Methane Production through Combined Depressurization + Hydrate Swapping method in the Sandy Porous Medium under Permafrost Temperature Conditions

Pandey, Jyoti Shanker; von Solms, Nicolas

Publication date: 2019

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Methane Production through Combined Depressurization + Hydrate Swapping method in the Sandy Porous Medium under Permafrost Temperature Conditions

Jyoti Shanker Pandey*, Nicolas von Solms*
*PhD Student-CERE,**Associate Professor- CERE

1- Introduction

Methane gas production recovery from gas hydrates
• Depends on the characteristic of porous media
• Production techniques.
In this work,
• Combined pressure reduction and Flue gas injection
• Permafrost temperature conditions (-1°C to -5°C)
• Different porous medium
Objectives
- To analysis effect of temperature on methane recovery
- To analysis effect of methane self-preservation on CH₄-CO₂ swapping
- To analysis the effect of sediments on CH₄ recovery in permafrost conditions.

2- Background Information

- Permafrost gas hydrate deposits are metastable state, represent mainly gas hydrate system and hard to distinct from ice.
- Gas hydrate particle covered with thin ice films which prevent further hydrate dissociation.
- Presence of clay particle inhibits hydrate crystal growths. Methane hydrate formation, stabilization and preservation in frozen clay is unclear.
- Conversion of pore ice to hydrate is quite rapid below 273K.

3- Experimental Setup

4- Experimental Data Processing

<table>
<thead>
<tr>
<th>Exp 1</th>
<th>26</th>
<th>0</th>
<th>10% CO₂</th>
<th>101</th>
<th>-2.36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp 2</td>
<td>98</td>
<td>2.1</td>
<td>10% CO₂</td>
<td>98</td>
<td>-0.28</td>
</tr>
<tr>
<td>Exp 3</td>
<td>82</td>
<td>0.873</td>
<td>10% CO₂</td>
<td>94</td>
<td>0.871</td>
</tr>
<tr>
<td>Exp 4</td>
<td>95</td>
<td>0.15</td>
<td>10% CO₂</td>
<td>102</td>
<td>-4.61</td>
</tr>
<tr>
<td>Exp 5</td>
<td>97</td>
<td>3.83</td>
<td>10% CO₂</td>
<td>102</td>
<td>-5.31</td>
</tr>
<tr>
<td>Exp 6</td>
<td>104</td>
<td>1.09</td>
<td>10% CO₂</td>
<td>100</td>
<td>-4.35</td>
</tr>
</tbody>
</table>

6- References

CERE
Center for Energy Resources Engineering