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Summary
English
This PhD thesis consists of two parts. The first part is about edge-weightings of
graphs and the second part is about applying the existence of non-separating cycles
to prove properties of graphs containing such cycles.

Given a graph G and a set of numbers S ⊂ R, we say that G has the S-property,
if there there exists a function w : E(G) → S assigning a number from S to each edge
of G such that for any two neighbouring vertices u, v in G, the sum of the numbers
assigned to the edges incident with u is distinct from the sum of the numbers assigned
to the edges incident with v, i.e.

∑
e∈E(u) w(e) ̸=

∑
e∈E(v) w(e) for any two adjacent

vertices u, v in G. Such a function w is called a proper edge-weighting of G. A conjec-
ture from 2004 by Karoński, Łuczak, and Thomason, known as the 1-2-3 Conjecture,
states that any connected graph with at least 3 vertices has the {1, 2, 3}-property. In
the first part of this thesis we study problems related to this 1-2-3 Conjecture.
Firstly, we characterise all 2-edge-connected bipartite graphs and all trees without the
{0, 1}-property. We also characterise all 2-connected bipartite graphs and all trees
without the {a, a + 2}-property, where a is any odd integer. After having considered
bipartite graphs we move on to consider general graphs. A list-variant of the 1-2-3
Conjecture called weight-choosability asks the following question: Given a graph G,
an integer k and for each edge e in G a set Se ⊂ R of k numbers, does there exist a
proper edge-weighting w of G such that w(e) ∈ Se for each edge e? If such an edge-
weighting w exists for any assignment of k-element sets (also called lists) to the edges
of G, then G is said to be k-weight-choosable. We prove that any connected graph G
with at least 3 vertices is (2⌈log2(∆(G))⌉+1)-weight-chooseable, where ∆(G) denotes
the maximum degree in G, providing the first upper bound on the weight-choosability
of general graphs which is logarithmic in ∆(G).
We finish the chapter concerning edge-weightings by considering a variant of the An-
timagic Labelling Conjecture formulated by Hartsfield and Ringel. The Antimagic
Labelling Conjecture states that for any connected graph G with at least three ver-
tices, there exists a bijection w : E(G) → {1, . . . , |E(G)|} such that for any two
vertices u, v in G, the sum of the numbers assigned to the edges incident with u is dis-
tinct from the sum of the numbers assigned to the edges incident with v. We prove the
following result which is a list-variant of the Antimagic Labelling Conjecture where
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only adjacent vertices are required to have distinct sums of incident edge-weights: For
any connected graph G which is not a star and any set S ⊂ R of |E(G)| distinct num-
bers, there exists a bijection w : E(G) → S such that for any two adjacent vertices
u, v in G, the sum of the numbers assigned to the edges incident with u is distinct
from the sum of the numbers assigned to the edges incident with v.

The second part of this thesis starts by considering a relaxation of the well-studied
notion of homeomorphically irreducible spanning trees which are spanning trees with
no vertices of degree 2. By using the existence of non-separating cycles in graphs of
minimum degree at least 3, we prove that any graph G with minimum degree at least
3 contains a spanning tree T without a path with 3 vertices all of degree precisely 2
in T (we also say that there are no 3 consecutive vertices of degree 2 in T ).
After considering this relaxation of homeomorphically irreducible spanning trees we
consider what is known as the 3-Decomposition Conjecture formulated by Hoffmann-
Ostenhof. This conjecture states that the edge set of any connected cubic graph G
can be partitioned into three parts, where one part induces a spanning tree in G,
another part induces a collection of pairwise disjoint cycles in G and a third part
induces a matching in G. Inspired by this conjecture we formulate and prove the
result that the edges of any connected graph can be partitioned into three parts, such
that one part induces a spanning tree in G, another part induces a graph where all
vertices have even degree in G and a third part induces a star forest in G.
Finally, in the last section of this thesis, we use non-separating cycles to prove that
if G is a 2-connected subcubic graph where all vertices except possibly three x, y, z
have degree 3, then there are two x − y paths in G whose lengths differ by 1 or 2. We
also show that under some mild additional assumptions we can allow there to be four
vertices of degree 2. These results are some of the main tools in a manuscript by the
author of this thesis and Martin Merker which proves that for any two integers m, k
where k is odd, there exists a number N(k) such that any 3-connected cubic graph
with at least N(k) vertices contains a cycle whose length is congruent to m modulo
k.

Danish
Denne PhD-afhandling består overordnet set af to dele. Den første del handler om
kant-vægtninger af grafer og den anden del viser eksempler på hvordan eksistensen
af ikke-separerende kredse kan bruges til at bevise særlige egenskaber for grafer som
indeholder sådanne kredse.

Givet en graf G og et sæt af tal S ⊂ R, så siges G at have S-egenskaben hvis
der findes en funktion w : E(G) → S, som til enhver kant i G tildeler et tal fra S,
således at der for ethvert par af forbundne punkter u, v i G gælder at summen af de
tal tildelt til kanterne som støder op til u er forskellig fra summen af de tal tildelt til
kanterne som støder op til v, altså,

∑
e∈E(u) w(e) ̸=

∑
e∈E(v) w(e). En sådan funk-
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tion w kaldes en ordentlig kantvægtning af G. En formodning fra 2004 formuleret af
Karoński, Łuczak og Thomason, kendt som 1-2-3 Formodningen siger at enhver sam-
menhængende graf med mindst tre punkter har {1, 2, 3}-egenskaben. I første del af
denne afhandling studerer vi problemer som relaterer sig til denne 1-2-3 Formodning.
Først karakteriserer vi alle 2-kant-sammenhængende to-delte grafer og alle træer uden
{0, 1}-egenskaben. Vi karakteriserer også all 2-sammenhængende to-delte grafer og
alle træer uden {a, a+2}-egenskaben hvor a er et hvilket som helst ulige heltal. Efter
at have betragtet to-delte grafer ser vi på generelle grafer. En liste-variant af 1-2-3
Formodningen kendt som vægt-udvælgning stiller følgende spørgsmål: Givet en graf
G, et heltal k og for enhver kant e i G et sæt Se ⊂ R af k forskellige tal findes
der så en ordentlig kant-vægtning w således at w(e) ∈ Se for enhver kant e i G?
Hvis der findes sådan en kantvægtning w for alle tildelinger af k-element sæt (også
kaldet lister) til kanterne så siges grafen G at være k-vægt-udvælgelig. Vi beviser at
enhver sammenhængende graf G er (2⌈log2(∆(G))⌉ + 1)-vægt-udvælgelig, hvor ∆(G)
betegner maksimumsvalensen i G. Således udleder vi den første øvre grænse for kant-
udvælgighed for generelle grafer som er logaritmisk i maksimumsvalensen.
Vi afslutter kapitlet om kant-vægtninger med at betragte en variant af den An-
timagiske Mærkningsformodning (”The Antimagic Labelling Conjecture” på engelsk)
formuleret af Hartsfield og Ringel. Den Antimagiske Mærkningsformodning siger at
for enhver sammenhængende graf G med mindst tre punkter findes der en bijektion
w : E(G) → {1, . . . , |E(G)|} således at der for ethvert par af punkter u, v gælder at∑

e∈E(u) w(e) ̸=
∑

e∈E(v) w(e). Vi beviser følgende resultat som er en liste-variant af
den Antimagiske Mærkningsformodning hvor kun forbundne punkter kræves at have
forskellige summmer af tilstødende kantvægte: For enhver sammenhængende graf G
som ikke er en stjerne og ethvert sæt S ⊂ R af |E(G)| tal findes der en bijektion
w : E(G) → {1, . . . , |E(G)|} således at der for ethvert par af forbundne punkter u, v
gælder at

∑
e∈E(u) w(e) ̸=

∑
e∈E(v) w(e).

Den anden del af denne afhandling starter med at undersøge en opblødning af
det velstuderede fænomen, homeomorfiske ireducible udspændende træer, som er ud-
spændende træer helt uden punkter af valens 2. Ved at bruge ikke-separerende kredse
beviser vi at enhver graf G med minimumsvalens mindst 3 har et udspændende træ
T uden en vej med tre punkter som har valens præcis 2 i T (vi siger også at der ikke
er 3 punkter af valens 2 i T som er på hinanden følgende).
Efter at have studeret denne opblødning af homeomorfiske ireducible udspændende
træer fokuserer vi på en formodning kaldet 3-Dekompositions-Formodningen formuleret
af Hoffmann-Ostenhof. Denne formodning siger at kanterne i enhver sammenhæn-
gende kubisk graf G kan partitioneres i tre dele E1, E2, E3 således at E1 inducerer
et udspændende træ i G, E2 inducerer en mængde af disjunkte kredse i G og E3
inducerer en parring i G. Inspireret af denne formodning formulerer og beviser vi et
resultat der siger at kanterne i enhver sammenhængende graf G kan partitioneres i
tre dele E1, E2, E3 således at E1 inducerer et udspændende træ i G, E2 inducerer en
graf i G hvor alle punkter har lige valens og E3 inducerer en stjerneskov i G.
Slutteligt, i afhandlingens sidste sektion, bruger vi ikke-separerende kredse til at be-
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vise at hvis G er en 2-sammenhængende subkubisk graf hvor all punkter på nær op
til tre x, y, z har valens 3, så findes der to veje i G fra x til y hvis længder varierer
med 1 eller 2. Vi beviser også at vi med et par ekstra antagelser kan tillade at der
er op til fire punkter med valens 2. Disse resultater er nogle af de centrale redskaber
i et manuskript af forfatteren af denne afhandling og Martin Merker, som viser at
for to vilkårlige heltal m, k hvor k er ulige findes der et tal N(k) således at alle 3-
sammenhængende kubiske grafer med mindst N(k) punkter indeholder en kreds hvis
længde er kongruent med m modulo k.
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CHAPTER 1
Introduction

1.1 Overview of The Thesis

The thesis is split into two chapters. The first chapter is about so-called neighbour
sum-distinguishing edge-weightings and the second chapter is about applications of
non-separating cycles.
A neighbour sum-distinguishing edge-weighting of a graph G is a function w : E(G) →
R assigning a number to each of the edges of G such that for any two neighbouring
vertices u, v in G it holds that the sum of the numbers assigned to the edges incident
with u is distinct from the sum of the numbers assigned to the edges incident with v.
If S ⊂ R is a set of numbers and G is a graph, then G is said to have the S-property
if there is a neighbour sum-distinguishing edge-weighting w : E(G) → S of G only
using numbers in S.
The work regarding neighbour sum-distinguishing edge-weightings presented in this
thesis is mainly motivated by the 1-2-3 Conjecture from 2004 formulated by Karoński,
Łuczak, and Thomason [Kar04]. This conjecture states that if G is a connected graph
with at least 3 vertices, then G has the {1, 2, 3}-property.
Chapter 2 concerning neighbour sum-distinguishing edge-weightings is split into four
sections. The first section gives an introduction to the history of the 1-2-3 Conjec-
ture, related problems, and to the basic terminology we will use when working with
edge-weightings of graphs. The second section concerns neighbour sum-distinguishing
edge-weightings of bipartite graphs using only two edge-weights. This is motivated
by the work of Thomassen, Wu and Zhang [Tho16] who characterised all the bipartite
graphs without the {1, 2}-property. Any such graph is a so-called odd multi-cactus.
Thomassen et al. mentioned that their result and their proof generalise to the S-
property whenever S consists of two positive integers of distinct parity. However,
they also mentioned that the result does not generalise to the {0, 1}-property. We
show that if G is a 2-edge-connected bipartite graph without the {0, 1}-property, then
G is an odd multi-cactus. Thus, we show that their characterisation also holds for
the {0, 1}-property if we restrict ourselves to 2-edge-connected bipartite graphs. We
also show a recursive way to construct all trees without the {0, 1}-property. After
having considered the {0, 1}-property for bipartite graphs we move on to consider the
{a, a + 2}-property for bipartite graphs, where a is any odd integer. We show that if
G is a 2-connected bipartite graph without the {a, a + 2}-property, then G is an odd
multi-cactus and we also characterise all trees without the {a, a + 2}-property.
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The third section concerning neighbour sum-distinguishing edge-weightings is about
weight-choosability of graphs which can be defined as follows: if k is a natural number,
then a graph G is said to be k-weight-choosable if for any assignment of k-element
lists Le, e ∈ E(G) to the edges of G there exists a neighbour sum-distinguishing
edge-weighting w of G such that w(e) ∈ Le for all e ∈ E(G). In particular, any graph
which is 3-weight-choosable satisfies the 1-2-3 Conjecture. In this thesis we show that
any connected graph with at least 3 vertices is (2⌈log2(∆(G))⌉ + 1)-weight-choosable,
where ∆(G) denotes the maximum degree in G. This is the first upper bound for
weight-choosability which is logarithmic in the maximum degree of G. The earlier
best known upper bound was a linear function in ∆(G).
The fourth and last section concerning neighbour sum-distinguishing edge-weightings
is about a result related to the Antimagic Labelling Conjecture which states that for
any connected graph G with at least 3 vertices there exists a bijection w : E(G) →
{1, . . . , |E(G)|} such that for any two distinct vertices u, v in G, the sum of the
numbers assigned to the edges incident with u by w is distinct from the sum of the
numbers assigned to the edges incident with v by w. This conjecture was formulated
by Hartsfield and Ringel [Har90]. We show that if G is a connected graph with at
least 3 vertices which is not a star and S is any set of real numbers with |S| = |E(G)|,
then there exists a neighbour sum-distinguishing edge-weighting w : E(G) → S which
is a bijection.

A cycle C in a connected graph G is called non-separating if G − V (C) is con-
nected. In Chapter 3 about applications of these non-separating cycles we prove
three theorems whose proofs all use the existence of non-separating cycles. These
three theorems are related to homeomorphically irreducible spanning trees, The 3-
Decomposition Conjecture, and the existence of certain paths in cubic graphs whose
lengths differ by 1 or 2.
A homeomorphically irreducible tree, also called a HIT, is a tree with no vertices of
degree 2. A homeomorphically irreducible spanning tree in a graph is called a HIST.
Since Hill [Hil74] in 1974 studied the existence of HISTs in certain graphs the follow-
ing question has served as inspiration for several research papers: what properties
of a graph G implies the existence of a HIST in G? In general this question is hard
as pointed out by Douglas [Dou92] who showed that it is NP-complete to decide
whether a given planar subcubic graph contains a HIST and Lemke [Lem88] showed
that it is also NP-complete for general cubic graphs. Hill conjectured that any trian-
gulation of the plane with at least four vertices contains a HIST. This conjecture was
strengthened by Malkevitch [Mal79] who conjectured that any near-triangulation of
the plane contains a HIST. In 1990 Malkevitch’s conjecture was proven by Albertson,
Berman, Hutchinson and Thomassen [Alb90]. Albertson et al. also proved that there
exists a constant c such that any graph with n vertices and minimum degree at least
c
√

n contains a HISTs and that this lower bound is best possible up to the constant
c. In contrast to this result they also provided a construction showing that for each
natural number k there exists a k-connected graph with no HIST.
Many other results regarding the existence of HISTs can be found in the literature,
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see for example [Che13], [Fur13] and [Die15]. We will study a relaxation of the notion
of HISTs and prove that any connected graph with minimum degree at least 3 has a
spanning tree in which there is no path of length at least 2 only containing vertices
having degree 2 in the spanning tree. We also say that there are no three consecutive
vertices of degree 2.
A decomposition of a graph is a partition of its edge set. The 3-Decomposition Conjec-
ture formulated by Hoffmann-Ostenhof [Cam11] states that there is a decomposition
of any connected cubic graph G into three parts, one which induces a spanning tree
in G, one which induces a collection of cycles in G, and one which induces a matching
in G. Note that a HIST in a cubic graph G is a spanning tree T such that G−E(T ) is
a collection of pairwise disjoint cycles and isolated vertices. In this way one can look
at the 3-Decomposition Conjecture as a statement about the existence of a spanning
tree T which is close to being homeomorphically irreducible in the sense that the
components of G − E(T ) which are not cycles or isolated vertices (one can think of
this part as an error term”) form a matching. Inspired by the 3-Decomposition Con-
jecture we formulate and prove a 3-decomposition theorem for all connected graphs:
we prove that the edges of any connected graph G can be partitioned into three sets
E1, E2, E3 such that E1 induces a spanning tree in G, the set E2 induces a star forest
in G and finally E3 induces a graph where all vertices have even degree graph in G.
In the last section of chapter 3 we study the existence of certain paths in subcubic
graphs. A result by Fan [Fan02] implies that if x, y are vertices in a 2-connected
graph G where dG(z) = 3 for all z ∈ V (G) \ {x, y}, then there exist two x − y paths
in G whose lengths differ by 1 or 2. This result by Fan was in part motivated by the
work of Bondy and Vince [Bon98] who answered a question of Erdös by proving that
any graph with minimum degree at least 3 contains two cycles whose lengths differ
by 1 or 2. We will show that under some mild additional conditions we can allow up
to two additional vertices besides x and y to possibly have degree 2 and still have
two x − y paths whose lengths differ by 1 or 2. These results we prove are some of
the key tools in [Lyna] where the author of this thesis and Merker prove that for any
odd natural number k, there exists a number N(k) such that any 3-connected cubic
graph with at least N(k) vertices contains a cycle of length congruent to m modulo
k for every integer m.

1.2 Notation and Definitions
For basic graph theory terminology and definitions not explained in this thesis the
reader is referred to the book by Diestel [Die16].

Given a graph G we let V (G) and E(G) denote its vertex- and edge set, respec-
tively. If H is a subgraph of G, then we sometimes write G − H instead of G − V (H)
(the graph obtained from G by removing all vertices in H and removing all edges
having an end in a vertex in H). If v is a vertex in G − H, then H + v is the graph
obtained from the disjoint union of H and v by adding all edges incident to v in G
having an end in H. Similarly, if H ′ is a subgraph of G − H, then H + H ′ is the
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graph obtained from the disjoint union of H and H ′ by adding all edges in G which
have an end in H and H ′.
The number of edges in G, that is |E(G)|, is also referred to as the size of G and
|V (G)| is called the order of G.
If v is a vertex in a graph G, then dG(v), or simply d(v), denotes the degree of v in
G. We let EG(v) or simply E(v) denote the set of edges in G incident to v and we let
NG(v) or simply N(v) denote the set of vertices which are adjacent to v in G. The
vertices in N(v) are also called the neighbours of v. The maximum degree in G is
denoted ∆(G).
All graphs in this thesis are undirected and finite. A graph G is said to be regular if
all vertices in G have the same degree and G is called irregular if there are no two
vertices in G with the same degree. A graph G is called simple if all edges in G join
two distinct vertices and if no two vertices in G are joined by more than one edge. If
u and v are vertices in a graph G and are joined by more than one edge, then any
edge joining u and v is called a multiple edge. If e is a multiple edge in a graph G
joining two vertices u and v, then the multiplicity of e, denoted M(uv) or M(e), is the
number of edges in G joining u and v. Graphs with multiple edges only play a role
in the second section (”Edge-Weightings of Bipartite Graphs Using Two Weights”) in
Chapter 2. In all other places in the thesis, unless stated otherwise, we assume that
graphs are simple. We will sometimes use the term multigraph about a graph which
contains multiple edges.
By a bipartition of a bipartite graph G we mean a partition of V (G) into two inde-
pendent sets and these two sets are called the bipartition sets of G.
A leaf is a vertex of degree 1 in a graph. An edge incident to a leaf in a graph is called
a pendant edge. A star is a tree with at most one vertex which is not a leaf. This
vertex is called the center of the star (if it is not unique, then the star must be an
isolated edge and any of the two vertices can be referred to as the center). A bistar is
a tree obtained from the disjoint union of two stars by adding an edge between their
centers. The centers of the two stars are also called the centers of the bistar. A star
forest is a forest where each component is a star. A matching is a star forest where
each component has exactly one edge.
If G is a graph and A, B are disjoint subset of V (G), then an A − B path in G is a
path whose endvertices are in A and B, respectively, and whose internal vertices are
disjoint from A ∪ B. Similarly if x, y ∈ V (G), then an x − y path in G is a path in G
with endvertices x and y. If P is a path in G and u, v are vertices on P , then uPv
denotes the u − v subpath of P .



CHAPTER 2
Neighbour

Sum-Distinguishing
Edge-Weightings

2.1 Introduction
Given a graph G and a set of numbers S ⊂ R an S-edge-weighting of G is a function
w : E(G) → S. Questions regarding edge-weightings of graphs are often phrased in
the following way:

Which properties of a graph G and a set S ⊂ R are sufficient to guarantee the
existence of an S-edge-weighting of G with property (⋆)?

The property (⋆) asked for can vary depending on the motivation behind the problem
investigated. One such property that has been studied a lot in recent years was
motivated by the so-called irregularity strength of graphs. The irregularity strength
of a simple graph G is a number associated to G which in some sense measurse how
far away G is from being irregular. More precisely, it is the smallest number k such
that G can be turned into an irregular multigraph by replacing each edge of G by an
edge of multiplicity at most k. Instead of thinking of an edge of multiplicity k as a
collection of k distinct edges we can simply think of it as an edge of weight k and we
can define the weighted degree of a vertex accordingly: If w : E(G) → R is an edge
weighting of a graph G and v ∈ V (G), then the weighted degree of v induced by w,
denoted by dw(v) or w(v) or Cw(v), is the sum of the weights of the edges incident
to v, i.e. dw(v) = w(v) = Cw(v) =

∑
e∈E(v) w(e). If e = uv is an edge in G with

w(e) = a, then we call e an a-edge and if Cw(u) = Cw(v), then e is called a conflict.
Now we can formulate the irregularity strength of a graph in terms of the existence of
edge-weightings with certain properties: the irregularity strength of a graph G is the
smallest number k such that there exists an edge-weighting w : E(G) → {1, . . . , k}
such that all vertices of G have distinct weighted degrees induced by w. Such an
edge-weighting w is called sum-distinguishing. Note that the irregularity strength of
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a graph having a component with exactly two vertices (also called an isolated edge) is
not well-defined. On the other hand, it is easy to check that the irregularity strength
of a graph with no isolated edges is indeed well-defined. For more on the irregularity
strength of graphs we refer to the survey by Bača et al. [Bač15].
For a graph to be irregular we require all vertices to have distinct degrees. A natural
relaxation of this requirement is to only require neighbouring vertices to have distinct
degrees. A graph G is said to be locally irregular if there are no two neighbouring
vertices in G which have the same degree. Like we defined irregularity strength
of graphs we can naturally define local irregularity strength of graphs: The local
irregularity strength of a graph G is the smallest number k such that there exists an
edge-weighting w : E(G) → {1, . . . , k} such that any two adjacent vertices in G have
distinct weighted degrees induced by w. Such an edge-weighting w is called neighbour
sum-distinguishing or proper. If S is a set of numbers and G is a graph, we say that
G has the S-property if there exists a neighbour sum-distinguishing edge-weighting
of G only using weights in S.
Note that also the local irregularity strength is not defined for a connected graph
having exactly two vertices and is well-defined for all graphs without any isolated
edges. For a graph G without any isolated edges we let χl(G) denote the local
irregularity strength of G. The local irregularity of graphs was first studied in 2004
by Karoński, Łuczak, and Thomason [Kar04]. They formulated the now well-known
1-2-3 Conjecture which conjectures that actually the weights 1, 2, and 3 always suffice
when constructing a neighbour sum-distinguishing edge-weighting of a graph without
isolated edges:

Conjecture 2.1.1 (The 1-2-3 Conjecture, Karoński, Łuczak, Thomason, 2004). If
G is a graph with no isolated edges, then χl(G) ≤ 3.

When studying the local irregularity strength of a graph G we can, by studying
one component at a time, assume that G is connected and has at least three vertices.
For convenience we call such graphs nice. It is easy to find infinite families of nice
graphs with local irregularity strength at least 3 (all complete graphs for example), so
the value 3 in the conjecture is indeed smallest possible. Karoński et al. also proved
that if G is a nice k-colourable graph and k is odd, then χl(G) ≤ k. This result
reflects some of the early approaches to the 1-2-3 Conjecture, namely to relate the
local irregularity strength of a given graph to the chromatic number of the graph, see
for example [Dua12], [Lu 09].
The first constant upper bound for the local irregularity strength of nice graphs was
obtained in 2007 by Addario-Berry, Dalal, McDiarmid, Reed and Thomason [Add07]
who showed that if G is a nice graph, then χl(G) ≤ 30. This bound was improved to
χl(G) ≤ 16 by Addario-Berry, Dalal and Reed [Add08], then to χl(G) ≤ 13 by Wang
and Yu [Wan08], then to χl(G) ≤ 6 by Kalkowski, Karoński and Pfender [Kal09], and
finally in 2011 this bound was improved to the currently best known χl(G) ≤ 5 by
Kalkowski, Karoński and Pfender [Kal10].

The 1-2-3 Conjecture gave rise to many related edge-weighting problems, see for
example the survey by Seamone [Sea]. One related problem involving so-called to-
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tal weightings of graphs was introduced by Przybyło and Woźniak [Prz10]. A total
weighting of a graph G is a mapping w : V (G) ∪ E(G) → R. One can think of it
as a weight function assigning weights to both the edges and the vertices. A total
weighting w of a graph G is called neighbour sum-distinguishing or proper if for any
edge uv ∈ E(G) we have w(u) +

∑
e∈E(u) w(e) ̸= w(v) +

∑
e∈E(v) w(e). Przybyło and

Woźniak conjectured that any connected graph has a neighbour sum-distinguishing
total weighting only using weights 1 and 2. This conjecture is now known as the 1-2
Conjecture. Note that in this conjecture we do not need exclude isolated edges.

As for many colouring problems in graph theory there are associated list-versions
of the 1-2-3 Conjecture and the 1-2 Conjecture. This concept is known as weight-
choosability and was introduced in 2009 by Bartnicki, Grytczuk and Niwczyk [Bar09].
Let k be a natural number. Recall that a graph G is called k-weight-choosable if
for any assignment of k-element lists Le, e ∈ E(G) to the edges of G there exists
a neighbour sum-distinguishing edge-weighting w of G such that w(e) ∈ Le for all
e ∈ E(G). In particular, any graph which is 3-weight-choosable must satisfy the
1-2-3 Conjecture. The list-version generalising the concept of total weightings is
defined as follows. Let l, k be two natural numbers. A graph G is called (l, k)-weight-
choosable if for any assignment of l-element lists Lv, v ∈ V (G) to the vertices of
G and any assignment of k-element lists Le, e ∈ E(G) to the edges of G there ex-
ists a neighbour sum-distinguishing total weighting w of G such that w(v) ∈ Lv for
all v ∈ V (G) and w(e) ∈ Le for all e ∈ E(G). In particular, any graph which is
(2, 2)-weight-choosable must satisfy the 1-2 Conjecture. An interesting special case of
(l, k)-weight-choosability is when l = 1. This case corresponds to having a prescribed
weight on each vertex and in the special subcase where all prescribed vertex-weights
are 0 this is the same as k-weight-choosability.
When having defined k-weight-choosability it is natural to wonder whether the 1-2-3
Conjecture can be generalised and whether every nice graph is 3-weight-choosable.
This was indeed conjectured by Bartnicki, Grytczuk and Niwczyk [Bar09] and is still
an open problem. However, there is a marked difference in the progress towards this
conjecture compared to the progress towards the 1-2-3 Conjecture. As mentioned
above, we know that there exists a neighbour sum-distinguishing edge-weighting of
any nice graph only using weights in the set {1, 2, 3, 4, 5}. For the list-version no
constant upper bound has yet been proved: We don’t know any constant c such
that any nice graph is c-weight-choosable. Bartnicki, Grytczuk and Niwczyk [Bar09]
used the Combinatorial Nullstellensatz and the permanent of matrices to show that
any complete graph and any tree is 3-weight-choosable. Instead of providing a con-
stant upper bound for the weight-choosability of nice graphs many results provide
a linear function in the maximum degree as an upper bound. A result by Ding et
al. [Din+19] mentioned by Wong and Zhu [Won] for example says that any nice graph
G is (1, ∆(G) + 1)-weight-choosable.
Similar to conjecturing that any nice graph is 3-weight-choosable it is, given the 1-2
Conjecture, natural to Conjecture that any graph is (2, 2)-weight-choosable. This was
conjectured by Wong and Zhu [Won11] in 2011 who also conjectured that any nice
graph is (1, 3)-weight-choosable. But unlike for the problem of k-weight-choosability
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we do have significant progress towards this conjecture: In 2016Wong and Zhu [Won16]
used the Combinatorial Nullstellensatz and the permanent of matrices to show that
any graph is (2, 3)-weight-choosable.

We will start our study about neighbour sum-distinguishing edge-weightings by
only looking at bipartite graphs.
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2.2 Edge-Weightings of Bipartite Graphs Using Two
Weights

The material presented in this section essentially consists of one research article [Lyn18a]
and one manuscript [Ben]. In this section we allow multiple edges unless stated oth-
erwise.

Let a and b be two integers. Note that if c is any non-zero real number, then any
proper {ca, cb}-edge-weighting of a graph G also yields a proper {a, b}-edge-weighting
of G, by simply replacing each weight ca by a and replacing each weight cb by b. Thus,
when investigating the {a, b}-property of graphs where a and b are integers we can
assume that a and b are co-prime. In particular, we can assume that one of a, b is
odd.
One way to approach the 1-2-3 Conjecture could be to start by characterising all
graphs without the {1, 2}-property. However, Dudek and Wajc [Dud11] showed
that deciding the S-property for general graphs is NP-complete for S = {0, 1} and
S = {1, 2}. So if one wants to find a useful characterisation of the graphs without
the {1, 2}-property one has to restrict the class of graphs considered. This motivated
the investigation of the {1, 2}-property for bipartite graphs. Recall from the intro-
duction above that if G is a nice k-colourable graph and k is odd, then χl(G) ≤ k.
So all nice bipartite graphs have the {1, 2, 3}-property. In 2016 Thomassen, Wu and
Zhang [Tho16] gave a complete characterisation of all bipartite graphs without the
{1, 2}-property. Any such graph is a so-called odd multi-cactus which we will define
later in Section 2.2.2 - ”Odd Multi-Cacti”.

An essential tool used by Thomassen, Wu and Zhang [Tho16] in the characterisa-
tion of bipartite graphs without the {1, 2}-property is the following lemma.

Lemma 2.2.1. [Tho16] Let G be a connected graph. If f : V (G) → Z2 is a mapping
such that ∑

v∈V (G)

f(v) ≡ 0 mod 2,

then G contains a subgraph H such that dH(v) ≡ f(v) mod 2 for every v ∈ V (G).

Proof. Let A ⊂ V (G) be the set of vertices such that f(a) = 1 if and only if a ∈ A.
Since

∑
v∈V (G) f(v) ≡ 0 mod 2, the set A has even size, say A = {a1, . . . , a2m}. For

each i ∈ {1, 3, 5, . . . , 2m − 1} let Pi be a vi − vi+1 path in G. Then the symmetric
difference of all the sets E(Pi), i ∈ {1, 3, 5, . . . 2m − 1} induces a desired subgraph of
G.

Let a, b be two distinct integers, let G be a connected graph and let X ⊂ V (G)
have even size. Lemma 2.2.1 implies that there is a subgraph H of G such that dH(v)
is odd if and only if v ∈ X. By assigning weight a to all the edges in H and weight b
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to all the edges in E(G) \ E(H) we obtain an edge-weighting where all vertices in X
are incident to an odd number of a-edges and all vertices in V (G) \ X are incident to
an even number a-edges. Thus we have derived the following lemma.

Lemma 2.2.2. Let a, b be distinct integers and let G be a connected graph. If
X ⊂ V (G) is such that |X| is even, then there is an {a, b}-edge-weighting of G such
that all vertices in X are incident to an odd number of a-edges and all vertices in
V (G) \ X are incident to an even number of a-edges.

If a and b are integers of distinct parity, say a is odd and b is even, then
Lemma 2.2.2 immediately reduces the problem of determining the {a, b}-property for
bipartite graphs to the case where both bipartition sets have odd size: for suppose
one of the bipartition sets X of a bipartite connected graph G has even size. Then
there exists an {a, b}-edge-weighting of G such that all vertices in X are incident to
an odd number of a-edges and all vertices in V (G)\X are incident to an even number
a-edges. Since b is even this means that all vertices in X have odd weighted degree
and all vertices in V (G) \ X have even weighted degree and hence the edge-weighting
is proper. This shows why Lemma 2.2.1 is an essential tool.

If a and b are natural numbers, G is a bipartite graph, (X, Y ) is a partition of
V (G) and w is an {a, b}-edge-weighting of G, then w is called an (X, Y )-a-parity
edge-weighting of G if all vertices in X are incident to an odd number of a-edges and
all vertices in Y are incident to an even number of a-edges. An edge xy ∈ E(G) is
called a parity conflict if Cw(x) and Cw(y) have the same parity. Recall that the edge
xy is called a conflict if Cw(x) = Cw(y), so a conflict is always a parity conflict, but a
parity conflict is not necessarily a conflict. If we want to prove that G has the {a, b}-
property and X, Y are the bipartition sets of G, then we can, as mentioned above,
assume that |X| and |Y | are both odd. Thus, for any vertex v ∈ X, Lemma 2.2.2
implies that there is a (X \{v}, Y ∪{v})-a-parity {a, b}-edge-weighting wv of G. Note
that in this case the only parity conflicts are between v and its neighbours and since
we can choose v freely we can basically choose where the potential conflicts should
be. This observation leads to an important idea behind some of the proofs in this
section: We will pick v ∈ V (G) and the corresponding edge-weighting wv of G such
that the local structure in G around v allows us to get rid of the potential conflicts
involving v. One way to do this is to ”swap” weights on so-called ”changing” cycles.
By swapping the weight of an edge, we mean changing its weight to a if it is a b-edge,
or changing its weight to b if it is an a-edge. By swapping the weights on a path or
a cycle, we mean swapping the weights of all of its edges. A cycle C containing two
edges incident to a vertex u ∈ V (G) having the same weight and avoiding another
vertex u′ ∈ V (G) is called u-changing and u′-avoiding.
Let us again focus on the edge-weighting wv of G where all parity conflicts involve v
and suppose that vv′ is an actual conflict. If we can find a v′-changing and v-avoiding
cycle C in G, then if we swap all the weights on C, the weighted degree of v′ changes
while the weighted degree of v does not change. Furthermore, note that swapping the
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weights on a cycle does not change the parity of the number of incident a-edges of
any vertex so we still have an (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting of G,
but we have now removed the conflict vv′. This demonstrates why these v-changing
cycles are useful.

Now we will present what we will prove about neighbour sum-distinguishing edge-
weightings of bipartite graphs in this thesis.

2.2.1 Results
Thomassen, Wu and Zhang [Tho16] mentioned that their proof of the characterisation
of bipartite graphs without the S-property for S = {1, 2} works whenever S consists
of two positive integers of distinct parity. They also explicitly mentioned that the
characterisation does not hold when S = {0, 1}. For example Lu [Lu 16] gave the
following example of a graph with the {1, 2}-property but without the {0, 1}-property:
Two 6-cycles joined by a path of length 3. Actually, joining any two graphs G1, G2
without the {0, 1}-property by a path P = v1xyv2 where v1 ∈ V (G1) and v2 ∈ V (G2)
gives a graph G′ without the {0, 1}-property: for in any proper {0, 1}-edge-weighting
of G′ one of the edge v1x or v2y, say v1x, must receive the weight 0 and hence such a
proper {0, 1}-edge-weighting of G′ would yield a proper {0, 1}-edge-weighting of G1.
We will prove that if we restrict ourselves to 2-edge-connected bipartite graphs, then
the {0, 1}- and the {1, 2}-property are actually equivalent:

Theorem 2.2.3. G is a 2-edge-connected bipartite graph without the {0, 1}-property
if and only if G is an odd multi-cactus.

The construction of bipartite graphs without the {0, 1}-property mentioned above
is based on the following observation. If e is a cut-edge in a connected graph G and
one of the components of G−e does not have the {0, 1}-property, then the edge e must
receive weight 1 in any proper {0, 1}-edge-weighting of G. This is the motivation for
restricting ourselves to 2-edge-connected bipartite graphs in Theorem 2.2.3. Indeed
this observation yields several ways one can construct bipartite graphs without the
{0, 1}-property, for example the following. Let s ≥ 0 be an integer and let P be a path
with n ≡ 2 mod 4 vertices. Join each internal vertex on P to s graphs without the
{0, 1}-property by s edges and join the endvertices of P to s + 1 graphs without the
{0, 1}-property by s + 1 edges, see Figure 2.1. In any proper {0, 1}-edge-weighting of
this resulting graph all edges in E(vi) \ E(P ) must have weight 1 for all i ∈ {1, . . . n}.
To avoid the conflict v1v2 the edge v2v3, must receive weight 0. Then to avoid the
conflict v3v4 the edge v4v5 must receive weight 1. We continue arguing like this and
see that the weights of the edges v2v3, v4v5, . . . must alternate starting with the weight
0. Since n ≡ 2 mod 4 this means that vn−2vn−1 must receive weight 1 which means
that vn−1vn is a conflict.
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Figure 2.1: A graph G. For any natural numbers s and n with n ≡ 2 mod 4, if
all the graphs G1, G2, . . . Gs+1 do not have the {0, 1}-property, then G does also not
have the {0, 1}-property.

As the construction above also points out, there are many trees without the {0, 1}-
property whereas all trees distinct from K2 have the {1, 2}-property. After proving
Theorem 2.2.3 we turn our attention to trees and prove a characterisation of all trees
without the {0, 1}-property. We will recursively define a class of trees B and prove
that this class of trees is exactly the trees without the {0, 1}-property.

Theorem 2.2.4. A tree T has the {0,1}-property unless T is a member of B.

How B exactly is defined will be explained later. It contains more trees than
the above construction gives, since that construction is indeed not sufficient to get
all trees without the {0, 1}-property: the tree in Figure 2.2 can for example not be
obtained by the construction described in Figure 2.1.

Figure 2.2: A tree without the {0, 1}-property.

In the proofs of Theorem 2.2.3 and Theorem 2.2.4 it is important that the edge-
weights we use have distinct parity. So these proofs do not provide any results for
the case where S consists of two odd numbers which are co-prime (recall that we can
always assume that these two numbers are co-prime). After having considered the
{0, 1}-property we will turn our attention to the case where S = {a, a + 2} for any
odd number a. We will provide a tool called a mod 4 vertex-colouring which will allow
us to examine the {a, a + 2}-property in a similar way as the {0, 1}-property. Using
this tool we will prove the following theorem.

Theorem 2.2.5. Let a be an odd integer. A 2-connected bipartite graph G does not
have the {a, a + 2}-property if and only if G is an odd multi-cactus.

The restriction to 2-connected bipartite graphs in Theorem 2.2.5 is particularly
motivated by the special case where S = {−1, 1}. In this case one can construct
graphs without the {−1, 1}-property having cut-vertices in the following way:
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• Let G1, G2, G3, G4 be four bipartite graphs without the {−1, 1}-property, and
let v1, v2, v3, v4 be four degree-1 vertices in G1, G2, G3, G4, respectively. Let G
denote the graph obtained from the disjoint union G1 ∪ G2 ∪ G3 ∪ G4 by iden-
tifying the vertices v1 and v2, identifying the vertices v3 and v4, and adding an
edge joining the two vertices resulting from these identifications, see Figure 2.3,
(a)-(b). If all of G1, G2, G3, G4 do not have the {−1, 1}-property, then neither
has G. To see this, note that the two edges incident to v1 ∼ v2 not going to
G1 cannot have distinct weights since G1 does not have the {−1, 1}-property.
Similarly, the two edges incident to v1 ∼ v2 not going to G2 must also have the
same weight and hence all edges incident to v1 ∼ v2 must have the same weight.
By symmetry also all edges incident to v3 ∼ v4 must have the same weight so
v1 ∼ v2 and v3 ∼ v4 must have the same weighted degree.

• Let G1, G2 be two bipartite graphs without the {−1, 1}-property, and let v1, v2
be any two vertices in G1 and G2, respectively. Let G denote the graph obtained
from the disjoint union G1 ∪ G2 by adding the edge v1v2, and joining v1 and v2
by a path P whose length is congruent to 3 modulo 4, see Figure 2.3, (c)-(d).
If G1 and G2 do not have the {−1, 1}-property, then neither has G. To see
this, note that the two edges in P going to G1 and G2, respectively must have
distinct weights. So the sum of the two edge-weights incident to v1 outside
G1 or the sum of the two edge-weights incident to v2 outside G2 must be 0.
This means that any proper {−1, 1}-edge-weighting of G would yield a proper
{−1, 1}-edge-weighting of one of G1, G2.

(a) (b)

(c) (d)

Figure 2.3: Construction of graphs without the {−1, 1}-property.

Aligned with the analysis for the {0, 1}-property we also characterise all trees
without the {a, a + 2}-property when a is an odd integer. When a ̸= −1 it is easy
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to see that all trees distinct from K2 have the {a, a + 2}-property by the following
induction argument: consider a vertex v all of whose neighbours u1, . . . , ud−1 but one
ud are leaves. Remove u1, . . . , ud−1, apply induction (it is easy to see that all stars
except K2 have the {a, a + 2}-property, so we can assume the resulting tree is not an
isolated edge) to obtain a neighbour sum-distinguishing {a, a+2}-edge-weighting, and
extend the weighting to the edges vu1, . . . , vud−1 so that the conflict vud is avoided.
By this observation only the case a = −1 is potentially interesting. We solve this
case by proving the following theorem.

Theorem 2.2.6. A tree does not have the {−1, 1}-property if and only if it can be
constructed from a disjoint union of graphs isomorphic to K2 by repeated applications
of the operation in Figure 2.3 (a)-(b).

As can be seen above, odd multi-cacti play an important role when investigating
the S-property of bipartite graphs, where S is a set of two integers. Therefore we will
start out with a section concerning these graphs.

2.2.2 Odd Multi-Cacti
An odd multi-cactus is a connected bipartite graph defined as follows. Take a collection
of simple cycles whose lengths are congruent to 2 modulo 4, each of which has edges
coloured alternately red and green. Then form a connected simple graph by pasting
the cycles together, one by one, in a tree-like fashion along green edges. Finally
replace every green edge by a multiple edge of any multiplicity. The graph with one
edge and two vertices is also called an odd multi-cactus. See Figure 2.4 for an example
of odd multi-cacti. Note that the red/green edge colouring of an odd multi-cactus
M is unique if and only if M has at least 6 vertices and is not a simple cycle. If M
has a vertex with at least three distinct neighbours, then M is called a proper odd
multi-cactus.

If M is a proper odd multi-cactus then, by definition, M contains at least two
cycles C1, C2 whose lengths are congruent to 2 modulo 4 each containing two adjacent
vertices which have at least three distinct neighbours in M while the other vertices
in C1 and C2 all have exactly two neighbours in M . Cycles of this type are called
end-cycles in M . We will now show that odd multi-cacti do not have the S-property
whenever S is a set of 2 integers.

Lemma 2.2.7. If M is an odd multi-cactus, then M does not have the {a, b}-property
for every a, b ∈ Z.

Proof. Suppose the lemma is false and let M be an odd multi-cactus of minimum size
which has the {a, b}-property for some a, b ∈ Z. First suppose M = v0v1 · · · vn−1v0
is just a cycle (possibly with some multiple edges) of length n ≡ 2 mod 4. We
can assume that the edge ei = vivi+1 (indices taken modulo n) is green whenever
i is even. Thus, the edge ei is red and hence simple whenever i is odd. Now fix
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Figure 2.4: Stepwise constructing of an odd multi-cactus starting from K2 (a). Simple
cycles with edges alternating red and green of length congruent to 2 modulo 4 are
being glued along a green edge to the green edge uv in the steps from (b) to (d). In
step (e) some green edges are replaced by edges of larger multiplicity.

i ∈ {0, 2, . . . , n − 2}. Note that the vertices vi and vi+1 have distinct weighted de-
grees if and only if the weights of the two red edges ei−1 and ei+1 are different. Thus,
in any proper {a, b}-edge-weighting of M the weights of e1, e3, e5, . . . , en−1 must alter-
nate between a and b. Since n ≡ 2 mod 4 this means that e1 and en−1 must receive
the same weight and hence v0 and vn−1 will have the same weighted degree. So we
can assume that M is a proper odd multi-cactus.
Let C = v0 · · · vm−1v0 (indices taken modulo m) be an end-cycle in M where each
of v0, v1 has at least three distinct neighbours in M . Note that since v0v1 must
be a green edge, all the edges v1v2, v3v4, v5v6, . . . , vm−1v0 are red and thus sim-
ple. As before, in any proper {a, b}-edge-weighting of M the weights of these edges
v1v2, v3v4, v5v6, . . . , vm−1v0 must alternate and since m ≡ 2 mod 4, this means that
v1v2 and vm−1v0 must receive the same weight. Now let w be a proper {a, b}-edge-
weighting of M and let M ′ be the odd multi-cactus obtained from M by replacing
the path P = v1v2 · · · v0 with an edge e. Since w(v1v2) = w(vm−1v0) the edge-
weighting obtained by the restriction of w to M ′ and assigning the edge e weight
w(v0v1) = w(vm−2vm−1) is a proper edge-weighting of M ′. Thus, M ′ has the {a, b}-
property contradicting the minimality of M .



16 2 Neighbour Sum-Distinguishing Edge-Weightings

Next we prove the following slightly technical lemma which shows that modifying
an odd multi-cactus slightly will give a graph having the S-property for any set S of
2 integers. This fact will be useful later on. Note that if G is a not an odd multi-
cactus but is obtained from an odd multi-cactus M by replacing a green edge e by
a path whose length is congruent to 1 modulo 4, then e must have multiplicity 1 in
M and be an edge in an endcycle of M such that the ends of e both have at least
three neighbours in M , for example e could be the edge uv in the odd multi-cactus
in Figure 2.4 (c) or (d).

Lemma 2.2.8. If G is not an odd multi-cactus and is obtained from an odd multi-
cactus M by either replacing a red edge with an edge of multiplicity at least 2, or by
replacing a green edge by a path of length k ≥ 5 with k ≡ 1 mod 4, then G has the
{a, b}-property for any two distinct integers a, b ∈ Z.

Proof. Let two distinct integers a, b be given. The proof is by induction on the order
of M . Let e denote the edge of M which is replaced, as described in the lemma, to
obtain G.
First suppose M is not proper. Then, since G is not an odd multi-cactus, the graph G
was obtained from M by replacing a red edge with an edge of multiplicity at least 2.
In this case M = v0v1 · · · vn−1v0 (indices taken modulo n) must be a cycle (possibly
with multiple edges) of length n ≡ 2 mod 4. Since G is not an odd multi-cactus, the
green/red edge-colouring of M must be unique, so at least one green edge of M , say
v0v1 has multiplicity at least 2. This implies that whenever i is even the edge vivi+1
is green and whenever i is odd the edge vivi+1 is red. So for some odd number j
we have e = vjvj+1. Now we weight the red edges vj+2vj+3, vj+4vj+5, . . . , vj−2vj−1
except e = vjvj+1 alternately a and b, and we weight the green edges of G except
v0v1 such that for i ∈ {3, 5, . . . , n − 1} the sum of the weights of the edges joining
vi−1 and vi is distinct from the sum of the weights of the edges joining vi+1 and vi+2.
Now only the edges joining v0 and v1 and the edges joining vj and vj+1 are missing a
weight. When assigning weights to the edges joining v0 and v1 we only have to worry
about the two potential conflicts vn−1v0 and v1v2, and when assigning weights to the
edges joining vj and vj+1 we only have to worry about the two potential conflicts
vj−1vj and vj+1vj+2. Since there are at least two edges joining v0 and v1 and at
least two edges joining vj and vj+1, we have at least three choices for the sum of the
weights of the edges joining v0 and v1 and at least three choices for the sum of the
weights of the edges joining vj and vj+1. This means that we can avoid the potential
conflicts and obtain a proper {a, b}-edge-weighting of G. Thus, we can assume that
M is proper.
Suppose there is an end-cycle C = v0v1 · · · vn−1v0 in M which does not contain e. By
possibly relabelling the vertices of C we can assume that all vertices of C except v0
and v1 only have two distinct neighbours in M . Let G′ denote the graph obtained
from G by replacing the path v1v2 · · · v0 with an edge e′. Note that G′ is obtained
from an odd multi-cactus M ′ in the same way as G was obtained from M and that
M ′ has smaller order than M . By induction G′ has the {a, b}-property. Let w′ be a
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proper {a, b}-edge-weighting of G′. We will now define a proper {a, b}-edge-weighting
of G. Any edge in G which is also in G′ receives the weight assigned to it by w′ in
G′. The edges v1v2 and vn−1v0 receive the weight w(e′) and we assign weights to the
remaining edges v2v3, . . . , vn−2vn−1 in a way avoiding conflicts inside C. This gives a
proper {a, b}-edge-weighting of G. So we can assume that all end-cycles contain the
edge e.
Since all end-cycles in M contain e the odd multi-cactus M was constructed by only
pasting cycles together along e as in Figure 2.4 (c), (d) and (e) where there have only
been pasted cycles together along the edge uv. Since G is not an odd multi-cactus,
the edge e must be simple in M and in this case it is easy to check that G has the
{a, b}-property.

In the proof of Theorem 2.2.3 we will need some facts about {0, 1}-edge-weightings
of odd multi-cacti. We can formulate these in the two following lemmas.

Lemma 2.2.9. Let M be an odd multi-cactus. For any vertex v ∈ V (M) there is a
{0, 1}-edge-weighting of M such that v and all vertices in the opposite bipartition set
to v have weighted degree 1 and all other vertices have weighted degree 0 or 2.

Proof. The proof is by induction on the order of M . It is easy to check that the
statement is true if M is not proper, so we can proceed to the induction step assuming
M is proper. We can also assume that there are no multiple edges in M , since
otherwise we can remove an edge e, use induction, put the edge e back and assign
it weight 0. Let C be an end-cycle in M such that v is not a vertex in C with
only two neighbours. It is easy to check that subdividing edges with four vertices
preserves the conclusion of the lemma so we can assume that C is a 6-cycle, say
C = v0v1 · · · v5v0, where v0 and v1 have at least three neighbours in M . Since v is
in M ′ = M − {v2, v3, v4, v5} and M ′ is an odd multi-cactus we can use the induction
hypothesis on M ′. So there is a desired edge-weighting of M ′ and it is easy to check
this can be extended to a desired {0, 1}-edge-weighting of M .

If w is an edge-weighting of a graph G, b is a natural number and v is a vertex in G,
then we let Cw(v, b) denote the vertex-colouring of G obtained from Cw by replacing
the colour of v with Cw(v) + b. If Cw(v, b) is a proper vertex-colouring we say that w
is a proper {0, 1}-edge-weighting of G when the weighted degree of v is increased by b.
This may be thought of as a neighbour sum-distinguishing edge-weighting where the
vertex v has some pre-assigned weight.

Lemma 2.2.10. Let M be an odd multi-cactus and let u, v be any two vertices in M
belonging to the same bipartition set (possibly u = v). If u ̸= v, then there is a proper
{0, 1}-weighting of M when the weighted degrees of both u and v are increased by 1
and if u = v, then there is a proper {0, 1}-weighting of G when the weighted degree of
u is increased by 2.

Proof. First note that the case u = v follows from Lemma 2.2.9, so we may assume
that u ̸= v. The proof is by induction on the order of M . It is easy to check that the
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statement holds if M is not proper, so we may proceed to the induction step assuming
M is proper. As in the proof of Lemma 2.2.9 we can assume that M is simple and
we choose an end-cycle C such that one of v, u, say u, is not a vertex in C with only
two neighbours in M , and we may assume C = v0v1 · · · v5v0, where v0 and v1 have
at least three neighbours in M . If v and u are both in M ′ = M − {v2, v3, v4, v5},
then we use the induction hypothesis on M ′ to obtain a {0, 1}-edge-weighting of M ′

which is proper when the weighted degree of both u and v are increased by 1. We
can easily extend this {0, 1}-edge-weighting to a desired edge-weighting of M , so we
can assume that u is in M ′ and v is one of v2, v4 (the other cases are similar). We
split the proof into three cases:

Case 1: u is one of v0, v1, say, u = v0 and v = v4.
By Lemma 2.2.9 there is a {0, 1}-edge-weighting w of M ′ where v0 and all vertices
in the opposite bipartition set to v0 have weighted degree 1 and all other vertices
have weighted degree 0 or 2. We extend this {0, 1}-edge-weighting to M by defining
w(v0v5) = w(v3v4) = 1 and w(v1v2) = w(v2v3) = w(v4v5) = 0 and obtain a desired
edge-weighting of M .

Case 2: u = v0 and v is v2.
As in Case 1 there is a {0, 1}-edge-weighting w of M ′ where v0 and all vertices in
the opposite bipartition set to v0 have weighted degree 1 and all other vertices have
weighted degree 0 or 2, and we can easily extend this edge-weighting to a desired
edge-weighting of M .

Case 3: u ∈ V (M − C) and v ∈ {v2, v4}.
Note that v0 is in the same bipartition set as u. We start by considering the subcase
where v = v2. In this subcase we use the induction hypothesis on M ′ choosing u and
v0 as our special vertices. We extend this {0, 1}-weighting, letting the edge v0v5 play
the role as the extra weight on v0 by defining w(v0v5) = 1 and w(v1v2) = 0. Now v0
and v1 have different weighted degrees by the induction hypothesis so we can choose
the weights on v2v3 and v4v5 to be different such that we avoid conflicts between v5
and v0, between v2 and v1 and between v3 and v4. Finally we define w(v3v4) = 0 to
avoid conflicts between v4 and v5, and between v2 and v3.
The subcase where v = v4 remains. Here we use Lemma 2.2.9 on M ′ choosing u
as our special vertex and extend this {0, 1}-weighting to M by defining w(v1v2) =
w(v0v5) = w(v2v3) = 0 and w(v4v5) = w(v3v4) = 1.

Now we have established the necessary facts about odd multi-cacti in order to
start our investigation of the {0, 1}-property of bipartite graphs.
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2.2.3 {0, 1}-Edge-Weightings of Bipartite Graphs
Let G be a connected bipartite graph with bipartition sets X and Y . When investi-
gating whether or not G has the {0, 1}-property, Lemma 2.2.2, as mentioned above,
allows us to assume that both X and Y have odd size. Recall that for any vertex
v ∈ X, Lemma 2.2.2 thus implies that there is an (X \ {v}, Y ∪ {v})-1-parity {0, 1}-
edge-weighting wv of G. In such an edge-weighting of G the only parity conflicts are
between v and the neighbours of v. Since such an edge-weighing wv exists for all
vertices v ∈ X we can more or less choose where in the graph the potential conflicts
are. This observation leads to the main idea behind the proof of Theorem 2.2.3 which
can be roughly formulated as follows. We will find a local structure in G around a
vertex v ∈ V (G) such that when we find a {0, 1}-edge-weighting wv of G where the
only parity conflicts are between v and the neighbours of v, then the local structure
around v allows us to modify wv so that there are no actual conflicts. One example
of a useful local structure around a vertex is explained in the following lemma which
will be useful in the proof of Theorem 2.2.3.

Lemma 2.2.11. Let G be a connected bipartite graph and let v ∈ V (G) be a vertex
such that G − v is connected. If |N(v)| ≥ 3 and G − v − N(v) is connected, then G
has the {0, 1}-property.

Proof. Suppose |N(v)| ≥ 3, the graph H = G − v − N(v) is connected and let X, Y
denote the two bipartition sets of G with v ∈ X. Furthermore, let S = (E(G) \
E(H)) \ E(v) and let N ′(v) ⊂ N(v) denote the set of vertices which are incident to
an odd number of edges having v as an end. We can assume that both X and Y
have odd size. For each a ∈ N(v) let ea denote an edge in E(a) \ E(v) and define
G′ = G−v −∪a∈N(v)(E(a)\ea) and note that G′ is connected. First suppose |N ′(v)|
is even. Lemma 2.2.2 implies that there is an ((X \ {v}) ∪ N ′(v), Y \ N ′(v))-1-parity
{0, 1}-edge-weighting w′ of G′. We now extend w′ to the whole of G by assigning
weight 0 to all edges in (E(G) \ E(v)) \ E(G′) and weight 1 to all edges in E(v). This
gives an (X \ {v}, Y ∪ {v})-1-parity {0, 1}-edge-weighting w of G. The only potential
conflicts are between v and its neighbours, but the weighted degree of any vertex v′ in
N(v) is at most one more than the number of edges joining v and v′. So the weighted
degree of v is greater than that of any of its neighbours and there can therefore be
no conflicts.
Now suppose |N ′(v)| is odd. Lemma 2.2.2 implies that there is an (Y \ N ′(v), (X \
{v}) ∪ N ′(v))-1-parity {0, 1}-edge-weighting w′ of G′. Again, we extend w′ to the
whole of G by assigning weight 0 to all edges in (E(G) \ E(v)) \ E(G′) and weight
1 to all edges in E(v). As before we obtain an edge-weighting of G where the only
parity conflicts are between v and its neighbours and where the weighted degree of v
is strictly greater than that of any of its neighbours.

Before we move on to the proof of Theorem 2.2.3 we need one more technical
lemma.
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Lemma 2.2.12. Let G be a connected bipartite graph with bipartition sets X, Y . Let
G′ be an induced subgraph of G where both |X ∩ V (G′)| and |Y ∩ V (G′)| are odd and
G − G′ is connected. Furthermore, assume that there are only two edges joining G′

and G − G′ in G, let v1, v2 ∈ V (G′) denote the ends of these two edges in G′ and let
u1, u2 ∈ V (G − G′) denote the ends of these two edges in G − G′. Possibly v1 = v2
or u1 = u2. Assume that v1, v2 ∈ X and that both u1 and u2 have degree at least 2 in
G − G′ and none of u1, u2 are cut-vertices in G − G′. If G′ has the {0, 1}-property or
if there is a {0, 1}-edge-weighting of G′ which is proper when the weighted degrees of
both v1 and v2 are increased by 1 (if v1 = v2, then the weighted degree of v1 = v2 is
increased by 2), then G has the {0, 1}-property.

Proof. We can assume that X and Y both have odd size and hence X1 = X∩V (G−G′)
and Y1 = Y ∩ V (G − G′) both have even size. We distinguish two cases:

Case 1: G′ has the {0, 1}-property.
Let w′ be a proper {0, 1}-edge-weighting of G′. By Lemma 2.2.2 there is an (Y1, X1)-
1-parity {0, 1}-edge-weighting w1 of G − G′. We assign weight 0 to the edges u1v1
and u2v2 and combine w′ and w1 to obtain an edge-weighting of G where the only
potential conflicts are u1v1 and u2v2. So we can assume that one of v1, v2, say v1, has
odd weighted degree. By Lemma 2.2.2 there is also an (X1, Y1)-1-parity {0, 1}-edge-
weighting w2 of G − G′. Again we assign weight 0 to the edges u1v1 and u2v2 and
now we combine w′ and w2 to obtain an edge-weighting of G where the only potential
conflict is u2v2 (since v1 has odd weighted degree) and where there are no parity con-
flicts inside G−G′. Since u2 has degree at least 2 in G−G′ and is not a cut-vertex in
G − G′, and since u2 has even weighted degree there is a u2-changing cycle in G − G′

and swapping the weights on such a cycle yields a proper edge-weighting of G.

Case 2: There is a {0, 1}-edge-weighting of G′ which is proper when the weighted
degrees of v1 and v2 are increased by 1 (if v1 = v2, then the weighted degree of v1 = v2
is increased by 2).
If v1 ̸= v2, let w′ be a {0, 1}-edge-weighting of G′ which is proper when the weighted
degrees of v1 and v2 are increased by 1, and if v1 = v2 let w′ be a {0, 1}-edge-weighting
of G′ which is proper when the weighted degree of v1 = v2 is increased by 2. First
suppose u1 ̸= u2. By Lemma 2.2.2 there is a (Y1 \ {u1, u2}, X1 ∪ {u1, u2})-1-parity
{0, 1}-edge-weighting w1 of G − G′. We assign weight 1 to the edges u1v1 and u2v2
and combine w′ and w1 to obtain an edge-weighting w∗

1 of G where the only potential
conflicts are u1v1 and u2v2. So we can assume that one of v1, v2, say v1, has odd
weighted degree. By Lemma 2.2.2 there is an (X1 ∪ {u1, u2}, Y1 \ {u1, u2})-1-parity
{0, 1}-edge-weighting w2 of G − G′. Again we assign weight 1 to the edges u1v1 and
u2v2 and now we combine w′ and w2 to obtain an edge-weighting w∗

2 of G where the
only potential conflict is u2v2 (since v1 has odd weighted degree) and where there are
no parity conflicts inside G − G′. So we can assume that v2 has even weighted degree.
Let us now return to the edge-weighting w∗

1 of G. The only possible conflict is v1u1,
but since u1 has even weighted degree inside G − G′, we can now, as in Case 1, avoid
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this conflict by swapping the weights on a u1-changing cycle in G − G′. Thus, we
can assume u1 = u2. This case is completely analogous to Case 1; we just assign
weight 1 to the edges u1v1 and u2v2 when combining the edge-weightings of G − G′

and G′.

Now we have established all the tools necessary for the proof of Theorem 2.2.3
which characterises all 2-edge-connected bipartite graphs without the {0, 1}-property.
The proof is rather long and technical and contains many special cases that have to
be dealt with separately. Therefore the proof is moved to its own subsection ”2-Edge-
Connected Bipartite Graphs” below.

2.2.3.1 2-Edge-Connected Bipartite Graphs

Lemma 2.2.7 implies that in order to prove Theorem 2.2.3 it suffices to show that if
G is a 2-edge-connected bipartite graph which is not an odd multi-cactus, then G has
the {0, 1}-property. To prove this we will use the overall strategy roughly outlined
in the beginning of Section 2.2.3 above. By a suspended path in a graph G we mean
a path in G all of whose internal vertices have degree 2 in G and whose endvertices
have degree at least 3 in G. A suspended cycle in a graph G is a cycle where all
vertices except one have degree exactly 2 in G and one vertex has degree at least 3.

Proof of Theorem 2.2.3. By Lemma 2.2.7 it suffices to prove that if G is a 2-edge-
connected bipartite graph without the {0, 1}-property, then G is an odd multi-cactus.
Suppose this is false and let G be counterexample with smallest size. If e = uv ∈ E(G)
is an edge of multiplicity at least 2, then the graph G′ obtained from G by removing
one of the parallel edges e1 between u and v cannot have the {0, 1}-property, since
any proper {0, 1}-edge-weighting of G′ can be extended to G by assigning weight 0
to the edge e1. Since G does not have the {0, 1}-property and is not an odd multi-
cactus, Lemma 2.2.8 implies that G′ is also not an odd multi-cactus and hence, by
the minimality of G, the edge e must be a cut-edge in G′. In particular, any multiple
edge has multiplicity exactly 2 and there are no multiple edges in any 2-connected
block of G.

Let X, Y denote the two bipartition sets of G. By the remark following Lemma 2.2.2
we can assume that both X and Y have odd size.

Claim 1. |N(v)| ≥ 2 for every v ∈ V (G).

Proof of the claim. Suppose v ∈ V (G) only has one neighbour u. Since G is 2-edge-
connected the edge uv is a multiple edge so by the above uv has multiplicity exactly
2. We can assume v ∈ X. By Lemma 2.2.2 there is an (X \ {v}, Y ∪ {v})-1-parity
{0, 1}-edge-weighting of G. The only potential conflict is uv in the case where all
edges in E(u) \ E(v) have weight 0. Since G is 2-edge-connected the graph G − v
contains a u-changing cycle C. By possibly swapping the weights on C we can obtain
a proper {0, 1}-edge-weighting of G. ⋄
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Let B be an endblock of G. Note that by Claim 1 the block B is 2-connected, so
by the above remark B contains no multiple edges.

Claim 2. B contains no suspended path of length 2.

Proof of the claim. Suppose the claim is false and let y1xy2 be a suspended path
of length 2 in B. We can assume y1, y2 ∈ Y and x ∈ X. By Lemma 2.2.2 there is
an (X \ {x}, Y )-1-parity {0, 1}-edge-weighting wG′ of G′ = G − x. We now extend
this weighting to an (X \ {x}, Y ∪ {x})-1-parity {0, 1}-edge-weighting wG of G by
assigning weight 0 to the two edges y1x and y2x. Note that the only parity conflicts
are y1x and y2x, so we can assume y1x is a conflict, which means that all edges
incident to y1 are 0-edges. Since G is 2-edge-connected and since y1 has degree at
least 3, the graph G′ contains a y1-changing cycle C. After swapping the weights
on C the edge y1x is no longer a conflict, so we can now assume y2x is a conflict.
The graph G′ also contains a y2-changing cycle C ′ and after swapping the weights
on C ′ the edge y2x is no longer a conflict. The only potential conflict is now y1x in
the case where C ′ contained two 1-edges incident to y1, whose weights were changed
to 0. Thus, we can assume that all cycles in G′ that contain y2 also contain y1 and
similarly all cycles in G′ that contain y1 also contain y2. Furthermore, we can assume
that all cycles in G′ containing y1 contain the two 1-edges incident to y2. Note that
this also implies that none of y1, y2 is the unique cut-vertex in B (this cut-vertex
only exists if G is not 2-connected and is unique because B is an endblock). The
only possibility is that G′′ = G − y1 − x − y2 consists of exactly two components
G1, G2 and that both y1 and y2 have exactly one neighbour in each of G1, G2. Let
x1, x2 denote the neighbours of y1 in G1 and G2, respectively and let z1, z2 denote
the neighbours of y2 in G1 and G2, respectively. Possibly x1 = z1 or x2 = z2. Let
X1 = V (G1) ∩ X, Y1 = V (G1) ∩ Y, X2 = V (G2) ∩ X, Y2 = V (G2) ∩ Y . Let us
again focus on the (X \ {x}, Y ∪ {x})-1-parity {0, 1}-edge-weighting wG of G where
wG(y1x) = wG(y2x) = 0 and where y1x is a conflict. Both the edges y1x1 and y1x2
must have weight 0 and both y2z1 and y2z2 have weight 1. This means that all the
vertices in X1 \{z1} and X2 \{z2} are incident to an odd number of 1-edges in G1 and
G2, respectively, and all vertices in Y1 ∪ {z1} and Y2 ∪ {z2} are incident to an even
number of 1-edges in G1 and G2, respectively. It follows that both X1 and X2 have
odd size (since otherwise if, say |X1| is even, the subgraph of G induced by the 1-edges
in G1 has an odd number of vertices of odd degree). By Lemma 2.2.11 we can assume
that G−y1 −x−x1 −x2 is disconnected so one of x1, x2, say x1, must be a cut-vertex
in G. Similarly, since also G − y2 − x − z1 − z2 is disconnected, one of z1, z2 must be
a cut-vertex in G. Since B only contains one cut-vertex of G it must be the case that
x1 = z1. By Lemma 2.2.2 there is an (X \ {x1, x, x2}, (Y \ {y1}) ∪ {x, x1})-1-parity
{0, 1}-edge-weighting wG′′′ of the connected graph G′′′ = G − y1 − x2. We extend
wG′′′ to G by assigning weight 1 to the edges in E(y1) and weight 0 to the edges in
E(x2) \ E(y1) and obtain a (X ∪ {y1}, Y \ {y1})-1-parity {0, 1}-edge-weighting w′

G of
G where w′

G(y1) = 3 and w′
G(x2) = 1 and the only potential conflict is y1x1. So we

can assume that w′
G(x1) = 3. We can also assume that there is no x1-changing cycle

avoiding y1 and x2 in G, since swapping the weights on such a cycle would yield a
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proper {0, 1}-edge-weighting of G. Hence, x1 must be incident to one 1-edge and one
0-edge going to each component of G − x1 not containing y1 and x2. This implies
that each component of G − x1 not containing y1 must contain an odd number of
vertices in X (since otherwise if K is a component of G − x1 not containing y1 which
has an even number of vertices in X, then the subgraph of K induced by the 1-edges
contains an odd number of vertices with odd degree). Since |X1| is odd there must be
an even number of such components. Moreover, since w′

G(x1) = 3 we can conclude
that there are exactly two such components and hence x1 has degree 6 in G. We
distinguish two cases:

Case 1: |Y2| is odd.
By Lemma 2.2.2 there is an (X1 ∪ Y2 ∪ {y1, y2}, Y1 ∪ X2 ∪ {x})-1-parity {0, 1}-edge-
weighting of G − y1x2 − x1y2. We extend this edge-weighting to the whole of G by
assining weight 0 to the edges y1x2, x1y2. Now the only parity conflicts are x1y1 and
x1y2, but the weighted degree of x1 is 3 and the weighted degree of both y1 and y2 is
1 so this edge-weighting of G is proper.

Case 2: |Y2| is even.
Note that since Y has odd size it must be the case that |Y1| is odd. Note that G1
is not 2-connected and hence not an odd multi-cactus. By the minimality of G it
follows that G1 has the {0, 1}-property and thus, Lemma 2.2.12 implies that G has
the {0, 1}-property. ⋄

Claim 3. B contains no suspended path or cycle of length 4.

Proof of the claim. First assume that y1x1y2x2y1 is a suspended cycle of length 4 in
B with dG(y1) ≥ 3 and y1 ∈ Y . By Lemma 2.2.2 there is an (Y \ {y2}, X \ {x1, x2})-
1-parity {0, 1}-edge-weighting of G − x1 − y2 − x2. We extend this edge-weighting
to the whole of G by assigning weight 1 to y1x1 and y1x2 and weight 0 to x1y2 and
x2y2. Now the only possible conflicts are y1x2 and y1x2, but y1 has weighted degree
at least 3 and both x1 and x2 have weighted degree 1.

Now suppose y1x1y2x2y3 is a suspended path of length 4. Define G′ = G −
x1 − y2 − x2. By Lemma 2.2.2 there is an (Y \ {y1, y2, y3}, (X \ {x1, x2}) ∪ {y1, y3})-
1-parity {0, 1}-edge-weighting of G′. We extend this weighting to the whole of G
by assigning weight 0 to the edges in E(y2) and weight 1 to the edges y1x2 and
y3x2 and obtain an ((Y \ {y2}) ∪ {x1, x2}, (X \ {x1, x2}) ∪ {y2})-1-parity {0, 1}-edge-
weighting of G. The only parity conflicts are y1x1 and y3x2. As in the proof of
Claim 2 we can conclude that G′ − y1 − y3 consists of two components G1, G2
and both y1 and y3 have exactly one neighbour in each of G1, G2. Let x′

1, x′
2 de-

note the neighbours of y1 in G1 and G2, respectively and let z1, z2 denote the
neighbours of y3 in G1 and G2, respectively. Possibly x′

1 = z1 or x′
2 = z2. Let

X1 = V (G1) ∩ X, Y1 = V (G1) ∩ Y, X2 = V (G2) ∩ X, Y2 = V (G2) ∩ Y . As in the proof
of Claim 2 we can conclude that both Y1 and Y2 have odd size and that one of x′

1, x′
2,

say x′
1 = z1, is a cut-vertex in G. Furthermore, as in the proof of Claim 2 we can
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argue that there are at most two components of G − x′
1 not containing y1, and that

each such component is incident with exactly two edges incident to x1 and contains
an odd number of vertices in X. We distinguish two cases:

Case 1: |X2| is even.
In this case |X1| must be odd and therefore there is an even number of components
in G − x′

1 not containing y1. Since there are at most two such components there
must then be exactly two such components K1, K2. The minimality of G implies
that G1 has the {0, 1}-property and thus, Lemma 2.2.12 implies that also G has the
{0, 1}-property.

Case 2: |X2| is odd.
In this case |X1| must be even and therefore there is exactly one component K in
G − x′

1 not containing y1. Note that K must contain an odd number of vertices in
Y . Let G′′ denote the bipartite graph obtained from G′ by identifying y1 and y3 and
let y′ = y1 ∼ y3 ∈ V (G′′) denote this new resulting vertex. By the minimality of G,
there is a proper {0, 1}-edge-weighting of G′′ and in such an edge-weighting either
the two edges going out of G2 have the same weight, or the two edges going out of K
have the same weight (otherwise x′

1y′ is a conflict). Now Lemma 2.2.12 implies that
G has the {0, 1}-property. ⋄

Claim 4. G contains no suspended path or cycle of length at least 5.

Proof of the claim. Suppose y1x1y2x2y3x3 is a path in G where all internal vertices
have degree 2. Let G′ be the graph obtained from G − x1 − y2 − x2 − y3 by adding
the edge e = y1x3 (if this edge is already there we just add a new parallel edge).
By Lemma 2.2.8 we can assume that G is not obtained from an odd multi-cactus by
replacing a green edge with a path of length 5 or by adding an edge parallel to a
red edge (see the definition of odd multi-cactus for an explanation of red and green
edges). Since G is not an odd multi-cactus, also G′ is not an odd multi-cactus. The
minimality of G implies that there is a proper {0, 1}-weighting of G′. This {0, 1}-
edge-weighting can now be used to find a proper {0, 1}-edge-weighting of G: we put
back the vertices x1, y2, x2, y3 and give y1x1 and y3x3 the same weight as e = y1x3
and delete that edge. We give y2x2 the opposite weight. Then we give x1y2 and x2y3
distinct weights. There are two ways to do this and since y1 and x3 have different
weighted degrees, one way will give a proper {0, 1}-edge-weighting. ⋄

By Claims 1, 2, 3 and 4 any endblock B of G is simple, 2-connected, and all vertices
of degree 2 in B lie on a suspended path of length 3. In G we replace all suspended
paths of length 3 with an edge to form a new bipartite graph G∗. Edges arising from
suspended paths will be called blue edges and the edges of G are called white edges.
Note that G∗ is 2-edge-connected and the minimum degree in any endblock is at least
3. Let B∗ be an endblock of G∗ and let x0 denote the unique cut-vertex of G∗ in B∗

if it exists.
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Claim 5. Any vertex in B∗ has at least two distinct neighbours.

Proof of the claim. Suppose v ∈ V (B∗) only has one neighbour u. Since v has
degree at least 3 the edge uv must have multiplicity at least 3 and since there are no
multiple edges in any endblock of G, at most one of these parallel edges is white. By
Lemma 2.2.11 we can assume that G − v − N(v) is disconnected, so exactly one of
the edges joining u and v is white. Thus B∗ consists of two vertices joined by 1 white
edge and s ≥ 2 blue edges. In G this corresponds to an endblock BG consisting of
two adjacent vertices joined by s paths of length 3. It is easy to check that BG has
the {0, 1}-property, so we can assume that G is not 2-connected and that one of u, v,
say u, is the cut-vertex x0. Let G′ be obtained from G by removing all vertices except
u in BG. Note that G′ has an odd number of vertices so by the remark following
Lemma 2.2.2 it has a {0, 1}-edge-weighting w′ with no parity conflicts. By possibly
swapping the weights on a u-changing cycle we can assume that u has weighted degree
at least 1 in G′. If s is even, we extend w′ to the whole of G by assigning weight 0
to the edge uv, and for each path of length 3 uxyv joining u and v assigning weight
1 to ux and xy and weight 0 to yv. This will yield a proper {0, 1}-edge-weighting of
G. If s is odd, then we extend w′ to the whole of G by assigning weight 1 to the edge
uv, and for each path of length 3 uxyv joining u and v assigning weight 1 to ux and
weight 0 to the edges xy and yv. This will yield a proper {0, 1}-edge-weighting of G.
⋄

By Claim 5 all endblocks of G∗ are 2-connected.

Claim 6. If v ∈ V (B∗), then G∗ − v − NG∗(v) is disconnected.

Proof of the claim. Suppose the claim is false and let v ∈ V (B∗) be a vertex such
that H∗ = G∗ − v − NG∗(v) is connected. Since v ∈ V (B∗) the degree of v is at least
3. We can assume v ∈ X. By Lemma 2.2.11 we can assume that G − v − NG(v) is
disconnected, so there must be at least one pair of parallel edges e1, e2 incident to v
in G∗ such that e1 is blue and e2 is white. For each neighbour v′ of v in G of degree
at least 3 let Sv′ denote the set of edges incident to v′ in G which are contained in
a suspended path of length 3 ending in v. Let G′ denote the graph obtained from
G − v by for each v′ ∈ NG(v) of degree at least 3 removing all edges except one in
EG−v(v′)\Sv′ . Since H∗ is connected, G′ is also connected. We distinguish two cases.

Case 1: dG(v) is odd.
By Lemma 2.2.2 there is an (Y \ NG(v), (X \ {v}) ∪ NG(v))-1-parity {0, 1}-edge-
weighting of G′. We extend this to an (Y ∪{v}, X\{v})-1-parity {0, 1}-edge-weighting
of G by assigning weight 1 to all edges in EG(v) and weight 0 to all edges in
(E(G) \ EG(v)) \ E(G′). The only parity conflicts are between v and its neighbours.
Note that v has weighted degree at least 3. Furthermore, note that if v′ ∈ NG(v) has
degree at least 3, then each edge e ∈ Sv′ has weight 0, since the edge incident to v
on the suspended path of length 3 containing e has weight 1. Thus, each neighbour
of v has weighted degree at most 2 and hence the edge-weighting is proper.
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Case 2: dG(v) is even.
By Lemma 2.2.2 there is an ((X \ {v}) ∪ NG(v), Y \ NG(v))-1-parity {0, 1}-edge-
weighting of G′. We extend this to an (X\{v}, Y ∪{v})-1-parity {0, 1}-edge-weighting
of G by assigning weight 1 to all edges in EG(v) and weight 0 to all edges in (E(G) \
EG(v)) \ E(G′). The only parity conflicts are between v and its neighbours. Note
that v has weighted degree at least 4. Furthermore, note that, as above, if v′ ∈ NG(v)
has degree at least 3, then each edge e ∈ Sv′ has weight 0. Thus, each neighbour of
v has weighted degree at most 2 and hence the edge-weighting is proper. ⋄

By Claim 6 we can assume that whenever we pick a vertex v ∈ V (B∗), then
G∗ − v − NG∗(v) is disconnected. By Claim 5 there is a vertex in V (B∗) not adjacent
to x0 (if x0 exists), so there is a vertex v ∈ V (B∗) such that x0 (if it exists) is
in G∗ − v − NG∗(v). Now we choose v ∈ V (B∗) such that the component K of
G∗ − v − NG∗(v) containing x0 has maximum size (if x0 does not exists we just
maximize the size of some component). By the maximality of K each vertex in
NG∗(v) must have a neighbour in K. Also, each other component of G∗ − v − NG∗(v)
must be an isolated vertex with the same neighbourhood as v. Let U denote the set
of isolated vertices in G∗ − NG∗(v) making up the components distinct from K. We
can assume that |U | ≥ 2 and that U ⊂ X.

Claim 7. If u ∈ U , then d(u) ≤ 4.

Proof of the claim. Suppose the claim is false and let u ∈ U be a vertex of degree
at least 5. By Lemma 2.2.11 the graph G − u − N(u) is disconnected, so u must be
incident to at least one white edge in B∗. Let u′ ∈ NG(u) be a neighbour of u in
NG∗(v). For each vertex a ∈ NG∗(v) \ {u′} let ea denote an edge incident to a going
to K and let Sa denote the set of edges in G incident to a which are contained in a
suspended path of length 3 containing u. Let G′ be obtained from G − u by for each
a ∈ NG∗(v) \ {u′} removing all edges in E(a) \ (Sa ∪ {ea}). Note that G′ is connected.
We look at two cases.

Case 1: d(u) is odd.
By Lemma 2.2.2 there is an (Y \ NG(u), (X \ {u}) ∪ NG(u))-1-parity {0, 1}-edge-
weighting of G′. We now extend this weighting to the whole of G by assigning weight
1 to all edges in E(u) and weight 0 to all edges in (E(G) \ E(G′)) \ E(u), and obtain
a (Y ∪{u}, X \{u})-1-parity {0, 1}-edge-weighting of G, where u has weighted degree
d(u) ≥ 5 and each neighbour of u distinct from u′ has weighted degree 1. The only
possible conflict is now uu′, so we can assume this is indeed a conflict. Thus, u′ has
weighted degree at least 5 and therefore there is a u′-changing cycle in G − u. After
swapping the weights on such a cycle we avoid the conflict uu′. The weighted degree
of a neighbour of u distinct from u′ might now have increased by 2, but since the
weighted degree of u is at least 5 this gives a proper edge-weighting of G.
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Case 2: d(u) is even.
In this case d(u) is at least 6. By Lemma 2.2.2 there is an (X \ {u} ∪ NG(u), Y \
NG(u))-1-parity {0, 1}-edge-weighting of G′. We now extend this weighting to the
whole of G by assigning weight 1 to all edges in E(u) and weight 0 to all edges in
(E(G) \ E(G′)) \ E(u), and obtain a (X \ {u}, Y ∪ {u})-1-parity {0, 1}-edge-weighting
of G, where u has weighted degree d(u) and each neighbour of u distinct from u′ has
weighted degree 2. As in Case 1 the only possible conflict is now uu′ and we can
avoid this conflict by swapping the weights on a u′-changing cycle avoiding u without
creating any new conflicts. ⋄

By Claim 5 and Claim 7 we have that |NG∗(v)| ∈ {2, 3, 4}. Now we show that all
vertices in U actually have degree 3. and hence |NG∗(v)| ∈ {2, 3}:

Claim 8. If u ∈ U , then d(u) = 3.

Proof of the claim. Suppose the claim is false and let u ∈ U be a vertex of degree 4.
Fix a vertex u′ ∈ NG∗(v). For each vertex a ∈ NG∗(v) \ {u′} let ea denote an edge
incident to a going to K and let Sa denote the set of edges in G incident to a which
are contained in a suspended path of length 3 containing u. Let G′ be obtained from
G−u by for each a ∈ NG∗(v)\{u′} removing all edges in E(a)\(Sa ∪{ea}). Note that
G′ is connected. By Lemma 2.2.2 there is an ((X \ {u}) ∪ NG(u), Y \ NG(u))-1-parity
{0, 1}-edge-weighting of G′. We now extend this edge-weighting to the whole of G by
assigning weight 1 to all edges in E(u) and weight 0 to all edges in (E(G) \ E(G′)) \
E(u), and obtain an (X \ {u}, Y ∪ {u})-1-parity {0, 1}-edge-weighting of G, where
u has weighted degree d(u) = 4 and each neighbour of u in G distinct from u′ has
weighted degree exactly 2 and each vertex in NG∗(v) \ {u′} has weighted degree at
most 2. The only possible conflict is now uu′, so we can assume that u′ has weighted
degree 4. Furthermore, note that any vertex u′′ in NG(u) \ {u′} of degree at least
3 is incident to a 1-edge going to K and a 1-edge incident to u and all other edges
incident to u′′ are 0-edges. The vertex u′ is incident to three 1-edges not incident to u.
If two of these 1-edges go to K we can find a u′-changing cycle avoiding NG∗(v)\{u′}
and after swapping the weights on such a cycle we obtain a proper edge-weighting of
G. Hence we can assume that u′′ is incident to at most one 1-edge going to K. So
u′ is incident to at least two 1-edges e1, e2 such that ei is either incident to a vertex
ui ∈ U , or is contained in a suspended path of length 3 ending in a vertex ui ∈ U
for i = 1, 2. We can assume u1 ̸= u2 since otherwise there is a u′-changing cycle in
G − u avoiding NG∗(v) \ {u′}. Recall that in G∗ both u1 and u2 are adjacent to all
vertices in NG∗(v) and the weight of any edge incident to a vertex in NG∗(v) \ {u′}
which is either incident to u1 or u2, or is contained in a suspended path of length 3
containing u1 or u2 is 0.
First suppose there are two distinct vertices x1, x2 ∈ NG∗(v) \ {u′}. Then let P ∗ be
the path in G∗ consisting of the edges e1, e2, u1x1, u2x2 and let P be the corresponding
path in G. Let P ′ be a path from x1 to x2 in K+x1+x2 using the edges ex1 , ex2 . After
swapping the weights on the cycle P ∪ P ′ we obtain a proper {0, 1}-edge-weighting
of G. Thus, we can assume that NG∗(v) \ {u′} consists of a single vertex x and hence
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|NG∗(v)| = 2. If u′ is incident to a 1-edge-going to K we can find a u′-changing cycle
in G − u containing ex and swapping the weights on this cycle will yield a proper
edge-weighting of G, so we can assume that there is no such 1-edge. Since u′ has
weighted degree 4, this implies that there is a third 1-edge e3 incident to u′ such that
e3 is either incident to a vertex u3 ∈ U , or is contained in a suspended path of length
3 containing a vertex u3 ∈ U . As before, we can assume that u3 ̸= u1 and u3 ̸= u2.
Since each ui has degree at least 3 in G, there must be at least two parallel edges
between ui and u′ or between ui and x in G∗. First suppose there are at least two
edges between u′ and u1 in G∗. The corresponding edges incident to u′ in G must
have different weights since otherwise we find a u′-changing cycle in G − u which is
not x-changing. Now define a u′-changing cycle in G − u as follows. We take the
union of the path of length 1 or 3 from u′ to u1 using an edge incident to u′ with
weight 0 and the path of length 1 or 3 from u1 to x and together with a path from
x to u′ in K + x + u′ containing ex. Swapping the weights on this cycle yields a
proper edge-weighting of G. Hence we can assume that for all i ∈ {1, 2, 3} the edge
uix ∈ E(G∗) has multiplicity at least 2. Now we first swap the weights on a cycle in
G − u avoiding u3 which is both u′-changing and x-changing to get rid of the conflict
uu′. Next we swap the weights on an x-changing cycle in G − u avoiding u′, u1, u2
and K (the one containing u3) to avoid the conflict xu. ⋄

Claim 9. |NG∗(v)| = 2.

Proof of the claim. Suppose the claim is false and |NG∗(v)| = 3. By Claim 8 all
vertices in U have degree 3 and since G − u − N(u) is disconnected for all u ∈ U no
vertices in U are incident to a blue edge in G∗. Let u1, u2 ∈ U be distinct vertices.
By Lemma 2.2.2 there is an ((X \ {u1, u2}) ∪ NG∗(v), Y \ NG∗(v))-1-parity {0, 1}-
edge-weighting of G − u1 − u2. We can now extend this edge-weighting to a proper
edge-weighting of G by assigning weight 0 to all edges in E(u1) and weight 1 to all
edges in E(u2). ⋄

By Claim 8 and Claim 9 and since for each vertex u ∈ U we must have that
G − u − N(u) is disconnected (by Lemma 2.2.11), each vertex in U is incident to
at most 2 blue edges. Now suppose that there is a vertex u ∈ U which is incident
to two blue edges in G∗. Let v′ ∈ NG(u) denote the vertex joined to u by a white
edge in G∗. Since G − u − NG(u) is disconnected v′ is also joined to u by a blue
edge. Now let H denote the graph obtained from G − u by deleting all edges incident
to v′ except one going to K and the one contained in a suspended path of length 3
containing u (corresponding to the blue edge joining u and v′ in G∗). The graph H
is connected so by Lemma 2.2.2 there is a (Y \ NG(u), (X \ {u}) ∪ NG(u))-1-parity
{0, 1}-edge-weighting of H. We now extend this edge-weighting to G by assigning
weight 1 to all edges in E(u) and weight 0 to all remaining edges. The only parity
conflict are between u and its neighbours, but the weighted degree of u is 3 and the
weighted degree of all its neighbours is 1, so this edge-weighting is proper. Thus we
can assume that all vertices in U are incident to exactly one blue edge.
For a vertex u ∈ U let bu denote the suspended path of length 3 containing u in G
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(this corresponds to the blue edge in G∗), and let eu, fu denote the two white edges
incident to u. Since u is not a cut-vertex the two white edges eu, fu are not parallel.
Let v1, v2 denote the two vertices in NG∗(v).

Claim 10. Both v1 and v2 are only incident to one edge going to K.

Proof of the claim. Suppose for a contradiction that v1 is incident to at least two
edges e1, e2 going to K and let u ∈ U . We distinguish two cases:

Case 1: |Y ∩ V (K)| is even.
Let G′ denote the graph obtained from G − u by removing all edges incident to v2
except one edge going to K and one edge contained in bu if bu contains v2. Note that
G′ is connected. By Lemma 2.2.2 there is an (Y \ NG(u), (X \ {u}) ∪ NG(u))-1-parity
{0, 1}-edge-weighting of G′. We now obtain a (Y ∪ {u}, X \ {u})-1-parity {0, 1}-edge-
weighting of G by assigning weight 1 to all edges in E(u) and weight 0 to all remaining
edges. Note the all edges incident to v2 except uv2 has weight 0 so the only possible
conflict is uv1. Since |Y ∩ V (K)| is even there must be an even number of 1-edges
incident to v1 going to K. But this means that there is a v1-changing cycle avoiding
v2 and u. Swapping the weights on such a cycle yields a proper {0, 1}-edge-weighting
of G.

Case 2: |Y ∩ V (K)| is odd.
Since |Y | is odd, |Y \ V (K)| is even and hence there is an even number of vertices in
U (since each such vertex u′ adds one vertex to Y from the suspended path of length
3 containing u′). This also implies that |X \ V (K)| is even and hence |X ∩ V (K)|
is odd. Let K ′ be obtained from K + v1 + v2 by deleting all edges between K
and v1, v2 except e1, e2 and one edge incident to v2. By Lemma 2.2.2 there is an
((Y ∩ V (K)) ∪ {v2}, (X ∩ V (K)) ∪ {v1})-1-parity {0, 1}-edge-weighting wK′ of K ′ and
by possibly swapping the weights on a v1-changing cycle we can assume that v1 has
weighted degree 2. Let G′ be obtained from G − K by removing the edge uv1 and the
edge incident to u in bu. Note that G′ is connected and both X ′ = X ∩ V (G′) and
Y ′ = Y ∩V (G′) have even size. Let y ∈ Y and x ∈ X denote the vertices of degree 2 in
bu. By Lemma 2.2.2 there is an ((Y ′ \{v2, y})∪{u, x}, ((X ′ \{u, x})∪{v2, y})-1-parity
{0, 1}-edge-weighting wG′ of G′. We now combine wK′ and wG′ and assign weight 0 to
all edges which are not in K ′ or G′ and obtain a ((Y \{y})∪{u, x}, (X \{u, x})∪{y})-
1-parity {0, 1}-edge-weighting of G, where u has weighted degree 1 and v1 and v2 have
weighted degree at least 3. This is a proper edge-weighting of G. ⋄

Claim 11. d(v1), d(v2) ≤ 5

Proof of the claim. Suppose for a contradiction that d(v1) ≥ 6. As in the proof of
Claim 7, since G − v1, is connected we can use Lemma 2.2.2 to find a {0, 1}-edge-
weighting of G where v1 has weighted degree d(v1) ≥ 6 and the only parity conflicts
are between v1 and its neighbours. By Claim 10 the vertex v1 has only one neighbour
vk in K. By possibly swapping the weights on a v1-changing cycle in G − K we can
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assume that v1vk is not a conflict and that v1 has weighted degree at least 4. Since all
neighbours of v1 in G − K has degree at most 3, this yields a proper edge-weighting
of G. ⋄

Note that Claim 11 and Claim 9 implies that |U | = 2 and hence both |Y ∩ V (K)|
and |X ∩ V (K)| are odd. One of v1, v2, say v1, has degree at least 4. As in the proof
of Claim 11 since G − v1 is connected we can use Lemma 2.2.2 to find a {0, 1}-edge-
weighting of G where v1 has weighted degree d(v1) ≥ 4 and the only parity conflicts
are between v1 and its neighbours. By Claim 10 the vertex v1 has only one neighbour
vk in K and as above v1vk is the only possible conflict. So we can assume that vk

also has weighted degree d(v1) ≥ 4. The conflict v1vk can be avoided by swapping the
weights on a vk-changing cycle in K and such a cycle exists unless vk is a cut-vertex
in K. So we can assume that vk is a cut-vertex in K. If K is 2-edge-connected, then
the minimality of G implies that K has the {0, 1}-property, and by Lemma 2.2.12, so
does G. So we can assume that K is not 2-edge-connected. Since B is an endblock
this implies that the neighbour of v2 in K is not a cut-vertex in K. By symmetry of
v1 and v2 we can assume that v2 does not have degree at least 4. Hence the degree
of v2 is 3. Now G − v2 − NG(v2) is connected so by Lemma 2.2.11, the graph G has
the {0, 1}-property.

2.2.3.2 Trees

In this section we will characterise all trees without the {0, 1}-property by providing
a recursive way to construct all these trees. This recursion will include four different
types of trees, one of them being trees without the {0, 1}-property. A tree which is
of one of the other three types will have a special vertex surrounded by a certain
local structure. The first new type of trees is defined as follows. If v is a vertex in
a tree T such that there is no proper {0, 1}-edge-weighting of T when the weighted
degree of v is increased by 1, then we say that T is v-sensitive. Note that if xyz is
a path of length 2 in a tree T without the {0, 1}-property where x is a leaf in T and
y has degree 2 in T , then T ′ = T − x − y must be z-sensitive (otherwise there is an
{0, 1}-edge-weighting of T − x where yz has weight 1 and the only potential conflict
is yz, and such an edge-weighting can be extended to a proper {0, 1}-edge-weighting
of T by assigning a weight to xy such that yz is not a conflict). Conversely, note
that if z is a vertex in a tree T ′ which is z-sensitive, then the tree T obtained from
the disjoint union of T ′ and an isolated edge xy by adding the edge yz does not
have the {0, 1}-property (in any proper {0, 1}-edge-weighting of T the edge yz must
have weight 1, so this would yield an edge-weighting of T ′ which is proper when the
weighted degree of z is increased by 1). Thus, we have derived the following lemma.

Lemma 2.2.13. Let T ′ be a tree and let v be a vertex in T ′. Let T be the tree
obtained from T ′ by adding two vertices v1 and v2 and the edges vv1 and v1v2. The
tree T ′ is v-sensitive if and only if T does not have the {0, 1}-property.



2.2 Edge-Weightings of Bipartite Graphs Using Two Weights 31

Lemma 2.2.13 and Lemma 2.2.2 imply that a tree which is z-sensitive for some
vertex z must have an even number of vertices in both bipartition sets.
Before introducing the remaining two types of trees we will need in our recursive
construction of all trees without the {0, 1}-property, we will prove two lemmas de-
scribing some of the local structure around a vertex of degree 1 in a simple connected
bipartite graph without the {0, 1}-property. Later on we will only use these lemmas
when dealing with trees, however, since they hold more generally, we do not restrict
ourselves to trees here.

Lemma 2.2.14. Let G be a simple connected bipartite graph without the {0, 1}-
property. If v is a vertex of degree 1, and v′ is the unique neighbour of v, then all
edges incident to v′ are cut-edges in G.

Proof. By Lemma 2.2.2 there is a {0, 1}-weighting of G − v with no parity conflicts.
The only problem we can have in extending this {0, 1}-weighting to G is that the
weighted degree of v′ might be 0. If v′ is contained in a cycle in G − v we can avoid
this by swapping the weights on a v′-changing cycle. Thus, v′ is not contained in a
cycle in G − v and hence all edges incident to v′ are cut-edges in G.

Lemma 2.2.14 is fairly trivial and of course redundant when only working with
trees. It is included here since it is needed in the proof of the following lemma which
describes a reduction of degree 1-vertices being adjacent to a vertex of degree at least
3.

Lemma 2.2.15. Let G be a simple connected bipartite graph and let v ∈ V (G) be a
vertex of degree 1. Let v′ denote the neighbour of v and let e0, e1, . . . , en be the edges
incident to v′ in G with e0 = vv′. Assume that all edges incident to v′ are cut-edges
in G. For i ∈ {1, . . . , n} let Gi be the component of G − ei not containing v and let
G′

i denote the connected graph obtained from Gi by adding the vertices v, v′ and the
edges e0, ei. Then the graph G does not have the {0, 1}-property if and only if none
of the graphs G′

1, . . . , G′
n have the {0, 1}-property.

Proof. See Figure 2.5 for an illustration of the graphs G′
1, . . . , G′

n and G. For i ∈
{1, . . . , n} let vi be the vertex in Gi incident to v′. First assume that all the graphs
G′

1, . . . , G′
n do not have the {0, 1}-property. By Lemma 2.2.13 each Gi is vi-sensitive.

It follows that in any proper {0, 1}-edge-weighting of G all the edges e1, . . . en must
receive weight 0. But then v and v′ have the same weighted degree, so no proper {0, 1}-
edge-weighting of G exists, which means that G does not have the {0, 1}-property.
Now assume that G does not have the {0, 1}-property. Let X, Y denote the bipartition
sets of G such that v ∈ X, v′ ∈ Y and for each i ∈ {1, . . . , n} let Xi = X ∩ V (Gi)
and Yi = Y ∩ V (Gi). Recall that X and Y must have odd size. By Lemma 2.2.2
there is an (X \ {v}, Y ∪ {v})-1-parity {0, 1}-edge-weighting w1 of G. We can assume
that vv′ is a conflict so both v and v′ have weighted degree 0 induced by w1. Note
that this implies that all the sets Xi have even size. By Lemma 2.2.2 there is also a
(Y ∪ {v}, X \ {v})-1-parity {0, 1}-edge-weighting w2 of G. Again we can assume that
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vv′ is a conflict which means that both v and v′ have weighted degree 1 induced by
w2. Note that this implies that all the sets Yi have even size.
For a contradiction assume that for some i the graph G′

i has the {0, 1}-property. By
Lemma 2.2.13 there is a {0, 1}-edge-weighting wi of Gi which is proper when the
weighted degree of vi is increased by 1. By Lemma 2.2.2 there is an ((X \ Xi) ∪
{v′}, (Y \ {v′}) \ Yi)-1-parity {0, 1}-edge-weighting w3 of G − Gi. We now let wi

and w3 together with assigning weight 1 to the edge v′vi form an edge-weighting
of G. The only possible conflict is v′vi in the case where vi have odd weighted
degree induced by wi in Gi. In this case we use Lemma 2.2.2 again to find an
((Y \ Yi) \ {v′}, (X \ Xi) ∪ {v′})-1-parity {0, 1}-edge-weighting w4 of G − Gi. Now the
edge-weighting of G formed by wi and w4 together with assigning weight 1 to the edge
v′vi is a proper edge-weighting of G. Hence none of the graphs G′

i for i ∈ {1, . . . , n}
have the {0, 1}-property.

(a) The graphs G′
1, . . . , G′

n. (b) The graph G.

Figure 2.5: Lemma 2.2.15.

We now describe the second and third type of trees we will use to construct all trees
without the {0, 1}-property. They are special cases of the graphs defined as follows.
Let v be a vertex in a connected bipartite graph G and let a and b be integers. We
say that G is v(a, b)-strict if G has the {0, 1}-property and v has weighted degree a
in all proper {0, 1}-edge-weightings of G, and v has weighted degree b in all proper
{0, 1}-weightings of G where the weighted degree of v is increased by 1. The two
special cases we will use in our construction of all trees without the {0, 1}-property
are trees which are v(s, s + 1)-strict and trees which are v(s, s + 3)-strict for some
integer s and some vertex v. Note that a v(a, b)-strict tree T cannot have an even
number of vertices in both bipartition sets, since in this case Lemma 2.2.2 implies that
there are two proper {0, 1}-edge-weightings w1, w2 of G where v have even weighted
degree induced by w1 and odd weighted degree induced by w2 (so v cannot have
weighted degree a in both cases). Lemma 2.2.2 also implies that T cannot have an
odd number of vertices in both bipartition sets. To see this, suppose T have an odd
number of vertices in both bipartition sets and let T ′ be obtained from T by adding
two vertices x, y and the edges xy and yv. Then T ′ has an even number of vertices in
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both bipartition sets so as above there are proper {0, 1}-edge-weightings of T ′ where
v have even and odd weighted degree. But in each of these edge-weightings the edge
yv must have weight 1, so these yield proper edge-weightings of T where v have even
and odd weighted degree after the weighted degree of v is increased by 1 (so v cannot
have weighted degree b in both cases).
The above shows that for any two integers a, b it holds that any tree which is v(a, b)-
strict for some vertex v has an odd number of vertices.
We will need the following two lemmas describing the local structure around a vertex
v in a tree which is v(s, s + 1)-strict or v(s, s + 3)-strict.

Lemma 2.2.16. If s is an integer and v is a vertex in a tree T which is v(s, s + 1)-
strict, then either

(a) (See Figure 2.6(a)) T is obtained from the disjoint union of a tree T1 which
is v1(s − 1, s + 2)-strict for some v1 ∈ V (T1), a tree T2 which is v2(s, s + 1)-
strict for some v2 ∈ V (T2), together with some trees T3, . . . , Tm where for
each i ∈ {3, . . . , m} the tree Ti is vi-sensitive for some vi ∈ V (Ti) and s − 1
trees Tm+1, . . . , Tm+s−1 without the {0, 1}-property, by adding the vertex v and
all the edges vv1, vv2, . . . , vvm and also an edge from v to each of the trees
Tm+1, . . . , Tm+s−1, or

(b) (See Figure 2.6(b)) T is obtained from the disjoint union of s trees without
the {0, 1}-property T1, . . . , Ts and some trees Ts+1, . . . , Ts+n where for each
i ∈ {s + 1, . . . , s + n} the tree Ti is vi-sensitive for some vi ∈ V (Ti), by adding
the vertex v and all the edges vvs+1, vvs+2, . . . , vvs+n and also an edge from v
to each of the trees T1, . . . , Ts.

(a) (b)

Figure 2.6: The two possible situations explained in Lemma 2.2.16.

Proof. Assume s is even (the case where s is odd is similar). Let X, Y denote the
bipartition sets of T such that v ∈ Y , let d = d(v), and let e1 = vv1, . . . , ed = vvd
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denote the edges incident to v. For i ∈ {1, . . . , d} let Ti denote the component of
T −v containing vi and let Xi = X ∩V (Ti) and Yi = Y ∩V (Ti). By possibly adjusting
the order of T1, . . . , Td we may assume that for three natural numbers s′, n1, n2 we
have that

1. if i ≤ n1, then |Xi| is even and |Yi| is odd, and

2. if ni < i ≤ n1 + n2, then |Xi| is odd and |Yi| is even, and

3. if n1 + n2 < i ≤ n1 + n2 + s′, then both |Xi| and |Yi| are odd, and

4. if i > n1 + n2 + s′ then both |Xi| and |Yi| are even.

Since T is v(s, s + 1)-strict T has an odd number of vertices so one of |X|, |Y | is
even. However, if |Y | is even, then by Lemma 2.2.2, the tree T has an (Y, X)-1-parity
{0, 1}-edge-weighting and since we assumed that s is even this contradicts T being
v(s, s + 1)-strict. So |Y | is odd and |X| is even. By Lemma 2.2.2 the tree T has an
(X, Y )-1-parity {0, 1}-edge-weighting. In such a {0, 1}-edge-weighting all the edges
vv1, . . . , vvn1 must have weight 0, since otherwise if say vv1 is weighted 1, then the
subgraph of T1 induced by the 1-edges has an odd number of vertices of odd degree.
By a similar argument, all the edges vvn1+1, . . . , vvn1+n2 have weight 1, all the edges
vvn1+n2+1, . . . , vvn1+n2+s′ also have weight 1 and all the edges vvn1+n2+s′ , . . . , vvd

have weight 0. Since T is v(s, s + 1)-strict it follows that n2 + s′ = s.
Lemma 2.2.2 also implies that T has a (Y \{v}, X∪{v})-1-parity {0, 1}-edge-weighting.
We can argue as before and see that all the edges vv1, . . . , vvn1 must have weight 1, all
the edges vvn1+1, . . . , vvn1+n2 have weight 0, all the edges vvn1+n2+1, . . . , vvn1+n2+s′

have weight 1 and all the edges vvn1+n2+s′ , . . . , vvd have weight 0. Since we can obtain
a proper edge-weighting of T by increasing the weighted degree of v by 1, then, since
T is v(s, s + 1)-strict, we must have that n1 + s′ = s and hence n1 = n2.
Now we show that if i > n1 + n2 + s′, then Ti is vi-sensitive. Suppose this is not the
case and let j > n1 + n2 + s′ be such that Tj has a {0, 1}-edge-weighting which is
proper when the weighted degree of vj is increased by 1. This implies that there is a
{0, 1}-edge-weighting w′ of Tj + v, where the weight of vvj is 1 and the only possible
conflict is between v and vj . By Lemma 2.2.2 there is a (Y \(Yj ∪{v}), (X ∪{v})\Xj)-
1-parity {0, 1}-edge-weighting w1 of T −Tj . Note that, as before, the weighted degree
of v induced by w1 is s. Now we combine w′ and w1 to obtain an edge-weighting
of T where the only potential conflict is vvj and where the weighted degree of v is
s + 1. Since T is v(s, s + 1)-strict the edge vvj must be a conflict, so vj also has
weighted degree s + 1. By Lemma 2.2.2 there is also an (X \ Xj , Y \ Yj)-1-parity
{0, 1}-edge-weighting w2 of T −Tj . As before the weighted degree of v induced by w2
is s. Now combining w′ and w2 gives an edge-weighting of T where v has weighted
degree s + 1 which is proper when the weighted degree of v is increased by 1. This
contradicts T being v(s, s + 1)-strict. We conclude that if i > n1 + n2 + s′, then Ti is
vi-sensitive.
Next we show that if n1 + n2 < i ≤ n1 + n2 + s′, then Ti does not have the {0, 1}-
property. Suppose this is not the case and let j ∈ {n1 + n2 + 1, . . . , n1 + n2 + s′}
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be such that Tj has a the {0, 1}-property. This implies that there is a {0, 1}-edge-
weighting w′ of Tj + v where the only conflict is vvj and where the weight of vvj

is 0. By Lemma 2.2.2 there is an (Y \ Yj , X \ Xj)-1-parity {0, 1}-edge-weighting w1
of T − Tj . Note that the weighted degree of v induced by w1 is s − 1. As before
we combine w′ and w1 and obtain an edge-weighting of T where the only conflict is
vvj and where the weighted degree of v and vj is s − 1. By Lemma 2.2.2 there is
an ((X \ Xj) ∪ {v}, (Y \ Yj) \ {v})-1-parity {0, 1}-edge-weighting w2 of T − Tj . Note
that the weighted degree of v induced by w2 is s − 1. We now combine w′ and w2
and increase the weighted degree of v by 1 which gives a proper edge-weighting of T ,
contradicting T being v(s, s+1)-strict. We conclude that if n1 +n2 < i ≤ n1 +n2 +s′,
then Ti does not have the {0, 1}-property.
Note that if n1 = n2 = 0, then we have showed (b), so we may assume that n1 =
n2 > 0. We will now prove that if i ≤ n1, then Ti is vi(s − 1, s + 2)-strict. So
let i ≤ n1 and T ′ = T − Ti. By Lemma 2.2.2 there is an (Y \ Yi, X \ Xi)-1-parity
{0, 1}-edge-weighting w1 of T ′. Note that v has weighted degree s − 1 induced by w1.
If there is a proper edge-weighting of Ti where vi does not have weighted degree s−1,
then we can find a proper edge-weighting of T where v has degree s − 1 contradicting
T being v(s, s + 1)-strict. By Lemma 2.2.2 there is also an (X \ Xi, Y \ Yi)-1-parity
{0, 1}-edge-weighting w2 of T ′. Note that v has weighted degree s induced by w2. If
there is an edge-weighting of Ti + v where vvi has weight 1 and where vi does not
have weighted degree s + 2, then we can find an edge-weighting of T where v has
weighted degree s + 1 and which is proper when the weighted degree of v is increased
by 1 contradicting T being v(s, s + 1)-strict. Hence Ti is vi(s − 1, s + 2)-strict.
Next we show that if n1 < i ≤ n2, then Ti is vi(s, s + 1)-strict. So let n1 < i ≤ n2
and T ′ = T − Ti. By Lemma 2.2.2 there is an (Y \ (Yi ∪ {v}), (X ∪ {v}) \ Xi)-1-parity
{0, 1}-edge-weighting w1 of T ′. Note that v has weighted degree s induced by w1. If
there is a proper edge-weighting of Ti + v where vvi has weight 1 and where vi does
not have weighted degree s + 1, then we can find a proper edge-weighting of T where
v has weighted degree s + 1 contradicting T being v(s, s + 1)-strict. By Lemma 2.2.2
there is also an ((X ∪ {v}) \ Xi, (Yi \ {v}))-1-parity {0, 1}-edge-weighting w2 of T ′.
Note that v has weighted degree s − 1 induced by w2. If there is an edge-weighting
of Ti + v where vvi has weight 0 and where vi does not have weighted degree s,
then we can find a {0, 1}-edge-weighting of T where v has weighted degree s − 1 and
which is proper when the weighted degree of v is increased by 1 contradicting T being
v(s, s + 1)-strict. Hence Ti is vi(s, s + 1)-strict.
It remains to show that n1 = n2 = 1. Suppose this is false and let T ′ = T − Tn1+1 −
Tn1+2. By the above there is a {0, 1}-edge-weighting w of v + Tn1+1 + Tn1+2, where
the two edges incident to v have weight 0 and where vn1+1 and vn1+2 have weighted
degree s and where there are no conflicts in Tn1+1 or Tn1+2. By Lemma 2.2.2 there
is an (X ∩ V (T ′), Y ∩ V (T ′))-1-parity {0, 1}-edge-weighting w′ of T ′. Note that the
weighted degree of v induced by w′ is s − 2. By combining w and w′ we obtain a
proper {0, 1}-edge-weighting of T where v has weighted degree s − 2 contradicting T
being v(s, s + 1)-strict.
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Figure 2.7: Lemma 2.2.17.

Similarly to what we did in the proof of Lemma 2.2.16 we can describe the local
structure around a vertex v in tree which is v(s, s + 3)-strict (some parts of this proof
is very similar to the proof of Lemma 2.2.16 and we thus refer to that for some of the
details).

Lemma 2.2.17. Let s be a non-negative integer and let v be a vertex in a tree T . If
T is v(s, s + 3)-strict, then T is obtained from the disjoint union of a tree T1 which is
v1(s + 1, s + 2)-strict for some v1 ∈ V (T1), a tree T2 which is v2(s + 1, s + 2)-strict for
some v2 ∈ V (T1) together with some trees T3, . . . , Tm where for each i ∈ {3, . . . , m}
the tree Ti is vi-sensitive for some vi ∈ V (Ti) and s trees Tm+1, . . . , Tm+s without
the {0, 1}-property, by adding the vertex v, all the edges vv1, vv2, . . . , vvm and also an
edge from v to each of the trees Tm+1, . . . , Tm+s. See Figure 2.7 for an illustration.

Proof. Assume s is even (the case where s is odd is similar). We let d = d(v) and
define X, Y ⊂ V (T ), n1, n2, s′ and ei, Ti, Xi, Yi for i ∈ {1, . . . , d} as in the proof of
Lemma 2.2.16. Since |V (T )| is odd, one of |X|, |Y | is even and as in the proof of
Lemma 2.2.16 we conclude that |X| is even and |Y | is odd. By Lemma 2.2.2 the tree
T has an (X, Y )-1-parity {0, 1}-edge-weighting. In such a {0, 1}-edge-weighting all
the edges vv1, . . . , vvn1 must have weight 0, all the edges vvn1+1, . . . , vvn1+n2 have
weight 1, all the edges vvn1+n2+1, . . . , vvn1+n2+s′ also have weight 1 and all the edges
vvn1+n2+s′ , . . . , vvn have weight 0. It follows that n2 + s′ = s.
By Lemma 2.2.2, there is also an (Y \ {v}, X ∪ {v})-1-parity {0, 1}-edge-weighting of
T . This means that there is a {0, 1}-weighting of T where all vertices in Y have odd
weighted degree and all vertices in X have even weighted degree when the weighted
degree of v is increased by 1. In such a {0, 1}-weighting all the edges vv1, . . . , vvn1

must have weight 1, all the edges vvn1+1, . . . , vvn1+n2 have weight 0, all the edges
vvn1+n2+1, . . . , vvn1+n2+s′ have weight 1 and all the edges vvn1+n2+s′ , . . . , vvn have
weight 0. Since T is v(s, s + 3)-strict it follows that n1 + s′ + 1 = s + 3 and hence
n1 = n2 + 2.
As in the proof of Lemma 2.2.16 we can argue that if i > n1 + n2 + s′, then Ti is
vi-sensitive and if n1+n2 < i ≤ n1+n2+s′, then Ti does not have the {0, 1}-property.
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By the same methods as in the proof of Lemma 2.2.16 we can also show that if i ≤ n1,
then Ti is vi(s + 1, s + 2)-strict. So it remains to show that n1 = 2. Clearly n1 ≥ 2
so suppose n1 ≥ 3 and let T ′ = T − T1 − T2 − T3. By Lemma 2.2.2 there is an
(Y \ (Y1 ∪ Y2 ∪ Y3), X \ (X1 ∪ X2 ∪ X3))-1-parity {0, 1}-edge-weighting w1 of T ′. Note
that v has weighted degree s − 1 induced by w1. We can now find a proper edge-
weighting of each of T1, T2, T3 such that v1, v2 and v3 have weighted degree s + 1 and
combine these weightings with w1 to find a proper edge-weighting of T where v has
weighted degree s − 1 and this contradicts T being v(s, s + 3)-strict. Hence n1 = 2
and n2 = 0.

The following lemma shows how trees without the {0, 1}-property are constructed
from graphs isomorphic to K2 and trees which are v(s, s + 1)-strict.

Lemma 2.2.18. Any tree without the {0, 1}-property distinct from K2 is obtained
from the disjoint union of a tree which is v(s, s + 1)-strict for some vertex v where
s > 0 and s graphs isomorphic to K2 by adding a vertex v′, the edge vv′ and an edge
from v to each of the graphs isomorphic to K2.

Proof. Suppose the lemma is false and let T be a counterexample of smallest size. It
is easy to check that the statement holds for all trees of diameter at most 3, so we
can assume that the diameter of T is at least 4. Lemma 2.2.15 implies that there
cannot be two leaves in T having the same neighbour. Let v be the fourth last vertex
on a longest path P in T and let v′ be the third last vertex. Since P is a longest
path in T and since there cannot be two leaves in T having the same neighbour,
the components of T − v′ not containing v contain at most two vertices. Note that
Lemma 2.2.15 actually implies that all these components contain exactly two vertices.
Thus, all components of T − v′ not containing v are isomorphic to K2. Since T does
not have the {0, 1}-property the subtree of T − vv′ containing v must be v(s, s + 1)-
strict where s is the number of components of T − v′ not containing v. Hence T is
constructed as claimed.

We list a recursive way to construct trees without the {0, 1}-property below. The
construction of v(s, s + 3)-strict trees is explained by the operation (a)-(b) in Fig-
ure 2.9. The construction of v-sensitive trees is explained by the operation (a)-(b)
in Figure 2.10. The construction of v(s, s + 1)-strict trees is illustrated in Figure 2.8
by the operations (a)-(b) and (c)-(d). Finally, the construction of trees without the
{0, 1}-property is explained in Figure 2.11. The class of trees without the {0, 1}-
property which can be obtained in this way starting with K2 as the smallest tree
without the {0, 1}-property is denoted B.
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(a) Operands. (b) The resulting v(s, s + 1)-strict tree.

(c) Operands. (d) The resulting v(s, s + 1)-
strict tree.

Figure 2.8: Construction of v(s, s + 1)-strict trees.
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(a) Operands. (b) The resulting v(s, s + 3)-strict tree.

Figure 2.9: Construction of v(s, s + 3)-strict trees.

(a) Operand. (b) The result-
ing v-sensitive
tree.

Figure 2.10: Construction of v-sensitive trees.
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(a) Operands. (b) The resulting
tree without the
{0, 1}-property.

Figure 2.11: Construction of trees without the {0, 1}-property.

The above constructions do indeed construct all trees without the {0, 1}-property
as we will show now:

Proof of Theorem 2.2.4. Suppose the theorem is false and let T be a tree of smallest
size without the {0, 1}-property which cannot be constructed by the above recursion.
It is easy to check that the diameter of T must be at least 4. Let n be the number
of vertices in T . By Lemma 2.2.13 and the minimality of T we can assume that all
trees which have at most n − 4 vertices and which are v-sensitive for some vertex v
can be constructed using the above recursion. By Lemma 2.2.17 and Lemma 2.2.16
we can also assume that all trees which have at most n − 3 vertices and which are
v(s, s + 1)-strict or v(s, s + 3)-strict for some vertex v and some integer s can be
constructed using the above recursion. By Lemma 2.2.18 our counterexample T is
obtained from a tree T ′ which is v(s, s + 1)-strict where s > 0 and v is some vertex
in T ′, and a vertex joined to s distinct graphs isomorphic to K2. But T ′ has at most
n − 3 vertices so T ′ can be constructed by the recursion, and then so can T .

This completes the section about {0, 1}-edge-weightings of bipartite graphs. We
will now turn our attention to {a, a + 2}-edge-weightings of bipartite graphs where a
is an odd number.

2.2.4 {a, a + 2}-Edge-Weightings of Bipartite Graphs
In this section we will consider {a, a + 2}-edge-weightings of bipartite graphs where a
is an odd number. Since both a and a + 2 are odd, an edge uv ∈ E(G) in a graph G
is a parity conflict in an {a, a + 2}-edge-weighting of G if and only if dG(u) and dG(v)
have the same parity. Because of this, we cannot apply Lemma 2.2.2 in the same way
as for the {0, 1}-property in the previous sections when trying to construct a proper
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{a, a + 2}-edge-weighting of G. To use a parity-argument it is therefore necessary to
modify the technique a bit. For this the following observation is useful.

Observation 2.2.19. Let a be an odd integer and let uv be an edge in a graph G
whose edges are weighted with a and a + 2. If

1. d(u) and d(v) have distinct parity, or

2. d(u) ≡ d(v) mod 4 and v is incident to an odd number of a-edges while u is
incident to an even number of a-edges, or

3. d(u) ̸≡ d(v) mod 4 and both v and u are incident to an odd number of a-edges
or both v and u are incident to even number of a-edges,

then u and v have distinct weighted degrees. This is also true if one considers the
parity of the number of incident (a + 2)-edges instead of the parity of the number of
incident a-edges.

Proof of Observation. We will consider the case where the parity of the number of
a-edges is considered (the case with the (a + 2)-edges is similar). Clearly we can
assume that d(u) and d(v) have the same parity.

Case 1: d(u) ≡ d(v) mod 4.
Since v is incident to an odd number of a-edges the weighted degree of v is congruent
to d(v)·(a+2)−2 modulo 4 while the weighted degree of u is congruent to d(u)·(a+2)
modulo 4. Thus, since d(u) ≡ d(v) mod 4 and gcd(a + 2, 4) = 1 it follows that v and
u have different weighted degrees.

Case 2: d(u) ̸≡ d(v) mod 4.
If both v and u are incident to an odd number of a-edges, the weighted degree of v is
congruent to d(v) · (a+2)−2 modulo 4 while the weighted degree of u is congruent to
d(u) · (a + 2) − 2 modulo 4. Since d(u) ̸≡ d(v) mod 4 and gcd(a + 2, 4) = 1 it follows
that v and u have different weighted degrees. If both v and u are incident to an even
number of a-edges, the weighted degree of v is congruent to d(v) · (a + 2) modulo 4
while the weighted degree of u is congruent to d(u) · (a + 2) modulo 4. Again, since
d(u) ̸≡ d(v) mod 4 and gcd(a, 4) = 1 it follows that v and u have different weighted
degrees.

Let a be an odd integer and let G be a connected bipartite graph. Assume that
we have a vertex-colouring c : V (G) → {1, 2} such that for any uv ∈ E(G) where d(u)
and d(v) have the same parity it holds that if d(u) ≡ d(v) mod 4, then c(u) ̸= c(v)
and if d(u) ̸≡ d(v) mod 4, then c(u) = c(v). Let X, Y denote the two colour classes
of V (G) and assume that one of them, say X, has even size. Lemma 2.2.2 implies
that there is an (X, Y )-a-parity {a, a+2}-edge-weighting of G and Observation 2.2.19
implies that this edge-weighting is proper. This is how Observation 2.2.19 allows us
to use techniques similar to the ones in the previous section. One simply has to work
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with a vertex-colouring which is different from the standard proper 2-vertex-colouring
of a bipartite graph. Such a vertex-colouring c is called a mod-4 vertex-colouring.

Definition 2.2.20 (mod-4 vertex-colouring). A mod-4 vertex-colouring of a graph
G is a mapping c : V (G) → {1, 2} of G satisfying the following conditions for any
uv ∈ E(G) where d(u) and d(v) have the same parity:

1. If d(u) ≡ d(v) mod 4, then c(u) ̸= c(v).

2. If d(u) ̸≡ d(v) mod 4, then c(u) = c(v).

As pointed out above both colour classes induced by a mod-4 vertex-colouring of
a graph without the {a, a + 2}-property, where a is odd, must have odd size:

Lemma 2.2.21. Let G be a connected graph and let a be an odd integer. If G has
a mod-4 vertex-colouring where at least one of the two colour classes has even size,
then G has the {a, a + 2}-property.

We will now show that any bipartite graph has a mod-4 vertex-colouring. This fact
together with Lemma 2.2.21 reduces the problem of deciding the {a, a + 2}-property
of bipartite graphs for a odd significantly. The fact that any bipartite graph has a
mod-4 vertex-colouring will be implied by the following more general lemma.

Lemma 2.2.22. Let G be a bipartite graph and let c : V (G) → {1, 2} be any mapping.
Then there exists a mapping c′ : V (G) → {1, 2} such that for any uv ∈ E(G) it holds
that

1. if c(u) = c(v), then c′(u) ̸= c′(v) and

2. if c(u) ̸= c(v), then c′(u) = c′(v).

Proof. Let X, Y denote the bipartition sets of G. Define c′ : V (G) → {1, 2} as
c′(v) = c(v) if v ∈ X, and c′(v) = 1 if v ∈ Y and c(v) = 2, and c′(v) = 2 if v ∈ Y and
c(v) = 1. It is easy to check that c′ is as desired.

We can now use Lemma 2.2.22 to show that any bipartite graph has a mod-4
vertex-colouring.

Lemma 2.2.23. Every bipartite graph has a mod-4 vertex-colouring.

Proof. Let G1 and G2 denote the subgraphs of G induced by the vertices of odd
degree and the vertices of even degree, respectively. Let c1 : V (G1) → {1, 2} be
defined as c1(v) = 1 if dG(v) ≡ 1 mod 4 and c1(v) = 2 if dG(v) ≡ 3 mod 4. Let
c2 : V (G2) → {1, 2} be defined as c2(v) = 1 if dG(v) ≡ 0 mod 4 and c2(v) = 2
if dG(v) ≡ 2 mod 4. For i ∈ {1, 2} let c′

i be the mapping we get by applying
Lemma 2.2.22 to Gi and ci and let c′ : V (G) → {1, 2} denote the mapping whose
restriction to V (Gi) is c′

i for i ∈ {1, 2}. It is easy to check that c′ is a mod-4 vertex-
colouring of G.
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Note that because of Observation 2.2.19 the same ideas as in the previous section
with swapping weights on cycles can also be used in the case of {a, a + 2}-edge-
weightings where a is odd: Suppose X, Y are the two colour classes induced by a
mod-4 vertex-colouring of a graph G, u ∈ X and that w is an (X \ {u}, Y ∪ {u})-a-
parity {a, a + 2}-edge-weighting of G. Observation 2.2.19 implies that all potential
conflicts involve u. So suppose uv is conflict. If we now swap the weights on an u-
changing cycle avoiding v, then we get rid of the conflict uv and, by Observation 2.2.19,
all the potential conflicts still involve u.
With these preliminary tools in hand we are ready to proceed to the section dealing
with 2-connected bipartite graphs.

2.2.4.1 2-Connected Bipartite Graphs

The goal of this section is to prove Theorem 2.2.5. Before we proceed to this, it
will be convenient to prove the following two lemmas which will simplify the proof of
Theorem 2.2.5. Recall that if e is an edge in a multigraph G, then M(e) denotes the
multiplicity of e.

Lemma 2.2.24. Let G be a 2-connected bipartite graph let X, Y be the two colour
classes of a mod-4 vertex-colouring of G, and let a be an odd integer. If both X and
Y have odd size and v ∈ X is such that G − v − N(v) is connected, then there is
an (X \ {v}, Y ∪ {v})-a-parity {a, a + 2}-edge-weighting of G where all edges incident
to v have weight a + 2 and every vertex u ∈ N(v) is incident to at most 1 + M(uv)
(a + 2)-edges.

Proof. Assume that v ∈ X and that G′ = G − v − N(v) is connected. Let G′′ be
obtained from G − v by for each vertex u ∈ N(v) removing all edges but one incident
to u in G − v. For each u ∈ N(v) let eu be the unique edge incident to u in G′′ and
let n(u) denote the unique neighbour of u in G′′. Note that since G′ is connected,
then so is G′′. Let S denote the set of edges in G not incident to v and not in G′′.
That is, S is the set of edges removed from G − v to obtain G′′. Let G[S] denote
the subgraph of G induced by the edges in S and let Z denote the vertices of odd
degree in G[S]. Clearly |Z| is even and since X \ {v} has even size, this implies that
the set X ′ = (X \ (Z ∪ {v})) ∪ Z ∩ Y also has even size. Thus, Lemma 2.2.2 implies
that there is an (X ′, V (G′′) \ X ′)-a-parity {a, a + 2}-edge-weighting of G′′. We now
extend this weighting to G by assigning weight a to all edges in S and weight a + 2
to all edges in E(v). This results in a desired {a, a + 2}-edge-weighting of G.

The special case where a = −1 (when we are considering the {−1, 1}-property)
will play a special role in some cases in the proof of Theorem 2.2.5. To simplify these
cases we prove the following lemma.

Lemma 2.2.25. Let G be a 2-connected bipartite graph. If there is a vertex v ∈ V (G)
of degree at least 4 and with |N(v)| ≥ 3 such that G − v − N(v) is connected, then G
has the {−1, 1}-property.
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Proof. Let X, Y be the colour classed induced by a mod-4 vertex colouring of G. By
Lemma 2.2.21 we can assume that both X and Y have odd size. Lemma 2.2.24 implies
that there is an (X \ {v}, Y ∪ {v})-(−1)-parity {−1, 1}-edge-weighting of G, where
all edges incident to v have weight 1 and any vertex u ∈ N(v) is incident to at most
1 + M(uv) 1-edges. Observation 2.2.19 implies that the only potential conflicts are
between v and its neighbours. The weighted degree of v is d(v) and since |N(v)| ≥ 3,
the multiplicity of any edge incident to v is strictly less than d(v) − 1. Thus, the
weighted degree of any u ∈ N(v) is less than d(v) and therefore there can be no
conflicts.

We need one more tool before starting the proof of Theorem 2.2.5. This tool is
Lemma 2.2.26 below which was proved by Thomassen et al. [Tho16] who used it in
their characterisation of bipartite graphs without the {1, 2}-property. Immediately
following the statement of the lemma we will explain how it is useful for our purposes.

Lemma 2.2.26. [Tho16] Let q be a natural number such that q ≥ 4. Let G be a
connected graph and let A be an independent set of at most q vertices such that each
vertex in A has degree at least q − 1, or, each vertex in A, except possibly one has
degree at least q. Assume that no vertex in A is adjacent to a cut-edge in G. Then,
for each vertex a of A, there is an edge ea incident with a such that the deletion of
all ea, a ∈ A, results in a connected graph unless |A| = q = 4, all vertices of A have
degree 3 and G−A has six components each of which is joined to two distinct vertices
of A.

Let a be an odd integer and let b = a + 2. In some cases Lemma 2.2.2 and
Lemma 2.2.26 can work well together when trying to construct a proper {a, b}-edge-
weighting of a connected bipartite graph G. This can be seen thorugh the following
example. Suppose c : V (G) → {1, 2} is a mod-4 vertex-colouring of a 2-connected
bipartite graph G with at least 3 vertices and let X and Y denote the two colour
classes induced by c. Recall that we can assume that both X and Y have odd size.
Furthermore, suppose that the degree of a vertex v ∈ X is at least 4 and no vertex in
N(v) has degree strictly larger than d(v). Let A be the vertices in N(v) with the same
degree as v and suppose that no vertex in A is incident to a cut-edge in G′ = G − v
and we are not in the exceptional case of Lemma 2.2.26. That is, for each u ∈ A
there is an edge eu such that G′ − ∪u∈A{eu} is connected. Define S = ∪u∈A{eu}
and let Z denote the set of vertices in G′ which have odd degree in the subgraph of
G induced by S (note that A ⊂ Z). Since X \ {v} and Z have even size, the set
X ′ = (X \ (Z ∪ {v})) ∪ (Z ∩ Y ) also has even size. Thus, Lemma 2.2.2 implies that
there is an (X ′, V (G′) \ X ′)-a-parity {a, b}-edge-weighting of G′ − S. We can extend
this edge-weighting to G by assigning weight a to all edges in S and weight b to all
edges incident to v to obtain an (X \{v}, Y ∪{v})-a-parity {a, b}-edge-weighting of G
where all edges incident to v have weight b and every vertex u ∈ N(v) which has the
same degree as v is incident to at least one a-edge. The weighted degree of v is greater
than that of its neighbours, so Observation 2.2.19 implies that the edge-weighting is
proper. This is why Lemma 2.2.26 can be a useful tool: in some cases it allows us to
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remove edges from a set of independent vertices while maintaining connectivity.
We have now collected all the tools necessary for the proof of Theorem 2.2.5.

Proof of Theorem 2.2.5. By Lemma 2.2.7 it suffices to show that if G is a 2-connected
bipartite graph without the {a, a + 2}-property for some odd integer a, then G is an
odd multi-cactus. Suppose this is false and, for some odd integer a and b = a + 2, let
G be a counterexample which has smallest size possible. By possibly multiplying the
weights by −1 we can assume b > 0. Let c be a mod-4 vertex-colouring of G (such a
colouring exists by Lemma 2.2.20), and let X denote the set of vertices with colour 1
and let Y denote the set of vertices with colour 2. By Lemma 2.2.21, we can assume
that both X and Y have odd size. The proof is split into several claims.

Claim 1. If M(uv) > 1, then |N(u)| ≥ 3 or |N(v)| ≥ 3.

Proof of the claim. Suppose uv is a multiple edge and both u and v have only two
distinct neighbours. By the minimality of G, Lemma 2.2.8, and the fact that G is
not an odd multi-cactus, the graph obtained from G by replacing uv with one non-
multiple edge has a proper {a, b}-edge-weighting w. But since the multiplicity of uv
in G is at least 2 and since u and v can each be in only one conflict distinct from
uv, we can obtain a proper {a, b}-edge-weighting of G from w by weighting the edges
joining u and v in a way that avoids the potential conflicts involving u and v (we can
do this because there are at least three distinct possible sums for the weights of the
edges joining u and v). ⋄

Claim 2. G has no suspended path of length 2.

Proof of the claim. Suppose v1xv2 is a suspended path in G, where d(x) = 2 and
d(v1), d(v2) ≥ 3. We can assume x ∈ X. Define G′ = G − x. Since G is 2-connected
the graph G′ is connected. Lemma 2.2.2 implies that there is an (X \{x}, Y )-a-parity
{a, b}-edge-weighting of G′. By putting back x and assigning weight b to the edges v1x,
v2x and swapping the weights on an x-changing cycle we obtain a (X \{x}, Y ∪{x})-a-
parity {a, b}-edge-weighting w of G, where w(v1x) = w(v2x) = a. Observation 2.2.19
implies that the only conflicts that can arise are xv1 and xv2, so we can assume that
xv1 is a conflict, that is, both x and v1 have weighted degree 2a. This implies that
v1 has even degree at least 4 and a < 0 < b. Hence a = −1 and b = 1. Let u1, u2
be the ends of two distinct (−1)-edges incident to v1 in G′, possibly u1 = u2. Since
G is 2-connected, there exists a cycle C in G′ containing the edges u1v1 and v1u2.
The cycle C is v1-changing and x-avoiding, so if we swap the weights on C we do
not create new conflicts in G′ and we lose the conflict xv1. In particular, x still has
weighted degree −2 while v1 now has weighted degree 2. We can now assume that
xv2 is a conflict. This implies that v2 also has even degree at least 4. We can get
rid of the conflict xv2 in the same way as we got rid of the conflict v1x. The only
problem in doing this is that we might recreate the conflict v1x if the v2-changing
cycle contains two 1-edges incident to v1. Thus, we can assume that all v2-changing
cycles in G′ contain two 1-edges incident to v1. Since v2 has weighted degree −2, the
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vertex v2 must be incident to at least two (−1)-edges in G′ and at least one 1-edge.
First, assume that v1 is incident to a (−1)-edge e in G′. Since G is 2-connected there
is a path P in G′ from v1 to v2 using e. If the weight on the last edge e′ of P (the
one incident to v2) is 1, then swapping the weights on the cycle P ∪ v1x ∪ xv2 yields a
proper edge-weighting of G, so we can assume e′ has weight −1. The vertex v2 must
be incident to a (−1)-edge e′′ ̸= e′ in G′. Because G is 2-connected, the graph G − v2
has a path P ′ from the end of e′′ different from v2 to the end of e′ different from v2.
Note that if P ′ does not contain v1, then there is a v2-changing cycle in G′ which
is not v1-changing, which contradicts the above. The same conclusion holds if when
walking from v2 along P ′ we intersect P in a vertex different from v1. So we can
assume that v1 is the first intersection between P and P ′. Now there is a cycle C in
G containing v2 and the edges e, e′, e′′, (first go from v2 to v1 along P ′, before going
back to v2 along P ). Swapping the weights on C yields a proper edge-weighting of G.
Thus we can assume that v1 is not incident to a (−1)-edge e in G′ and therefore must
have degree exactly 4. By symmetry, v2 also has degree exactly 4. Note that this
implies that v1, v2 ∈ X and that all four edges incident to v1 except v1x have weight
1. Furthermore recall that v1 has weighted degree 2 and v2 has weighted degree −2,
so two edges incident to v2 in G′ have weight −1 while the last edge incident to v2 in
G′ has weight 1.
We now consider the graph G′′ = G′ − v1 − v2. If G′′ is connected, then we can find
a v2-changing and v1 avoiding cycle in G′, so we can assume that G′′ is disconnected.
We may also assume that the two (−1)-edges incident to v2 in G′ go to two distinct
components of G′′. This leaves us with the following three cases to consider:

Case 1: G′′ has two components K1, K2, such that v1 is incident to two edges
going to K1 and one edge going to K2, and v2 is incident to two edges going to K2
and one going to K1.
Let e1,a and e1,b denote the two edges incident to v1 going to K1. Recall that e1,a

and e1,b have weight 1. Since K1 is connected, there is a path in K1 from the end of
e1,a different from v1 to the end of e1,b different from v1. We now swap all weights
along the cycle formed by this path and e1,a, e1,b to get an edge-weighting of G where
v1 has weighted degree −2. Note that now both xv1 and xv2 are conflicts.
Let e1,c denote the edge incident to v1 going to K2 and let e2,a denote the 1-edge
incident to v2 going to K2. Both these edges are weighted 1. Since K2 is connected,
there is a path P in K2 from the end of e1,c different from v1 to the end of e2,a

different from v2. Now consider the cycle C = xv2 ∪ e2,a ∪ e1,c ∪ v1x ∪ P . When
swapping all weights on C, the vertices v1, v2 remain of weighted degree −2, while x
gets weighted degree 2, so this yields a proper {−1, 1}-edge-weighting of G.

Case 2: G′′ has two components K1, K2, such that both v1 and v2 are incident
to two edges going to K1 and one going to K2.
Let v1,a, v1,b denote the ends of the edges incident to v1 in K1, and let v1,c denote
the neighbour of v1 in K2 (possibly v1,a = v1,b). Note that for one of v1,a, v1,b, say
v1,a, the graph G′′′ = G − v1 − v1,a − v1,c is connected: to see this suppose that G′′′
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is disconnected. Then it must be the case that v1,a is a cut-vertex in the connected
graph G − v1 and in this case it is easy to see that G − v1 − v1,b − v1,c is connected.
By Lemma 2.2.25 we can assume that G′′′ − v1,b is disconnected. Let L1, . . . , Ln

denote the components of G′′′ − v1,b such that v2 ∈ V (L1). Since v1,b is not a cut-
vertex in G, the vertex v1,a has a neighbour in each of the components Li for i ≥ 2.
Let us now consider the graph H obtained from G − v1 by removing all edges but
one incident to v1,a and removing all edges but one incident to v1,c. Note that H is
connected. Now define the following two sets X ′, Y ′:

X ′ = (X \ {v1, v1,a, v1,b, v1,c, x}) ∪ (Y ∩ {v1,a, v1,b, v1,c})

and
Y ′ = (Y \ {v1,a, v1,b, v1,c}) ∪ (X ∩ {v1,a, v1,b, v1,c, x}).

Note that |X ′| is even. Lemma 2.2.2 implies that H has an (X ′, Y ′)-(−1)-parity
{−1, 1}-edge-weighting. We now extend this edge-weighting to the whole of G by
assigning weight −1 to all removed edges incident to v1 and weight 1 to all remaining
edges (incident to one of v1,a, v1,c). We obtain an (X \ {v1}, Y ∪ {v1})-(−1)-parity
{−1, 1}-edge-weighting w of G where all four edges incident to v1 are weighted −1,
and each of v1,a, v1,c is incident to at most two (−1)-edges. The only possible conflict
is v1v1,b, so we can assume that v1 and v1,b have the same weighted degree and that
must be −4. We can also assume that we cannot swap the weights on a v1,b-changing
cycle in G′′′, so v1,b is incident to at most two edges going to each of Li for i = 1, . . . , n.
Since the weighted degree of v1,b is −4, there must be some components in G′′′ − v1,b

which are incident to strictly more (−1)-edges in E(v1,b) than 1-edges in E(v1,b).
Again, since there is no v1,b-changing cycle in G′′′ there are no two edges incident to
v1,b with the same weight that go to the same component of G′′′ − v1,b. Thus, there
are at least three components L′

1, L′
2, L′

3 in G′′′ −v1,b, each of which is incident to only
one edge in E(v1,b) and each of these edges has weight −1. We can assume that L′

1
and L′

2 are distinct from L1. See Figure 2.12. Recall that v1,a has a neighbour u′
i in

each L′
i for i = 1, 2. Now there is a cycle C in G′′′ +v1,a containing two edges incident

to v1,b having weight −1 and containing the two edges v1,au′
1 and v1,au′

2. If we swap
the weights on C, then the only possible conflict is v1v1,a in the case where v1,a is a
vertex of degree 4, both v1,au′

1 and v1,au′
2 have weight 1, and v1,a is incident to some

fourth (−1)-edge v1,az. We can assume that the component L′ to which z belongs in
G′′′ − v1,b is not incident to a (−1)-edge in E(v1,b), since otherwise, we could have
modified C to contain the edge v1,az. This also implies that L′

3 = L1. Since v1,b had
weighted degree −4 induced by w, this implies that there is another component L′

4
distinct from all of L′

1, L′
2, L′

3, which is incident to a (−1)-edge in E(v1,b). The vertex
v1,a must have a neighbour z′ in this component L′

4. But we must have z ̸= z′ which
contradicts v1,a having degree 4.
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Case 3: G′′ has three components K1, K2, K3, such that both v1 and v2 are
incident to one edge going to each of these three components.
In this case it is easy to check that G − v1 − NG(v1) is connected and hence G has
the {−1, 1}-property according to Lemma 2.2.25. ⋄

Figure 2.12: the graph G′′′ in Case 2 of Claim 2.

Claim 3. G has no suspended path of length 4.

Proof of the claim. Suppose the claim is false and let v1y1xy2v2 be a suspended path
in G, where d(y1) = d(x) = d(y2) = 2 and d(v1), d(v2) ≥ 3. We can assume x ∈ X,
which implies that y1, y2 ∈ Y . Define G′ = G − y1 − x − y2. By Lemma 2.2.2 there is
an (X \ {x}, Y \ {y1, y2})-a-parity {a, b}-edge-weighting of G′. Now we assign weight
b to the edges v1y1 and v2y2 and weight a to the edges y1x and xy2 and obtain an
((X \ {x}) ∪ {y1, y2}, (Y \ {y1, y2}) ∪ {x})-a-parity {a, b}-edge-weighting of G, where
the only potential conflicts are v1y1 and v2y2.
One can check that by slightly modifying the exact same arguments used in the proof
of Claim 2, we can eventually remove all conflicts and obtain a proper {a, b}-edge-
weighting of G. The approach is exactly the same, simply treat the path v1y1xy2v2
as the path v1xv2 in the proof of Claim 2.

⋄

Claim 4. G has no suspended path of length at least 5.

Proof of the claim. Suppose the claim is false and let v1x1x2x3x4v2 be a path in G,
where x1, x2, x3, x4 all have degree 2. The vertices v1, v2 might also have degree 2.
Let G′ be obtained from G by replacing v1x1x2x3x4v2 by an edge e = v1v2, also, if
that edge is already there. First suppose there is a proper {a, b}-edge-weighting of G′

where the weight of e is, say a. We can now remove e and extend the weighting to
G by assigning weight a to v1x1 and x4v2 (so that v1 and v2 keep the same weighted
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degree as in G′). We assign weights to the remaining edges in the following way. Since
v1v2 is an edge in G′, the vertices v1 and v2 have different weighted degrees. Thus we
can assume that v1 has weighted degree different from 2a and v2 has weighted degree
different from a + b. We can now obtain a proper edge-weighting of G by assigning
weight a to x1x2 and weight b to x2x3 and x3x4.
By the above G′ does not have the {a, b}-property. By the minimality of G the graph
G′ must be an odd multi-cactus. The edge e cannot be red in G′, since then G would
also be an odd multi-cactus. Thus, e is green and Lemma 2.2.8 implies that G has
the {a, b}-property. ⋄

By Claims 2, 3, 4, all vertices of degree 2 in G lie on suspended paths of length 3.
As in the proof of Theorem 2.2.3 we now replace all suspended paths of length 3 in
G by edges to form a bipartite multigraph G∗. Edges arising from suspended paths
of length 3 are called blue edges and the other edges of G∗ are called white edges.
Note that G∗ is bipartite, 2-connected and has minimum degree at least 3. Also, note
that for every vertex v in G∗, we have dG∗(v) = dG(v).
If the deletion of some pair of adjacent vertices disconnects G∗, then let z0y0 ∈ E(G∗)
be such that G∗ − z0 − y0 is disconnected and such that some component H of
G∗ − z0 − y0 has smallest possible order. The union of that component H and z0
and y0 together with all edges connecting them is denoted B. If G∗ has no pair of
adjacent vertices whose removal disconnects G∗ we define H = B = G∗ and y0 and
z0 do not exist.
Define d∗ to be the maximum of dG∗(v) for v ∈ V (H). For a vertex v ∈ V (H) let
A(v) denote the vertices in NH(v) with the same degree as v which are not joined to
v by a blue edge in G∗.

Claim 5. If d∗ ≥ 4, then there exists a vertex v0 ∈ V (H) such that dG∗(v0) = d∗ and
for each x ∈ A(v0) there is an edge ex ∈ E(x) \ E(v0) such that G − v0 − ∪x∈A(v0)ex

is connected.

Proof of the claim. Assume d∗ ≥ 4 and let v0 ∈ V (H) be such that dG∗(v0) = d∗ and
subject to that, such that |NG(v0)| is maximum. Note that for any v′ ∈ A(v0) it holds
that dG−v0(v′) ≥ |A(v0)| − 1, since dG∗(v′) = dG∗(v0). Furthermore, note that the
minimality of H and Claim 1 implies that no vertex in A(v0) is incident to a cut-edge
in the connected graph G − v0. For each vertex v′ ∈ A(v0) we want to remove an
edge incident to v′ in the graph G − v0 and maintain connectivity, so we can assume
that no vertex in A(v0) is incident to a multiple edge in G∗ − v0. Lemma 2.2.26
implies that the statement of the claim holds if |NG(v0)| ≥ 5, so we can assume
|NG(v0)| ≤ 4. Now suppose |NG(v0)| = 4. Lemma 2.2.26 implies that G − v0 − A(v0)
has exactly 6 components and that d∗ = 4. Furthermore we can assume that this is
the case whenever v0 ∈ V (H) is a vertex of degree d∗ = 4 having four neighbours in
G∗. But we can avoid this case by choosing v0 such that the component containing
z0 in G − v0 − A(v0) has maximum size (if z0 do not exist we just maximise some
component). Thus we may assume that |NG(v0)| ≤ 3. Since G is 2-connected we also
have |NG(v0)| ≥ 2.
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If all vertices have degree at least 3 in G − v0, then again Lemma 2.2.26 implies that
the statement of the claim holds. So there must be some vertex u ∈ A(v0) which
is incident to only two edges in G − v0. The choice of v0 implies that |NG(v0)| ≥
|NG(u)| = 3. Since dG∗(v0) = dG∗(u) and u only have two neighbours distinct from
v0, we must have |NG(v0)| = 3. Now let v′

0 ∈ A(v0) be distinct from u. Since v0u
is a multiple edge, v′

0 must be incident to at least 3 edges in G − v0, which implies
|NG(v′

0)| > 3 = |NG(v0)|, contradicting the choice of v0. ⋄

Claim 6. d∗ = 3.

Proof of the claim. Suppose the claim is false, let v0 be a vertex in H satisfying the
statement of Claim 5, and let G′ = G − v0 − ∪x∈A(v0)ex. We may assume v0 ∈ X.
Define S = ∪x∈A(v0)ex and let Z denote the set of vertices in G−v0 which are incident
to an odd number of edges in S. Clearly |Z| is even so also the set

X ′ = ((X \ {v0}) \ Z) ∪ (Y ∩ Z)

has even size. Lemma 2.2.2 implies that there is an (X ′, V (G′) \ X ′)-a-parity {a, b}-
edge-weighting of G′. We now extend this edge-weighting to the whole of G by
assigning weight b to all edges in E(v0) and weight a to all edges in S. In this way
we obtain an (X \ {v0}, Y ∪ {v0})-a-parity {a, b}-edge-weighting of G where all edges
incident to v0 are weighted b and every neighbour of v0 in H with degree d∗ is incident
to at least one a-edge (note that the vertices in NH(v0) \ A(v0) with the same degree
as v0 are incident to an a-edge contained in a suspended path of length 3 containing
v0). Now v0 has strictly larger weighted degree than any of its neighbours in H. Thus
if v0 is not incident to any of z0, y0 this edge-weighting is proper. So we may assume
z0v0 ∈ E(G) is a conflict.
We can assume that we cannot swap the weights on a z0-changing cycle in G − V (H)
since this would yield a proper edge-weighting of G. This implies that G∗ − z0 − y0
has exactly two components (one of them being H) and that z0 is only incident to two
edges in G∗ −H whose two corresponding edges in G incident to z0 must have distinct
weights. Let K denote the component of G∗ − z0 − y0 distinct from H and let e1, e2
denote the two edges incident to z0 in G corresponding to the two edges incident to
z0 in G∗ − H such that e1 corresponds to the edge going to K. Since e1 and e2 have
distinct weights, since all edges incident to v0 have weight b, and since z0v0 is a conflict
the vertex z0 must have larger degree than v0 and hence dG(z0) ≥ dG(v0) + 2 ≥ 6.
By possibly relabelling X, Y we can assume z0 ∈ X. By Lemma 2.2.2, there is an
(X \ {z0}, Y )-a-parity {a, b}-edge-weighting of G − z0. We can now obtain an (X \
{z0}, Y ∪ {z0})-a-parity {a, b}-edge-weighting of G by putting back z0 and assigning
weight b to all edges in E(z0). Since dG(z0) > d∗ the only possible conflicts are
z0y0 and z0zK where zK is the neighbour of z0 in K. Note that G − z0 − zK is
connected so by possibly swapping the weights on a zK-changing cycle in G − z0 we
can assume that z0zK is not a conflict. Thus, we may assume z0y0 is a conflict and
hence dG(y0) ≥ dG(z0). We can also assume that all y0-changing cycles in G − z0 are
also zK-changing, since otherwise swapping the weights on such a cycle would yield
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a proper edge-weighting of G. This implies that y0 is incident to at most two edges
going to H and if it is exactly two, then these two edges must have different weights.
Therefore y0 must be incident to at least 4 edges going to K. We can assume that any
y0-changing cycle in K +y0 is also zK-changing and that swapping the weights on any
such cycle results in zKz0 being a conflict. This implies that all edges incident to zK

which are contained in some y0-changing cycle in K + y0 have the same weight and
that dG(zK) ≥ dG(z0), see Figure 2.13 for an illustration of a possible configuration.
If there are four edges incident to y0 going to K which have the same weight, say a,
then there are two edge-disjoint y0-changing cycles in K +y0 both containing a-edges
incident with y0 and swapping the weights on both of these cycles will give a proper
edge-weighting of G. Thus we can assume that there are at most three edges of the
same weight incident to y0 going to K.
Now consider the connected graph K ′ = K + y0 − zK . There must be exactly three
edges e′

1, e′
2, e′

3 incident to y0 in K ′ having the same weight and these edges must go
to three distinct components K ′

1, K ′
2, K ′

3 of K ′ − y0. We can also assume that zK

is only incident to one edge going to each of K ′
1, K ′

2, K ′
3 and that these three edges

f1, f2, f3 all have the same weight (otherwise we can get a proper edge-weighting of
G by swapping weights on cycles in K ′

1 ∪ K ′
2 ∪ K ′

3 + zK + y0).
Since dG(zK) ≥ 6, there must be at least two more edges f4, f5 incident to zK in
K ′ + zK . Let e′

4 and e′
5 be two edges incident to y0 contained in two zK − y0 paths

P1, P2 in K ′ + zK containing f4 and f5, respectively (possibly e′
4 = e′

5). The weights
of e′

4 and e′
5 must be distinct from the weight assigned to e′

1, e′
2 and e′

3, so e′
4 and e′

5
have the same weight and thus must go to different components of K ′ − y0. If the
weight of f4 or f5, say of f4, is the same as the weight of f1, then we swap the weights
on a cycle containing e′

1 and e′
2 (this cycle is both zK- and y0-changing) to avoid the

conflict y0z0 and then afterwards we swap the weights on a cycle containing e′
3 and

e′
4 (this cycle is zK-changing but not y0-changing) to avoid the conflict z0zK . Thus,

we may assume that f4 and f5 have the same weight and that this weight is distinct
from the weight of f1, f2, f3. If P1 and P2 are internally disjoint, then swapping the
weights on the cycle P1 ∪ P2 yields a proper edge-weighting of G. If P1 and P2 are
not internally disjoint, then we swap the weights on a cycle containing e′

1 and e′
2 and

then swap the weights on the zK-changing and y0-avoiding cycle contained in P1 ∪P2.
⋄

Note that by Claim 6 all vertices in H have degree 3 in G.

Claim 7. There is no vertex v ∈ V (H) such that G − v − N(v) is connected.

Proof of the claim. Suppose v ∈ V (H) is such that G′ = G − v − N(v) is connected.
We can assume v ∈ X. By Lemma 2.2.24, there is an (X \ {v}, Y ∪ {v})-a-parity
{a, b}-edge-weighting of G, where all edges incident to v have weight b and any vertex
u ∈ N(v) is incident to at most 1 + M(uv) b-edges. Note that Claim 1 implies that
if vv′ is a multiple edge in G, then v′ ∈ {z0, y0}. Thus, the only potential conflict is
between v and one of z0, y0, say y0. In this case y0 must have odd degree at least
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5. Since G′ is connected there is a y0-changing cycle in G − v − (N(v) \ {y0}) and
swapping the weights on this cycle yields a proper {a, b}-edge-weighting of G. ⋄

Figure 2.13: Claim 6.

Claim 8. There are no multiple edges between two vertices in H.

Proof of the claim. Suppose uv is a multiple edge in H. We can assume v ∈ X. Since
u and v have degree 3 in G∗ (by Claim 6), the multiplicity of uv is exactly 2. Let e
and e′ be the two edges between u and v. By Claim 1, the edges e, e′ are not both
white. Thus, at least one of e, e′, say e, is a blue edge in H. Let v′ denote neighbour
of v in G which is distinct from u and not contained in a suspended path of length 3
containing u.
Let G′ be obtained from G − v by removing all edges incident to v′ except one edge
e′′. Clearly G′ is connected since G∗ − v − v′ is connected by the minimality of
H. Let S = E(v′) \ {vv′, e′′}. Let Z denote the set of vertices in G − v which
are incident to an odd number of edges in S. Note that Z has even size. Thus,
X ′ = ((X \{v})\Z)∪ (Z ∩Y ) has even size and Lemma 2.2.2 implies that there is an
(X ′, V (G′) \ X ′)-a-parity {a, b}-edge-weighting of G′. We now extend this weighting
to G by assigning weight a to all edges in S and weight b to all edges incident to
v. This gives an (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting of G where all
vertices in N(v) are incident to at most two b-edges (the edge in the suspended path
of length 3 joining u and v incident to u must have weight a). Observation 2.2.19
implies that the only conflict can be vv′ in the case where v′ ∈ {z0, y0}, say v′ = y0,
and y0 has degree at least 5. But since G − v − y0 is connected there must then be
a y0-changing cycle avoiding v and u. Swapping the weights on such a cycle yields a
proper {a, b}-edge-weighting of G. ⋄

Claim 9. Every vertex of H is incident to at most one blue edge.

Proof of the claim. By Claim 6 every vertex v of H has degree 3. If v ∈ V (H) is
incident to at least 2 blue edges, then, by the choice of y0, z0 the graph G − v − N(v)
is connected, which contradicts Claim 7. ⋄
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We now have all the tools at hand for completing the proof. Two cases are con-
sidered:

Case 1: There is a vertex v ∈ V (H) not adjacent to any of z0, y0 in G.
By Claim 6 the graph G − v − NG(v) is disconnected for all v ∈ V (H). Let v be a
vertex not adjacent to z0 or y0 such that the component K of G′ = G − v − N(v)
containing z0 and y0 has maximum order. We can assume that v ∈ X. Note that
the choice of v and Claim 8 implies that there is a vertex v′ ∈ V (H) distinct from v
with NG(v′) = NG(v) such that the components of G′ are exactly K and the isolated
vertex v′.
Let e1 = vv1, e2 = vv2, e3 = vv3 denote the three edges incident to v. Since
v, v′, v1, v2, v3 all belong to H, Claim 8 implies that all these vertices are distinct.
Furthermore, since NG(v) = NG(v′), none of the edges vv1, vv2, vv3 are blue. It fol-
lows that v, v′ ∈ X and v1, v2, v3 ∈ Y . Both G − v and G′′ = G − v − v′v2 − v′v3 are
connected. Lemma 2.2.2 implies that there is an (X \ {v} ∪ {v2, v3}, Y \ {v2, v3})-a-
parity {a, b}-edge-weighting of G′′. In particular, the only a-edge incident to v′ in G′′

is v′v1. We extend this weighting to the whole of G by assigning weight a to v′v2, v′v3,
and weight b to all three edges incident to v. In this way we obtain an (X\{v}, Y ∪{v})-
a-parity {a, b}-edge-weighting of G where all three edges incident to v have weight b
and all three edges incident to v′ have weight a. Observation 2.2.19 implies that the
only potential conflicts are between v and its neighbours. All vertices in N(v) are
incident to at least one a-edge (the one incident to v′) so this edge-weighting is proper.

Case 2: All vertices in H are adjacent to z0 or y0 in G.
First suppose that in G∗ the vertex z0 is joined to some vertex v ∈ V (H) by an edge
of multiplicity 2. Let e′ and e′′ be two edges joining z0 and v in G∗. Claim 7 implies
that not both of e′, e′′ are blue, say e′ is white. If e′′ is blue, then by Claim 9, the
third edge e′′′ incident to v in G∗ must be white. If e′′ is white, then Claim 7 implies
that e′′′ is white. Thus, the edge e′′′ = vu is white.
We can assume v ∈ X and hence u ∈ Y . Let Z denote the set of vertices in G − v
which are incident to exactly one edge incident to u. Note that either Z is empty or
Z has size 2. The set X ′ = (X \(Z ∪{v}))∪(Y ∩Z) has even size, so by Lemma 2.2.2,
there is an (X ′, V (G − v − u) \ X ′)-a-parity {a, b}-edge-weighting of G − v − u. We
now extend this edge-weighting to the whole of G by assigning weight b to all edges
in E(v) and weight a to the two edges incident to u distinct from uv. In this way
we obtain an (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting of G where all edges
incident to v have weight b and u is incident to exactly one b-edge. Observation 2.2.19
implies that the only potential conflict is vz0 in the case where z0 has degree at least
5. We can also assume that there is no z0-changing cycle in G avoiding v and u.
Hence, z0 must have degree 2 in G∗ − H and be incident to an edge in G∗ going to a
vertex v′ in H distinct from v. We can now find a z0-changing cycle avoiding v and
u unless the only neighbours of v′ in B are z0 and u. But in this case G − u − N(u)
is connected, contradicting Claim 7.
By the above we can assume that z0 is not joined to any vertex in H by a multiple
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edge in G∗. By symmetry y0 is also not joined to a vertex in H by a multiple edge
in G∗.
Claim 8 now implies that any vertex in H has three distinct neighbours in G∗. Let
v ∈ X be any vertex in H incident to z0. The graph G − v − N(v) is disconnected by
Claim 7, so there must be a vertex v′ in H which in G∗ has the same neighbourhood
as v. Since all vertices in H have degree 3 this implies that H only has four vertices:
two joined to z0 and two joined to y0. The graph G − v − (N(v) \ {z0}) is connected,
so as above, there is an (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting of G where
all edges incident to v have weight b, and the neighbours of v distinct from z0 which
have degree 3 are incident to exactly one b-edge. Observation 2.2.19 implies that the
only possible conflict is vz0 in the case where z0 has degree at least 5. In this case, it
is easy to see that there is an z0-changing cycle avoiding H. By swapping the weights
on this cycle we can get rid of this conflict and obtain a proper {a, b}-edge-weighting
of G.

We will now move on to investigating trees without the {a, a + 2}-property for
any odd integer a.

2.2.4.2 Trees

As already pointed out earlier it is easy to see that a tree not isomorphic to K2 has
the {a, b}-property whenever a and b are distinct and both positive or both negative.
Therefore, when investigating the {a, a + 2}-property for trees where a is odd, the
only interesting case is a = −1. In this section we will characterise the trees without
the {−1, 1}-property by proving Theorem 2.2.6. Before we proceed to the proof of
Theorem 2.2.6 we will prove two lemmas which will be convenient to have.

Lemma 2.2.27. If G is a simple connected bipartite graph without the {−1, 1}-
property and e is a cut-edge in G, then the deletion of e results in two components
each containing an odd number of vertices.

Proof. Suppose the lemma is false, let G be a connected bipartite graph without the
{−1, 1}-property and let e = uv ∈ E(G) be a cut-edge in G such that one of the
two components of G − e has an even number of vertices. Let c : V (G) → {1, 2}
be a mod-4 vertex-colouring of G and let X, Y denote the sets of vertices coloured
1 and 2, respectively with u ∈ X. By Lemma 2.2.21 both |X| and |Y | are odd so
G has an even number of vertices. Let C1, C2 denote the two components of G − e
with u ∈ V (C1) and v ∈ V (C2). We may assume that C1 has an even number of
vertices. Since G has an even number of vertices it follows that also C2 has an even
number of vertices. Since both |X| and |Y | are odd we may also assume that both
|V (C1) ∩ X| and |V (C1) ∩ Y | are odd and both |V (C2) ∩ X| and |V (C2) ∩ Y | are
even. In what follows we can assume that the degrees of u and v have the same
parity so there are four cases to be considered. In all four cases we start with an
((X ∩ V (C1)) \ {u}, (Y ∩ V (C1)) ∪ {u})-(−1)-parity {−1, 1}-edge-weighting w1 of C1
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(which exists by Lemma 2.2.2) and find a way to extend this edge-weighting to a
proper edge-weighting of the whole of G.

Case 1: Both u and v have odd degree and colour 1.
By Lemma 2.2.2 there is an (Y ∩V (C2), X∩V (C2))-1-parity {−1, 1}-edge-weighting

of C2. It follows from Observation 2.2.19 that this edge-weighting together with w1
and assigning weight −1 to e, forms a proper edge-weighting of the whole G.

Case 2: Both u and v have even degree and colour 1.
By Lemma 2.2.2 there is an (X∩V (C2), Y ∩V (C2))-1-parity {−1, 1}-edge-weighting

of C2. It follows from Observation 2.2.19 that this edge-weighting together with w1
and assigning weight −1 to e, forms a proper edge-weighting of the whole G.

Case 3: Both u and v have odd degree and v has colour 2.
By Lemma 2.2.2 there is an (Y ∩V (C2), X∩V (C2))-1-parity {−1, 1}-edge-weighting

of C2. It follows from Observation 2.2.19 that this edge-weighting together with w1
and assigning weight −1 to e, forms a proper edge-weighting of the whole G.

Case 4: Both u and v have even degree and v has colour 2.
By Lemma 2.2.2, there is an (X∩V (C2), Y ∩V (C2))-1-parity {−1, 1}-edge-weighting

of C2. It follows from Observation 2.2.19 that this edge-weighting together with w1
and assigning weight −1 to e, forms a proper edge-weighting of the whole G.

Lemma 2.2.28. If G is a connected bipartite graph without the {−1, 1}-property and
e is a cut-edge in G, then there is a {−1, 1}-edge-weighting of G such that e is the
only conflict.

Proof. Let G be a connected bipartite graph without the {−1, 1}-property containing
a cut-edge e and let C1, C2 be the two components of G − e. Let c be a mod-4 vertex-
colouring of G and let X, Y denote the sets of vertices coloured 1 and 2, respectively.
By Lemma 2.2.21 both X and Y have odd size and by Lemma 2.2.27 we can assume
that both |X ∩V (C1)| and |Y ∩V (C2)| are even and both |Y ∩V (C1)| and |X ∩V (C2)|
are odd. Now Lemma 2.2.2 implies that there is an (X ∩ V (C1), Y ∩ V (C1))-1-parity
{−1, 1}-edge-weighting of C1 and an (Y ∩ V (C2), X ∩ V (C2), )-1-parity {−1, 1}-edge-
weighting of C2. Observation 2.2.19 implies that these two edge-weightings, together
with assigning weight −1 to the edge e, is a {−1, 1}-edge-weighting of G where e is
the only potential conflict.

With the above lemmas in hand we are ready for the characterisation of trees
without the {−1, 1}-property. Recall that Theorem 2.2.6 states that a tree does
not have the {−1, 1}-property if and only if it can be constructed from a disjoint
union of graphs isomorphic to K2 by repeated applications of the operation (a)-(b)
in Figure 2.3.
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Proof of Theorem 2.2.6. We refer to operation (a)-(b) in Figure 2.3 as Operation 1.
It is straightforward to check that a graph G constructed by Operation 1 from four
graphs without the {−1, 1}-property does not have the {−1, 1}-property itself: In any
proper {−1, 1}-edge-weighting of G all five edges incident to the vertices v1 ∼ v2 and
v3 ∼ v4 must have the same weight, since otherwise the proper {−1, 1}-edge-weighting
of G would yield one of at least one of the four graphs used in the construction. Thus
v1v3 will be a conflict.
By the above it suffices to prove that any tree without the {−1, 1}-property is con-
structed from a disjoint union of K2’s by repeated applications of Operation 1. Sup-
pose this is false and let T be a counterexample with minimum size. Note that
Lemma 2.2.27 implies that, for any vertex v ∈ V (T ) and any edge e ∈ E(v), the
component Ce not containing v in T −e has an odd number of vertices. We can write
|V (T )| = 1 +

∑
e∈E(v) |V (Ce)| for any vertex v ∈ V (T ) and since |V (T )| is even, this

implies that all vertices in T have odd degree.
Let P = v1 · · · vm be a longest path in T . Clearly, all neighbours of vm−1 except
vm−2 are leaves and since all vertices have odd degree the vertex vm−1 is incident to
an even number n of leaves. First suppose n ≥ 4 and let u1, . . . , un be the leaves
incident to vm−1, with u1 = vm. Since T ′ = T −{u1, . . . , un−1} has an odd number of
vertices Lemma 2.2.21 implies that T ′ has a proper {−1, 1}-edge-weighting. We can
now obtain a proper {−1, 1}-edge-weighting of T by possibly changing the weight of
vm−1un and assigning weights to the edges in E(vm−1) \ {vm−1vm−2, vm−1un} such
that all the edges vm−1u1, . . . , vm−1un have the same weight (we choose whether this
weight is 1 or −1 so that we avoid the conflict vm−2vm−1).
By the above we can assume that vm−1 has degree exactly 3. It follows from this
and the maximality of P that any neighbour of vm−2 distinct from vm−3 and vm−1 is
either a leaf or a vertex of degree 3 adjacent to two leaves. Let U ′ = {u′

1, . . . , u′
p} be

the set of leaves adjacent to vm−2 and let U ′′ = {u′′
1 , . . . , u′′

q } be the set of neighbours
of vm−2 distinct from vm−1 and vm−3 which have degree 3. Possibly p = 0 or q = 0,
but p + q is odd since vm−2 has odd degree. Let T1 and T2 be the two components
of T − vm−3vm−2 such that vm−2 ∈ V (T2). By Lemma 2.2.28, there is a {−1, 1}-
edge-weighting w of T such that the only potential conflict is vm−3vm−2. By possibly
multiplying all edge-weights by −1, we can assume that the weight of vm−3vm−2 is 1.
We look at three separate cases:

Case 1: p + q ≥ 5.
By possibly modifying the weights of the edges in E(T2) such that they all have

weight 1 or −1, the vertex vm−2 can obtain weighted degree 2 + p + q or −p − q.
Now we simply pick the one of these two options such that vm−3vm−2 is not a con-
flict. Since all vertices in T2 except vm−2 have degree at most 3, this gives a proper
{−1, 1}-edge-weighting of T .

Case 2: p + q = 3.
As in Case 1, we can modify the edge-weights such that the vertex vm−2 can ob-

tain weighted degree 2+p+q = 5 or −p−q = −3. Since all vertices in T2 except vm−2
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have degree at most 3, we can in this way find a proper {−1, 1}-edge-weighting of T ,
unless vm−3 has weighted degree 5. So we can assume that vm−3 has weighted degree
5. If p ∈ {1, 3}, then we modify the weights in T2 such that all edges incident with
u′

1, . . . , u′
p have weight 1 and all other edges in T2 have weight −1. If p = 2, then we

modify the weights in T2 such that all edges incident with u′
1, . . . , u′

p have weight −1
and all other edges in T2 have weight 1. This yields a proper {−1, 1}-edge-weighting
of T , so we can assume p = 0 and q = 3. In this case, we modify the weights in T2
such that all edges incident to vm−1 and u′′

1 have weight 1 and all other edges in T2
have weight −1. This yields a proper {−1, 1}-edge-weighting of T .

Case 3: p + q = 1.
First suppose q = 1 and p = 0. If we modify the edge weights in T2 such that they

all have weight −1, then we obtain a proper {−1, 1}-edge-weighting of T , unless vm−3
has weighted degree −1. In this case, we change the weights of the three edges incident
to vm−1 to 1 to obtain a proper {−1, 1}-edge-weighting of T . Thus, we can assume
p = 1 and q = 0. We can assume that T ′′′ = T − vm − vm−1 − u2 − u′

1 has a proper
{−1, 1}-edge-weighting w, since otherwise, the minimality of T implies that T ′′′ is
constructed from a disjoint union of K2’s by repeated (possibly none) applications
of Operation 1, and then so is T . By possibly multiplying all edge weights of w by
−1, we can assume that vm−3vm−2 has weight 1. Now assigning weight 1 to all edges
incident to vm−1 and weight −1 to vm−2u′

1 yields a proper {−1, 1}-edge-weighting of
T .

This concludes the section about neighbour sum-distinguishing edge-weightings
of bipartite graphs. We will now move on to consider weight-choosability of general
graphs.
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2.3 Weight-Choosability of Graphs
The material presented in this section essentially consists of one research article [Lync].

The goal of this section is to provide an upper bound on weight-choosability which
is logarithmic in the maximum degree. More precisely, we will prove that any graph
G which has no components isomorphic to K2 is (1, 2⌈log2(∆(G))⌉ + 1)-choosable.
Thus, we will also allow a list of size 1 assigned to each vertex of G, which means
that each vertex has a prescribed weight. This result will be implied by a slightly
stronger and more technical result: Given a graph G and an assignment of 1-element
lists to the vertices Lv ⊂ R, v ∈ V (G) and an assignment of lists to the edges
Le ⊂ R, e ∈ E(G), we will show that if G has no components isomorphic to K2 and
if |Le| ≥ ⌈log2(d(u))⌉ + ⌈log2(d(v))⌉ + 1 for each e = uv ∈ E(G), then there exists a
proper total weighting w : V (G) ∪ E(G) → R such that w(v) ∈ Lv for each v ∈ V (G)
and w(e) ∈ Le for each e = uv ∈ E(G).
Given a graph G and a function ϕ : E(G) → N we say that G is (1, ϕ)-choosable
if for any assignment of 1-element lists to the vertices Lv ⊂ R, v ∈ V (G) and any
assignment of lists to the edges Le ⊂ R, e ∈ E(G) satisfying |Le| ≥ ϕ(e), there exists
a proper total weighting w : V (G)∪E(G) → R such that w(v) ∈ Lv for each v ∈ V (G)
and w(e) ∈ Le for each e = uv ∈ E(G). With this definition we can state the main
theorem of this section as follows.

Theorem 2.3.1. Any graph G without a component isomorphic to K2 is (1, ϕ)-
choosable when ϕ : E(G) → N is defined by ϕ(uv) = ⌈log2(d(u))⌉ + ⌈log2(d(v))⌉ + 1
for uv ∈ E(G).

The proof of Theorem 2.3.1 consists of formulating an algorithm which will find
appropriate edge-weights. The algorithm will consist of two parts. The first part
of the algorithm assigns some edge-weights in a greedy way while keeping track of
potential conflicts. The second part of the algorithm repairs conflicts which may be
present after the first part. Since the algorithm consists of a number of iterations
and there are technical details and several case-distinctions in each iteration, the two
parts of the algorithm are written in pseudo-code. Before presenting the algorithm in
pseudo-code the proof will start with an overview of the algorithm and the notation
used in the procedures of the algorithm.

Proof of Theorem 2.3.1. Let G be a graph with no components isomorphic to K2,
with n vertices, and with m edges e1, . . . , em. Let an assignment of 1-element lists
to the vertices Lv ⊂ R, v ∈ V (G) and an assignment of lists to the edges Le ⊂ R,
e ∈ E(G) satisfying |Le| ≥ ϕ(e) be given. Clearly we can assume that |Le| = ϕ(e) for
each e ∈ E(G).
For any vertex v let sv denote the weight making up the list of size 1 assigned to v
and for j = 1, . . . , m let Lj = {tj,1, . . . , tj,ϕ(ej)} be the list assigned to ej . We can
assume that the ordering of each Lj is such that tj,1 < · · · < tj,ϕ(ej).
Through some number of steps i = 0, . . . , k + 1 ≤ n + 1 we will recursively construct
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a sequence of edge-weightings wi : E(G) → R where each wi+1 will be a modification
of wi and where wk+1 will be our final edge-weighting. All the edge-weightings wi

will satisfy wi(e) ∈ Le for each e ∈ E(G). For each i ∈ {0, . . . , k + 1} and for each
vertex v ∈ V (G) let Cwi(v) = sv +

∑
e∈E(v) wi(e).

A step or an iteration in the algorithm is when we go from considering wi to consid-
ering wi+1, so the algorithm will consist of k + 1 steps/iterations. In each step we
will define a set of edges whose weights will never be changed again. This will define
a sequence of edge sets ∅ = E0 ⊂ E1 ⊂ · · · ⊂ Ek+1 = E(G).
For each edge ej = uv and each step i of the algorithm we define three values

fu,i(ej) ∈ [0, ⌈log2(d(u))⌉],

fv,i(ej) ∈ [0, ⌈log2(d(v))⌉],

fi(ej) = fu,i(ej) + fv,i(ej) + 1.

If nothing else is explicitly stated it will always be the case that

fu,i(ej) = fu,i−1(ej),

fv,i(ej) = fv,i−1(ej),

fi(ej) = fu,i(ej) + fv,i(ej) + 1.

During the first k steps of the algorithm we will also define a sequence of subsets
of V (G)×E(G): ∅ = T0 ⊂ T1 ⊂ · · · ⊂ Tk. Each element (v′, uv) of Tk will represent a
triangle v′uv in the graph. These triangles will be defined such that the only possible
conflicts in the whole graph after the k first steps of the algorithm are v′u and v′v
whenever (v′, uv) ∈ Tk. The potential conflicts will then be disposed of in the last
part of the algorithm.
In each of the first k steps of the algorithm we will also define a sequence of vertex
sets ∅ = V0 ⊂ V1 ⊂ · · · ⊂ Vk. We will do this by, in each step i, extending Vi−1 to Vi

by adding at most four vertices to Vi−1.
As mentioned the algorithm consists of two parts. These parts are explained in details
below. The first part is Procedure 1 and the second part is Procedure 2. Procedure 1
is a greedy way to assign edge-weights and allows us to keep track of potential conflicts
by ”saving” them in triangles. When we are in a step i of Procedure 1, then for a
vertex v ∈ V (G) \ Vi−1, the number Cwi−1(v) is called the potential of v.
The conflicts remaining after Procedure 1 will be disposed of in Procedure 2.
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Procedure 1 Greedy weight-choosing
1: Define i = 1, E0 = ∅, V0 = ∅, T0 = ∅, fu,0(ej) = fv,0(ej) = 0, and w0(ej) =

tj,f0(ej) for all ej ∈ E(G).
2: while Ei ̸= E(G) do
3: Choose a vertex vi in the set V (G) \ Vi−1 minimizing Cwi−1(vi) and subject

to that, incident to the fewest number of edges in E(G) \ Ei−1.
4: if G − (Ei−1 ∪ E(vi)) contains no isolated edge uv where Cwi−1(u) = Cwi−1(v)

then
5: Define Vi = Vi−1 ∪ {vi} and Ei = Ei−1 ∪ E(vi) and Ti = Ti−1.
6: for each edge viv in E(vi) \ Ei−1 do
7: if E(v) \ Ei ̸= ∅ then
8: Choose an edge e in E(v) \ Ei minimizing fv,i−1(e) and define
9: fv,i(e) = fv,i−1(e) + 1.

10: for any edge ej ∈ E(G) do
11: Define wi(ej) = tj,fi(ej).
12: if G − (Ei−1 ∪ E(vi)) contains an isolated edge uv where Cwi−1(u) = Cwi−1(v)

then
13: if u is adjacent to vi and v is not adjacent to vi (as in Figure 2.14) then
14: Define Vi = Vi−1 ∪ {v} and Ei = Ei−1 ∪ E(v) and Ti = Ti−1.
15: Define fu,i(viu) = fu,i−1(viu) + 1.
16: for any edge ej ∈ E(G) do
17: Define wi(ej) = tj,fi(ej).
18: if Cwi

(vi) = Cwi
(u) and uvi is an isolated edge in G − Ei then

19: Define fu,i(uv) = fu,i−1(uv) + 1.
20: if both u and v are adjacent to vi (as in Figure 2.15) then
21: if vi is not incident to an isolated edge viv

′ in G−(Ei−1 ∪{uv, viu, viv})
then

22: Vi = Vi−1 ∪{u, v}, Ei = Ei−1 ∪{uv, viu, viv}, Ti = Ti−1 ∪{(vi, uv)}.
23: Define fu,i(viu) = fu,i−1(viu) + 1.
24: for any edge ej ∈ E(G) do
25: Define wi(ej) = tj,fi(ej).
26: if vi is incident to an isolated edge viv

′ in G − (Ei−1 ∪ {uv, viu, viv})
then

27: Define Vi = Vi−1 ∪{u, v, vi, v′}, Ei = Ei−1 ∪{uv, viu, viv, viv
′}, and

Ti = Ti−1 ∪ {(vi, uv)}.
28: Define fu,i(viu) = fu,i−1(viu) + 1.
29: if now Cwi(vi) = Cwi(v′) then
30: Redefine fu,i(viu) = fu,i−1(viu) + 2.
31: for any edge ej ∈ E(G) do
32: Define wi(ej) = tj,fi(ej).
33: Replace i with i + 1.
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(a) The case in line 13 in Pro-
cedure 1.

(b) The case in line 18 in Pro-
cedure 1.

Figure 2.14: Two special cases in Procedure 1. Dashed edges indicates edges in Ei−1

(a) The case in line 21 in Pro-
cedure 1.

(b) The case in line 26 in Pro-
cedure 1.

Figure 2.15: Two special cases in Procedure 1. Dashed edges indicates edges in Ei−1

When Procedure 1 terminates we have a well-defined edge-weighting wk : E(G) →
R and a set Tk ⊂ V (G) × E(G) representing some triangles in G.
Let (u1, e′

1), . . . , (u|Tk|, e′
|Tk|) denote the elements of Tk enumerated in the order they

appeared in Procedure 1. Note that when we repair conflicts in Procedure 2 below,
we consider the triangles in Tk in reverse order starting with (u|Tk|, e′

|Tk|).
When Procedure 2 terminates we have an edge-weighting wk+1 of G and it remains
to show that for any pair of adjacent vertices u, v we have Cwk+1(u) ̸= Cwk+1(v) and
that fk+1(e) ≤ ϕ(e) holds for any edge e ∈ E(G).
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Procedure 2 Finalisation (see Figure 2.18).
1: for i = |Tk| . . . 1 do
2: Define (v′, uv) = (ui, e′

i).
3: if one of u, v, say, v has the same colour as v′ then
4: Define fv,k+1(uv) = fv,k(uv) + 1.
5: if now u has the same colour as v′ then
6: Define fv,k+1(uv) = fv,k(uv) + 2.
7: for any edge ej ∈ E(G) do
8: Define wk+1(e′

j) = tj,fk+1(e′
j
).

Figure 2.16: An illustration of Procedure 2.

First we prove that for any edge uv we have Cwk+1(u) ̸= Cwk+1(v). To do this we
look at three different cases:

1. (v′, uv) /∈ Tk for all v′ ∈ V (G) and (u, e′) /∈ Tk and (v, e′) /∈ Tk for all e′ ∈
E(u) ∪ E(v).

2. (v′, uv) ∈ Tk for some v′ ∈ V (G).

3. (u, e′) ∈ Tk or (v, e′) ∈ Tk for some e′ ∈ E(u) ∪ E(v) .

Case 1:
We split the analysis into two separate subcases.

Case 1.1: For some i ≤ k the edge uv is isolated in G − Ei.
Let i ≤ k be the smallest index such that uv is an isolated edge in G − Ei. In a
later step of Procedure 1 one of u, v, say u, is chosen as the vertex with minimum
potential. That is, for some smallest i′ > i we have u = vi′ , v /∈ Vi′ and u /∈ Vi′−1.
Since uv is an isolated edge in G−Ei and hence also in G−Ei′−1 it follows from lines
4-11 in Procedure 1 that in the i′’th step of Procedure 1 no edge-weights changed and
Ei′ = Ei′−1 ∪{uv}. Also the weight of uv does not change during Procedure 2. Thus,
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Cwi
(u) = Cwk

(u) = Cwk+1(u) and Cwi
(v) = Cwk

(v) = Cwk+1(v), so it suffices to show
that Cwi

(u) ̸= Cwi
(v). If the if-statement in line 4 of Procedure 1 was satisfied in

the i’th step, then Cwi(u) ̸= Cwi(v) follows immediately, so we can assume that the
if-statement in line 12 was satisfied in the i’th step. Furthermore, if the if-statement
in line 20 was satisfied, then it follows from the lines 20-32, that any isolated edge
in G − Ei is also an isolated edge in G − Ei−1 and this contradicts the choice of i.
Thus, we can assume that the if-statement in line 13 was satisfied in the i’th step of
Procedure 1. Now it follows from lines 13-19 in Procedure 1 that Cwi

(u) ̸= Cwi
(v).

Case 1.2: For all i ≤ k the edge uv is not isolated in G − Ei.
Let i ≤ k be the smallest index such that uv ∈ Ei. We can assume that v /∈ Vi−1,
v ∈ Vi and u /∈ Vi−1. If also u ∈ Vi, then since (v′, uv) /∈ Tk for all v′ ∈ V (G), it follows
from Procedure 1 that the if-statements in lines 12, 20, and 26 were satisfied in the i’th
loop of Procedure 1 and that uv is a pendant edge in a component of G − Ei−1 which
is isomorphic to a triangle with a pendant edge added, see Figure 2.15. In this case it
follows from lines 26-32 in Procedure 1 that Cwi

(u) ̸= Cwi
(v). Since E(u)∪E(v) ⊂ Ei

this implies that Cwk
(u) ̸= Cwk

(v). Furthermore, since (v′, uv) /∈ Tk for all v′ ∈ V (G)
and (u, e′) /∈ Tk and (v, e′) /∈ Tk for all e′ ∈ E(u) ∪ E(v), the weighted degrees of u
or v do not change in Procedure 2 and hence Cwk+1(u) ̸= Cwk+1(v).
By the above we can assume u /∈ Vi and since (v′, uv) /∈ Tk for all v′ ∈ V (G) and
(u, e′) /∈ Tk and (v, e′) /∈ Tk for all e′ ∈ E(u) ∪ E(v) we can assume that either the
if-statement in line 4 or both the if-statements in lines 12 and 13 in Procedure 1 were
satisfied in the i’th step of Procedure 1. If the if-statement in line 4 was satisfied then
Cwi

(v) < Cwi
(u) follows from lines 4-11 since uv is not an isolated edge in G − Ei−1.

Also, if the if-statements in lines 12 and 13 were satisfied Cwi(v) < Cwi(u) follows
from lines 12-17 (note that the if-statement in line 18 was not satisfied in the i’th step
as uv is not isolated in G − Ei for any i ≤ k). Now we have that Cwi

(v) < Cwi
(u)

and hence Cwk+1(v) = Cwi
(v) < Cwi

(u) ≤ Cwk+1(u).

Case 2:
Let i be the smallest index such that (v′, uv) ∈ Ti for some v′ ∈ V (G). Since we
added (v′, uv) to Ti−1 we have Cwi−1(u) = Cwi−1(v). By lines 20-32 in Procedure 1 we
increased the value of Cwi−1(u) to make sure that Cwi

(u) ̸= Cwi
(v) and never changed

these two values before Procedure 2. It follows from the lines 2-6 in Procedure 2 that
we can only change the value of wk(uv), but not wk(uv′) or wk(vv′) in step k + 1.
Thus, we have that

Cwk+1(u) = Cwi
(u) − wi(uv) + wk+1(uv) ̸= Cwi

(v) − wi(uv) + wk+1(uv) = Cwk+1(v).

Case 3:
Assume that (u, e′) ∈ Tk and e′ = vv′. At some point in Procedure 2 the triangle
(u, e′) is considered. Note that there might exist a vertex u′ and an edge e′′ incident
to u such that (u′, e′′) ∈ Tk. If this is the case then that triangle (u′, e′′) appeared
later than (u, e′) in Procedure 1 and is therefore considered earlier than (u, e′) in
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Procedure 2 (see Figure 2.17). This implies that at the time Procedure 2 reaches (u, e′)
and throughout the rest of Procedure 2 the weighted degree of u does not change. By
lines 2-6 in Procedure 2 we changed the value of wk(e′) ensuring Cwk+1(u) ̸= Cwk+1(v)
as well as Cwk+1(u) ̸= Cwk+1(v′). So Cwk+1(u) ̸= Cwk+1(v).

Figure 2.17: How two triangles (u′′, e′′) and (u, e′) in Tk can appear in G. In this
case (u′′, e′′) will be considered before (u, e′) in Procedure 2.

Figure 2.18: An illustration of how edge-weights can increase during Procedure 1. The
five graphs illustrate the same vertices in five different steps j1, . . . , j5 of the algorithm.
A number on an edge e indicates how many times fu(e) has been increased and the
red colour indicates vertices belonging to Vj1 , . . . , Vj5 . The five shown steps illustrate
how the neighbours of u are, one by one, added into Vj1 , . . . , Vj5 in such a way that
fu(uv) is increased as many times as possible. This can be thought of as a worst case
scenario for fu(uv).
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It remains to show that fk+1(e) ≤ ϕ(e) = ⌈log2(d(u))⌉ + ⌈log2(d(v))⌉ + 1 holds for
any edge e = uv in G. This time we also look at the three different cases mentioned
above.

Case 1:
Let ℓ be the smallest index such that e = uv ∈ Eℓ. We may without loss of gen-
erality assume v /∈ Vℓ−1, v ∈ Vℓ and u /∈ Vℓ−1. We start by looking at how large
fu,ℓ−1(e) can possibly be. This is the number of times fu,i(e) (for i = 0, . . . , ℓ − 1)
has increased during Procedure 1 before step ℓ. Suppose we increase fu,i−1(e) in the
steps i1, i2, . . . , ifu,ℓ−1(e). Since we are interested in an upper bound for fu,ℓ−1(e) we
may assume that in any step j′ where Procedure 1 chose a vertex in N(u) as vj′

and e minimised fu,j′−1(x) for x ∈ E(u) \ Ej′ , the edge e was chosen (even if there
where multiple minimizers) in line 8 in Procedure 1. Note that this implies that
in each of the steps ij for j ∈ {1, . . . , fu,ℓ−1(e)} the term fu,ij−1(x) is constant for
x ∈ E(u) \ Eij

.
In step i1 a vertex in N(u) was picked as vi1 and put into Vi1 and fu,i1−1(e) was
increased by 1. Note that by the above we can assume that Vi1 ∩ N(u) = {vi1}. In
step i2 another vertex in N(u) was picked as vi2 and fu,i2−1(e) was increased because
fu,i2−1(x) was constant for x ∈ E(u) \ Ei2 . Since fu,i2−1(e) = 1 it follows that at
least

⌊
d(u)

2

⌋
of the edges incident to u were in Ei2−1, see Figure 2.18. Similarly, for

step i3 we have |(E(u) \ Ei2) ∩ Ei3−1| ≥
⌊

|E(u)\Ei2 |
2

⌋
. Hence

|E(u) ∩ Ei3−1| = |E(u) ∩ Ei2 | + |(E(u) \ Ei2) ∩ Ei3−1|

≥ |E(u) ∩ Ei2 | +
⌊

|E(u) \ Ei2 |
2

⌋
= |E(u) ∩ Ei2−1| + 1 +

⌊
|E(u) \ Ei2−1| + 1

2

⌋

≥
⌊

d(u)
2

⌋
+ 1 +


⌊

d(u)
2

⌋
+ 1

2


≥

⌊
d(u)

2

⌋
+

⌊
d(u)

2
2

⌋

=
2∑

r=1

⌊
d(u)
2r

⌋
.

We continue counting in this way and we get the following for all j ∈ {1, . . . , fu,ℓ−1(e)}:

|E(u) ∩ Eij−1| ≥
j−1∑
r=1

⌊
d(u)
2r

⌋
and

⌊
d(u)
2j−1

⌋
> 0.
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Furthermore, note that for all j ∈ {1, . . . , fu,ℓ−1(e)} we have |E(u)∩Eij−1| < d(u)−1
since uv /∈ Eij−1 and uw /∈ Eij−1 for some w ∈ N(u) \ {v} (where w ∈ N(u) is the
vertex we choose to put into Vij in step ij). Thus we have

fu,ℓ−1(e)−1∑
r=1

⌊
d(u)
2r

⌋
< d(u) − 1,

which together with
⌊

d(u)
2fu,ℓ−1(e)−1

⌋
> 0 implies fu,ℓ−1(e) ≤ ⌈log2(d(u))⌉. We can

repeat the above analysis for fv,ℓ−1(e) and get fv,ℓ−1(e) ≤ ⌈log2(d(v))⌉. If none of
fu,ℓ−1(e), fv,ℓ−1(e) increase in step ℓ of Procedure 1 we now get

fk+1(e) = fℓ−1(e) = fu,ℓ(e) + fv,ℓ−1(e) + 1 ≤ ⌈log2(d(u))⌉ + ⌈log2(d(v))⌉ + 1 = ϕ(e).

Thus, we may assume that one of fu,ℓ−1(e), fv,ℓ−1(e), say fu,ℓ−1(e) increases in step
ℓ of Procedure 1. Since (u, e′) /∈ Tk and (v, e′) /∈ Tk for all e′ ∈ E(u) ∪ E(v) it
must be that the if-statement in lines 12, 13 and 18 were satisfied in the ℓ’th step of
Procedure 1 and u is a vertex of degree 2 in G − Eℓ−1 and v is a vertex of degree 1 in
G − Eℓ−1. In this case we have |E(u) ∩ Eij−1| < d(u) − 2 for all j ∈ {1, . . . , fu,ℓ−1(e)}
and so we get:

fu,ℓ−1(e)−1∑
r=1

⌊
d(u)
2r

⌋
< d(u) − 2,

which together with
⌊

d(u)
2fu,ℓ−1(e)−1

⌋
> 0 implies fu,ℓ−1(e) ≤ ⌈log2(d(u))⌉ − 1. Hence

fk+1(e) = fℓ(e) = fu,ℓ(e) + fv,ℓ(e) + 1
= fu,ℓ−1(e) + 1 + fv,ℓ−1(e) + 1
≤ ⌈log2(d(u))⌉ − 1 + 1 + ⌈log2(d(v))⌉ + 1
= ϕ(e).

Case 2:
Let i be the smallest index such that (v′, uv) ∈ Ti for some v′ ∈ V (G). As in Case 1,
since |E(u) − Ei−1| = 2 we have fu,k(e) = fu,i−1(e) ≤ ⌈log2(d(u))⌉ − 1. Similarly
fv,k(e) = fv,i−1(e) ≤ ⌈log2(d(v))⌉ − 1, thus fk(e) ≤ ⌈log2(d(u))⌉ + ⌈log2(d(v))⌉ − 1.
Within Procedure 2, we increase the weight of uv at most twice, so we have that
fk+1(e) ≤ ⌈log2(d(u))⌉ + ⌈log2(d(v))⌉ + 1 ≤ ϕ(e).

Case 3:
In this case we may assume there is a vertex v′ and an edge e′ = vv′ such that
(u, e′) ∈ Tk. Let i be the step in Procedure 1 where we put v and v′ together into
Vi. At this step in Procedure 1 it follows from the same arguments as in Case 1
that fu,i−1(e) ≤ ⌈log2(d(u))⌉ − 1 as well as fv,i−1(e) ≤ ⌈log2(d(v))⌉ − 1, which means
fi−1(e) ≤ ⌈log2(d(u))⌉ + ⌈log2(d(v))⌉ − 1. Furthermore, in step i we increase fi−1(e)
at most twice and never change its value afterwards, thus fk+1(e) ≤ ϕ(e).
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2.4 A Local Antimagic Theorem
The material presented in this section essentially consists of one research article [Lyn18b].

The Antimagic Labelling Conjecture which was formulated in 1998 by Hartsfield
and Ringel [Har90] states that there is a sum-distinguishing edge-weighting of any
nice graph G using weights in the set {1, . . . , |E(G)|} and only using each weight
once. The Local Antimagic Labelling Conjecture is a weaker version of this conjec-
ture and was formulated by Bensmail et al. [Ben17] and independently by Arumugam
et al. [Aru17]. The Local Antimagic Labelling Conjecture states that there is a neigh-
bour sum-distinguishing edge-weighting of any nice graph G using weights in the
set {1, . . . , |E(G)|} and only using each weight once. So in this local version of the
Antimagic Labelling Conjecture we only want neighbouring vertices to have distinct
weighted degrees whereas in the original conjecture all vertices must have different
weighted degrees. The Local Antimagic Labelling Conjecture was proved to be true
by Haslegrave [Has18] using a probabilistic argument. In this section we will prove a
generalised list-version of the Local Antimagic Labelling Conjecture where instead of
using the weights {1, . . . |E(G)|} when weighting the edges of a graph G we use the
weights in an arbitrary set of |E(G)| distinct real numbers. In addition we allow each
vertex to also have a prescribed weight.

Let G be a graph, let L ⊂ R be a set of |E(G)| real numbers and let s : V (G) →
R be a function. The triple (G, L, s) is called locally antimagic if there exists a
bijection w : E(G) → L such that for any two adjacent vertices u, v we have that
s(u) +

∑
e∈E(u) w(e) ̸= s(v) +

∑
e∈E(v) w(e). Such an edge-weighting w is also called

an (L, s)-locally antimagic edge-weighting of G. The tuple (G, s) is called locally list
antimagic if the for any list L ⊂ R of |E(G)| real numbers the triple (G, L, s) is locally
antimagic. A graph G is called locally list antimagic if for any list L ⊂ R of |E(G)|
real numbers and any function s : V (G) → R, the triple (G, L, s) is locally antimagic.
For convenience we define Cw,s(v) = s(v) +

∑
e∈E(v) w(e) for any vertex v in a graph

G when w is an edge-weighting of G and s : V (G) → R is a function. We also call
Cw,s(v) the colour of v.
It can easily be checked that stars are not locally list antimagic so these graphs must
be omitted when we want to prove that some family of graphs is locally list antimagic.
The goal of this section is to prove the following theorem stating that stars are actually
the only connected graphs which are not locally list antimagic.

Theorem 2.4.1. If G is a connected graph which is not locally list-antimagic, then
G is a star.

Since any star which is not isomorphic to K2 clearly satisfies the Local Antimagic
Labelling Conjecture, Theorem 2.4.1 also implies that the Local Antimagic Labelling
Conjecture is true.
Since stars play a special role in Theorem 2.4.1 we will start out with a lemma about
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stars not being locally list antimagic. If G is a star with leaves v1, . . . , vm and center
v0, L is a set of m real numbers, and s : V (G) → R is a function such that s is
constant on the leaves of G and

∑
x∈L x + s(v0) − s(v1) = l ∈ L, then we say that the

triple (G, L, s) forms a bad star.

Lemma 2.4.2. If G is a star, L is a set of |E(G)| real numbers and s : V (G) → R is a
function, then the triple (G, L, s) is not locally antimagic if and only if (G, L, s) forms a
bad star. Furthermore if (G, L, s) forms a bad star and

∑
x∈L x+s(v0)−s(v1) = l ∈ L,

then for any injective edge-weighting w : E(G) → L the only conflict which arises in
G is the edge with weight l.

Proof. Let v0 be the center of a star G and let v1, . . . , vm denote the leaves. Fur-
thermore, let ej = v0vj for j ∈ {1, . . . , m}, let L = {x1, . . . , xm} ⊂ R be an as-
signed list of real numbers and let s : V (G) → R a function. If (G, L, s) forms a
bad star, then for any injection w : E(G) → L, there is an i ∈ {1, . . . , m} so that
w(ei) =

∑
x∈L x + s(v0) − s(v1). Now we have

Cw,s(v0) = s(v0) +
∑
x∈L

x = w(ei) + s(v1) = w(ei) + s(vi) = Cw,s(vi),

which means that vi and v0 have the same colour and it is easy to see that this conflict
is indeed the only conflict.
By the above we can assume that (G, L, s) is not a bad star. Now suppose (G, L, s) is
not locally antimagic. It suffices to show that s is constant on the leaves of G, since
then it is easy to see that (G, L, s) must form a bad star. So suppose s(v1) ̸= s(v2).
If m = 2 it is easy to check that (G, L, s) is locally antimagic so we can assume m ≥ 3
and proceed by induction on m.
Define G′ = G − vm and let z ∈ L be such that

∑
x∈L x + s(v0) ̸= z + s(vm).

By the induction hypothesis the triple (G′, L \ {z}, s′), where s′ is s
∣∣
V (G′) except

s′(v0) = s(v0) + z, is locally antimagic. So there is an (L \ {z}, s′)-locally antimagic
edge-weighting w′ of G′. To get an (L, s)-locally antimagic edge-weighting w of G we
simply extend w′ to w defining w(em) = z.

The proof of Theorem 2.4.1 is by induction and in order to make that induction
work smoothly it is convenient to deal with bistars in a separate lemma. Recall that
a bistar is a graph obtained from the disjoint union of two stars each having at least
two vertices by adding an edge between the centers of the stars. These two centers
are also called the centers of the bistar.

Lemma 2.4.3. Any bistar is locally list-antimagic.

Proof. Let G be a bistar with centers v0, u0 and leaves v1, . . . , vm1 adjacent to v0 and
leaves u1, . . . , um2 adjacent to u0. Suppose L ⊂ R is a set of |E(G)| real numbers and
that s : V (G) → R is a function such that (G, L, s) is not locally antimagic. Define
C1 = s(v1)−s(v0), C2 = s(u1)−s(u0) and G1 = G[v0, . . . , vm1 ], G2 = G[u0, . . . , um2 ].
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We may assume that L = {l1, . . . , lm} is in strictly increasing order, and that we have
s(v1) ≤ · · · ≤ s(vm1) and s(u1) ≤ · · · ≤ s(um2).
First we prove s(v1) = s(vm1) and s(u1) = s(um2). Suppose this is not true and that
s(v1) ̸= s(vm1). If we also have s(u1) ̸= s(um2), then let L1, L2, {l} be a partition
of L such that |L1| = m1, |L2| = m2, L1 ∪ L2 ∪ {l} = L and

∑
x∈L1

x + s(v0) ̸=∑
y∈L2

y + s(u0). By Lemma 2.4.2 the triples (G1, L1, s1) and (G2, L2, s2) are both
locally antimagic, where s1 is s

∣∣
V (G1) except s1(v0) = s(v0)+l and s2 is s

∣∣
V (G2) except

s2(u0) = s(u0) + l. But an (L1, s1)-locally antimagic edge-weighting of G1 together
with an (L2, s2)-locally antimagic edge-weighting of G2 can be extended to an (L, s)-
locally antimagic edge-weighting of G by assigning weight l to the edge v0u0. Thus,
we can assume that (G2, L2, s2) is a bad star which implies that s(u1) = s(um2).
Let L′

2 ⊂ L be such that |L′
2| = m2 and

∑
x∈L′

2
x = C2 if such a set L′

2 exists. If such
a set does not exist, then let L′

2 ⊂ L be an arbitrary subset of L with |L′
2| = m2. Let

l be an element in L \ L′
2. Consider the triple (G2, L′

2, s′) where s′ is s
∣∣
V (G2) except

s′(u0) = s(u0) + l. If there is no subset of L of size m2 whose numbers sum to C2,
then Lemma 2.4.2 implies that (G2, L′

2, s′) is locally antimagic. On the other hand,
if

∑
x∈L′

2
x = C2, then we have∑

x∈L′
2

x+s′(u0)−s(u1) = C2 +s′(u0)−s(u1) = s(u1)+s′(u0)−s(u0)−s(u1) = l /∈ L′
2,

in which case Lemma 2.4.2 also implies that the triple (G2, L′
2, s′) is locally antimagic.

So (G2, L′
2, s′) is locally antimagic and, as before, we can now find an (L, s)-locally

antimagic edge-weighting of G assigning weight l to the edge v0u0.
The above shows that s(v1) = s(vm1) and s(u1) = s(um2). We say that l ∈ L

is C1-representing if there is a subset L1 ⊂ L with |L1| = m1 such that l ∈ L1 and∑
x∈L1

x = C1. Similarly, we say that l is C2-representing if there is a subset L2 ⊂ L
with |L2| = m2 such that l ∈ L2 and

∑
x∈L2

x = C2.
If some l ∈ L is neither C1-representing nor C2-representing, then we assign weight l to
the edge u0v0 and choose L1 and L2 such that |L1| = m1, |L2| = m2, L1∪L2∪{l} = L,
and

∑
x∈L1

x + s(v0) ̸=
∑

y∈L2
y + s(u0). Furthermore we distribute the weights in

L1 to the edges v0v1, . . . , v0vm1 and the weights in L2 to the edges u0u1, . . . , u0um2

arbitrarily. By Lemma 2.4.2 applied to both (G1, L1, s1) and (G2, L2, s2) where s1 is
s
∣∣
G1

except s1(v0) = s(v0) + l and s2 is s
∣∣
G2

except s2(u0) = s(u0) + l, this yields an
(L, s)-locally antimagic edge-weighting of G.
Thus, we can assume that any l ∈ L is C1-representing or C2-representing. Define
t =

∑
x∈L x − C1 − C2. If t ∈ L, then let l = t, otherwise let l be an arbitrary number

in L. Without loss of generality assume that l is C1-representing. Let L1 ⊂ L be such
that |L1| = m1, l ∈ L1 and

∑
x∈L1

x = C1. Let L2 ⊂ L \ L1 be such that |L2| = m2
and

∑
x∈L1

x + s(v0) ̸=
∑

y∈L2
y + s(u0) and define (L \ L1) \ L2 = {z}.

We must have
∑

x∈L2
x ̸= C2, since otherwise

C1 + C2 + z =
∑

x∈L1

x +
∑

x∈L2

x + z =
∑
x∈L

x,
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which implies z = t, but t /∈ (L \ L1) \ L2, a contradiction.
Now we distribute the weights in L1 to the edges v0v1, . . . , v0vm1 and the weights
in L2 to the edges u0u1, . . . , u0um2 arbitrarily and assign weight z to the edge v0u0.
The vertices v0 and u0 will now have different colours. Since∑

x∈L1

x + s(v0) + z − s(v1) = C1 + s(v0) + z − s(v1) = z /∈ L1,

Lemma 2.4.2 implies that there are no conflicts between v0 and v1, . . . , vm1 . For
i ∈ {1, . . . , m2} let li ∈ L2 denote the weight assigned to u0ui. Note that the difference
between the colour of u0 and the colour of ui is∑

x∈L2

x + z + s(u0) − li − s(ui) =
∑
x∈L

x − C1 − C2 − li = t − li ̸= 0,

which implies that there are no conflicts between u0 and u1, . . . , um2 . Hence there
are no conflicts which means that (G, L, s) is locally antimagic.

Let G be a graph, let L = {l1, . . . , lm} be a list of |E(G)| real numbers in strictly
increasing order and let s : V (G) → R be a function. For a vertex v ∈ V (G) we define
its minimum potential to be the number s(v) + l1 + · · · + ldG(v), that is, the smallest
colour it can receive from any injective mapping w : E(G) → L. We are now ready
for the proof of Theorem 2.4.1.

Proof of Theorem 2.4.1. Suppose the theorem is false and let G be a counterexample
of minimum order. Let L = {l1, l2, . . . , lm} be a list of |E(G)| real numbers in strictly
increasing order and let s : V (G) → R be a function such that (G, L, s) is not locally
antimagic.

Claim: If v ∈ V (G) and dG(v) ≥ 2, then v is not adjacent to dG(v) − 1 leaves in
G.
Proof of the claim. Suppose v ∈ V (G) is a vertex with degree dG(v) = k > 1
adjacent to k −1 leaves v1, . . . , vk−1 and let vk be the neighbour of v with dG(vk) > 1.
First we prove that s(v1) = . . . = s(vk−1). Suppose this is not true and assume that
s(v1) ̸= s(v2). Let L′ ⊂ L be such that |L′| = k−1 and define G′ = G−{v1, . . . , vk−1}.
By Lemma 2.4.3 the graph G is not a bistar so G′ is not a star and the minimality of
G implies that G′ is locally list-antimagic. This means that (G′, L \ L′, s′) is locally
antimagic where s′ is s

∣∣
V (G′) except that s′(v) = s(v) +

∑
x∈L′ x. But we can extend

any (L \ L′, s′)-locally antimagic edge-weighting of G′ to an (L, s)-antimagic edge-
weighting of G by distributing the weights in L′ to the edges vv1, . . . , vvk−1 in a
way that yields no conflicts between v and any of v1, . . . , vk−1 (this can be done by
Lemma 2.4.2 since s(v1) ̸= s(v2)).
The above shows that s(v1) = . . . = s(vk−1). Define C1 = s(v1) − s(v). Again, let
L′ ⊂ L be such that |L′| = k − 1 and

∑
x∈L′ x = C1 (if such L′ does not exist, then

just choose an arbitrary set L′ ⊂ L with |L′| = k −1). Again, by the minimality of G,
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the triple (G′, L \ L′, s′) is locally antimagic where G′ = G − {v1, . . . , vk−1} and s′ is
s
∣∣
V (G′) except that s′(v) = s(v) +

∑
x∈L′ x. But we can extend any (L \ L′, s′)-locally

antimagic edge-weighting w′ of G′ to an (L, s)-antimagic edge-weighting of G by
distributing the weights in L′ to the edges vv1, . . . , vvk−1 arbitrarily: by Lemma 2.4.2
there are no conflicts between v and v1, . . . , vk−1 if

∑
x∈L′ x = C1, since∑

x∈L′

x + w′(vvk) + s(v) − s(v1) = C1 + w′(vvk) + s(v) − s(v1) = w′(vvk) /∈ L′,

and in the case where there are no subset of L of size k − 1 whose weights sum to C2,
then Lemma 2.4.2 also implies that there are no conflicts between v and v1, . . . , vk−1.
⋄

Let v ∈ V (G) be a vertex with smallest minimum potential and subject to that
with largest degree. First suppose v has degree 1. Then the neighbour v′ of v must
have degree at least two and hence has strictly larger minimum potential than v. Also
note that by Lemma 2.4.3 and the fact that G is not a star we have that G − v is not
a star. So by the minimality of G the triple (G − v, L \ {l1}, s′), where s′ is s

∣∣
V (G−v)

except s′(v′) = s(v′)+ l1, is locally antimagic. But any (L\{l1}, s′)-locally antimagic
edge-weighting of G−v can be extended to an (L, s)-locally antimagic edge-weighting
of G by assigning weight l1 to the edge vv′. Thus we can assume that dG(v) > 1.
Define G′ = G−v and let C1, . . . , Cn denote the components of G′. Let e1, . . . , edG(v)
denote the edges incident to v and let v1, . . . , vdG(v) be the corresponding neighbours
of v. We can assume that v1 is not a leaf in G. Define L′ = L \ {l1, . . . , ldG(v)} and
s′ : V (G′) → R by s′(u) = s(u) if u /∈ NG(v) and s′(vi) = s(vi) + li if vi ∈ NG(v).
Since v has smallest minimum potential in G and since v1 is not a leaf in G, any (L′, s′)-
locally antimagic edge-weighting of G′ can be extended to an (L, s)-locally antimagic
edge-weighting of G by assigning weight li to each of the edges ei (the colour of v
will be strictly less than the colour of any other vertex in G). So we can assume
that there is no (L′, s′)-locally antimagic edge-weighting of G′ and by the minimality
of G this means that some of the components among C1, . . . , Cn are stars. If Cj is
a star, then, by the above Claim, the vertex v must be incident with at least two
edges vvj1 , vvj2 going to Cj . If the tuple (Cj , s′

∣∣
V (Cj)) is not locally list-antimagic,

then, by Lemma 2.4.2, the function s′ must have the same value on all leaves of
Cj . If we now modify s′ to another function s′′ by replacing s′(vj1) = s(vj1) + lj1 by
s′′(vj1) = s(vj1)+ lj2 and replacing s′(vj2) = s(vj2)+ lj2 by s′′(vj2) = s(vj2)+ lj1 , then
the tuple (Cj , s′′

∣∣
V (Cj)) will be locally list-antimagic since s′′ does not have the same

value on all leaves of Cj . In this way we can modify s′ and obtain s′′ such that all
the tuples (C1, s′′

∣∣
V (C1)), . . . , (Cn, s′′

∣∣
V (Cn)) are locally list antimagic which means

that (G′, s′′) is locally list antimagic. But as before any (L′, s′′)-locally antimagic
edge-weighting of G′ can be extended to an (L, s)-locally antimagic edge-weighting of
G, this time by assigning weight s′′(vj) − s(vj) ∈ {l1, . . . , ldG(v)} to each of the edges
vvj .
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CHAPTER 3
Three Applications of

Non-Separating
Cycles

3.1 Introduction
Recall that a cycle C in a graph G is called non-separating if G − V (C) is connected.
In 1981 Thomassen and Toft [Tho81] studied the existence of non-separating induced
cycles in graphs. They proved several results about the existence of such cycles for
example that any graph with minimum degree at least 3 contains such a cycle. They
also proved that under some mild conditions there is a non-separating induced cycle
avoiding a given connected subgraph. A classical result of this type is the result by
Tutte [Tut63] from 1963 stating that any edge e in a 3-connected graph is contained
in at least two induced non-separating cycles having only e in common.
The existence of non-separating cycles is an interesting topic on its own, however, in
this thesis we will focus on using these cycles rather than proving theorems about
their existence. We will show examples of how such cycles can be useful by using them
to prove some structural theorems. Another example of such use of non-separating
cycles is by Bondy and Vince [Bon98] who used them to show that any graph of
minimum degree at least 3 contains two cycles whose lengths differ by 1 or 2, which
answered a question of Erdös. In this thesis we use non-separating cycles to prove
three different theorems. In each of the three cases we use at least one of the following
results by Thomassen and Toft or Tutte to find these non-separating cycles. A k-rail
for an integer k ≥ 3 is a graph consisting of two vertices joined by k internally
disjoint paths of which at most one has length 1. A k-rail in a graph G is a subgraph
isomorphic to a k-rail where the vertices of degree 2 also have degree two in G.

Lemma 3.1.1. [Tho81] Let G be a 2-connected graph and let G′ be a connected
subgraph of G such that G−V (G′) contains at least one cycle. Then either G−V (G′)
contains an induced cycle C such that G − V (C) is connected or there is a connected
subgraph G∗ of G with G′ ⊂ G∗ such that G − V (G∗) is a k-rail in G with k ≥ 3.
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Lemma 3.1.2. [Tho81] Let G be a connected graph. If G has minimum degree at
least 3, then G contains a non-separating induced cycle.

Theorem 3.1.3. [Tut63] Let G be a graph, let st ∈ E(G) and r ∈ V (G) \{s, t}. If G
is 3-connected, then G contains a non-separating induced cycle C such that st ∈ E(C)
and r /∈ V (C).

In Sections 3.2 and 3.3 we are sometimes interested in the existence of a cycle C
in a graph G such that G − E(C) is connected (instead of G − V (C)). Nevertheless,
we will still use the above results as tools to find such a cycle. It will be clear from
the context exactly which of the two properties we want the cycle to have.
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3.2 Spanning Trees with no Three Consecutive Vertices
of Degree 2

The material presented in this section essentially consists of one research article [Lynb].

This section is related to homeomorphically irreducible trees, in particular home-
omorphically irreducible spanning trees. Recall that a homeomorphically irreducible
tree, also called a HIT, is a tree with no vertices of degree 2. These trees were enumer-
ated by Harary and Prince [Har59]. In this section we are not interested in studying
these trees themselves, but rather the existence of such spanning trees in connected
graphs with certain properties. Actually, we are interested in a relaxation of the
notion of HISTs where we want to find spanning trees without many consecutive ver-
tices of degree 2 in connected graphs where we only put restrictions on the minimum
degree.
When we only put restrictions on the minimum degree of a connected graph G and
look for spanning trees in G without many consecutive vertices of degree 2, then
clearly we need to assume that the minimum degree is at least 3. We will prove that
this is actually sufficient to guarantee the existence of a spanning tree in which there
are no three consecutive vertices of degree 2.

Theorem 3.2.1. Every connected graph with minimum degree at least 3 contains a
spanning tree T without three consecutive vertices of degree 2.

Figure 3.1 shows a cubic graph in which every spanning tree has two adjacent
vertices of degree 2, so in Theorem 3.2.1 we need to allow the spanning tree to
contain two consecutive vertices of degree 2.

Figure 3.1: A cubic graph where any spanning tree contains two adjacent vertices of
degree 2.

In order to use induction it turns out to be more convenient to prove the following
theorem which immediately implies Theorem 3.2.1.
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Theorem 3.2.2. Every connected graph G has a spanning tree T , such that there is
no path of length 2 in T all of whose vertices have degree 2 in T and degree at least
3 in G.

To simplify the notation in the following proofs, we introduce the following defi-
nition.

Definition 3.2.3 (G-bad, G-good). Let H be a subgraph of G. We say a path of
length 2 in H is G-bad if all its vertices have degree at least 3 in G and degree 2 in
H. We say a subgraph H is G-bad if it contains a G-bad path, otherwise we call it
G-good.

Now the statement of Theorem 3.2.2 is simply that every connected graph G has
a G-good spanning tree.

We will prove Theorem 3.2.2 by considering a smallest counterexample. First we
show that such a minimum counterexample has minimum degree at least 3.

Lemma 3.2.4. A counterexample to Theorem 3.2.2 with minimum order has mini-
mum degree at least 3.

Proof. Let G be a connected graph which has no G-good spanning tree and for which
|V (G)| is minimal. Clearly |V (G)| ≥ 4.

Claim 1: G has no vertices of degree 1.
Proof of the claim. Suppose v ∈ V (G) has degree 1 and let G′ = G−v. By minimality
of G, we can find a spanning tree T ′ in G′ which is G′-good. Let T1 = T ′ + v. Clearly
T1 is a spanning tree of G. The only way how T1 could be G-bad is that v is adjacent
to an endvertex x of a G-bad path in T1, say xyz. In this case, let u denote a neighbour
of x different from v and y. Now consider the tree T2 = T1 −xy+xu, which is another
spanning tree of G. If T2 is G-bad, then there must be a G-bad path xuw in T2. In
particular, the vertex w has degree 2 in T2. Finally, set T3 = T2 − uw + xy. It is easy
to see that T3 is a G-good spanning tree of G. ⋄

Claim 2: G has no vertices of degree 2.
Proof of the claim. Suppose the claim is false, let v ∈ V (G) be a vertex of degree 2
and let x and y denote the neighbours of v. First suppose x and y are not adjacent.
By minimality of G, the graph G′ = G − v + xy has a G′-good spanning tree T ′. If
xy ∈ E(T ′), then T1 = T ′ −xy +xv +yv is a G-good spanning tree, so we can assume
that xy /∈ E(T ′). In this case we can assume that T2 = T ′ + xv is a G-bad spanning
tree. Hence, x is an endvertex in a G-bad path xwz in T2. Let u be a neighbour of
x in G different from v and w. We can assume that T3 = T2 − xw + xu contains a
G-bad path xuu′. Notice that u and u′ have degree 2 in T3. Now T4 = T3 − uu′ + xw
is a G-good spanning tree. Thus we may assume that x and y are adjacent and hence
every vertex of degree 2 is contained in a triangle in G.
If one of x, y, say x, does not have degree 3 in G, then any (G − vx)-good spanning
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tree of G−vx is also a G-good spanning tree, so by the minimality of G we can assume
that both x and y have degree 3 in G. Let x′ and y′ denote the neighbours of x and
y which are different from x, y and v. If G′ = G − v − xy is connected, then let T ′

be a G′-good spanning tree of G′. If both T1 = T ′ + vx and T2 = T ′ + vy are G-bad,
then x′ and y′ have degree 2 in T ′ and T3 = T1 + xy − yy′ is a G-good spanning tree.
Thus we may assume that G′ is disconnected. In particular x′ ̸= y′ and both x′ and
y′ have degree at least 3 since xx′ and yy′ are not contained in triangles.
Let G′′ = G − v − x − y + x′y′ and let T ′′ be a G′′-good spanning tree of G′′. Since G′

is disconnected we have that x′y′ ∈ E(T ′′). If both x′, y′ have degree 2 in T ′′, then
T4 = T ′′ − x′y′ + x′x + xv + vy + yy′ is a G-good spanning tree of G. So one of x′, y′

does not have degree 2 in T ′′, say x′. Now T5 = T ′′ − x′y′ + x′x + xy + yv + yy′ is a
G-good spanning tree. ⋄

Claims 1 and 2 immediately imply that G has minimum degree at least 3.

By Lemma 3.1.2 any graph with minimum degree at least 3 contains a non-
separating cycle. Let G be a counterexample to Theorem 3.2.2 with minimum or-
der. By Lemma 3.2.4 the graph G has minimum degree at least 3 so in G there
exists an induced cycle C for which G − V (C) is connected. This implies that also
G′ = G − E(C) is connected. Note that if C does not contain any vertices of degree
4 in G, then any G′-good spanning tree of G′ is also a G-good spanning tree of G,
contradicting our choice of G. In particular, every non-separating induced cycle in G
contains a vertex of degree 4. This already proves Theorem 3.2.2 for subcubic graphs
and Theorem 3.2.1 for cubic graphs.
The proof of Theorem 3.2.2 essentially consists of finding an induced non-separating
subgraph H with the property that we can extend every (G − H)-good spanning tree
of G − H to a G-good spanning tree of G. One of these reducible structures we use
is an induced non-separating cycle containing no vertices of degree 4. Two other re-
ducible structures we use are so-called Wa- and Wa,b-configurations which are defined
as follows, see Figure 3.2.

Definition 3.2.5 (Wa-configuration). A Wa-configuration in G is an induced sub-
graph H consisting of a path P = v1 · · · va and three distinct vertices v, x, y not con-
tained in P , such that v is adjacent to all vertices in V (P ) ∪ {x, y}, xv1, yva ∈ E(H),
and every vertex in V (H)\{v} has degree 3 in G. Moreover, G−H is connected, both x
and y have precisely one neighbour in G−H and no other vertex of H has a neighbour
in G − H. We call v the centre and x, y the connectors of the Wa-configuration.

Definition 3.2.6 (Wa,b-configuration). A Wa,b-configuration in G is an induced
subgraph H consisting of two disjoint paths P = v1 · · · va, Q = u1 · · · ub, and three
distinct vertices v, x, y not contained in the paths such that v is adjacent to all vertices
in V (P )∪V (Q), xv1, xu1, yva, yub ∈ E(H), and every vertex in V (H)\{v} has degree
3 in G. Moreover, G − H is connected, both x and y have precisely one neighbour in
G − H and no other vertex of H has a neighbour in G − H. We call v the centre and
x, y the connectors of the Wa,b-configuration.



78 3 Three Applications of Non-Separating Cycles

(a) A Wa-configuration. (b) A Wa,b-configuration.

Figure 3.2: Two graph configurations.

Lemma 3.2.7 below will allow us to find the reducible structures we need to finish
the proof of Theorem 3.2.2. The proof of Lemma 3.2.7 is rather technical and is
postponed to the end of this section.

Lemma 3.2.7. Let G be a connected graph of minimum degree at least 3. Let S be a
set of vertices in G containing all vertices of degree greater than 3 and possibly some
vertices of degree 3. Then at least one of the following three conditions is satisfied:

(C) There exists an induced cycle C containing no vertex of S such that G − E(C)
is connected.

(P) There exists an induced path P with endvertices in S such that G − E(P ) is
connected.

(W) There exists a Wa-configuration or a Wa,b-configuration in G where the center
is contained in S.

Notice that all three conditions in Lemma 3.2.7 are indeed necessary. To see that
the statement is not true if we omit condition (W), we can consider the following
construction. Let T be any homeomorphically irreducible tree. Now for every leaf t
in T , we add a Wa- or Wa,b-configuration with both connectors joined to t. Let G
denote the resulting graph, and let S denote the set of vertices which have degree at
least 4 or are centres of the configurations. Now every non-trivial block in G consists
of a Wa- or Wa,b-configuration together with a vertex of degree 2. It is easy to see
that every non-separating cycle in G contains precisely one vertex of S. Moreover,
any path containing two vertices of S also contains a cut-edge.

Now we will show how to finish the proof of Theorem 3.2.2 having Lemma 3.2.7
available.

Proof of Theorem 3.2.2. Let G be a counterexample with smallest order. By Lemma
3.2.4 the minimum degree of G is at least 3. Let S ⊂ V (G) be the set of vertices in G
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with degree at least 4. By Lemma 3.2.7 it suffices to consider the following three cases.

Case 1: There exists an induced cycle C containing no vertex of S such that
G − E(C) is connected.
By the minimality of G there exists a spanning tree T of G′ = G − E(C) which is
G′-good, but then T is also a G-good spanning tree of G.

Case 2: There exists an induced path P with endvertices in S for which G−E(P )
is connected.
We may assume that no interior vertex of P is contained in S by considering a
shortest such path. As in Case 1, by minimality of G there exists a spanning tree
T of G′ = G−E(P ) which is G′-good, but then T is also a G-good spanning tree of G.

Case 3: There exists a Wa-configuration or a Wa,b-configuration in G.
Let H denote such a configuration with centre v and connectors x and y, and let
v1 denote a common neighbour of x and v. By minimality of G, the graph G′ =
G − (H − x − y) has a G′-good spanning tree T . We can obtain a G-good spanning
tree of G by adding all edges incident with x and all edges incident with v apart from
vv1 and vy.

It remains to prove Lemma 3.2.7. This is what we will do in the rest of this section.

In order to prove Lemma 3.2.7 we will use the following lemma which is an easy
corollary of Lemma 3.1.1.

Lemma 3.2.8. Let G be a 2-connected graph and let G′ be a non-empty connected
subgraph of G such that G′ contains all vertices of degree at least 4 and G − V (G′)
contains at least one cycle. Then G − V (G′) contains an induced cycle C such that
G − V (C) is connected.

Proof. By Lemma 3.1.1 it suffices to show that G − V (G′) cannot contain a k-rail for
k ≥ 3. So suppose R is such a k-rail and x and y are the two vertices in R of degree
at leat 3. Since G′ contains all vertices of degree at least 4 in G and since k ≥ 3,
there can be no edges between R and G − R, contradicting that G is connected.

Tutte [Tut63] showed that any pair of vertices in a 3-connected graph G can be
connected by an induced path P such that G − V (P ) is connected. We will need the
following edge-version which is an easy application of this theorem. We here give a
short self-contained proof which we will also refer to in the proof of Lemma 3.2.7.

Lemma 3.2.9. For any two vertices v1, v2 in a 3-edge-connected graph G, there exists
an induced path P from v1 to v2 such that G − E(P ) is connected.

Proof. Let P be a path from v1 to v2 which maximises the size of the largest connected
component of G − E(P ). Clearly, we may assume that P is an induced path in G.
Let K denote the largest component of G − E(P ). Notice that
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(*) for any vertices z1, z2 on P belonging to the same component L ̸= K of G−E(P ),
the path z1Pz2 does not contain any vertices of K,

since otherwise we could replace z1Pz2 by a path in L to obtain a new v1v2-path P ′

for which the component of G − E(P ′) containing K is strictly larger than before,
contradicting our choice of P . Let k1 and k2 denote the first and last vertex on
P , respectively, which is contained in K. If k1 ̸= v1, then let e denote the edge of
v1Pk1 incident to k1. By (*), the edge e is a cut-edge in G which contradicts 3-edge-
connectivity.
Thus, we may assume that k1 = v1 and similarly k2 = v2. If G − E(P ) is not
connected, then there exists a vertex on P which is not in K. Let w be the first
such vertex on the path from v1 to v2. Let k denote the first vertex on wPv2 which
is contained in K, see Figure 3.3. Let ew and ek denote the last edge of v1Pw and
v1Pk, respectively. By (*), the edges ew, ek form a 2-edge-cut in G, contradicting
3-edge-connectivity. Thus, every vertex of G − E(P ) is contained in K and hence
G − E(P ) is connected.

Figure 3.3: Proof of Lemma 3.2.9.

With the above tools at hand we are ready for the proof of Lemma 3.2.7.

Proof of Lemma 3.2.7. Let B be an endblock of G. First suppose that B is 3-edge-
connected. Since S contains all vertices of degree at least 4 in G, this implies that if
there is a cut-vertex of G in B then that cut-vertex belongs to S. If B contains at
least two vertices of S, then we can use Lemma 3.2.9 to find a path between them
which satisfies (P). Thus, we can assume that B contains at most one vertex of S, say
v. If B contains no vertex of S, let v denote an arbitrary vertex of B. The block B is
2-connected and B − v has minimum degree 2, so B − v is connected and contains a
cycle. Now we can use Lemma 3.2.8 on B − v to find a non-separating induced cycle
in B not containing v. This cycle is also non-separating in G and satisfies (C).
By the above we may assume that B is not 3-edge connected. If G is not 2-connected
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let b denote the unique cut-vertex of G in B. We now choose a 2-edge cut in B
minimising the size of the component H not containing b (if b does not exist we just
minimise the size of some component H). Note that the choice of H implies that H
is 2-edge-connected and contained in the endblock B. The rest of the proof consists
of investigating three cases.

Case 1: H contains no vertex of S.
Since every vertex in H has degree 3 in G, every cut-vertex of H would give rise to
a connected subgraph H ′ ⊂ H which can be separated from G − H ′ by at most 2
edges, contradicting our choice of H. Hence, we can assume that H is 2-connected.
Let x ∈ V (H) be a vertex joined to G − H. Notice that H − x has minimum degree 2
and thus contains a cycle. By Lemma 3.2.8, there exists a non-separating induced cy-
cle in H not containing x. This cycle is also non-separating in G and thus satisfies (C).

Case 2: H contains at least two vertices of S.
Let u1 and u2 denote two vertices in H contained in S. Let P be an induced path from
u1 to u2 in H which maximises the size of the connected component K of G − E(P )
containing G − H.

Claim: G − E(P ) is connected.
Proof of the claim. Suppose G−E(P ) is not connected. As in the proof of Lemma 3.2.9
we have that for any vertices z1, z2 on P belonging to the same component L ̸= K of
G − E(P ), the subpath z1Pz2 of P does not contain any vertices of K. Let k1 and
k2 denote the first and last vertex on P , respectively, which is contained in K. If
k1 ̸= u1, then the last edge of u1Pk1 is a cut-edge in G which contradicts H being
2-edge-connected.
By the above we may assume u1 = k1 and similarly u2 = k2. Let w be the first
vertex on P which is not contained in K and let k denote the first vertex on wPu2
which is contained in K. Let ew and ek denote the last edge of u1Pw and u1Pk,
respectively. As in the proof of Lemma 3.2.9, the edges ew, ek form a 2-edge-cut in
G, contradicting the choice of H. Thus, every vertex of G − E(P ) is contained in K
and hence G − E(P ) is connected. ⋄

By the claim we have that G − E(P ) is connected and thus P satisfies (P).

Case 3: H contains precisely one vertex v of S.
We distinguish three cases depending on the structure of H − v. Notice that if H
contains a cutvertex w, then by 2-edge-connectivity of H, the vertex w has at least
two neighbours in every block of H it is contained in. In particular, w has at least
degree 4 and thus w = v is the only possible cutvertex of H. Thus, Case 3.1 is
identical to the case where H is not 2-connected.
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Case 3.1: H − v is disconnected.
Let BH be a block of H which contains at most one vertex with a neighbour in G−H.
The connected graph BH − v contains at most one vertex of degree 1, so there exists
a cycle in BH − v. By Lemma 3.2.8, the block BH contains a non-separating induced
cycle C avoiding v, see Figure 3.4. The cycle C is also non-separating in G and thus
satisfies (C).

Figure 3.4: H − v is disconnected

Case 3.2: H − v is a tree.
Notice that every vertex of degree 1 in H −v must have a neighbour in G−H. Hence,
there are at most two vertices of degree 1 in H − v. In particular, H − v is a path
P = xv1 · · · vay where both x and y have a neighbour in G − H. Thus, there exists a
Wa-configuration in G and (W) is satisfied.

Case 3.3: H − v is connected and contains a cycle.
By Lemma 3.2.8, there exists a non-separating induced cycle C in H avoiding v. If
C does not satisfy (C), then C contains every vertex of H with neighbours in G − H.
Since all vertices in H other than v have degree 3 in G and since H is 2-connected,
there must be two such vertices x and y which have neighbours in G − H, see Fig-
ure 3.5. Notice that x and y are not adjacent since otherwise the graph H − x − y
would contradict the minimality of H.
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Figure 3.5: Case 3.3

Case 3.3.1: H − v has a cut-vertex w.
Since w has degree at most 3 in H − v, there exists an edge e incident with w such
that H ′ = H − v − e is disconnected. Notice that since C does not contain v, and
since e is a cut-edge in H − v, the cycle C also exists in H ′. In particular, x and y
are contained in the same block of H − e. By definition, v is a cut-vertex in H − e.
Now suppose H − e contains a cut-vertex v′ ̸= v. Since v′ has degree at most 3
in H − e, there exists an edge e′ which is a cut-edge in H − e. Now e, e′ form a
2-edge-cut which contradicts our choice of H, see Figure 3.6(a). Thus, v is the only
cut-vertex in H − e and H − e has exactly two blocks. Let BH be the block of H − e
containing neither x nor y. Notice that BH contains an end of e. There exists at
most one vertex of degree 1 in BH − v, so BH − v contains a cycle. By Lemma 3.2.8,
there exists a non-separating induced cycle C ′ in BH avoiding v. The cycle C ′ is also
non-separating in G and thus satisfies (C), see Figure 3.6(b).

(a) The edges e and e′. (b) The cycle C in BH .

Figure 3.6: Case 3.3.1.
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Case 3.3.2: H − v is 2-connected.
We begin this case by proving the following claim.

Claim: There exists an induced path P in H from v to x such that G − V (P ) is
connected.
Proof of the claim. Let P be an induced path in H from v to x, such that the size
of the component K of G − V (P ) containing G − H is maximum. Notice that since
v is the only vertex of degree greater than 3 in H, the graph G − V (P ) is connected
if and only if G′ = G − E(P ) is connected and v is not a cut-vertex in G′. First,
suppose that G′ is disconnected and let K ′ be the component of G′ containing G−H.
As in the proof of the claim in Case 2 and the proof of Lemma 3.2.9, we have that
for any vertices z1, z2 on P belonging to the same component L ̸= K ′ of G′, the
subpath z1Pz2 of P does not contain any vertices of K ′. Note that x ∈ V (K ′) since
x has a neighbour in G − H and as in the proof of Lemma 3.2.9 we can also assume
v ∈ V (K ′). Let w be the first vertex on P which is not contained in K ′ and let k
denote the first vertex on wPx which is contained in K ′. As in the proof of the claim
in Case 2 we find two edges incident to w and k, respectively, which form a 2-edge-cut
in G contradicting the choice of H. Thus G′ is connected.
Now suppose that v is a cut-vertex in G′. Let z denote the first vertex on P after v
which has a neighbour in K. Let L denote a component different from K in G−V (P ),
in particular L is adjacent to v. Similar to before, no component M ̸= K of G−V (P )
has two neighbours z1, z2 on P such that z is contained in z1Pz2. Thus, the graph
H − {v, z} is disconnected, which contradicts 2-connectivity of H − v. ⋄

Let P be the path from the claim above. Clearly we must have y /∈ V (P ). If
H − V (P ) contains a cycle, then we can use Lemma 3.2.8 to find an induced cycle
C ′ avoiding P for which H − E(C ′) is connected. Since C ′ does not contain x, it
satisfies (C). Therefore, we may assume that T = H − V (P ) is a tree. We distinguish
two cases depending on the length of P .

Case 3.3.2.1 |E(P )| ≤ 2.
Since x is contained in a cycle not containing v, we have |E(P )| = 2. Let u denote
the middle vertex of P . Since y is not adjacent to v, each leaf of T is adjacent to
at least one of x and u. The vertices x and u are each only adjacent to one vertex
outside of P , thus the tree T can contain at most two leaves and is therefore a path.
Every vertex in T of degree 2 and different from y is adjacent to v. This shows that
there exists a Wa,b-configuration (with v as its centre) in G and (W) is satisfied.

Case 3.3.2.2 |E(P )| ≥ 3.
Let u denote the vertex at distance 2 of x on P , and w the neighbour of x on P . Since
P is induced and u and w have degree 3 in H, there exist vertices u′, w′ adjacent to
u and w, respectively and not contained in P . First suppose u′ = w′. Since u′

has degree 3 and T is connected, the vertex u′ is not adjacent to x. Now uu′w is
a non-separating induced cycle in H which also satisfies (C). Thus, we may assume
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Figure 3.7: An example of how T in Case 3.3.2.2 could look like.

that u′ ̸= w′. Let P ′ denote the (unique) path in T connecting u′ and w′. Let CP

denote the induced cycle consisting of P ′ and the edges w′w, wu, uu′. Notice that
every component of T − V (P ′) contains at least one leaf of T and that every such
leaf apart from y is adjacent to two vertices in P − u − w. Since x is not adjacent to
y, it follows that every component of T − V (P ′) has a neighbour in V (P ) \ {u, w, x}.
Thus, H − x − V (CP ) is connected. If y is not contained in CP or x has a neighbour
in H −V (CP ), then CP satisfies (C). See Figure 3.7 for a specific example of H where
Cp does not satisfy (C).

Figure 3.8: The cycles Cu and Cw in Case 3.3.2.2.

If CP does not satisfy (C), let z denote the neighbour of x in T and define the
cycles Cw and Cu as follows: the cycle Cw consists of zP ′w′ together with the edges
w′w, wx, xz, while Cu consists of zP ′u′ together with the edges u′u, uw, wx, xz, see
Figure 3.8. It is easy to see that Cw satisfies (C) unless y is contained in zP ′w′. Thus,
we may assume that y is contained in zP ′w′. Recall that x and y are not adjacent so
we also have y ̸= z. Notice that this implies w′ ̸= z and hence Cu is induced. Now
suppose G−V (Cu) is not connected. Clearly G−V (Cu) has at most two components:
one containing w′ and one containing v. Let Kw′ denote the connected component
of G − V (Cu) containing w′. Let ℓ be a leaf in T contained in Kw′ . If ℓ ̸= y, then
ℓ has a neighbour on P − V (Cu) and therefore Kw′ = G − V (Cu). Thus, we may
assume that y is a leaf in T and no other leaf of T is contained in Kw′ . Since y is
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contained in Cw we have w′ = y. If y is not adjacent to z, then there exists a vertex
k distinct from z, w′ on the zw′-path in T . Since Kw′ contains only one leaf of T ,
the vertex k has degree 2 in T . Therefore, k has a neighbour on P − V (Cu) and we
again get the contradiction Kw′ = G − V (Cu). Finally, suppose that y is adjacent
to z, see Figure 3.9. In particular, y is the only vertex in Kw′ . Now the graph
H ′ = H − x − y − w − z can be separated from G − H ′ by a 2-edge-cut, contradicting
our choice of H.

Figure 3.9: Case 3.3.2.2 where y = w′ and y is adjacent to z.
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3.3 A 3-Decomposition Theorem
The material presented in this section essentially consists of one research article [Lyn19].

In this section we will look at decompositions of graphs. Decomposition of graphs
is a well-studied area in graph theory where the typical question of interest is whether
some given graph G has a decomposition E(G) = E1 ∪ · · · ∪ Ek where each edge set
Ei in the decomposition induces a subgraph of G with a certain property. It is, for
example, not hard to see that any graph has a decomposition into an even graph (a
graph where all vertices have even degree) and a forest: given a graph G we construct
a sequence of subgraphs of G = G0 ⊃ G1 ⊃ . . . ⊃ Gn such that each Gi is obtained
from Gi−1 by removing the edges of a cycle and such that Gn is a forest. The union
of the edges we removed ∪n

i=1(E(Gi−1) \ E(Gi)) then induces an even subgraph of
G and together with E(Gn) it forms a decomposition of G into an even graph and a
forest. In the following we will prove that any connected graph G has a decomposition
E(G) = E1 ∪ E2 ∪ E3, where the subgraph of G induced by E1 is a spanning tree in
G, the subgraph of G induced by E2 is an even graph, and the subgraph of G induced
by E3 is a star forest. This result is motivated by the study of HISTs in cubic graphs
and the so-called 3-Decomposition Conjecture.

3.3.1 The 3-Decomposition Conjecture and HISTs in Cubic Graphs
If G is a cubic graph, then removing the edges of a spanning tree T in G results in
a graph whose components are isolated vertices, cycles, and paths. A HIST T ′ in
a cubic graph G is exactly a spanning tree such that the components of G − E(T ′)
are only isolated vertices and cycles. While there are many connected cubic graphs
with no HIST it is an open problem whether every connected cubic graph contains
a spanning tree T such that the paths in G − E(T ) has length exactly 1, i.e. they
form a matching. This problem was formulated by Hoffmann-Ostenhof [Cam11] as a
conjecture:

Conjecture 3.3.1 (3-Decomposition Conjecture). Every connected cubic graph can
be decomposed into a spanning tree, a collection of cycles, and a matching.

Since a HIST in a cubic graph G is a spanning tree T such that G−E(T ) contains
no paths, one can think of the paths in G − E(T ′) for a spanning tree T ′ in G as
a kind of ”error term”. So a connected cubic graph might not have a HIST, but if
Conjecture 3.3.1 is true it always has a spanning tree such that the error term is just
a matching.
Ozeki and Ye [Oze16] verified Conjecture 3.3.1 for 3-connected planar cubic graphs
and this was extended to all planar cubic graphs by Hoffmann-Ostenhof, Kaiser,
and Ozeki [Hof18]. Akbari, Jensen and Siggers [Akb15] took a slightly different
approach and proved that any cubic graph has a decomposition into a spanning
forest, a collection of cycles and a matching.
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Inspired by the 3-Decomposition Conjecture we will in the next section formulate and
prove a 3-decomposition theorem for all connected graphs.

3.3.2 A General 3-Decomposition Theorem
Above we considered cubic graphs in which case any even subgraph is a collection
of disjoint isolated vertices and cycles. As a first step towards a 3-decomposition
statement for general connected graphs we will thus replace the collection of cycles
in the decomposition by an even subgraph. One might now be tempted to think that
every connected graph admits a decomposition into a spanning tree, an even graph,
and a matching. However, this is easily seen to be false since the complete bipartite
graph K2,n for n ≥ 4 has no such decomposition. Even if we restrict our attention to
regular graphs there are graphs with no such decomposition:

Theorem 3.3.2. For each r ≥ 4, there exists an r-regular connected graph which has
no decomposition into a spanning tree, an even graph, and a matching.

Proof. Let r ≥ 4 be given and let G be the graph obtained from Kr+1 by subdividing
each edge once. Let G′ be a graph obtained from Kr+1 by subdividing r − 2 edges
once and adding an edge between each pair of vertices of degree 2. For each vertex
v of degree 2 in G, let Gv denote a copy of G′. Now let G′′ be obtained from the
disjoint union of G and all the graphs Gv by adding edges between v and the vertices
of degree r − 1 in Gv, for each vertex v of degree 2 in G. Note that G′′ is r-regular
and any decomposition of G′′ into a spanning tree, an even graph, and a matching
also induces such a decomposition of G. Clearly, the even graph cannot contain any
edges of G, therefore this corresponds to a decomposition of G into a spanning tree
and a matching. The graph G has r(r + 1) edges, and every spanning tree of G has
r + r(r+1)

2 edges, thus the matching has to contain at least r(r−1)
2 ≥ r + 2 edges.

However, the size of a maximal matching in G is r + 1, so G cannot be decomposed
into a spanning tree and a matching.

The above shows that we also need to adjust the requirement for the ”error term”
(the matching) in our 3-decomposition if we want to obtain a true statement for
general connected graphs. So we now relax the condition on the error term and only
require it to form a star forest. With this modification we do indeed obtain a true
3-decomposition statement for general connected graphs:

Theorem 3.3.3. Every connected graph can be decomposed into a spanning tree, an
even subgraph, and a star forest.

Note that the construction in the proof of Theorem 3.3.2 shows that for r-regular
graphs the size of the stars in the forest in Theorem 3.3.3 grows at least linearly in r.

In order to use induction it is more convenient to prove a slightly more technical
version of Theorem 3.3.3. In order to formulate this we will need a few definitions. A
cycle C in a connected graph G is called edge-separating if G − E(C) is disconnected.
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Definition 3.3.4 (fragile). A graph G is called fragile, if G is connected and every
cycle of G is edge-separating.

It suffices to prove that any fragile graph can be decomposed into a spanning tree
and a star forest, since we can decompose any connected graph into an even graph and
a fragile graph: given a connected graph G we can construct a sequence of connected
subgraphs of G = G0 ⊃ G1 ⊃ . . . ⊃ Gn such that each Gi is obtained from Gi−1
by removing the edges of a cycle and such that Gn is fragile (the removed edges will
then induce an even graph and E(Gi) induces a fragile graph). So in the following
we will assume that the given graph is fragile.

Definition 3.3.5 (starlit). A spanning tree T of a graph G is called starlit if G−E(T )
is a star forest.

Definition 3.3.6 (v-full). A spanning tree T of a graph G is called v-full for some
vertex v in G, if all edges incident with v in G are also in T .

We are now ready to formulate and prove a statement which implies Theorem 2.2.5.
The extension which makes the induction work smoothly is that we can prescribe all
edges incident to some given vertex to be in the spanning tree.

Theorem 3.3.7. A fragile graph G has a starlit v-full spanning tree for any v ∈ V (G).

Proof. Let G be a counterexample of minimal size and let v ∈ V (G) be such that G
has no v-full spanning tree.

Claim 1: G is 2-connected.
Proof of the claim. Suppose the claim is false and u is a cut-vertex in G. Let K be
a component of G − u, let G1 be the subgraph of G induced by K ∪ {u}, and let G2
denote the graph induced by the edges in G−E(G1). We can assume that v ∈ V (G1).
Clearly G1 and G2 are fragile and contain fewer edges than G, so G1 contains a starlit
v-full spanning tree T1, and G2 contains a starlit u-full spanning tree T2. Now the
union of T1 and T2 is a starlit v-full spanning tree in G. ⋄

Note that Claim 1 implies that the minimum degree of G is at least 2.

Claim 2: There are no adjacent vertices of degree 2 in G.
Proof of the claim. Suppose x and y are two adjacent vertices of degree 2 and let z
denote the neighbour of y different from x. We may assume without loss of generality
that v ̸= y. The graph G′ = G − xy is fragile, so by minimality of G there exists
a starlit v-full spanning tree T ′ of G′. If v ̸= x, then T = T ′ is also a starlit v-full
spanning tree of G. If v = x, then we choose instead a starlit z-full spanning tree T ′′

of G′. Now T ′′ + xy − yz is a starlit v-full spanning tree of G. ⋄

Let H be the subgraph of G induced by the vertices of degree at least 3.
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Claim 3: H contains no isolated vertices and no cycles of length 3.
Proof of the claim. Suppose u is an isolated vertex in H. That is, u is a vertex of
degree at least 3 in G all of whose neighbours have degree 2.
First, suppose u = v. Let x be a neighbour of u, and y the neighbour of x different
from u. By Claim 2, y has degree at least 3 and is therefore not adjacent to u. Let
G′ be the graph obtained from G by removing x and adding the edge uy. Since u
has only one neighbour of degree greater than 2 in G′, every cycle through u is still
edge-separating. Thus, G′ is fragile and contains a starlit u-full spanning tree T ′.
Now T = T ′ − uy + ux + xy is a starlit u-full spanning tree of G.
By the above we can assume u ̸= v. The graph G′ = G − u is connected by Claim 1.
Clearly G′ is fragile and therefore contains a v-full starlit spanning tree T ′. If v is a
neighbour of u, then T = T ′ + uv is a starlit v-full spanning tree of G. If v is not
a neighbour of u, then adding an arbitrary edge incident with u to T ′ results in a
starlit v-full spanning tree of G. This contradiction shows that the minimum degree
of H is at least 1.
Finally, suppose H contains a cycle C of length 3. Since every vertex of C has degree
at least 3, and since G is 2-connected, it is easy to see that C is not edge-separating,
which contradicts G being fragile. ⋄

Claim 4: If u is a vertex in H different from v, then dH(u) ≥ 2.
Proof of the claim. Suppose u is a vertex of degree 1 in H, u ̸= v, and x is the
neighbour of u in H. First, suppose that v is not a degree 2 vertex adjacent to u in
G. By Claim 1, the graph G′ = G − u is fragile, so it has a starlit v-full spanning
tree T ′ by minimality of G. Now T = T ′ + ux is a v-full starlit spanning tree of G.
Thus, we can assume that v has degree 2 and is a neighbour of u in G. Let T ′′ be a
starlit x-full spanning tree of G′. Clearly T = T ′′ + uv is a v-full spanning tree of G.
Since T ′′ is x-full, the spanning tree T is also starlit, contradicting our choice of G. ⋄

Claim 4 implies that there exists a cycle in H. The following claim shows that
there are at most two vertices in H which have degree less than 3 in H.

Claim 5: If dH(u) = 2, then either u = v or dG(v) = 2 and uv ∈ E(G).
Proof of the claim. Suppose u is a vertex of degree 2 in H, u ̸= v, and dG(v) ≥ 3
or uv /∈ E(G). Let x and y denote the neighbours of u in H. Note that all other
neighbours of u in G have degree 2. Let G′ be the graph obtained from G − u by
adding the edge xy. Claim 1 implies that G is connected and Claim 3 implies that G′

has no multiple edges. For a cycle C ′ in G′ containing xy, the corresponding cycle C
in G, which is obtained from C ′ by replacing xy with the path xuy, is edge-separating
if and only if C ′ is edge-separating. Thus, G′ is fragile and contains a starlit v-full
spanning tree T ′. If xy ∈ E(T ′), then T = T ′ −xy+ux+uy is a starlit v-full spanning
tree in G. Thus, we can assume xy /∈ E(T ′). Since G′ − E(T ′) is a star forest, at
least one of x and y has degree 1 in G′ − E(T ′), say x. Now T = T ′ + uy is a starlit
v-full spanning tree in G. ⋄
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Let C be a cycle in H for which the component K of G − E(C) containing v has
maximal size.

Claim 6: H is contained in the subgraph of G induced by V (K) ∪ V (C).
Proof of the claim. Suppose u is a vertex of degree at least 3 which is not in K or
C. Let L denote the component of G − E(C) containing u. There exists no cycle in
L ∩ H since that cycle would contradict the choice of C. Claim 4 now implies that
L contains a path P joining two vertices a and b on C such that all intermediate
vertices are in V (H) \ V (C). Let P1 and P2 be the two edge-disjoint subpaths of
C joining a and b. We may assume P2 contains some vertices of K. Now the cycle
formed by the union of P and P1 contradicts the choice of C. ⋄

Since G is fragile, the graph G − E(C) is disconnected so there is a vertex u on
C which is not in K. Clearly C is induced, so u has exactly two neighbours on C.
Claim 6 implies that all neighbours of u not on C have degree 2. Now dH(u) = 2 and
u ̸= v. By Claim 5, we have dG(v) = 2 and uv ∈ E(G), which implies that u is in K,
contradicting the choice of u.
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3.4 Paths whose Lengths Differ by 1 or 2
The material presented in this section essentially consists of a part of one research
article [Lyna].

In this section we will study the existence of paths whose lengths differ by 1 or
2 and which join two prescribed vertices in a 2-connected subcubic graph. As also
mentioned in Section 1.1 a result by Fan [Fan02] implies that if x and y are vertices
in a 2-connected graph G where dG(z) = 3 for all z ∈ V (G) \ {x, y}, then there exist
two x − y paths in G whose lengths differ by 1 or 2. In this section we will show
that under some mild additional conditions we can allow up to two additional vertices
besides x and y to also have degree 2 and still be guaranteed the existence of two
x − y paths whose lengths differ by 1 or 2.

To simplify parts of the proofs in this section we introduce the following definition.

Definition 3.4.1 (fC(x, y)). Let C be a cycle in a graph and let x, y be two distinct
vertices of C. We define fC(x, y) as the absolute difference of the lengths of the two
x − y paths on C.

The first theorem we will prove is the following.

Theorem 3.4.2. Let x, y, z be three distinct vertices in a subcubic 2-connected graph
G. If d(v) = 3 for all v ∈ V (G) \ {x, y, z}, then there are two x − y paths P1, P2 with
1 ≤ |E(P1)| − |E(P2)| ≤ 2.

Theorem 3.4.2 is an extension of the result implied by Fan’s result mentioned
above, since here we allow a third vertex to possibly have degree 2. Before we prove
Theorem 3.4.2 it is convenient to prove the following slightly technical lemma.

Lemma 3.4.3. Let G be a 2-connected graph which is not a 3-cycle, let xy ∈ E(G)
and let z ∈ V (G) \ {x, y}. If dG(x) ≤ 4, dG(y) ≤ 4, dG(z) ≤ 3 and dG(v) = 3
for all v ∈ V (G) \ {x, y, z}, then there are two x − y paths P1, P2 in G − xy with
1 ≤ |E(P1)| − |E(P2)| ≤ 2.

Proof. Suppose the theorem is false and let (G, x, y, z) be a counterexample where
|V (G)| + |E(G)| is minimum. Clearly we have that |V (G)| ≥ 4. Let G′ = G − xy and
note that dG′(v) ≥ 2 for every v ∈ V (G′) \ {x, y}. By the choice of G, x, and y there
are no two x − y paths in G′ whose lengths differ by 1 or 2.

Claim 1: G′ is 2-connected.
Proof of the claim. First suppose G′ is not 2-connected. Since G is not a cycle, there
exists a 2-connected block B in G′. Let Q1 be an x − B path and let Q2 be a B − y
path in G′. Since G is 2-connected, the block graph of G′ is a path, so we must have
Q1 ∩ Q2 = ∅. Let q1 and q2 be the endvertices of Q1 and Q2 in B, respectively. Note
that the only vertices of degree 2 in B are q1, q2, and possibly z. Let B′ = B + q1q2
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if q1q2 /∈ E(B) and B′ = B otherwise. If B′ is a triangle, then B′ = B and there are
two q1 − q2 paths R1, R2 in B of lengths 1 and 2. If B′ is not a triangle, then by
minimality of G there are two q1 − q2 paths R1, R2 in B whose lengths differ by 1 or
2. Now P1 = Q1 ∪ R1 ∪ Q2 and P2 = Q1 ∪ R2 ∪ Q2 are two x − y paths in G′ whose
lengths differ by 1 or 2. ⋄
A 2-edge-cut {e, f} in G′ is called non-trivial if both components of G−e−f contains
at least two vertices.

Claim 2: There are no non-trivial 2-edge-cuts in G′.
Proof of the claim. Suppose the claim is false and let e, f ∈ E(G′) be a non-trivial
2-edge-cut for which the component K of G′ − e − f containing at most one of x, y, z
has minimum order. By the choice of e and f the component K is 2-connected. Let
eK and fK denote the ends of e and f in K, respectively. We may assume x /∈ V (K).
First suppose that also y /∈ V (K). By Claim 1, the graph G′ is 2-connected so there
are two disjoint {x, y} − {eK , fK} paths Q1 and Q2 in G′. If K is a triangle, then let
P1, P2 denote the eK − fK paths in K of lengths 1 and 2, respectively. If K is not
a triangle, then by minimality of G, there are two eK − fK paths P1, P2 in K whose
lengths differ by 1 or 2. Now Q1 ∪ P1 ∪ Q2 and Q1 ∪ P2 ∪ Q2 are two x − y paths in
G′ whose lengths differ by 1 or 2.
By the above we may assume y ∈ V (K) and hence z /∈ V (K). By possibly renaming
e and f we can also assume that y ̸= eK . If K is a triangle, then let P1, P2 denote
the eK − y paths in K of lengths 1 and 2, respectively. If K is not a triangle, then
by minimality of G there are two eK − y paths P1, P2 in K whose lengths differ by 1
or 2. Let Q be an x − eK path in G′ having no edges in K. Now Q ∪ P1 and Q ∪ P2
are two x − y paths in G′ whose lengths differ by 1 or 2. ⋄

Note that Claim 1 implies that if u, v ∈ {x, y, z} and dG(u) = dG(v) = 2, then u
and v are non-adjacent. Let G′′ denote the graph obtained from G′ by suppressing
the vertices of degree 2 and note that G′′ is cubic. If G′′ is not simple, then Claim 2
implies that G′′ consists of three parallel edges. In this case G′ must be a 3-rail with
4 or 5 vertices and it is easy to see that there are two x − y paths in G′ whose lengths
differ by 1 or 2. Thus, we may assume that G′′ is simple.
By Claim 2, the graph G′′ is 3-connected, so by Theorem 3.1.3 there exists an induced
non-separating cycle C in G′ containing x and not containing y. Let w ∈ V (C) \ {z}
be such that fC(x, w) ∈ {1, 2}. Let P1 and P2 denote the two x − w paths in C, and
let Q be a w − y path intersecting C only in w. Now P1 ∪ Q and P2 ∪ Q are two x − y
paths in G′ whose lengths differ by 1 or 2.

With Lemma 3.4.3 available we can easily prove Theorem 3.4.2:

Proof of Theorem 3.4.2. The statement is trivial if G is a 3-cycle. If xy ∈ E(G) and
G is not a 3-cycle, then by Lemma 3.4.3 there exist two x − y paths in G − xy whose
lengths differ by 1 or 2. If xy /∈ E(G), then G′ = G + xy satisfies the conditions of
Lemma 3.4.3. Thus there are two x − y paths in G whose lengths differ by 1 or 2.
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The next we will look at is the case where there are exactly four vertices x1, x2, y, z
of degree 2 in a 2-connected subcubic graph G. We still want to conclude that there
are two x1 −x2 paths in G whose lengths differ by 1 or 2. However, for this to be true
it turns out that we need further assumptions. Therefore we add the assumptions
that x1 and x2 are non-adjacent and that x1 and x2 are not contained in a 4-cycle
in G. These additional assumptions are necessary as can be seen by the graph G in
Figure 3.10. Clearly this graph G shows that x1 and x2 must not be opposite vertices
in a 4-cycle.

Figure 3.10: A graph where the lengths of no two x1 − x2 paths differ by 1 or 2.

To see that it is also necessary to assume that x1 and x2 are non-adjacent, consider
the graph G′ obtained from the graph G in Figure 3.10 by removing the 4-cycle C
containing x1 and x2, and let x′

1 and x′
2 denote the two vertices of degree 2 in G′

which had degree 3 in G. Note that x′
1 and x′

2 are adjacent and not contained in a
4-cycle in G′. It is easy to check that there are no two x′

1 − x′
2 paths in G′ whose

lengths differ by 1 or 2. This shows that it is indeed necessary to assume that x1 and
x2 are non-adjacent in the following theorem.

Theorem 3.4.4. Let x1, x2, y, z be four distinct vertices of degree 2 in a 2-connected
subcubic graph G. If d(v) = 3 for all v ∈ V (G) \ {x1, x2, y, z}, the vertices x1 and x2
are not adjacent and x1 and x2 are not opposite vertices in a 4-cycle in G, then there
are two x1 − x2 paths P1, P2 with |E(P1)| − |E(P2)| ∈ {1, 2}.

Proof. Suppose the theorem is false and let (G, x1, x2, y, z) be a counterexample where
G has minimum size. Clearly we can assume that V (G) ≥ 5.

Claim 1: x1y, x1z, x2y, x2z /∈ E(G).
Proof of the claim. Suppose the claim is false and assume x1y ∈ E(G). Let x′

1 be
the neighbour of x1 distinct from y and let y′ be the neighbour of y distinct from x′

1.
Since G is 2-connected and x1x2 /∈ E(G) we have x′

1 ̸= y′ and x′
1 ̸= x2.

First suppose x′
1y′ ∈ E(G). In this case, since G is 2-connected and not a 4-cycle,

both x′
1 and y′ have degree 3 in G. We can assume that there are no two x′

1 − x2
paths in G′ = G − x1 − y whose lengths differ by 1 or 2, since otherwise there are
also two x1 − x2 paths in G whose lengths differ by 1 or 2. Thus, by minimality of
G, we have x′

1x2 ∈ E(G′) or x′
1 and x2 are contained in a 4-cycle. Similarly, we can

assume that there are no two y′ − x2 paths in G′ whose lengths differ by 1 or 2 and
again, the minimality of G implies that y′x2 ∈ E(G′) or y′ and x2 are contained in
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a 4-cycle. Note that x2 cannot be adjacent to both x′
1 and y′ since in this case G

is a 5-cycle with a chord and contains only three vertices of degree 2. Thus x2 is
contained in a 4-cycle which also contains x′

1 and it follows by 2-connectivity of G
that G is a 6-cycle with the chord x′

1y′. It is easy to see that in this case there are
two x1 − x2 paths whose lengths differ by 1 or 2.
By the above we can assume x′

1y′ /∈ E(G). Let G′′ be the graph obtained from
G − x1 − y by adding the edge e = x′

1y′. Note that G′′ is 2-connected and x2, z are
the only vertices of degree 2 in G′′. By Theorem 3.4.2, there are two x′

1 − x2 paths
Q1, Q2 in G′′ whose lengths differ by 1 or 2. If Q1 does not contain e let P1 be the
x1 −x2 path consisting of x1x′

1 and Q1. If Q1 contains e, let P1 be the x1 −x2 path we
obtain from Q1 by replacing e with the path x1yy′. We analogously define an x1 − x2
path P2 using Q2. Note that |E(P1)| = |E(Q1)| + 1 and |E(P2)| = |E(Q2)| + 1, so P1
and P2 are as desired. ⋄

Recall that a 2-edge-cut {e, f} in G is called non-trivial if both components of
G − e − f contains at least two vertices.

Claim 2: There are no non-trivial 2-edge-cuts in G.
Proof of the claim. First suppose there exists a non-trivial 2-edge-cut {e, f} such
that G − e − f has a component K containing at most one of x1, x2, y, z. We choose
such a 2-edge-cut {e, f} for which the component K containing at most one vertex in
{x1, x2, y, z} has minimal size. Note that by this choice of {e, f}, the component K is
2-connected. Let eK , fK denote the ends of e and f in K. If K does not contain any
of x1, x2, then, since G is 2-connected, there exist two disjoint {x1, x2} − {eK , fK}
paths P1, P2 in G − E(K). Since K is 2-connected, by Theorem 3.4.2 there are two
eK − fK paths Q1, Q2 in K whose lengths differ by 1 or 2. Now P1 ∪ Q1 ∪ P2 and
P1 ∪ Q2 ∪ P2 are two x1 − x2 paths whose lengths differ by 1 or 2. Thus, we may
assume x1 ∈ V (K), and note that the minimality of K implies that x1 ̸= eK . Again,
by Theorem 3.4.2, there are two x1 − eK paths Q1, Q2 in K whose lengths differ by
1 or 2. Let P be an eK − x2 path in G − E(K). Now Q1 ∪ P and Q2 ∪ P are two
x1 − x2 paths whose lengths differ by 1 or 2. Thus, we have established the following:

(*) For every non-trivial 2-edge-cut {e, f} in G, each component of G−e−f contains
two vertices in {x1, x2, y, z}.

Let {e, f} be a non-trivial 2-edge-cut for which the component K of G − e − f
containing x1 has minimal size. Now K is 2-connected by (*), Claim 1, and since x1
is not adjacent to x2. Let eK and fK denote the ends of e and f in K. Let L be the
component of G − e − f different from K. First suppose x2 ∈ V (K). By (*), we have
y ∈ V (L) and z ∈ V (L), so the minimality of G implies that there are two x1 − x2
paths in K whose lengths differ by 1 or 2. Thus we may assume x2 ∈ V (L). By (*),
we may assume y ∈ V (K) and z ∈ V (L). If x1 is not adjacent to eK and x1, eK

are not opposite vertices in a 4-cycle, then by minimality of G there are two x1 − eK

paths in K whose lengths differ by 1 or 2. Since these paths can be extended to two
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desired x1 − x2 paths in G, we may assume that x1 is adjacent to eK or x1 and eK

are opposite vertices in a 4-cycle. Similarly we can assume that either x1 is adjacent
to fK or x1 and fK are opposite vertices in a 4-cycle. If x1 is adjacent to both eK

and fK , then K is a 4-cycle where x1 and y are opposite vertices. In this case there
exist x1 − eK paths in K of lengths 1 and 3. Thus, we may assume that x1 and fK

are not adjacent and therefore they must be opposite vertices in a 4-cycle. If also x1
and eK are opposite vertices in a 4-cycle, then there are x1 − eK paths of length 2
and 4 in K. If x1 is adjacent to eK then there are x1 − eK paths of length 1 and 3 in
K. So in any case there are two x1 − eK paths whose lengths differ by 1 or 2 in K
and these paths can be extended to two desired x1 − x2 paths in G. ⋄

Let G′ denote the graph obtained from G by suppressing the vertices of degree 2.
By Claim 2 and the fact that G′ is cubic, the graph G′ is simple and 3-connected. Now
Theorem 3.1.3 implies that there is a non-separating induced cycle C in G containing
x1 and not containing z.
First suppose x2 /∈ V (C). There are two different vertices v1, v2 ∈ V (C) such that
fC(x1, v1) = fC(x1, v2) ∈ {1, 2}. In particular, there exists a vertex v ∈ V (C)
different from y for which fC(x1, v) ∈ {1, 2}. Let P be a v − x2 path in G − E(C),
and let Q1, Q2 be the two x1 −v paths on C. Now Q1 ∪P and Q2 ∪P are two x1 −x2
paths whose lengths differ by 1 or 2.
By the above we may assume x2 ∈ V (C). Let C1 and C2 be the two x1 − x2
paths on C. We may assume |E(C1)| ≤ |E(C2)|. If |E(C1)| = |E(C2)|, we may
assume that C2 does not contain y. Let v be the neighbour of x2 on C1. Note
that v ∈ V (C) \ {x1, x2, y}. For a vertex w ∈ V (C2), let Q1(w) = x1C2w and
Q2(w) = wC2x2. Moreover, for w ∈ V (C2), let

f(w) = |E(C1)| − 2 + |E(Q2(w))| − |E(Q1(w))| .

Note that as we move from x1 to x2 along C2, the function f decreases by 2 at every
vertex. We have f(x1) = |E(C)| − 2 so since |E(C)| ≥ 5, we get f(x1) ≥ 3.
By definition, f(x2) = |E(C1)|− |E(C2)|−2 ≤ −2. If f(x2) < −2, then there are two
vertices w1, w2 ∈ V (C2) \ {x1, x2} such that |f(w1)| = |f(w2)| ∈ {1, 2}. In particular,
there exists a vertex w ∈ V (C2) \ {x1, x2, y} with |f(w)| ∈ {1, 2}. If f(x2) = −2,
then |E(C1)| = |E(C2)| and y is not contained in C2. Also in this case there exists a
vertex w ∈ V (C2) \ {x1, x2, y} with |f(w)| ∈ {1, 2}.
In each case, we can choose w ∈ V (C2) such that d(w) = 3 and |f(w)| ∈ {1, 2}.
Let P be a v − w path in G′, see Figure 3.11. Now (C1 − vx2) ∪ P ∪ Q2(w) and
Q1(w) ∪ P ∪ {vx2} are two x1 − x2 paths and the difference of their lengths is

|E(C1)| − 2 + |E(Q2(w))| − |E(Q1(w))| = |f(w)|,

which is 1 or 2 by our choice of w.
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Figure 3.11: Proof of Theorem 3.4.4.
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