even at low ppm levels. In this contribution, it is investigated if Rh catalysts on a suitable carrier material can be developed to tolerate the exhaust gas conditions above. Here Rh/ZSM-5 was prepared and tested under simulated engine exhaust gas conditions with both H₂O and SO₂ present. The influence of operating temperature and SO₂ concentration were studied.

Materials and Methods
The 2 wt.% Rh/ZSM-5 (Zeolyst, Si:Al = 280) catalyst was prepared by the Incipient Wetness Impregnation (IWI) method followed by calcination in air at 600 °C for 6 h. A fixed-bed quartz reactor was used to test the performance of the catalyst under different conditions. In each experiment, 0.12 g catalyst was diluted with 1.08 g sand. The gas hourly space velocity (GHSV) was kept at 150,000 ml/(g_cat·h). The reaction gas consisted of 2500 ppm CH₄, 10 vol. % O₂, 5 vol. % H₂O and 1-20 ppm SO₂ when present, balancing with N₂. The exit gas was analyzed with an online IR gas analyzer to monitor CO₂, CO, O₂, and SO₂ concentrations, and a Micro GC for CH₄ concentration. The measured CH₄ concentration was used to calculate CH₄ conversion. The fresh and spent catalysts were characterized by TEM and CO-DRIFTS.
The fresh catalyst was tested at 450, 475 and 500 °C. Initially, a 15 h test was done in the absence of SO₂, and then 1 ppm SO₂ was introduced to the reaction stream until the conversion of CH₄ became stable. Then the SO₂ concentration was raised in steps to 2, 5, 10, and 20 ppm SO₂ awaiting steady state at each SO₂ concentration level. Based on these data, a Temkin isotherm was used to find the adsorption heat of SO₂ on the 2 wt.% Rh/ZSM-5 catalyst with the assumption that the fraction of remaining activity correspond to the fraction of sites not covered by SO₂.

Results and Discussions

The conversion of CH₄ was stable at 450, 475, and 500 °C in the absence of SO₂ (Figure 1). By addition of 1 ppm SO₂, the conversion of CH₄ decreased significantly at the three operating temperatures. The stabilized conversion after around 50 h in the presence of 1 ppm SO₂ could be improved significantly (from 27 % to 79%) by elevating the operating temperature from 450 to 500 °C. As the SO₂ concentration was increased to 2, 5, 10, and 20 ppm SO₂, the conversion of CH₄ further decreased.

It indicates that it is possible to get stable conversion in the presence of H₂O and SO₂ on the 2 wt.% Rh/ZSM-5 catalyst. The CH₄ removal efficiency can be significantly improved by elevating the operating temperature and lowering the SO₂ concentration to a low level. The SO₂ concentration in the real natural gas engine condition is 1-2 ppm, thus a high CH₄ removal efficiency can be achieved around 500 °C, which is achievable in a real engine system.

![Figure 1. Conversion of CH₄ on 2 wt.% Rh/ZSM-5 catalyst in long-term stability test in the absence of SO₂ (a) and presence (b) of 1-20 ppm SO₂ at 450, 475, and 500 °C. 2500 ppm CH₄, 10 vol.% O₂, 5 vol.% H₂O, 1-20 ppm SO₂ when present, balanced with N₂, GHSV= 150,000 ml/(gcat•h)](image)

References