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Abstract 17 

Water Surface Elevation (WSE) is an important hydrometric observation, useful to calibrate 18 

hydrological models, predict floods, and assess climate change. However, the number of in-situ 19 

gauging stations is in decline worldwide. Satellite altimetry, including the recently launched satellite 20 

missions (e.g. the radar altimetry missions Cryosat 2, Jason 3, Sentinel 3A/B and the LIDAR mission 21 

ICESat-2), can determine WSE only in rivers which are more than ca. 100 m wide. WSE 22 

measurements in small streams currently remain limited to the few existing in-situ stations or to 23 
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time-consuming in-situ surveys.  Unmanned Aerial Systems (UAS) can acquire real-time WSE 24 

observations during periods of hydrological interest (but with flight limitations in extreme weather 25 

conditions), within short survey times and with automatic or semi-automatic flight operations. UAS-26 

borne photogrammetry is a well-known technique that can estimate land elevation with an accuracy 27 

as high as a few cm, similarly UAS-borne LIDAR can estimate land elevation but without requiring 28 

Ground Control Points (GCPs). However, both techniques face limitations in estimating WSE: water 29 

transparency and lack of stable visual key points on the Water Surface (WS) complicate the UAS-30 

borne photogrammetric estimates of WSE, while the LIDAR reflection from the water surface is 31 

generally not strong enough to be captured by most of the UAS-borne LIDAR systems currently 32 

available on the market. Thus, LIDAR and photogrammetry generally require extraction of the 33 

elevation of the “water-edge” points, i.e. points at the interface between land and water, for 34 

identifying the WSE. We demonstrate highly accurate WSE observations with a new radar altimetry 35 

solution, which comprises a 77 GHz radar chip with full waveform analysis and an accurate dual 36 

frequency differential Global Navigation Satellite System (GNSS) system. The radar altimetry 37 

solution shows the lowest standard deviation (σ) and RMSE on WSE estimates, ca. 1.5 cm and ca. 3 38 

cm respectively, whilst photogrammetry and LIDAR show a σ and an RMSE at decimetre level. Radar 39 

altimetry also requires a significantly shorter survey and processing time compared to LIDAR and 40 

especially to photogrammetry.  41 

 42 

 43 

1. Introduction 44 

 45 
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According to Tauro et al. (2018) new measurement techniques, equipment and sensors are needed 46 

to characterize the hydrological cycle. The global decline of measuring stations and systems for 47 

hydrology continues (Lawford et al., 2013).  However, in recent years, there has been a general 48 

trend towards data mining and hydrological modelling rather than experimental research (Blume et 49 

al., 2017; Sidle, 2006).  Accurate and high spatial resolution observations of water surface elevation 50 

(WSE) are essential for validation and calibration of hydraulic models (Giustarini et al., 2011; 51 

Langhammer et al., 2017; Tarpanelli et al., 2013) and for flood forecasting (Asadzadeh Jarihani et 52 

al., 2013; Domeneghetti, 2016; Montesarchio et al., 2015).  Hydrodynamic models would require 53 

spatially distributed calibration and validation of WSE (Alsdorf et al., 2007),  however in-situ 54 

campaigns or gauge stations  can retrieve only point-based measurements and do not ensure the 55 

adequate spatial coverage to characterize the river networks. 56 

Conversely, spaceborne WSE measurements are currently constrained by the spatial and temporal 57 

resolutions of satellite altimeters, with a vertical accuracy of decimetres to meters (Asadzadeh 58 

Jarihani et al., 2013; Biancamaria et al., 2017; Calmant and Seyler, 2006). The upcoming SWOT 59 

mission (Durand et al., 2010; Neeck et al., 2012)  is expected to provide 2D measurements of WSEs 60 

for many of the world’s prominent rivers, lakes, and wetlands with decimetre-level accuracy over 1 61 

km2 areas (Biancamaria et al., 2016; Pavelsky et al., 2014). Altenau et al. (2017) demonstrated that 62 

AirSWOT, an airborne instrument that produces radar measurements analogous to SWOT, can 63 

obtain observations with an RMSE of 9.0 cm for WSEs averaged over 1 km2 areas and 1.0 cm/km for 64 

slopes along 10 km reaches. However, the spaceborne SWOT is expected to be capable of 65 

monitoring only rivers whose width exceeds 100 m (https://earth.esa.int/web/eoportal/satellite-66 

missions/s/swot), therefore is not expected to deliver WSE observations of small rivers (less than 67 

100 m), which remain currently ungauged by satellite observations. However, small rivers are an 68 

essential part of the river network, because they govern connectivity at the watershed-scale (e.g. 69 

https://earth.esa.int/web/eoportal/satellite-missions/s/swot
https://earth.esa.int/web/eoportal/satellite-missions/s/swot
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Wohl, 2017), constitute the whole river network in some geographical regions or countries and can 70 

cause major floods in both rural and urban areas.  71 

Manned aerial LIDAR instruments can measure WSE and slope also in small rivers. However, 72 

accurate determination of the water surface (WS) is not trivial for LIDAR instruments (Guenther, 73 

1981). WSE can be extracted from the “water-edges” of the LIDAR point cloud with a vertical 74 

accuracy at the decimetre level (Legleiter, 2012), or in case LIDAR instruments have a suitable 75 

frequency, pulse energy and pulse width for directly detecting the WS, WSE can be directly 76 

measured with an accuracy from few cm to a few tens of cm (Hopkinson et al., 2011; Schumann et 77 

al., 2008).  Generally, Near-Infrared (NIR) is reflected by the air-water interface and does not 78 

penetrate below the WS, while blue/green LIDAR pulses penetrate below the WS and travel through 79 

the water column (e.g. Andersen et al., 2017).  Because the green water surface returns include 80 

returns from the air–water interface but also from the volume backscatter and the bed, Guenther 81 

et al. (2000) suggested to avoid the use of green LIDAR for measuring the WS. On the other hand, 82 

the use of NIR LIDAR data for WS detection is documented in several studies (e.g. Allouis et al., 2010; 83 

Brzank et al., 2008; Collin et al., 2008; Höfle et al., 2009). 84 

Compared to manned aircrafts, Unmanned Aerial Systems (UAS) are low cost, portable flight 85 

platforms that can ensure inexpensive and versatile flight operations. UAS can fly at a lower altitude, 86 

i.e. closer to the stream, and can be deployed at short notice, for example during a period of 87 

hydrological interest.   UAS are customizable with different payloads, but with limited size and 88 

weight available for the sensors, which significantly limits the availability of UAS-borne LIDAR 89 

systems. Mandlburger et al. (2016) tested the novel topo-bathymetric laser profiler system 90 

(RIEGLBDF-1) onboard RIEGL BathyCopter (RIEGL, Austria). This LIDAR system implements a green 91 

wavelength and is able to detect WS and also bathymetry (penetration up to 1.5 Secchi depth). The 92 

authors demonstrated that the system can measure WSE, with a median vertical error of ca. 4.5 cm, 93 
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mainly due to penetration of green LIDAR below the WS. Furthermore, the authors report a standard 94 

deviation of 6 cm in measurements, which was assumed to be caused by the short-term variability 95 

of the WS (e.g. roughness).  The authors specified that a combined NIR/green LIDAR solution would 96 

be optimal for WS detection.  97 

Huang et al. (2018) tested a lightweight and relatively cheap scanning laser (UTM-30LX, Hokuyo 98 

Automatic Co., LTD., Japan) onboard a UAS to measure WSE of the sea, including wave heights. The 99 

NIR laser system could receive only 10%–35% of useful data returns from a height of 6 m over the 100 

sea, and for this reason, it was operated at altitudes of 6–10 m above sea level. The vertical RMSE 101 

in sea WSE observation was 5 cm for a flight height of 10 m in hover mode. The major factors 102 

affecting system accuracy were the accuracy of   i) the Inertial Measurement Unit (IMU), ii) the Real 103 

Time Kinematic (RTK) Global Navigation Satellite System (GNSS) system, iii) the scanning laser and 104 

iv) the synchronization between the sensors. 105 

Due to the weight and price of airborne LIDAR systems, in recent years researchers have 106 

experimented with UAS-photogrammetry to measure WSE.  Photogrammetric Digital Elevation 107 

Models (DEMs) can generally estimate the elevation of solid surfaces with a vertical accuracy of few 108 

cm (Bühler et al., 2017; Carbonneau and Dietrich, 2017; Ouédraogo et al., 2014; Santise et al., 2014). 109 

However, WS is notoriously difficult to reproduce: shadows, aquatic vegetation, lack of stable visual 110 

key points on the WS, and through-water penetration of visible light complicate the reconstruction 111 

of the WS with Structure-from-Motion (SfM) algorithms. Westaway et al. (2001, 2000) suggested 112 

that WS maps could be produced by interpolating WS information from data points acquired from 113 

dry locations (“water-edge”) adjacent to inundated areas. Using this “water-edge” technique, 114 

Woodget et al (2015)  have demonstrated that WSE can be estimated by i) visually identifying the 115 

“water-edge” interface on the UAS-orthophoto and ii) extracting the elevation of the “water-edge” 116 

at small intervals from  the digital surface map derived from UAS-imagery.  The “water-edge” can 117 
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be successfully identified along streambanks which exhibit clearly identifiable edges (e.g. vegetation 118 

does not protrude over the stream) and gentle bank slopes (Javernick et al., 2014; Pai et al., 2017).  119 

Different automatic algorithms have been developed to identify the “water-edge”, particularly on 120 

images captured by in-situ static optical camera, e.g. supervised methods  (Young et al., 2015) based 121 

on Canny’s edge  detection algorithm (Canny, 1986), or similarly methods based on analysis of grey-122 

scale image profiles to detect the water-solid surface transition signal (Leduc et al., 2018). Pai et al. 123 

(2017) attempted to identify the “water-edge” on UAS-imagery via Normalized Water Difference  124 

Index (NDVI) or NIR thresholds estimated from multispectral images, but did not report a substantial 125 

improvement compared to visual identification. Ridolfi and Manciola (2018) proved that the “water-126 

edge” between WS and the solid surface constituting a dam can be clearly identified on UAS-imagery 127 

via Canny algorithms. 128 

The accuracy of WSE observations estimated via photogrammetric techniques depends on the 129 

accuracy of the photogrammetric DEM and on “water-edge” identification accuracy. In general, 130 

photogrammetry requires high computational power and time-consuming human-computer 131 

interaction to visually identify the ground control points (GCPs) and inspect the “water-edge” points.  132 

Given the current limitations of LIDAR and photogrammetry systems,  Bandini et al. (2017b) 133 

retrieved WSE observations of a lake with different UAS-sensors, i.e. sonar system, radar and 134 

camera-laser based prototype, in order to test precision, accuracy and beam divergence of each of 135 

the sensors. The radar system was demonstrated to provide a ranging accuracy of ca. 0.5% of range. 136 

With GNSS system delivering a vertical accuracy better than 3-5 cm, the radar-GNSS system was 137 

proven to measure WSE of the lake with an overall accuracy better than 5–7 cm. 138 

In this paper, we describe a new UAS-based radar altimetry solution with full waveform analysis, 139 

together with LIDAR and photogrammetric methods. The performance of a LIDAR, photogrammetric 140 

and radar estimates of WSE are quantified and compared to an independent conventional manual 141 
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gauging in a small stream reach. The advantages and limitations of the different sensor technologies 142 

are reviewed, and both the accuracy and operating costs compared. We find that the radar 143 

observations are approximately an order of magnitude better than either LIDAR or 144 

photogrammetry.  145 

2. Materials and methods 146 

 147 

Firstly, this study aims to show that UAS-borne WSE measurements retrieved with an innovative full 148 

waveform radar system are more reliable and accurate than photogrammetry or LIDAR WSE 149 

estimates. Secondly, the study aims to demonstrate the applicability of this UAS-borne radar 150 

technique with full waveform analysis also in a very small stream (1-2 m wide) that is fully covered 151 

by dense vegetation over most of its length.  152 

To demonstrate this, UAS-borne WSE observations were retrieved in two case studies:  153 

 154 

i) in a ca. 2.3 km stretch of the stream Åmose Å (Denmark) on November 21, 2018.  This 155 

stretch had a WS width of ca. 3-4 m and was overhung by sparse deciduous trees. This 156 

campaign shows a comparison of UAS-borne estimates from the 3 different techniques, 157 

i.e. radar, LIDAR and photogrammetry, benchmarked with ground-truth observations.  158 

ii)  In a ca. 0.8 km stretch of the stream Nivå  Å (Denmark) on June 25, 2019. This stretch 159 

had a WS maximum width of only 1.5-2 m. The stretch is almost fully covered by dense 160 

canopy: this survey shows that the radar altimetry solution with full waveform can 161 

identify the WS also in locations where the WS is not visible with optical imagery (e.g. 162 

photogrammetry) because the WS is fully covered by trees during their growth season. 163 
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This campaign shows the radar observations benchmarked with ground-truth 164 

observations.  165 

 166 

 167 

Fig. 1 shows the location of the 2 streams, while Table 1 summarizes the morphological and 168 

hydraulic characteristics of the 2 river stretches. 169 

 170 

Table 1, morphological and hydraulic characteristics of the 2 river stretches 171 

Stream 

name  

Coordinates 

Latitude/Longitude 

(WGS84) 

Total length: 

 

Annual 

average 

WSE 

slope  

Mean 

annual 

discharge 

Maximum 

water 

depth  

Water 

turbidity  

Mean 

 water 

surface 

width 

Vegetation 

status 

Åmose 

Å 

 

From 55.566056/ 

11.644617 

 

To 55.567107/ 

11.672163 

Total length: 2.3 km 

0.2-0.5 

per 

mille 

ca. 0.8 

m3/s, 

large 

annual 

variation   

Ca. 1.5 m High 

turbidity. 

Secchi depth: 

ca. 0.7 m 

2-4 m • Sparse  

riparia

n 

vegetat

ion 

• Dense 

aquatic 

vegetat

ion 

Nivå  Å From 55.93008/ 

12.48708 

To 

0.1-0.2 

per 

mille 

ca. 0.2 

m3/s,  

large 

Ca. 0.6 m Secchi depth: 

ca. 1-1.2 m 

1-2 m • Very 

dense 

riparia

n 
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55.92900/ 

12.49894 

Total length:  

0.8 km 

annual 

variation 

vegetat

ion 

overha

nging 

the 

stream 

• Dense 

aquatic 

vegetat

ion 

 172 

 173 

Fig. 1, General map of Zealand island (Denmark) with the location of the two stretches. Map tiles by Stamen Design, 174 

with Data by OpenStreetMap (Maps.stamen.com, 2019). 175 
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 176 

 177 

 178 

2.1. Åmose Å case study 179 

Observations in Åmose Å  were retrieved with our radar altimetry solution, a LIDAR system and UAS-180 

borne  photogrammetry. The flight paths for LIDAR and radar are shown in Fig. 2, while the flight 181 

path for photogrammetry is shown in Fig. 3.  182 

 183 

 184 

 185 

Fig. 2. Map showing the surveyed Åmose Å stretch and its corresponding chainage, which is the 186 
linear distance along watercourse from stream origin. The map includes the location of the poles 187 
used to retrieve in-situ measurements and the route flown by both the radar and the LIDAR. The red 188 
dot shows an in-situ gauging station to measure WSE.  Map background is an orthophoto from the 189 
Danish Geodata Agency (Styrelsen for Dataforsyning og Effektivisering, 2018). 190 

 191 
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 192 

Fig. 3, map showing the flight route for photogrammetry and the Ground Control Points (GCPs) for 193 
photogrammetry for Åmose Å. The LIDAR route (equivalent to the 2nd route for radar) is also shown 194 
in this map together with GCPs for LIDAR.  Map background is an orthophoto from the Danish 195 
Geodata Agency (Styrelsen for Dataforsyning og Effektivisering, 2018) 196 

 197 

 The radar observations were obtained along the entire ca. 2.3 km stretch, while observations for 198 

the LIDAR and photogrammetry were limited to a smaller stretch. A shorter stretch (ca. 0.9  km) was 199 

covered with photogrammetry because photogrammetry requires: i) multiple flight strips to 200 

monitor an area, and ii) GCPs. For this reason, photogrammetry is the most labour demanding 201 

technique. The total number of flights with LIDAR and photogrammetry was also limited by the need 202 

to obtain the UAS-borne and the in-situ ground-truth observations in a time lag of a few hours to 203 

avoid WSE fluctuation between the surveys. The maximum WSE variation was 1-2 cm during the 204 

survey, as measured by the  gauging station shown in Fig. 2 (hydrometric data available online at 205 

Orbicon (2018)).   The photogrammetry flight was conducted in daylight conditions to have sufficient 206 
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illumination for optical imagery, while the LIDAR flight was conducted just after sunset, i.e. when 207 

the light conditions (absence of sunlight) were ideal for an active NIR sensor. 208 

The radar flight paths consist of three consecutive routes (each route lasted ca. 12 minutes). For 209 

each route, the UAS is flown in a round trip (double-pass) along the river centreline.  210 

The LIDAR path follows only one of the three radar routes (2nd route). The GCPs for LIDAR were used 211 

only as check points to evaluate the LIDAR accuracy, but GCPs are not used to directly georeference 212 

the LIDAR point cloud.  These LIDAR GCPs consist of features clearly distinguishable with the LIDAR 213 

because of their elevation contrast with the surroundings. 7 LIDAR GCPs were chosen in total: 4 214 

points on the roof of the car, 1 point on a small bridge crossing the stream and 2 points on flat hay 215 

bales.  216 

The photogrammetry consists of two routes at different altitudes (30 and 70 meters above ground 217 

level). The camera was facing nadir for the route at 30 m. During the route at the highest altitude, 218 

the camera was facing nadir in one flight and it was tilted ca. 30° (from vertical, in a forward 219 

direction) in the other flight.  Obtaining images at different altitudes and different angles ensured 220 

the highest accuracy in surfaces generation and DEM (e.g. Rossi et al., 2017; Wackrow and Chandler, 221 

2011). 22 GCPs are used for photogrammetry (spatial distribution of GCPs is shown in Fig. 3, vertical 222 

variability range was ca. 1 m), of which 16 are directly used to geo-reference the model and 6 are 223 

check points to assess the absolute accuracy of the model.  224 

Details about flight settings for each specific payload are given in Table 2.  225 

 226 

2.2. Nivå case study 227 

 228 
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Fig. 4 shows a UAS-borne orthophoto map obtained with photogrammetric technique of the stream 229 

Nivå Å during the survey day. The river chainage is also shown in the figure. 230 

 231 

Fig. 4, UAS-borne orthopoto of Nivå Å. (a) Orthomap showing the river stretch that was surveyed for 232 
WSE. (b) detail of the stream. The stream has a width of 1-2 m at maximum. In most locations (in 233 
more than 90% of stretch length), the stream is fully covered by vegetation canopy. 234 

 235 

 The stream appears to be fully covered by dense canopy during the survey day, with WS that is 236 

visible on UAS-borne imagery only in sparse locations (less than 10% of the stretch length). This case 237 

study is a demonstration of the capabilities of the radar altimetry solution in environments where 238 

photogrammetry and LIDAR would fail to detect the WS because they would lack line-of-sight to the 239 
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WS. Also UAS navigation is complicated in this stream, indeed, the centerline is not clearly 240 

identifiable in the locations covered by vegetation, thus the UAS planned route can significantly 241 

differ (a few meters) from the river centerline.  242 

 243 

2.3. Ground-truth observations 244 

In-situ observations were obtained with the levelling technique (Fig. 5).  245 

 19 metal poles were installed along the surveyed stretch in Åmose Å and 4 poles were located along 246 

Nivå Å, in order to have stable in-situ reference points. The horizontal and vertical coordinates of 247 

these poles were measured on multiple days (one measurement every month during the period 248 

March-November 2018) with a GNSS rover station Trimble RTK GNSS R8s (Trimble Inc., USA).  249 

 250 

Fig. 5, levelling system for in-situ WSE ground-truth observations. Vertical absolute poles 251 

coordinates were measured with an RTK GNSS system. 252 

The offset between the metal pole and the closest WS point was measured with the levelling 253 

instrument Leica Sprinter 50 Digital Level (Leica Geosystems, Switzerland). Levelling generally 254 

ensures sub-mm accuracy in height difference determination. However, the positioning of the 255 

measuring rod on the WS can generate an uncertainty of 1-2 cm, e.g. because of waves, ripples and 256 



15 
 

operator errors. Furthermore, the absolute vertical coordinates of the poles were measured on 257 

different days to average the RTK GNSS errors, but an uncertainty of 1-2 cm is expected. Because of 258 

these sources of uncertainty, we can expect an accuracy of ground-truth in-situ observations of 2-3 259 

cm.   260 

 261 

 262 

2.4. UAS platforms and GNSS/IMU sensors 263 

 264 

Observations with LIDAR and radar were retrieved with a DJI Matrice 600 PRO (DJI, China), as shown 265 

in Fig. 6, and imagery for the photogrammetry model was retrieved with a DJI Phantom 4 Pro (DJI, 266 

China).  267 

 268 

 269 

Fig. 6, UAV flight to retrieve WSE observations in Åmose Å, Denmark. 270 

 271 

 272 
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The Matrice 600 Pro was equipped with the GNSS system OEM7700 (NovAtel, Canada) integrated 273 

through NovAtel's Synchronous Position, Attitude and Navigation (SPAN) technology with the IMU 274 

OEM-ADIS-16488 (Analog Devices, Inc., USA). To obtain cm-level accurate drone position, the GNSS 275 

(comprising GPS and GLONASS constellations) observations are post-processed with post-processed 276 

kinematic (PPK) technique with the software Inertial Explorer version 8.70 (NovAtel, Canada). A 277 

NovAtel Flexpack6 receiver with a NovAtel GPS-703-GGG pinwheel triple frequency (GPS and 278 

GLONASS) antenna was used as basestation. The IMU system was used to measure drone angles 279 

and processed with Inertial Explorer in a solution tightly coupled with the GNSS system, in order to 280 

filter GNSS observations and increase the position acquisition rate (Falco et al., 2017; Noureldin et 281 

al., 2013).  282 

Observations of LIDAR and radar systems are saved and synchronized with GNSS and IMU 283 

observations on the single-board computer BeagleBone Black (BeagleBoard.org).  284 

2.5. Radar 285 

Bandini et al. (2017b) describe the UAS radar altimetry solution. As with satellite altimetry, the GNSS 286 

measures the altitude of the UAS above the reference ellipsoid (or sea level if geoid undulation is 287 

known), while the radar measures the range between UAS and the WS. By subtracting the range to 288 

WS from the GNSS-derived altitude, WSE can be determined. The accuracy in WSE estimates is a 289 

combination of the accuracy of both the ranging sensor and the GNSS system.   The radar system 290 

used for this study is different from Bandini et al. (2017b). In this study, we adopted the Evaluation 291 

Module (IWR1443BOOST) of the IWR1443 radar chip from Texas Instrument (USA).  The module 292 

costs ca. $300 (USD) and weighs ca. 50 g.   293 

 IWR1443 is a Frequency-Modulated Continuous-Wave (FMCW) radar chip capable of operating in 294 

the 76-81 GHz band with up to 4 GHz bandwidth continuous chirp  (Texas Instruments, 2017). It is a 295 
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fully configurable radar which supports 3 transmitting and 4 receiving antennas.  Texas Instrument 296 

currently provides a mmWave Software Development Kit (SDK) for radar hardware and firmware 297 

configuration. The main advantage of this radar compared to the automotive radar used in Bandini 298 

et al. (2017b) is the possibility to obtain the full waveform of radar return. Appendix A reports the 299 

radar configuration parameters used for this research. This current configuration enables 2 receiving 300 

antennas and 1 transmitting antenna, 5 Hz frame rate (5 observations per second), 1024 range bins, 301 

and a range resolution of ca. 0.036 m. The radar field of view and the flight settings are given in 302 

Table 2, while details about radar configuration are given in Appendix A.  303 

Fig. 7 shows the full waveform plot, obtained after applying a Fast Fourier transform (FFT) on the 304 

digitized samples corresponding to each chirp (Appendix A). The peak in each waveform is 305 

representative of the WS, because in the microwave spectrum WS has a higher reflectivity 306 

compared to soil and vegetation.  307 

Analysing the waveform, a measuring accuracy value higher than range resolution can be achieved. 308 

Our experimental results, conducted in a laboratory with water tanks, showed that the optimal 309 

range value is obtained by extracting the range and power return of the maximum peak and of the 310 

previous and subsequent range bins, as according to experimental Eq. ( 1 ). 311 

 𝑅𝑅 = 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −
𝑟𝑟𝑟𝑟𝑟𝑟

2
∗

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) + (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

+
𝑟𝑟𝑟𝑟𝑟𝑟

2
∗

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) + (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)
= 

 

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +
𝑟𝑟𝑟𝑟𝑟𝑟

2
∗

(𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)
2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 

  

 

( 1 ) 

 

R is the range between the radar and the target (e.g. water surface), Rpeak is the range corresponding 312 

to the range bin of the peak, res is the radar resolution (i.e. distance between two range bins, ca. 313 

0.036 m in the current configuration), 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 are the return power (e.g. in 314 
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Decibels) of the range bin corresponding to the peak, the previous and the next range bin. In the 315 

equation, the range of the peak is adjusted by subtracting (in second term) and adding (in third 316 

term) a quantity equal to half the resolution multiplied by the difference between the peak return 317 

power and the return power of the next bin (in second term) or the previous bin (in third term), with 318 

each difference normalized by the sum of the two differences. Eq. ( 1 ) allows to estimate a range 319 

that was shown to be more accurate than extraction of just the range of the peak. 320 

Laboratory experiments were performed under controlled conditions and the application of this 321 

formula has shown that a sub-centimetre accuracy can be obtained in range determination.  322 

.  
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Fig. 7, waveform of a single radar observation above a river.  (a) full waveform plot of the range 
bins of the radar (maximum range bin is ca. 36.78 m). The peak is representative of the WS. The 
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first and last bins show high returns but these are due to the direct wave and FFT numerical 
artefacts.  (b) detail of the returns, highlighted by a black rectangle in (a), that are representative 
of the actual range to the water surface (estimated range to the WS is ca. 29.6186 m after applying 
Eq. (1)).  

 

 323 

  

  

The gimbal Gremsy T1 (Gremsy Co., Ltd, Vietnam) is currently used to stabilize and maintain the 324 

radar to a position facing nadir.  The UAS-borne payload is shown in Fig. 8.  325 

 326 

Fig. 8, UAS-borne radar. The current radar is stabilized through a gimbal. The gimbal is also equipped 327 
with an RGB camera for airborne pictures and videos. 328 

 329 

The current UAS platform includes an accurate PPK GNSS system for post-processing UAS positions 330 

but does not include an RTK GNSS system for navigation. For this reason, UAS navigation showed to 331 

have a deviation of a couple of meters in both the vertical and the horizontal compared to the 332 

planned flight route. The UAS-radar altimetry observations include a few observations retrieved at 333 

locations where WS of this small stream was not visible to the radar antenna beam, because the 334 

UAS was not navigating above the stream but in the surroundings. These observations had to be 335 
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filtered. In this study, this filtering is performed by including only radar observations that were 336 

captured when the UAS was positioned above the river mask, which was approximated using a 337 

polygon.  This polygon was centred along the river centerline and its width  (3 m Åmose and 1.5 m 338 

for Nivå) was chosen according to the stream size to approximate the river mask, for this reason we 339 

refer to this polygon as river polygon. Furthermore, altimetry observations were filtered to remove 340 

the few outliers (e.g. trees, bridges) that were at an elevation significantly different (more than 1 341 

m) than WS. Another efficient option for filtering, which is not shown in this study, would be to 342 

determine a return power threshold to distinguish waveform peaks caused by land/trees/bridges 343 

from predominant peaks caused by the WS.  344 

 345 

 346 

 347 

 348 

2.6. Photogrammetry 349 

The UAS-imagery for the photogrammetry model was obtained with the CMOS RGB camera sensor 350 

(1 inch sensor, 20MP resolution) onboard Phantom 4 Pro. Camera settings for the flights are 351 

summarized in Table 2. UAS-imagery are processed in the software  AgiSoft PhotoScan Professional 352 

(Version 1.4.5) retrieved from https://www.agisoft.com/.  353 

We compared 3 different methods to estimate WSE from photogrammetry observations: i) 354 

extraction of elevation of the photogrammetric point cloud values contained in the river polygon 355 

(to be consistent with radar) ii) extraction of photogrammetric DEM elevation values along river 356 

centreline iii) extraction of the elevation of points at the “water-edge” to be consistent with  the 357 

previously published methodology (Westaway et al., 2001, 2000; Woodget et al., 2015). 358 
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2.7. LIDAR 359 

 The LIDAR system is a Puck LITE™ (Velodyne LIDAR, US). It costed ca. $8,000 and weighs ca. 590 g. 360 

It provides dual return with a NIR wavelength of 903 nm. With 16 Channels, it is able to generate 361 

300,000 points/second. Field of view and resolution are summarized in Table 2. Its typical accuracy 362 

over solid surfaces is ±3 cm: this accuracy corresponds to the accuracy of LIDAR only, without 363 

including GNSS or IMU errors. 364 

LIDAR data are post-processed with the software LAStools (version 181119, academic), obtained 365 

from http://rapidlasso.com/LAStools. LAStools is used to visualize the point cloud, filter observations, 366 

and create the Digital Surface Model (DSM).  367 

We found that the WS is not reflective enough to acquire direct LIDAR returns, so WSE cannot be 368 

directly measured. The main reason for this is probably the low energy that the LIDAR emits. This is 369 

a very common issue (e.g. Huang et al., 2018; Mandlburger et al., 2017) in the current lightweight 370 

LIDAR sensors (e.g.  that can be deployed in small (less than 25 kg) UASs. Given this limitation in 371 

detecting the WS, LAStools needs to extrapolate from the “water-edge” points to construct a DEM 372 

of the stream. 373 

We apply two methods to estimating WSE: i) extraction of all LIDAR point cloud elevation values 374 

contained in the river polygon (to be consistent with radar and photogrammetry) ii) extraction of 375 

the LIDAR DSM values along the river centreline.  376 

 377 

 378 

http://rapidlasso.com/LAStools
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Table 2, platform, flight route and payload settings for the different sensors as used in this study 379 

Payload Platfor

m 

Measurem

ent rate 

Altitu

de 

(abov

e 

groun

d 

level) 

Fligh

t 

spee

d 

(m/s

) 

Image 

overlappi

ng 

Sensor 

orientati

on 

Field of view 

(FOV) 

Resolution 

Radar DJI 

Matric

e 600 

PRO 

5 Hz 28 m 3 - Nadir • Full 

waveform  

Estimated FOV  at 

77 GHz: 

• horizontal 

3dB-

beamwidt

h is ca. 

±28° 

• elevation 

3dB-

beamwidt

h is ca. 

±14°  
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Photogramm

etry 

DJI 

Phanto

m 4 

Pro 

3 sec 

between 

each image 

30 m  

 

2.5  >80% 

frontal 

>60% 

side 

Nadir • FOV: 84° 

• Ground 

Sample 

Distance 

(GSD) 

At 30 m: 

0.9 

cm/px, 

At 70 m: 

2.10 

cm/px 

3 sec 

between 

each image 

70 m 6 >80% 

frontal 

>60% 

side 

Nadir 

 30° 

(from 

vertical) 

LIDAR DJI 

Matric

e 600 

PRO 

300,000 

points/sec

ond 

28 m 3 - Nadir • FOV 

(Vertical): 

+15.0° to -

15.0° 

 • Angular 

Resolution 

(Vertical): 2.0° 

 • FOV 

(Horizontal): 360° 

 • Angular 

Resolution 
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(Horizontal/Azim

uth): 0.1° – 0.4° 

 380 

 381 

3. Results  382 

3.1. Radar 383 

 384 

Fig. 9 shows the elevation bins obtained by subtracting the radar waveform from the GNSS altitude 385 

data. The colour map reflects the measured return power. The highest return power has an intense 386 

blue colour. 387 

 388 
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Fig. 9, colour map of the radar power returns of the  flights above Åmose Å. X-axis shows river 389 
chainage, Y-axis shows the elevation bins (i.e. radar range bins subtracted from GNSS-derived 390 
altitude).  391 

Fig. 9 depicts a clear WS profile, with a few outliers. The solid yellow colour at the bottom and top 392 

sides of the figure indicates elevation values that are above the flight altitude and below the 393 

minimum theoretical elevation bin, which is obtained by subtracting the maximum unambiguous 394 

range bin from the actual GNSS-derived altitude. The lowest and highest elevation bins vary 395 

depending on the flight altitude.  The strong returns at the lowest and highest bins are not significant 396 

and can be generally ignored. Some of the outliers are caused by tree canopy or river structures 397 

above the WS (e.g. a bridge), as highlighted in the figure. Generally, trees with dense leaves cause 398 

a clear hyperbolic signal; however, at the time of the flight, trees were without leaves. Thus, the 399 

hyperbolic signal from trees is attenuated, with only perennial trees or large branches showing some 400 

returns predominant with respect to the WS.   401 

WSE was extracted from the full waveform radar observations, as according to the waveform shape 402 

analysis technique described by Eq. ( 1 ).  403 

 404 

Fig. 10 shows the in-situ ground-truth observations, the radar observations extracted from the 405 

waveform analysis and a spatial average of UAV observations at 5 m intervals. 406 

 407 
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 408 

Fig. 10, WSE observations (in meters above mean sea level (mamsl)) retrieved by UAV-borne radar-409 
GNSS technology and with in-situ levelling-RTK GNSS technique in Åmose Å. The size of the squares 410 
representing in-situ observations is arbitrary. 411 

Fig. 10 shows that the radar solution is able to determine WSE with an accuracy better than 3 cm 412 

(Table 3 reports the statistics about error with comparison to ground-truth observations). This 413 

accuracy depends on two components: i) radar ranging accuracy and ii) vertical accuracy of the GNSS 414 

system.  415 

 416 

3.2. Photogrammetry 417 

Fig. 11  shows the orthophoto and the DEM model retrieved in the river stretch where 418 

photogrammetry was flown. Fig. 12 shows a detail (portion of the river stretch) of the orthophoto 419 

and DEM, with colour scale adapted to highlight the DEM estimation of WSE. The  Ground Sample 420 

Distance (GSD) in final orthomosaic is ca. 2.1 cm/px. 421 
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 422 

 423 

 424 

  

 

Fig. 11, Åmose Å: (a) shows the orthophoto, (b) shows the DEM computed with AgiSoft PhotoScan 
from the UAS-borne pictures. 

 425 
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Fig. 12, Åmose Å: detail of (a) orthophoto and (b) DEM from UAS-photogrammetry 

Fig. 13 shows a comparison of the WSE estimates of three different methods: i) cloud points values 426 

extracted inside the area contained by the river polygon, ii) DEM values extracted along centreline, 427 

iii) DEM values extracted along the “water-edge”. Observations were filtered by removing the few 428 

outliers (e.g. trees, bridges) that were at an elevation significantly different (more than 1 m) from 429 

WSE and then subsequently removing observations below the 15th and above 85th percentile. 430 
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 431 

 432 

 433 

Fig. 13. Photogrammetry in Åmose Å: comparison of the elevation of the point cloud in the river 434 
polygon with the DEM values extracted along centerline and along the edge.  435 

Fig. 13 shows peaks that are caused by the trees and the bridge. The point cloud shows the larger 436 

standard deviation, with the DEM centrelines values and the DEM “water-edge” having lower 437 

dispersion. The “water-edge” values are at a higher elevation compared to the other two datasets, 438 

this is mainly due to the streambank grass protruding over the stream and affecting the “water-439 

edge” elevation. 440 

3.3. LIDAR 441 

 442 
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The LIDAR instrument was not directly able to detect the WS. Even at nadir, where we expect the 443 

highest reflection from the WS (Hopkinson et al., 2011), WS returns were not acquired by the 444 

instrument.  445 

Fig. 14 shows that the point cloud includes observations in the stream area only in the patches 446 

where surface vegetation plants are present.  447 

  

Fig. 14, Åmose Å: detail of photogrammetry and LIDAR point cloud in a stream portion. (a) shows 
the orthophoto obtained in the same location as (b), which is the LIDAR point cloud. 

 448 

 449 

 450 
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 451 

 452 

 453 

 454 

Fig. 15, Åmose Å: DSM obtained from LIDAR point cloud. The red diagonals are caused by the 455 
academic trial license of LAStool.  456 

Because the LIDAR could not acquire sufficient reflection from the WS and the DSM shown in Fig. 457 

15 is estimated by the software LAStools mainly by extrapolating the observations obtained at the 458 

streambank points. 459 

Fig. 16 shows the LIDAR observations extracted i) along the river centerline from the DSM and ii) 460 

from the point cloud contained in the river polygon. Similarly to photogrammetry, LIDAR 461 

observations were filtered by altimetry observations were filtered to remove the few outliers (e.g. 462 
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trees, bridges) that were at an elevation significantly different (more than 1 m) from WSE and then 463 

subsequently removing observations below the 15th and above the 85th percentile. 464 

 465 

Fig. 16, Åmose Å: comparison of different methods to extract WS from LIDAR DSM and point cloud.   466 

 467 

 As shown in Fig. 16, the LIDAR observations show large standard deviation: trees and the bridge 468 

overhanging the stream induce the most evident peaks, but also in areas where there are no 469 

overhanging trees the observations show large dispersion. This is mainly due to the fact that the WS 470 

is not reflective enough. Therefore, the LIDAR does not directly acquire WS returns, but instead 471 

mainly retrieves observations of aquatic surface plants and of streambank grass that protrudes over 472 

the stream.  473 

 474 
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3.4. Comparing radar altimetry, photogrammetry and LIDAR 475 

 476 

Check point to evaluate measurement accuracy of land elevation  477 
 478 

The accuracy of the photogrammetric DEM on estimating land elevation is evaluated on the 16 GCPs 479 

directly used in the geo-referencing process and on the 6 check points. A vertical RMSE of less than 480 

2.5 cm and a horizontal RMSE of 2 cm are estimated by AgiSoft PhotoScan on the geo-referencing 481 

GCPs, while a vertical RMSE of 3 cm and a horizontal RMSE of 2.5 cm are computed on the check 482 

points. Therefore, the photogrammetric DEM could estimate land elevation with an RMSE generally 483 

better than 3 cm.  484 

The LIDAR accuracy in land elevation estimates was lower: an RMSE of 30 cm on the horizontal and 485 

15 cm on the vertical were estimated when comparing the LIDAR designated GCPs. This large LIDAR 486 

error is mainly due to the inaccuracy in the IMU estimates, especially on the azimuth angle, and on 487 

the uncertainty in determining the angle offset between the IMU and the LIDAR reference planes. 488 

A horizontal angle uncertainty of 1-2 degrees can result in large horizontal errors in the LIDAR DSM. 489 

This could be improved in the future by using a system with 2 GNSS antennas to provide accurate 490 

heading and improve the a priori knowledge of the angle offsets between the IMU system and the 491 

LIDAR reference planes. 492 

The radar system is not developed to monitor land elevation, thus the accuracy of the radar in land 493 

elevation measurements was not assessed. 494 

 495 

WSE estimates 496 

 497 
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Fig. 17 compares the LIDAR, photogrammetry and radar observations extracted from the point cloud 498 

contained in the river polygon. 499 

 500 

Fig. 17. Åmose Å: Comparison of radar, photogrammetry and LIDAR elevation values extracted in 501 
the point clouds. 502 

Table 3 shows a comparison of the accuracy and standard deviation of the 3 different techniques in 503 

WSE determination.  504 

 505 

Table 3, statistics showing measurement standard deviation and accuracy of the different UAV-506 
borne technology when compared to in-situ measurements in Åmose Å. Average Standard deviation 507 
(σ) is computed by averaging the standard deviation of the 5 meters intervals in which the stream 508 
reach (~2.3 km) was discretized. Mean Absolute Error (MAE), Mean Bias Error (MBE), Root Mean 509 
Square Error (RMSE) were computed by comparing the in-situ observations with the average of UAV 510 
observations obtained at intervals of 5 m, i.e. 2.5 m before and 2.5 m after the in-situ measurement 511 
location.  Lidar and photogrammetry were compared with the ground-truth observations in the 800 512 
m stretch that is covered by both Lidar and photogrammetry flights, radar statistics are shown both 513 
for the 2.3 km stretch and for the 800 m stretch in common with Lidar and photogrammetry. 514 

Technology σ (m) MAE (m) MBE (m) RMSE (m) 
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Radar (2.3 km stretch-

19 ground-truth 

observations) 

0.014 0.029 0.019 0.031 

Radar (800 m stretch, 

only ground-truth 

observations in 

common with LIDAR 

and photogrammetry) 

0.012 0.033 0.033 0.03 

Photogrammetry 

DEM centerline 

0.048 0.15 -0.151 0.164 

Photogrammetry 

DEM “water-edge” 

0.106 0.385 0.385 0.450 

Photogrammetry 

Point cloud 

0.073 0.160 -0.160 0.180 

LIDAR DSM centerline 0.120 0.238 0.076 0.358 

LIDAR point cloud 0.15 0.159 0.033 0.2218 

 515 

Table 3 shows that the radar observations have a standard deviation and accuracy that are 516 

approximately one order of magnitude higher than LIDAR or photogrammetry.  517 

In this specific study, the “water-edge” method for photogrammetry showed higher values for the 518 

error metrics compared to the extraction of observations from both the river centerline and the 519 

point cloud contained in the river polygon. The extraction of LIDAR values from the point cloud 520 

values shows values for the error metrics relatively similar to the LIDAR centerline technique: this is 521 

because the LIDAR does not obtain any return from the WS and LAStools software needs to 522 

extrapolate observations from the edges to create the DEM in the stream area. These results suggest 523 

that the current LIDAR and photogrammetry methods do not provide an accuracy below the 524 
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decimetre level in a stream with streambank vegetation (e.g. herbaceous plants) that affects the 525 

water-edge detection.  526 

 527 

3.5. Result-Nivå Å survey 528 

 529 

Fig. 18 shows the full waveform of the radar for Nivå Å. The stream appears to be fully covered by 530 

tree canopy (blue “shadows” are the hyperbolic signatures of the tree canopy). However, a high 531 

return power signal clearly depicts the WS in the colour plot. The WS signal is lost where the UAS 532 

navigation fails to accurately follow the river course, especially where the stream is very narrow and 533 

the canopy very dense. 534 

 535 

 536 

Fig. 18, radar full waveform in Nivå Å. Blue shadows are the hyperbolic signatures of trees. 537 

 538 

 539 
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WS was extracted from the return peak of each waveform, as shown in Fig. 19, and compared with 540 

ground-truth observations. 541 

 542 

Fig. 19, WSE observations (in meters above mean sea level (mamsl)) retrieved by UAV-borne radar-543 
GNSS technology and with ground-truth levelling-RTK GNSS technique in Nivå Å. The size of the 544 
squares representing ground-truth observations is arbitrary. 545 

 546 

Fig. 19 shows that the radar retrieved observations also in this challenging environment, with very 547 

narrow stream covered by vegetation. Only in few areas, the radar failed to capture observations of 548 

the stream WSE. 549 

The RMSE of the observations showed a MBE of 1.7 cm, a MAE of 3 cm, a RMSE of ca. 3.2 cm and 550 

an average standard deviation, computed by averaging the standard deviation of the 5 meters 551 

intervals, of ca. 2.4 cm. 552 

 553 
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 554 

 555 

4. Discussion 556 

We demonstrated that UAS platforms can retrieve highly accurate WSE observations. UAS ensure a 557 

spatial resolution higher than spaceborne or airborne remote sensing technique, with a spatial 558 

coverage and survey time significantly lower than ground-truth techniques. A few days of field work 559 

are needed for retrieving WSE, at the same accuracy and same spatial resolution level as UAS-radar 560 

altimetry observations, with in-situ instrumentations (e.g. with  RTK-GNSS systems, levelling systems 561 

or terrestrial laser scanners). Furthermore, GNSS floaters or remotely operated aquatic vehicles are 562 

not practical autonomous solutions in densely vegetated streams and cannot retrieve WSE 563 

observations at the same accuracy level as UAS-radar altimetry. Indeed, in small rivers with dense 564 

aquatic and riparian vegetation, GNSS antennas positioned at the WS level do not have a clear sky 565 

view, furthermore, signal multipath caused by the WS and by the surroundings reduces the GNSS 566 

accuracy.  567 

Table 4 compares the estimated market price of the three different UAS-borne WSE measuring 568 

techniques: radar, LIDAR and photogrammetry. 569 

Table 4, comparison of the market price of the different UAS-borne techniques to measure WSE 570 

Technique Cost of the UAS-borne 

payload  

(US dollars) 

Weight  

 

Deploye

d UAS 

Platform 

GCPs 

required 

Time to 

survey 1 

km 

stretch 

Time to process  

1 km stretch  

Radar Radar: ca. $300  

Gimbal: ca. $300-2000 

PPK/RTK GNSS+IMU: $1000-

10000  

Radar: 0.05 kg  

Gimbal: 0.5-1.5 kg 

PPK/RTK GNSS+IMU: ca. 0.15-

0.4 kg 

DJI 

Matrice 

600 Pro1 

NO ca. 10 

minutes 

ca. 10 minutes 
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 Ca. 

$6400 

LIDAR LIDAR: ca. $8000 

PPK/RTK GNSS+IMU: $1000-

10000 

LIDAR: ca. 0.6 kg 

PPK/RTK GNSS+IMU: ca. 0.15-

0.4 kg 

DJI 

Matrice 

600 PRO 

Ca. 

$6400 

NO ca. 10 

minutes 

A few hours 

Photogrammetry RGB Camera: $400-5000 

Gimbal: $300-2000 

GNSS+IMU: $300-10000 

Camera+gimbal: 0.1-3 kg 

GNSS+IMU: ca. 0.1-0.4 kg 

DJI 

Phantom 

4 Pro 

$2000 

(includes 

GNSS and 

IMU) 

Generally 

required  

30-120 

minutes  

A few days 

1A smaller and cheaper UAS platform could potentially be used. 571 

Table 4 shows that in terms of price, the radar sensor is the most competitive. However, this solution 572 

requires a GNSS rover receiver (preferably dual frequency) on the UAS and a base station (i.e. 573 

differential GNSS system with either PPK or RTK processing), which should be included in the cost. 574 

Furthermore, the radar solution could also include an IMU, which may be integrated to the GNSS to 575 

improve the position solution or could be used to retrieve the UAS angles when the radar is not 576 

stabilized with a gimbal. In case GCPs are used, the photogrammetry solution does not require a 577 

dual frequency GNSS receiver and a base station, i.e. low-cost GNSS could be used for 578 

photogrammetry. Only if direct geo-referencing  (Carbonneau and Dietrich, 2017; Cramer et al., 579 

2000; Rehak et al., 2013; Turner et al., 2014) was adopted,  GCPs could be reduced or theoretically 580 

avoided, but in this case the UAS would require: i) accurate GNSS receivers and IMU sensors (similar 581 

to the ones deployed in our radar payload) that should be accurately synchronized with the camera 582 

solution ii) high-accuracy calibration of the UAS camera. 583 
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The radar and LIDAR sensors show the shortest survey time. Differently, UAS-photogrammetry 584 

requires longer flight time: multiples flight strips to acquire images at different angles and flight 585 

routes at different altitudes and with different camera angles should be performed.  586 

For the radar, processing time is short (in the orders of few minutes with consumer grade laptops).  587 

The post-processing of radar observations is already automatized, with most of the human-588 

computer interaction (generally a few minutes) that needs to be spent to import and process GNSS 589 

radar in the GNSS processing software. LIDAR has shown longer processing time because of the high 590 

point density, with human-computer interaction required to filter observations according to river 591 

mask and create DSM and DTM. Photogrammetry is the most demanding application in terms of 592 

computational times. A few days are normally required to process the high resolution RGB images 593 

also with the current optimized computer server, which consists of AMD Ryzen Threadripper 1950X 594 

processor with 16 cores, 3400 Mhz with two graphic cards (Nvidia GeForce GTX 1080). Furthermore, 595 

the processing time is not deterministic and varies depending on the image match points that are 596 

identified by the software.  Significant human-computer interaction time is required to identify the 597 

“water-edge” and to extract WSE observations along this “water-edge”. 598 

The accuracy of UAS-borne radar WSE does not depend on water depth and water turbidity. 599 

Furthermore, as shown in this study, UAS-borne WSE can be retrieved also in small stream covered 600 

by dense vegetation canopy. This is a clear advantage compared to WSE measurements with UAS-601 

borne lidar and photogrammetry, which are effected by water turbidity, water depth (e.g. a visible 602 

riverbed or aquatic vegetation in the imagery can complicate construction of the WSE 603 

photogrammetric model) and require line-of-sight with the WS, which is limited in case of dense 604 

vegetation overhanging the stream.  605 

UAS-WSE observations represent a new dataset in hydrology: radar altimetry can capture  WSE 606 

profiles, in agreement  with the 1-D WSE simulation of most of the hydrodynamic river models (e.g. 607 
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MIKE 11, HEC-RAS, etc.). In case of large rivers or floodplains, multiple flight routes can be easily 608 

conducted to measure the WSE at different points across the river.  Accurate WSE slope 609 

measurements can improve understanding of how spatial irregularities in river bathymetry affect  610 

river hydraulics (Garambois et al., 2017), enhance knowledge about surface water-groundwater 611 

interaction processes (Bandini et al., 2017a; Pai et al., 2017) and resolve channel roughness with 612 

high spatial resolution  (Schneider et al., 2018).  613 

WSE can be retrieved autonomously during extreme events (e.g. floods) with our radar altimetry 614 

solution, without any GCP and without sunlight. Indeed, radar is not affected by light conditions, 615 

while e.g. photogrammetry relies on sunlight. Regarding the current UAS-platform, the main 616 

limitation is the weather condition during an extreme event: the UAS platforms deployed in this 617 

study can withstand a wind of at least 8-10 m/s but can fly only in light rain conditions. 618 

Furthermore, discharge could be better estimated with UAS-borne observations, e.g. by informing 619 

Manning’s equation or hydrodynamic models with WSE slope measurements and by deriving rating 620 

curves (e.g. Bjerklie et al., 2005; LeFavour and Alsdorf, 2005; Tarpanelli et al., 2013). 621 

WSE measurements in combination with discharge (Q) can be used to construct rating curves, which 622 

are essential for estimating discharge based on real-time WSE measurements.   Discharge 623 

computation requires wetted area (Ω) and mean flow velocity (V), which are usually measured with 624 

in-situ surveys that are generally time-consuming and labour intensive, especially in large rivers 625 

during extreme conditions. Manfreda (2018) describes an approach to express V and Ω both as a 626 

function of WSE and river bed geometry.  627 

 628 

5. Conclusions 629 

 630 
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We compare the WSE estimates from 3 different UAS-borne methods: LIDAR, photogrammetry and 631 

an innovative radar altimetry solution: 632 

• The radar altimetry solution with full waveform analysis shows the best accuracy in WSE 633 

estimates, with RMSE ca. 3 cm and σ ca. 1.5 cm, while photogrammetry and LIDAR show an 634 

RMSE and σ of decimetres.  635 

• The LIDAR and the radar solution do not require GCPs and allow for single-pass routes, while 636 

photogrammetry requires longer survey times because it requires GCPs and multiple flight 637 

strips.  638 

• The developed radar solution requires significantly shorter computational and human-639 

computer interaction time. The computational time that is required to process observations 640 

of a 1 km stretch is in the order of minutes for radar, hours for LIDARs, days for 641 

photogrammetry. 642 

• The main advantage of the LIDAR and photogrammetry compared to radar is the capability 643 

of producing a DEM of the riverbank topography, while radar can only determine the WSE 644 

and its slope.  645 

In our view, UAV-borne WSE observations can be defined as a new datatype in river hydrology: i) 646 

compared to other remote sensing techniques they ensure high accuracy and can be acquired also 647 

in the smallest vegetated streams ii) compared to in-situ measurements they ensure high spatial 648 

resolution and higher spatial coverage at lower cost.  UAV-borne WSE observations can significantly 649 

improve flood forecast models, improve our knowledge about the effect of river geometry and 650 

hydraulic roughness on WSE and contribute to construction of rating curves.  651 
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Appendix A 667 

The report from Dham (2017) provides a  short overview on the chirp timing parameters that are 668 

needed to configure an FMCW radar, as shown in Fig. A1. 669 
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 670 

Fig. A1, chirp configuration, Source: Dham, Texas Instrument (2017) 671 

An FMCW radar typically sends out a sequence of chirps (i.e. a sinusoid whose frequency increases 672 

linearly with time), equally spaced in time, in a unit called a frame (Rao, 2017).  673 

 674 

Table A1, chirp parameters chosen for the radar configuration 675 

Chirp timing parameters Parameter value 

ADC Sampling Rate 8.580 millions of sample per seconds 

ADC sampling time 106.29  μs 

number of ADC samples collected during ADC 

sampling time 

912 

frequency slope 35 MHz/ μs 

frequency start 77 GHz 

ramp end time 114.3 μs 

ADC valid start time 7 μs 

Idle time 2929 μs 

 676 
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The radar was configured with 1 transmitting antenna and 2 receiving antennas, with the chosen 677 

chirp configuration resulting in a bandwidth of 4 GHz, a measurements rate of 5 Hz, maximum 678 

unambiguous range of ca. 30 m, and vertical resolution of ca. 0.036 m. Table A1 shows the specific 679 

radar configuration parameters.  The specific configuration parameters are shown in Table A1. 680 

 681 
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