Correction: Understanding cation effects in electrochemical CO2 reduction

Ringe, Stefan; Clark, Ezra Lee; Resasco, Joaquin; Walton, Amber; Seger, Brian; Bell, Alexis T.; Chan, Karen

Published in: Energy and Environmental Science

Link to article, DOI: 10.1039/c9ee90056j

Publication date: 2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Correction: Understanding cation effects in electrochemical CO₂ reduction

Stefan Ringe,†*,ab Ezra L. Clark,†,cd Joaquin Resasco, e Amber Walton, c Brian Seger, d Alexis T. Bell e and Karen Chan* f

In the original version of the manuscript, the fit function presented in the caption of Fig. 7 for the hydrated ions was wrong. The correct function was $-2.2x + 7.2$ (change highlighted in bold). Therefore the x-axis positions of the different cations in Fig. S17 which were obtained from this correlation function were also wrong. The correct Figure is as follows:

![Figure S17](image)

Fig. S17 Predicted cation effects for electrocatalytic CO₂ reduction at Ag(111) surfaces. The Figure depicts the predicted CO partial current density for A,B electrolytes having a cation : anion charge ratio of $z : z$, as a function of the hydrated cation size relative to that of TBA⁺ obtained from the linear fit in Fig. 7.

In addition, Fig. 6a used the wrong cation sizes for the organic cation data points. The updated Figure is given below:

Previous studies electrodeposited a Ag monolayer on Pt or Au and found the PZC to be up to 0.25 V more positive compared to Ag(111).²

¹ SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.
E-mail: sringe@stanford.edu
² SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
³ Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
⁴ Surface Physics & Catalysis (SurfCat), Department of Physics Technical University of Denmark, Denmark
⁵ Department of Chemical Engineering, University of California, Santa Barbara, California 93117, USA
⁶ CatTheory Center, Department of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark. E-mail: kchan@fysik.dtu.dk
† These authors contributed equally.
The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

References
