Correction: Understanding cation effects in electrochemical CO2 reduction

Ringe, Stefan; Clark, Ezra Lee; Resasco, Joaquin; Walton, Amber; Seger, Brian; Bell, Alexis T.; Chan, Karen

Published in:
Energy and Environmental Science

Link to article, DOI:
10.1039/c9ee90056j

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Correction: Understanding cation effects in electrochemical CO₂ reduction

Stefan Ringe,†*ab Ezra L. Clark,†cd Joaquin Resasco,e Amber Walton,c Brian Seger,d Alexis T. Bellc and Karen Chan*f

In the original version of the manuscript, the fit function presented in the caption of Fig. 7 for the hydrated ions was wrong. The correct function was \(-2.2x + 7.2\) (change highlighted in bold). Therefore the x-axis positions of the different cations in Fig. S17 which were obtained from this correlation function were also wrong. The correct Figure is as follows:

In addition, Fig. 6a used the wrong cation sizes for the organic cation data points. The updated Figure is given below:

Previous studies electrodeposited a Ag monolayer on Pt or Au and found the PZC to be up to 0.25 V more positive compared to Ag(111).²

² SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.
E-mail: sringe@stanford.edu
³ SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
⁴ Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
⁵ Surface Physics & Catalysis (SurfCat), Department of Physics Technical University of Denmark, Denmark
⁶ Department of Chemical Engineering, University of California, Santa Barbara, California 93117, USA
⁷ CatTheory Center, Department of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark. E-mail: kchan@fysik.dtu.dk
† These authors contributed equally.
The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

References

Fig. 6 (a) Double layer capacitance at the Au(111) single-crystal electrode using a 0.05 M KHCO$_3$ or NaHCO$_3$ electrolyte. (a) Potential-dependence of the double layer capacitance obtained from fitting a RC circuit to the impedance data. Filled circles denote the data points, the solid gray line the difference in surface charge density between both experiments under the assumption of the same PZC of 0.97 V vs. RHE.1