Systematically Varying the Active Material Volume in a Photonic Crystal Nanolaser

Mathiesen, Kristoffer Skaftved; Sakanas, Aurimas; Semenova, Elizaveta; Yvind, Kresten; Mørk, Jesper

Published in:
The European Conference on Lasers and Electro-Optics 2019

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

Ultra-small and efficient laser sources is an emerging technology for realizing optical on-chip interconnects [1]. A line defect cavity formed by omitting a number of holes in a photonic crystal membrane with embedded quantum dot or quantum well gain material shows promise as a candidate for realizing lasers with small mode volumes and low threshold powers, while allowing direct modulation at several gigabits per second [2]. Further, the slow-light phenomena occurring in passive line defect photonic crystal waveguides results in enhanced gain [3]. As such the gain material is a key component of the nanolaser. For good thermal operation of the nanolaser the gain material is embedded in an InP membrane [4] which in turn makes optical characterization of the gain material difficult.

Process developments have allowed fabrication of selectively defined buried heterostructure active regions, see Figure 1(Left), and here we present an investigation of laser characteristics where the extent of the gain material is varied while the photonic crystal cavity is kept constant. This systematic variation gives control of the total gain material in the cavity as well as confinement factor and allows for systematic investigations, e.g. of the role of slow-light effects on the threshold gain.

The characterization is carried out for a simple line defect laser with seven holes removed and an optimized design with four holes shifted to optimize Q [5,6]. An out-of-plane pumping and collection setup is used for data collection. The input-output curves can be fitted to a laser rate equation model and laser parameters can be extracted [7].

The experimental results are compared to full 3D finite difference time domain (FDTD) simulations of the corresponding passive cavities. Spectra obtained from preliminary simulations can be seen in Figure 1(Right). The spectra are seen to redshift corresponding to the longer region with a higher refractive index.

The characterization is carried out for a simple line defect laser with seven holes removed and an optimized design with four holes shifted to optimize Q [5,6]. An out-of-plane pumping and collection setup is used for data collection. The input-output curves can be fitted to a laser rate equation model and laser parameters can be extracted [7].

The experimental results are compared to full 3D finite difference time domain (FDTD) simulations of the corresponding passive cavities. Spectra obtained from preliminary simulations can be seen in Figure 1(Right). The spectra are seen to redshift corresponding to the longer region with a higher refractive index.

References