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Automatic Design of Soft Dielectric Elastomer
Actuators with Optimal Spatial Electric Fields

Feifei Chen, Member, IEEE, Kun Liu, Yiqiang Wang, Jiang Zou, Guoying Gu, Member, IEEE,
and Xiangyang Zhu, Member, IEEE

Abstract—Dielectric elastomer actuators (DEAs) are a promis-
ing actuation technology in soft robotics owing to their large
voltage-induced deformation and rapid response. However, most
existing DEA design paradigms are empirical or intuitive, lacking
mathematical modeling and optimization methodology to exploit
their actuation capabilities for prescribed motion tasks. In this
paper, we present an automatic design methodology to maximize
the concerned displacement(s) of DEAs by topology optimization
of the applied spatial electric fields (SEFs). Our method is enabled
by integrating the freeform SEF profile captured by implicit level
sets, and the constitutive model of DEAs incorporating geometric
and material nonlinearities and the electromechanical coupling
effect, into a gradient-based optimizer. We implement our method
for motions of single and multiple degrees of freedom (DOFs)
of planar DEAs, and the optimized SEFs have been found to
improve the output displacements by more than 75% compared
with their intuitive counterparts. We further demonstrate a
proof-of-concept application in which our designed two-DOFs
DEAs can actively drive various host structures to shape-morph
from flat sheets to desired three dimensional configurations.
Overall, our work represents the first step toward automatic
design of soft DEAs for diverse potential applications in soft
machines and robots.

Index Terms—dielectric elastomer actuators, topology opti-
mization, soft robotics, level sets.

I. INTRODUCTION

SOFT robots made of compliant materials, have gained in-
creasing attention recently due to their inherent flexibility

and adaptability to work in unstructured environment [1]–[5].
Soft actuators are the key enabling component for motion
generation in such applications. During the past decade, broad
categories of soft actuators have been developed, includ-
ing pneumatic and fluidic actuators [6]–[10], shape memory
polymers [11], [12], etc. Among them, dielectric elastomer
actuators (DEAs), capable of deforming in response to electric
fields, are promising owing to their interesting attributes such
as large voltage-induced deformation, rapid response and high
energy density [13]–[17]. Most recently, a rich repertoire of
soft machines and robots based on DEAs have been reported,
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such as grippers [18]–[20], bioinspired locomotive robots
[21]–[25], tactile displays [26]–[28], dual-stiffness origami
[29], cell stretchers [30] and medical bandages [31].

A DEA is typically made of an elastomer membrane coated
with electrodes and it works as follows: when an external
electric field is applied to a DEA, due to coulombic attraction
effects, accumulation of opposite charges on the two sides of
the membrane leads the elastomer to shrink in thickness and
to expand in area [32]. The motion range of DEAs induced
by the electric field is key to enabling the wide range of
applications mentioned above. There are a number of factors
that concurrently determine the deformed configurations of a
DEA, including the prestretch, the frame used to support the
DEA, and the applied electric field. In this paper, we consider
planar DEAs and focus on the effect of the electric field on
the deformation of DEAs.

Related to large deformation, the input spatial electric field
(SEF) modulates the output displacement field in a highly
nonlinear manner due to the geometric and material nonlin-
earities and the electromechanical coupling effect. There have
been some intuitive designs of SEFs for specific applications,
e.g. active shape control of inflated DEAs [33] and a DEA-
based walking robot with multiple degrees of freedom (DOFs)
[34]. Hajiesmaili and Clarke [35] recently realized reconfig-
urable shape-morphing of multi-layer dielectric elastomers, by
patterning customized electric fields in each layer. In spite
of these intuitive designs, the role of the freeform SEF in
shaping the deformed configuration of DEAs has not been
well investigated or understood.

The SEF profile in practice is embodied in the pattern
of the compliant electrodes that are seamlessly attached to
DEAs. Upon electric activation, the electrodes compliantly
deform with the host DEA, undergoing a highly nonlinear
electromechanical response. The SEF profile keeps changing
as the DEA deforms, making it elusive to design the initial
electrode pattern without direct knowledge of the deformation
that will be induced. The intuitive design paradigm encounters
this challenge since our intuitions are usually based on the
undeformed state of DEAs. Furthermore, even if the induced
deformation is known, one still has difficulty in developing a
better SEF profile. Therefore, a comprehensive design strategy
necessitates a modeling-simulation-optimization process.

In this paper, we propose a computational design methodol-
ogy to effectively automate the challenging problem of design-
ing SEFs for planar DEAs. We develop an optimization proce-
dure to generate optimal SEFs for DEAs, aiming to accomplish
prescribed motion tasks that can be mathematically stated in
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terms of directional displacements of point(s) of interest. This
methodology is enabled by integrating the geometric profile of
freeform SEFs and nonlinear material properties of DEAs into
a gradient-based topology optimizer. First, to allow for and
accurately describe arbitrary SEFs in a mathematical sense, we
introduce an implicit geometric representation model by level
sets, which can also naturally accommodate the topological
change of the SEF during optimization. Second, the electrome-
chanical response of DEAs induced by the current freeform
SEF can be numerically analyzed based on the constitutive
model of DEAs. Most important, the SEF profile subject to
optimization is iteratively updated toward the steepest descent
direction by conducting an adjoint sensitivity analysis, until
an optimal design is evolved. Herein, the sensitivity refers to
the shape derivative of the target motion with respect to the
SEF profile, which incorporates material properties of DEAs.

We validate our computational method by creating SEFs
targeting at DEAs’ motions of single and multiple DOFs. The
numerical and experimental results consistently show that our
designed optimal DEAs well outperform their intuitive coun-
terparts, and the superiority may grow pronounced to be more
than 75% as the applied voltage increases. More importantly,
our design method can readily handle complex tasks with-
out additional difficulties, e.g. to maximize displacements of
multiple points of interest by incorporating multiple objectives
into the optimization model, while their intuitive counterpart
designs can be hard to conceive. Finally, we demonstrate
a proof-of-concept application in which the automatically
optimized DEA is used to trigger shape-morphing of various
compliant host structures from planar sheets to desired three
dimensional configurations.

In a general sense, our approach paves the way for system-
atic design of DEAs based on mathematics and optimization
theories, and gains remarkable advantages as follows for
creating high-performance DEAs by leveraging the geometric
flexibility of the SEFs.

1) The entire design process demands no prior knowledge
of the spatial arrangement of the electric fields, and
therefore it guarantees a sufficiently large design space.

2) We use a large number of design variables to search
for the optimal designs within the design space, and our
gradient-driven optimization algorithms make it efficient
to converge to feasible solutions. Indeed, the obtained
novel designs remarkably outperform their intuitive
counterparts.

3) Our design approach can be readily generalized to
design DEAs with increased complexities in terms of
the actuator geometry or motion specifications that in
contrast may quickly render intuitive designs ineffective.

4) Our design approach does not necessitate any additional
complex mechanical design or fabrication process. We
embed the design complexity in the amorphous SEF
profile that can be easily implemented in practice by
arranging the optimized electrodes through masks.

The remainder of this paper is organized as follows. Section
II introduces the implicit geometric model based on level sets
for capturing amorphous SEFs. Section III derives the state

Fig. 1: Representation of a planar SEF profile with a single
level set function in the form of a signed distance function.

equation of a DEA activated with arbitrary SEFs based on
the constitutive model. Section IV introduces the topology
optimization of SEF profiles, targeting at prescribed motion
tasks of DEAs. Section V numerically implements the design
approach for motions of single and multiple DOFs of planar
DEAs, and the optimized designs are experimentally verified
in comparison with their intuitive counterparts in Section VI.
Section VII shows proof-of-concept applications of the opti-
mized DEAs. Discussions and conclusions are finally drawn
in Section VIII.

II. IMPLICIT GEOMETRIC MODEL

Level sets have been widely used as a versatile tool for
evolving amorphous shapes [36], and have been well embed-
ded in classical topology optimization approaches [37], [38].
The level-set model makes it convenient to follow shape and
topological changes, e.g., when a shape splits, develops holes,
or the reverse of these operations.

In this paper, we adopt a level set model to implicitly
capture the freeform SEF profile applied to DEAs. We consider
DEAs in their most basic form, i.e. an elastomeric dielectric
sheet sandwiched between a pair of compliant electrodes. We
construct a three dimensional level set function φ with its zero
contours representing the SEF profile, as shown in Fig. 1,
stated by φ(X, t) > 0 , ∀X ∈ Ω

φ(X, t) = 0 , ∀X ∈ Γ
φ(X, t) < 0 , ∀X ∈ D/(Ω ∪ Γ)

(1)

where D denotes the design domain spanned by the DEA
itself, Ω denotes the area applied with SEF, i.e. the electrode
pattern, Γ denotes the SEF boundaries, X ∈ D represents the
coordinates of a point within the design domain, and t denotes
a pseudo-time for evolution of the level set function.

Remark 1. The level set function is typically defined as a
signed distance function, i.e. the function value at a given
point is the minimal distance from the boundary in question,
with the sign determined by whether the point is in Ω. A
signed distance function is differentiable almost everywhere
and its gradient satisfies the eikonal equation.

Evolution of the SEF profile is realized by updating the zero
contour of the level set function implicitly. By differentiating
both sides of φ(X, t) = 0 with respect to the time and
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Fig. 2: Schematic of a DEA: (a) the reference state with an electrode pattern Ω, (b) the prestretched state, and (c) a current
state subject to a voltage Φ, resulting in the deformed electrode pattern Ω1.

applying the chain rule, we obtain the so-called Hamilton-
Jacobi equation,

∂φ(X, t)

∂t
+∇φ(X, t) ·V = 0 (2)

where V = dX/dt is the moving velocity of point X. It is
known that the shape change is only related to the normal
movement of the boundaries. Hence, (2) can be restated by,

∂φ(X, t)

∂t
= −|∇φ(X, t)|Vn (3)

where Vn = V·n refers to the normal velocity at point X, with
n = −∇φ/|∇φ| the normal direction in which φ decreases
most. The normal velocity will provide the gradient informa-
tion to update the SEF profile in the optimization process.
Eq. (3) supervises the evolvement of the level set function for
given moving velocity on the frontier boundaries, in order to
achieve shape and topology changes, and it mathematically
defines an initial value problem for the time-dependent level
set function.

Remark 2. The partial differential equation (3) is solved by
using essentially non-oscillatory finite difference strategy. To
ensure numerical stability, the movement distance within time
t should satisfy the Courant-Friedrichs-Lewy condition. The
reader may refer to [39] for more implementation details.

III. ELECTROMECHANICAL ANALYSIS OF DEAS

In this section, we will introduce the constitutive model of
DEAs that incorporates the hyperelasticity and the electrome-
chanical coupling effect, and formulate the state equation of
DEAs activated with SEFs of amorphous profiles.

A. Actuation Principle

DEAs are typically silicon- or acrylic-based polymers, e.g.,
polydimethylsiloxane or the widely used Very High Bond
(VHB) acrylic adhesive by 3M company [40]. Fig. 2 illustrates
the principle of operation of a DEA. In the reference state, a
membrane of DEA at rest is patterned with compliant elec-
trodes (highlighted in black, denoted by Ω). In the prestretched
state, the DEA is bi-axially stretched and then is mounted to
a rigid frame to maintain the prestrain. In a current state, a
high voltage is applied to activate the areas patterned with
electrodes, and the deformed electrode pattern is highlighted
in red (denoted by Ω1).

B. Constitutive Modeling

As shown in Fig. 2, we use X and x to denote the coordi-
nates of a particle in the dielectric membrane at the reference
and current states, respectively. The induced displacement u
and the deformation gradient F of the particle are defined by

u = x−X, (4)

F ≡ ∇0x = I +∇0u (5)

where ∇0 = ∂
∂X denotes the gradient operator with respect to

the reference domain, and I is the second-order identity tensor.
The free energy density W is defined to characterize the

energy density distribution of the elastic dielectric induced by
the mechanical and electric work [32], stated by

W = Wu +W e (6)

with Wu and W e denoting the energy densities attributed to
the mechanical stretching and electrical polarization, respec-
tively. The strain energy density of an isotropic hyperelastic
material is generally defined by a function of the deformation
gradient or the three invariants of the strain tensor. In this
work, without loss of generality, we employ the generalized
neo-Hookean model [41] to characterize the hyperelasticity
and compressibility of DEAs. Herein, the mechanical free
energy density Wu is expressed in terms of the first and
third regulated strain invariants of the right Cauchy-Green
deformation tensor B = FT · F (the superscript T denotes
the transpose),

Wu =
µ

2
(Ī1 − 3) +

κ

2
(Ī3 − 1)2 (7)

where µ and κ denote the initial shear modulus and bulk
modulus at small stretches, respectively. The two regulated
invariants are defined as follows,

Ī1 =
trace(B)

J̄2/3
, Ī3 =

√
det(B) = J̄ (8)

where J̄ = det(F) denotes the determinant of the deformation
gradient.

Remark 3. Many other hyperelastic material models such
as the Mooney-Rivlin model and the Gent model can be
readily embedded into the present design framework without
additional fundamental difficulties.
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Fig. 3: Illustrative SEF design flowchart of a DEA for a specified motion task.

As developed by Suo [32], in order to make the electric field
as an independent variable, we employ the so-called electrical
Gibbs free energy density, with W e taking the following form

W e = −1

2
εJ̄B−1

ij ẼiẼj (9)

where ε is the permittivity, the subscripts i, j have values 1,
2, or 3 that represent the three Cartesian coordinates, and Ẽ
denotes the nominal electric field defined as the gradient of
the electric potential Φ by

Ẽ =

{
−∇0Φ , ∀X ∈ Ω ∪ Γ
0 , ∀X ∈ D/(Ω ∪ Γ)

. (10)

The nominal stress tensor can be derived by differentiating
the electrical Gibbs free energy density with respect to the
deformation gradient,

s =
∂W

∂F
=
∂Wu

∂F
+
∂W e

∂F
(11)

with its mechanical and electric components as follows

su =
∂Wu

∂F
, se =

∂W e

∂F
(12)

where se refers to the well-known Maxwell stress that physi-
cally explains the electromechanical coupling effect of DEAs.
Refer to Appendix A for the specific expressions of s, su and
se in the tensor form.

C. State Equation

The state equation of the activated DEA at the equilibrium
state can be established based on the reference domain, by
using the principle of virtual work,∫

D

su(u) : ∇0vdΩ +

∫
Ω

se(u, Ẽ) : ∇0vdΩ = 0,∀v ∈ U

subject to u = ū,∀X ∈ ΓD

(13)
where v is the virtual displacement field that belongs to the
kinematically admissible displacement space U . To capture the
process of prestretch, a non-zero displacement constraint ū is
imposed along the external boundaries of the design domain,
denoted by ΓD. For convenience of expression, we define the
left hand side of the state equation (13) to be a(u,v,Ω).

IV. OPTIMAL DESIGN OF SEF PROFILE

A. Design Workflow

To fully equip a DEA with actuation capabilities for a
prescribed motion task, maximization of the induced displace-
ments at concerned regions is pursued as the design objective.
The design variable is the freeform SEF profile applied to the
planar DEA, implicitly captured by level sets, and undergoes
a topology optimization procedure.

A general end-to-end design flowchart is illustrated in Fig.
3. For a prescribed motion task, the design process starts from
an initial SEF that can be randomly generated; then nonlinear
finite element analysis is conducted to solve (13) to yield the
displacement field in the current configuration, from which the
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design objective in terms of the displacement(s) in question
can be evaluated; third, a gradient velocity field is calculated
to guide the moving directions of the SEF boundaries, through
carrying out an adjoint sensitivity analysis; consequently, the
SEF profile is updated by solving (3). The above steps are
repeated until the prescribed convergence criteria are met.

B. Optimization Model

The optimization model is formulated by,

min
Ω

J = −
M∑
i=1

u(pi) ·Ti

subject to a(u,v,Ω) = 0, ∀v ∈ U,
u = ū,∀X ∈ ΓD,

ς − f |D| = 0

(14)

where J is the design objective, M ≥ 1 is the total number of
concerned points pi; Ti is the transformation matrix to project
the displacement u(pi) in the concerned direction; ς =

∫
Ω

dΩ
defines the electrode area, and the area constraint ς−f |D| = 0
plays regularization roles when performing optimization, with
f and |D| the given area fraction for the SEF and the total
area of the planar design domain.

Remark 4. The present optimization problem is highly load-
dependent in the sense that the electric loading by applying
the SEF will change with the deformation of DEAs, partly due
to the geometric change of the SEF profile and partly due to
the increasing magnitude of the electric field.

C. Sensitivity Analysis

We carry out a shape sensitivity analysis to estimate how
the objective and constraint functions change with an SEF
variation, which is also called shape derivative. A radical chal-
lenge is that the shape derivative of the displacement field is
involved but elusive to evaluate. Hence, the adjoint sensitivity
analysis method is adopted to eliminate the shape derivative
of the displacement field. The first step is to formulate the
Lagrangian of the optimization problem,

L = J + a(u,w,Ω) + λ(ς − f |D|) (15)

where a virtual displacement w ∈ U is introduced and will
then be identified as the adjoint displacement, and λ denotes
the Lagrange multiplier. After lengthy but straightforward
derivations as narrated in Appendix B, the shape derivative
of the Lagrangian reads

L̇ =

∫
Ω

[
−C : ∇0u∇0V : ∇0w − s : ∇0w∇0V

+ (s : ∇0w + λ)∇0 ·V
]
dΩ

(16)

where C = ∂s/∂F is a fourth-order material constitutive
tensor as expressed in Appendix A.

D. Design Velocity Selection

The shape derivative (16) involves gradient and divergence
terms of the velocity field, making it difficult to explicitly
select a proper normal velocity field for ensuring descending
directions. Instead, as narrated in Appendix C, we discretize
(16) on a regular mesh and then select a class of normal
velocities at the grid points, denoted by Vn,

VT
n =

Ne

A
e=1

∫
0Ωe

[
wT
∇
(
C∗
)T

ũH + sT
V ũH

−
(
sT
Vw∇ + λ

)
ΛT
]
nedΩ

(17)

where the related terms are defined in Appendix C.

E. Optimization Implementation

In the numerical implementation, a regular design domain is
discretized using bilinear quadrilateral-4 elements and the level
set function is assigned at the grid nodes. We use the common
bilinear shape function to interpolate the nodal level sets, in
order to construct a continuous level set field in the design
domain. Within the total Lagrange framework, nonlinear finite
element analysis is conducted in MATLAB to obtain the
nodal displacements, undergoing an iterative process using the
Newton-Raphson method. The adjoint displacement field is
directly obtained by solving the linear equation (32). After
obtaining the displacement and the adjoint displacement, the
design velocity can be calculated using (17) in a straightfor-
ward manner, and then the level set function is updated by
solving (3).

During the optimization process, the Lagrange multiplier is
iteratively updated by the following strategy,

λk+1 = λk + ξk(ςk − f |D|), ξk+1 = γξk, k = 1, 2, .., Niter
(18)

where ξk denotes the penalization factor at the kth step, γ ≥ 1
is an expansion parameter and Niter = 1000 is the prescribed
maximum iteration step of the nonlinear optimization. The op-
timization algorithm terminates until the relative difference of
the objective function values between two successive iterations
is lower than 10−3 within at least 150 iteration steps.

V. SIMULATION

In this section, we will numerically investigate three cases
including motion tasks of single and multiple DOFs. We
demonstrate the effectiveness of our design strategy to produce
the optimal DEAs in terms of the SEF profile and compare
the performances with their intuitive counterparts.

A. Parameter Setting

We use VHB 4910 for prototyping the DEAs. A 40 mm×
40 mm×1 mm membrane at rest is taken as the design domain.
The material parameters in the hyperelastic Neo-Hookean
model are fitted to be µ = 45 kPa and κ = 2.35 MPa. The
prestretch is set to be 3× 3 times based on our experimental
experience. The permittivity is set to be ε = 4.0× 10−11 F/m
[28]. The applied voltage Φ is prescribed to be 6 kV.
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B. Case I: Motion of a Single Point

1) Optimization Problem: For proof of concept, we first
investigate a simple motion task, with reference to Fig. 4(a),
where point O in the Cartesian coordinate XOY is expected
to move in the horizontal direction. The design objective is
stated by

min
Ω
J = −uO ·TO (19)

where the uO denotes the nodal displacement of point O, and
the transformation vector is TO = [1, 0]T.

2) Optimization Results: One may easily figure out one
intuitive design where the SEF is distributed on the left half
part of the DEA, as shown in Fig. 4(b). However, our opti-
mization result [see Fig. 4(c)] creates an SEF with freeform
boundaries of different shape from the intuitive design. The
iteration history of the optimization process is shown in Fig.
4(d). Specifically, the optimization process starts with an initial
design of the SEF that contains many small circles to allow
for sufficient geometric flexibility for potential topological
evolutions. Fig. 4(d) also shows the intermediate and final
SEFs in terms of the planar profiles and their corresponding
level set functions. Topological changes that the small circles
merge into an integral shape are observed. Refer to the
supplemental video S1 for the dynamic evolution process.

Remark 5. The computational efficiency of the optimization
process relies on the mesh resolution for solving the nonlinear
state equation. Roughly speaking, the finite element analysis
takes over 90% computing time. To accelerate the computa-
tion, we used the displacement field in the previous step as the
initial guess to obtain the current displacement field through
Newton-Raphson iterations. This strategy can save the analysis
time by more than 80%. In our testing cases with a regular
mesh including 40× 40 elements, one optimization step takes
around 30 seconds.

To evaluate the actuation performance, we implement the
final optimized design and the corresponding intuitive design
in the commercial finite element analysis software ABAQUS,
where a previous user-defined material subroutine for DEAs
is adopted with the material properties modified according
to our experimental characterizations [42]. Here, the 8-node
quadratic hexahedral element is used to conduct the static
simulation. The simulation results show that the optimized
SEF enlarges the horizontal displacement of point O by an
extent of more than 14%, as shown by Figs. 4(e) and (f).
This finding demonstrates the necessity of performing design
optimization of the SEFs since our intuition or experience is
limited even in such a simple case.

Remark 6. Since the prestretch process is fixed, the
displacement mentioned in the simulation results (as well
as experimental results in the following section) refers to
the component induced by the applied voltage, i.e. the
displacement from the prestretched state to the activated state,
while the component caused by the prestretch is automatically
omitted.

3) Determination of the Area Fraction: We investigate
how the optimization result depends on the area fraction. We

Fig. 4: Case I: (a) the design problem; (b) an intuitive design;
(c) the optimized design; (d) the optimization history with
insets of the initial, intermediate and optimized SEF profiles
in terms of planar geometries and their corresponding level
set functions; (e) the simulation result of the intuitive design
with U1 the horizontal component of the displacement field;
(f) the simulation result of the optimized design.

change the area fraction from 0.2 to 0.5 with an interval
of 0.05, and perform the optimization procedure for each
area fraction. The optimized results and their corresponding
displacements at Φ = 6 kV are shown in Fig. 5. When the area
fraction increases from 0.2 to 0.45, the resulting horizontal
displacement of point O increases gradually. That is, the DEA
benefits from increased activated areas by the electric field.
Herein, the growth path of the SEF profile with the increase of
the area fraction implies the priority of arranging the electrodes
on the dielectric membrane so as to maximally deform point O
horizontally. Specifically, when subjected to an electric field,
the areas closer to point O and less deviated from the OX
direction contribute more to the horizontal displacement of
point O and thus are activated in priority. The benefit of
increasing activated areas grows marginal as the area fraction
increases, e.g. when f changes from 0.4 to 0.45.

When the area fraction further increases from 0.45 to
0.5, the performance drops. On the one hand, the positive
contribution of additional activated area to the target motion is
marginal. On the other hand, the additional activated area will
relax the tension for the already activated areas, to some ex-
tent suppressing their deformations and thus making negative
contributions to the target motion. The negative contributions
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Fig. 5: The performances of the optimized DEAs of Case I, plotted on the reference configuration, vary with the area fraction.
The optimized designs and their displacements at Φ = 6 kV are plotted as insets, in comparison with the intuitive design.

counteract the marginal positive contributions, resulting in the
drop of the actuation performance. Therefore, the area fraction
f = 0.45 under which the concerned displacement peaks is
selected for the final optimal design.

C. Case II: Motion of an Arbitrary Point toward an Arbitrary
Direction

1) Optimization Problem: To extend Case I to more com-
plicated cases, we study design problems that maximize the
displacement magnitude of a randomly selected point moving
in an arbitrary direction. As shown in Fig. 6(a), point A
is expected to move toward the prescribed direction. The
objective function is then stated by,

min
Ω
J = −uA ·TA (20)

where uA denotes the nodal displacement of point A, and the
transformation vector is TA = [cos π6 , sin

π
6 ]T.

2) Optimization Results: We may figure out one intuitive
design of the SEF as shown in Fig. 6(b). The optimized SEF
[see Fig. 6(c)] presents a different shape from the intuitive
design. The optimization history is shown in Fig. 6(d) and the
supplemental video S2. The area fraction is set to be 0.65 after
numerical tests. We observe that, in the optimized design, the
tangential of the deformed electrode boundary at point A is
perpendicular to the direction of the target motion.

Two remarkable differences are observed by comparing the
optimized SEF geometry with the intuitive design. Firstly, as
in Case I, some areas deviated from the prescribed direction
of displacement are active in the intuitive design but are de-
activated in the optimized design since their marginal positive
contributions will be counteracted. Second, along the direction
of the target motion, the optimized SEF profile peaks at point
A, and as expected, the maximal displacement occurs exactly
at point A. On the contrary, it seems that the intuitive design
will always be such when any point on the same electrode
boundary is investigated [see Fig. 6(b)]. In other words, the
intuitive design is not specifically designed for point A, and
thus the maximal displacement would occur on the boundary,
not necessarily at point A.

Similar to Case I, the optimized design and the intuitive
design are implemented in ABAQUS, and by coordinate
rotation, we project the displacement field along the prescribed
direction, as shown in Figs. 6(e) and (f). The directional
displacements of point A for the intuitive design and the
optimized design are 4.58 mm and 5.80 mm, respectively,
resulting in a relative improvement of more than 25%.

D. Case III: Motion of Multiple Points for High-level Tasks

1) Optimization Problem: It is convenient to extend the
optimization problem to handle displacements of multiple
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Fig. 6: Case II: (a) the design problem; (b) an intuitive design;
(c) the optimized design; (d) the optimization history with
insets of the initial, intermediate and optimized SEF profiles
in terms of planar geometries and their corresponding level
set functions; (e) the simulation result of the intuitive design
with U1 the displacement field along the prescribed direction;
(f) the simulation result of the optimized design.

points that are typically required in complex motion tasks of
soft DEA-based robots. Motivated by a specific application
for driving shape-morphing of planar sheets to desired three
dimensional configurations (as will be demonstrated in Section
VII), four prescribed points in the reference frame are expected
to move toward the center point to induce compressive loading
for triggering buckling of the planar sheets, as shown in Fig.
7(a). The design objective can be formulated to be

min
Ω
J = −

4∑
i=1

u(pi) ·Ti (21)

with pi(i = 1, 2, 3, 4) the four points in question.
2) Optimization Results: As shown in Figs. 7(b) and (c), the

optimized design presents quite a different configuration from
its intuitive counterpart. The optimization history is shown in
Fig. 7(d) and the supplemental video S3. Again, the normals
of the SEF boundary at the prescribed four points each are
perpendicular to the directions of the target motions. Figs. 7(e)
and (f) show that the optimized design well outperforms the
intuitive design in terms of the induced displacements along
the prescribed directions.

Fig. 7: Case III: (a) the design problem; (b) an intuitive design;
(c) the optimized design; (d) the optimization history with
insets of the initial, intermediate and optimized SEF profiles
in terms of planar geometries and their corresponding level
set functions; the simulation results of (e) the intuitive design
and (f) the optimized design.

It is interesting to note that, we identify the area fraction
of the optimal design to be 0.35 after some numerical im-
plementations, much smaller than that of the intuitive design,
i.e. 0.80. This remarkable difference again demonstrates that
larger activated areas of DEAs do not necessarily lead to better
performance, and instead we need to seek for the optimal
arrangement of the electrodes.

We also evaluate the strain, stress and electric fields of
the optimized design when subjected to a voltage of 6 kV.
The results are shown in Fig. 8 in which the prestretched
configuration is taken as the reference frame (denoted by
xy coordinates). Specifically, Figs. 8(a) and (b) plot the
in-plane maximum and minimum principal nominal strains,
respectively, corresponding to the square roots of the eigen-
values of the right Cauchy-Green tensor B. As expected, the
maximum strain occurs within the electrode areas, reaching
0.14. The out-of-plane strain, i.e. along the thickness direction,
is captured by Fig. 8(c). It is observed that the whole electrode
areas are compressed in thickness, resulting in negative strain
values with magnitude up to 0.19.

Figs. 8(d) and (e) show the in-plane maximum and min-
imum principal nominal stresses, respectively, corresponding
to the eigenvalues of the nominal stress tensor s. It is observed
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Fig. 8: The strain, stress and electric fields of the optimized design in Case III.

that, the whole dielectric membrane is subject to tensile stress,
and thus loss of tension, a typical material failure mode, does
not occur. The underlying reason is that we have provided the
membrane with a prestretch of 3 × 3 before activation. We
also see that, due to the Maxwell stress, the electrode areas
own smaller mechanical stress than the passive areas. Fig. 8(f)
shows the distribution of the electric fields within the electrode
areas. Larger electric fields occur within regions that are closer
to the passive areas, which agrees well with the nominal strain
distribution along the thickness direction as shown in Fig. 8(c).

VI. EXPERIMENTS

In this section, we will show the experimental results of
the three cases in Section V to experimentally validate the
effectiveness of our design methodology. Their intuitive design
counterparts are also evaluated for comparison.

A. Setup

The experimental setup is shown in Fig. 9. The fabricated
DEA is connected to the high-voltage amplifier (10/10B-HS,
Trek, Inc.) and is controlled by a dSPACE-DS1103 control
board equipped with digital-to-analog converters (DACs). The
DACs are used to output analog ramping voltages that is
amplified by the high voltage amplifier with a fixed gain
of 1000. The ramping rate is set to be 100 V/s. The MAT-
LAB/Simulink software is used to implement the algorithms,
which are directly downloaded to the dSPACE-DS1103 control
board via the ControlDesk interface. The real-time states of the
DEAs are captured by a camera and through image processing
the induced displacements can be obtained.

Fig. 9: The experimental setup.

B. Fabrication of DEAs

The DEAs were fabricated as follows: i) biaxially stretched
a piece of VHB 4910 sheet by 3 × 3 with a custom-built
stretcher; ii) a stiff acrylic frame (thickness, 3mm) fabricated
by a laser cutting machine (VLS3.50-SYS) was utilized to
take the prestretched dielectric elastomer membrane down
from the stretcher and support the membrane; iii) based on
the optimized SEF profile, a release paper based mask was
fabricated by the laser cutting machine and then attached onto
both sides of the VHB; iv) coated the electrodes (carbon
grease) with a paintbrush on both sides of the SEF area;
v) removed the mask and connected the electrodes to the
amplifier with copper tapes.



IEEE TRANSACTIONS ON ROBOTICS 10

C. Results

For the three cases each, we apply one high-voltage power
to both the optimal DEA and its intuitive design counterpart
so that they are always supplied with the same voltage.
The experiments are performed in triplicate for each case
and the average displacements are adopted for evaluation.
Fig. 10 shows the experimental results. For convenience of
description, we denote the concerned displacement magnitudes
of the optimal design and the intuitive design by Jopt and
Jnon, respectively, and define the relative improvement of the
optimized design by

α =
Jopt − Jnon

Jnon
× 100%. (22)

In particular, for Case III, we adopt the average displacement
of the four points for evaluation. It is observed that, for all
the three cases, the optimized designs remarkably outperform
their intuitive counterparts, resulting in relative improvements
of 18.89%, 34.18% and 25.28% at 6 kV, as shown in Fig. 10.

We further investigate the robustness of the optimized
designs by evaluating their performances on the whole voltage
range, i.e. from 0 kV until electric breakdown around 8 kV.
As shown in Fig. 10, the superiority of the optimized designs
grows pronounced when the applied voltage increases beyond
6 kV, achieving relative improvements of 48.51%, 41.14% and
76.47% for the three cases. This robustness is significant and
advantageous for practical applications in which the applied
voltage typically spans quite large ranges.

Remark 7. It is well known that DEAs may suffer mate-
rial failures such as mechanical rupture, electric breakdown,
electromechanical instability or loss of tension with high
voltages. Electromechanical instability is not included in the
optimization framework due to the induced discontinuity, and
it is well suppressed by the prestretch. When the applied
voltage approaches 8 kV, the DEA membranes are prone to
loss of tension and electric breakdown. It is noted that, the
critical electric field for breakdown depends on the stretches
the DEA undergoes [43]. To incorporate electric breakdown
into the design optimization framework, it requires imposing
a constraint on the stretch along the thickness direction.

VII. APPLICATIONS

DEAs may find various applications by interacting with host
structures, to realize novel soft machines and robots. Shape-
morphing structures are at the core of future applications
in smart materials and structures [44]–[47] and robots [48]–
[50]. In contrast to existing mechanisms for creating shape
changes, e.g. mechanical stretches [44], pressurization [46]
and temperature loading [47], the configurational changes
driven by DEAs are faster and amenable to electrical control
and programing.

We aim to drive thin-walled host structures to shape-morph
from flat sheets to desired three dimensional configurations by
inducing buckling. Starting from this high-level motion task,
our design method automatically produces the optimal SEF
(as shown in Case III) that equips the DEA with large motion
range to enable shape-morphing of various structures. The host

structures made of hard paper (with thickness of 50µm) have
different shapes at rest, as shown by their two dimensional
precursors in Fig. 11. The feet of the host structures (high-
lighted by the red areas) are attached to the DEA (note that
VHB 4910 is highly adhesive), while their bodies (highlighted
by the blue areas) are smeared with silicone oil and thus are
able to detach themselves from the DEA.

For the four host structures each, we increase the applied
voltage gradually from 0 kV to 7.5 kV, without encountering
any material failures. It is observed that each host structure
would start to buckle at a certain voltage, which can be
defined as the critical buckling voltage. Specifically, the critical
buckling voltages for the four host structures are 5.0 kV,
5.4 kV, 5.3 kV and 4.8 kV. The initial and final deformed
configurations are shown in Fig. 11 and the dynamic config-
urational transitions are shown in the supplemental video S4.
The simulation results conducted in ABAQUS well predict the
deformed configurations.

We may envisage many more potential applications with
the optimized DEAs. For example, the current DEA prototype
can be directly extended to planar positioning systems with
enlarged workspace of the end-effector. Further, a variety of
actuator configurations of DEAs such as minimum energy
structures [51], [52] and bulged membranes [28] that have
been applied to drive robots [24], [25], haptic actuators [26],
fluid pumps [53], etc, can benefit from the improved deforma-
bility offered directly by optimizing SEFs without the need
for additional cumbersome mechanical design.

VIII. DISCUSSION AND CONCLUSION

In this paper, we propose a computational design method-
ology for DEAs to systematically explore their actuation
capabilities, by leveraging the freeform electrode patterns. Our
approach in theory allows the electrodes to take amorphous
geometric profile without prior knowledge, and searches for
the optimal design by a gradient-based optimizer. We address
the challenge of embedding the highly nonlinear behavior of
DEAs into the optimization model. We validate the effective-
ness of our method by automatically creating the optimal SEFs
for DEAs targeting at various motion tasks. We show that the
optimized DEAs can be used to trigger shape-morphing of
various structures, among many other potential applications.

We note that researchers have also explored the use of evolu-
tionary algorithms, e.g. genetic algorithms, to aid in the design
process of DEAs [54], [55], in which the design variable, i.e.
the population, is updated by combining or mutating existing
designs in a stochastic fashion. However, genetic algorithms
are essentially randomized heuristic search strategies with
poor scalability, and typically result in premature convergence
and slow convergent speed. The present design problems of
DEAs can be cast as continuous optimization problems, and
as demonstrated, closed-form derivatives can be obtained.
Therefore, we adopt a gradient-based topology optimization
approach to provide a systematic exploration of the freeform
design space of SEFs.

In a general sense, our approach paves the way for shifting
the design of soft actuators and robots from classical intuitive
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Fig. 10: The experimental results of the three cases.
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Fig. 11: The applications of optimized DEAs for triggering buckling of host structures from planar sheets to desired three
dimensional configurations.

or empirical design paradigms to a more systematic process
based on mathematics and optimization theories. With the
unconstrained design space in terms of the geometric config-
uration [56], [57], material distributions [58] and volumetric
actuations [59], enabled by additive manufacturing techniques
and fast simulation algorithms [4], [60], design optimization
approaches are becoming increasingly important and indis-
pensable to generate novel mechanisms and deformable robots.

In the future, we hope to extend the proposed optimiza-
tion algorithm to DEAs of different configurations and more
complex motion specifications for which intuitive designs are
extremely hard to apply, e.g. prestretched DEAs coated on pla-
nar precursors to form three-dimensional dielectric elastomer
minimum energy structures (DEMES). DEMES typically in-
volve buckling process of the coupled system consisting of
DEAs and compliant frames, into a state of minimum energy.
The configurations of DEAs mathematically correspond to the
induced buckling modes. Therefore, design optimization of
DEMES will pose great challenge in finite element electrome-
chanical analysis and the sensitivity analysis. Nevertheless, the
overall performance of DEMES can benefit from the concur-
rent optimization with respect to the frame shape and the SEF.
On activating the spatiotemporally-varying electric fields, the
DEMES may undergo desired configurational transformation
to perform complex tasks. We envisage that systematic design
optimization can uncover untapped potential of DEAs and
propel their applications in soft robots through improved
deformability.

APPENDIX A
NOMINAL STRESS AND MATERIAL TENSOR

The nominal stress, also known as the first Piola-Kirchhoff
stress, takes the following form

sij =
∂W

∂Fij

= µ
( 1

J̄2/3
Fij −

1

3
Ī1F

−1
ji

)
+ κJ̄

(
J̄ − 1

)
F−1
ji

− 1

2
εJ̄ẼpẼq

(
F−1
pk F

−1
qk F

−1
ji − F

−1
pi F

−1
jk F

−1
qk − F

−1
pk F

−1
qi F

−1
jk

)
(23)

For a planar DEA where the electric field is applied along the
thickness direction, the nominal stress reduces to

sij =µ
( 1

J̄2/3
Fij −

1

3
Ī1F

−1
ji

)
+ κJ̄

(
J̄ − 1

)
F−1
ji

− 1

2
εJ̄Ẽ2F−2

33

(
F−1
ji − 2F−1

33 δi3δj3
) (24)

with the mechanical and electric components stated as follows

suij = µ
( 1

J̄2/3
Fij −

1

3
Ī1F

−1
ji

)
+ κJ̄

(
J̄ − 1

)
F−1
ji , (25)

seij = −1

2
εJ̄Ẽ2F−2

33

(
F−1
ji − 2F−1

33 δi3δj3
)
. (26)
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The material tensor is derived by differentiating the nominal
stress with respect to the deformation gradient, i.e. C =
∂s/∂F, and its tensor form is expressed by

Cijkl =
∂sij
∂Fkl

=
µ

J̄2/3

(
−2

3
F−1
lk Fij + δikδjl −

2

3
FklF

−1
ji

)
+
[2

9
µĪ1 + κJ̄

(
2J̄ − 1

)
− 1

2
εJ̄Ẽ2F−2

33

]
F−1
lk F−1

ji

+
[1

3
µĪ1 − κJ̄

(
J̄ − 1

)
+

1

2
εJ̄Ẽ2F−2

33

]
F−1
jk F

−1
li .

(27)

APPENDIX B
ADJOINT SENSITIVITY ANALYSIS

The material derivative of the Lagrangian with respect to a
pseudo-time τ , i.e. L̇ = dL/dτ , is given by,

L̇ = J̇(u) + ȧ(u,w,Ω) + λς̇. (28)

The material derivative of the deformation gradient is stated
by

Ḟ = ∇0u̇−∇0u∇0V. (29)

According to Lemma 6.1. in [61], the material derivatives
ȧ(u,w,Ω) and ς̇ read,

ȧ(u,w,Ω)

=

∫
Ω

[
ṡ : ∇0w + s : (∇0w)· + (s : ∇0w)∇0 ·V

]
dΩ

=

∫
Ω

[
C : (∇0u̇−∇0u∇0V) : ∇0w+

s : (∇0ẇ −∇0w∇0V) + (s : ∇0w)∇0 ·V
]
dΩ

(30)

ς̇ =

∫
Ω

∇0 ·VdΩ. (31)

The adjoint equation is established by collecting all the
terms related to u̇ in (28) and making their sum zero, which
yields,

dJ(u)

du
u̇ +

∫
Ω

C : ∇0u̇ : ∇0w dΩ = 0. (32)

Since the design objective is expressed in term of u, its
derivative with respect to u can be easily evaluated during
numerical implementation. To ensure (32) holds for any u̇
necessitates a unique w, i.e. the so-called adjoint displacement.
Numerically, we discretize (32), extract the nodal displacement
derivative u̇ as a common factor, and then directly obtain
the adjoint displacement w by solving the linear equation.
Thereafter, the material derivative of the Lagrangian can be
readily obtained [see (16)].

APPENDIX C
DESIGN VELOCITY SELECTION

A 4-node rectangular grid is adopted to discretize the
design domain. A continuum displacement field within the eth
element can be interpolated by,

u(X) =



N1(X) 0
0 N1(X)

N2(X) 0
0 N2(X)

N3(X) 0
0 N3(X)

N4(X) 0
0 N4(X)



T

ue, ∀X ∈ Ωe (33)

where ue =
[
u1
x u

1
y u

2
x u

2
y u

3
x u

3
y u

4
x u

4
y

]T
denotes the nodal

displacement vector in the eth element, Ωe denotes the do-
main of the eth element, N i(X) is the bilinear interpolation
function, the superscripts i = 1, 2, 3, 4 denote the local nodal
indices, and the subscripts x and y correspond to the axial
directions in the Cartesian coordinate system. Similarly, the
adjoint displacement field w, the derivative of the displace-
ment field u̇ and the design velocities V within the eth element
are also interpolated in the same form as in (33), whose
nodal component vectors are denoted by we, u̇e and Ve,
respectively.

The gradient of the displacement field can be stated by

∇0u(X) =

[
u1
x u2

x u3
x u4

x

u1
y u2

y u3
y u4

y

]
N1
,x N1

,y

N2
,x N2

,y

N3
,x N3

,y

N4
,x N4

,y

 (34)

with N i
,x = ∂N i(X)/∂x,N i

,y = ∂N i(X)/∂y. To extract the
nodal components ue, we define a vectorization process 7→:
∇0u 7→ u∇ = [u11 u21 u12 u22]

T
= Hue, with H taking the

following form,

H =


N1
,x 0 N2

,x 0 N3
,x 0 N4

,x 0

0 N1
,x 0 N2

,x 0 N3
,x 0 N4

,x

N1
,y 0 N2

,y 0 N3
,y 0 N4

,y 0

0 N1
,y 0 N2

,y 0 N3
,y 0 N4

,y

 . (35)

Similarly, the gradients of other terms are vectorized by
∇0u̇ 7→ u̇∇ = Hu̇e, ∇0w 7→ w∇ = Hwe and
∇0V 7→ V∇ = HVe. Consequently, the matrix multiplication
∇0u∇0V can be evaluated at the nodes,

∇0u∇0V 7→ V∇u∇ =


u11 u12

u21 u22

u11 u12

u21 u22


︸ ︷︷ ︸

ũ


V11

V21

V12

V22


︸ ︷︷ ︸

V∇

(36)

where ũ = diag(∇0u,∇0u), and similarly, we may vectorize
∇0w∇0V to be w̃HVe with w̃ = diag(∇0w,∇0w).

The divergence of the velocity can be stated by,

∇0 ·V =
[
N1
,x N

1
,y N

2
,x N

2
,y N

3
,x N

3
,y N

4
,x N

4
,y

]︸ ︷︷ ︸
ΛT

Ve

(37)
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It should be noted that only the normal velocity contributes
to the evolution process. To convert the nodal components Ve

to the normal velocities Ve
n, it has,

Ve =



V 1
x

V 1
y

V 2
x

V 2
y

V 3
x

V 3
y

V 4
x

V 4
y


=



n1
x 0 0 0

n1
y 0 0 0

0 n2
x 0 0

0 n2
y 0 0

0 0 n3
x 0

0 0 n3
y 0

0 0 0 n4
x

0 0 0 n4
y


︸ ︷︷ ︸

ne


V 1
n

V 2
n

V 3
n

V 4
n


︸ ︷︷ ︸

Ve
n

(38)

where ne denotes the transformation matrix containing the
components of nodal normal vectors within the element, in
the direction of decreasing φ.

With vectorized terms above, we can discretize the material
derivative of the Lagrangian in (16). The first integral term is
rewritten by,

C : (∇0u∇0V) : ∇0w = wT
∇
(
C∗
)T

ũHVe (39)

where the nominal stress tensor s is also vectorized by s 7→
sV = [s11 s21 s12 s22]

T, and the fourth-order material tensor
is written in matrix form, denoted by C∗

C∗ =


C1111 C2111 C1211 C2211

C1121 C2121 C1221 C2221

C1112 C2112 C1212 C2212

C1122 C2122 C1222 C2222

 . (40)

The second integral term is rewritten by

s : ∇0w∇0V = sT
V w̃HVe. (41)

The last integral term is rewritten by(
s : ∇0w + λ

)
∇0 ·V =

(
sT
Vw∇ + λ

)
ΛTVe. (42)

By substituting all these results into (16), it yields,

L̇ =
{Ne

A
e=1

∫
0Ωe

[
−wT

∇
(
C∗
)T

ũH− sT
V w̃H

+
(
sT
Vw∇ + λ

)
ΛT
]
nedΩ

}
Vn

(43)

where Ne denotes the number of elements and Vn is the
collection vector of the normal velocities for the grid points.
Note that the Lagrangian multiplier in (43) is only active in
the elements activated by the SEF. To this end, for ensuring
the steepest descent direction, the normal velocities of the grid
points can be selected [see (17)].
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