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Abstract 7 

The uncertainty and variability of wind power pose significant challenges to secure and reliable operation of power systems. 8 

Coordinated operation of the electric power system and district heating system, which can provide sufficient reserve capacity and 9 

flexibility, is an effective way to cope with the uncertainty. This paper proposes an adaptive robust energy and reserve co-optimi-10 

zation for the integrated electricity and heat system to minimize the total system cost under the worst-case realization of wind 11 

uncertainty considering spatial correlations of wind uncertainties. The available reserve capacity and flexibility provided by the 12 

district heating system is fully used by exploiting the regulation capabilities of combined heat and power units and electrical boilers, 13 

as well as utilizing the building thermal inertia. To reduce the conservatism of the robust solution, the spatial correlation of wind 14 

uncertainties is considered in the uncertainty set. The column-and-constraint generation algorithm is adopted to solve the adaptive 15 

robust model iteratively by reformulating the second stage with its Karush-Kuhn-Tucker conditions. Simulation results demon-16 

strate that the economic efficiency is improved by utilizing the reserve flexibility from the district heating system and considering 17 

wind farm spatial correlations. Compared with the conventional single-stage optimized model, the feasibility of the two-stage 18 

robust solution is always guaranteed by considering the real-time operation constraints of the electric power system and district 19 

heating system.  20 

Highlights 21 

A two-stage adaptive robust energy and reserve co-optimization scheme is proposed. 22 

The spatial correlation of wind uncertainty is used to control the conservatism of robust solutions. 23 

The available reserve capacity of combined heating and power units is fully utilized.  24 

Electrical boiler and buildings’ thermal inertia are introduced to increase the reserve capacity. 25 

 26 

Keywords 27 

Adaptive robust optimization, energy and reserve co-optimization, integrated electricity and heating system, wind power uncer-28 

tainty. 29 

 30 

Indices and sets 

𝜙ே/ீ/ௐ஽  Set of buses/thermal units/wind farms in EPS 

𝜙஼ு௉/ா஻  Set of CHP units/EBs 

𝜙ே஽/ுௌ/ு஽
  Set of heat nodes/heat sources/heat loads in DHS 

𝜙ௌ/ோ,௣௜௣௘ Set of supply pipelines/return pipelines in DHS 

Ω௡
஼ு௉/ா஻  Set of CHP units/electrical boilers connected to bus n 



Ω௡
ீ/ௐ஽/௅஽/ே  Set of thermal units/wind farms/electric loads/buses connected to bus n 

Ω௝
ுௌ/஼ு௉/ா஻

  Set of heat nodes/ CHP units/EBs connected to heat source j 

Ω௡ௗ
ுௌ/ு௅ Set of heat sources/ heat loads connected to heat node nd 

Ω௡ௗ
ௌ/ோ,௣௜௣௘ Set of supply pipelines/return pipelines connected to heat node nd 

T Set of hours 

DA/RT/HS/HD Day-ahead stage/Real-time stage/heat source/heat load 

Variables 

𝑃௛,௧
஼ு௉, 𝑃௚,௧

ீ  Electricity output of CHP/non-CHP thermal unit 

𝑃௜,௧
ா஻ Electricity consumption of electric boiler  

𝑅௛,௧
஼ு௉,௎/஽

,𝑅௚,௧
ீ,௎/஽

  Upward/downward reserve capacity of CHP/non-CHP thermal unit 

𝑟௛,௧
஼ு௉,௎/஽, 𝑟௚

ீ,௎/஽ Upward/downward regulation of CHP/non-CHP thermal unit 

𝐿௟,௧
௦௛௘ௗ  Load shedding  

∆𝑊௪,௧  Deviation of wind power 

𝑊௪,௧
௦௣௜௟௟

  Wind spillage 

𝛿௡,௧  Phase angle of buses  

𝐻௛,௧
஼ு௉,𝐻௜,௧

ா஻  Heat output of CHP unit/electric boiler 

𝜏௡ௗ,௧
ௌ/ோ  Temperature of node nd in the supply/return network  

𝜏௣,௧
ௌ/ோ,௜௡, 𝜏௣,௧

ௌ/ோ,௢௨௧ Mass flow temperature at the inlet/outlet of pipeline p in the supply/return network  

𝐻௟,௧
ு஽ Heat supply at heat load aggregator  

𝐻௟,௧
஻௨௜௟ௗ Actual heat consumption of buildings at heat load aggregator  

𝑇௟,௧
௜௡ Indoor temperature of buildings at heat load aggregator  

Parameters 

𝐶௛
஼ு௉ Energy offer price of CHP units 

𝐶௚
ீ Energy offer price of non-CHP thermal units 

𝐶௛
ା/ି, 𝐶௚

ା/ି Upward/downward reserve offer price of CHP units/non-CHP thermal units  

𝐶௟
௦௛௘ௗ Cost coefficient for lost load  

𝐵௡௠ Susceptance of transmission line nm 

𝑃௪,௧
௪௘ Predicted wind power  

𝑃௟,௧
௟௢௔ௗ  Electric load 

𝑃𝑅௛,௧
஼ு௉,௨௣/ௗ௢௪௡, 𝑃𝑅௚,௧

ீ,௨௣/ௗ௢௪௡ Upward/downward ramping rate limit of CHP/non-CHP thermal unit 

𝑃௛,௧
஼ு௉,௠௔௫, 𝑃௚,௧

ீ,௠௔௫, 𝑃௜,௧
ா஻,௠௔௫, ∆𝑊௪,௧

௠௔௫ Maximum value of CHP output/thermal unit output/power consumption of electric 

boiler/wind power deviation 

𝑃௛,௧
஼ு௉,௠௜௡, 𝑃௚,௧

ீ,௠௜௡  Minimum value of CHP output/thermal unit output 

𝜂௛
஼ு௉, 𝜂௜

ா஻ Heat to power coefficient of CHP/power to heat coefficient of electric boiler 

c, lp Specific heat capacity of water/length of pipelines 

𝑚௝,௧
ுௌ, 𝑚௟,௧

ு஽, 𝑚௣,௧
ௌ/ோ,௣௜௣௘ Mass flow rate of heat sources/heat loads/supply pipes/return pipes 

𝜏௧
௔, 𝑇௟,௧

௜௡,௠௔௫/௠௜௡ Ambient temperature of pipelines/maximum/minimum indoor temperature 

𝑐௔௜௥, 𝜌௔௜௥ Air specific heat/indoor air density 



K,F,V Average thermal conductivity/external surface area/volume of buildings 

1. Introduction 31 

Recently, the integrated energy system (IES) has become a promising paradigm of the future energy system. In the IES, different 32 

energy vectors are connected with each other through coupling components [1]. Combined heat and power (CHP) units, which 33 

produce electricity and heat simultaneously, are widely used in the countries and regions with cold winters due to its high efficiency, 34 

e.g., Denmark and Northern China [2]. In this regard, the electric power system (EPS) and district heating system (DHS) are 35 

interdependent with each other and the joint operation of the integrated electricity and heat system (IEHS) can improve energy 36 

efficiency and reduce CO2 emissions [3]. However, the power and heat output of CHP units are determined by heat demand, which 37 

limits further integration of wind power. In the winter, the peak demand of heat loads and the peak generation of wind power 38 

usually happen during night, while the electricity demands are quite low at this time [4]. To meet the heat demand, CHP units are 39 

dispatched and generate electricity proportionally, which leads to high wind power curtailment. 40 

In order to better integrate wind power, many efforts have been done to enhance the flexibility of CHP units. The impact of 41 

thermal energy storage (TES) on the flexible operation of CHP was investigated in [5]. TES can transform surplus wind power to 42 

heat and store it in the heat tank, and discharge the heat to DHS when heat demand is high. However, the investment for energy 43 

storage devices is quite high. The benefits of electrical boilers (EBs) and heat pumps (HPs) in the DHS to relax the coupling 44 

between heat and power generation in CHP units, which could facilitate the integration of wind power, were studied in [6]-[7]. In 45 

[8], the time delay of the temperature change of district heating networks (DHNs) was studied and the heat storage capacity of 46 

DHNs was utilized to accommodate more wind power. Beside the measures from source and network sides, the demand side also 47 

has huge potential to improve the flexibility of DHS by taking into account the thermal dynamic characteristics and acceptable 48 

temperature tolerance of heat consumers [9]-[10]. In [11], the thermal dynamic model was integrated into the energy system for 49 

community grids and the energy management was achieved in a distributed way.   50 

The studies above mainly focus on reducing the wind power spillage by improving the flexibility of energy schedules. However, 51 

the uncertainty and limited predictability of wind power also raise rigorous challenges to the secure and reliable operation of power 52 

systems [12]. As described in [13], the impacts of wind forecast errors on the real-time adjustments is significant, which is consid-53 

ered in the economic dispatch. Accordingly, an increased amount of reserve capacities is required to enable power plants to adjust 54 

their production in real time, and thus avoid contingencies caused by unexpected variations of wind power [14]. One conventional 55 

approach is that all of the reserve requirements are imposed on non-CHP thermal units [15]-[16]. However, this approach is often 56 

costly and quite conservative, which limits the operational flexibility of generators. Actually, with aforementioned measures to 57 

improve the flexibility of CHP units, the DHS can provide certain reserve capacity for the EPS [17]-[18]. The energy and reserve 58 

co-optimization considering the reserve capacity of CHP units has been discussed in [19]-[21]. A joint-dispatch model of energy 59 

and reserve for the CCHP-based MG was proposed in [19], which considers the dynamic process of cooling and heating systems. 60 

Ref. [20] proposed the centralized and decentralized co-optimization of power and reserves in transmission and distribution power 61 

markets based on both cyber and physical systems. However, the heat balance and physical operation constraints of CHP micro-62 

generators are not taken into account. An optimal dispatch strategy for the IES was proposed in [21], which integrates the natural 63 

gas system and its security constraints, as well as using CHP units’ reserve capacity.  64 

In the aforementioned studies, CHP units are assumed to provide full reserve capacity as thermal units without accounting for 65 

real-time operation constraints of DHS. As such, the real-time regulation might be infeasible after the reserve optimized in the day-66 

ahead stage is deployed [22]. Therefore, the two-stage optimization framework is constructed to ensure the feasibility of the first-67 

stage decisions with the consideration of operation constraints in the second stage. Ref. [23] proposed a two-stage stochastic opti-68 

mization model for the unit commitment under gas-supply uncertainty, where the real-time operation is considered. In [24], the 69 



day-ahead energy and reserve are determined using two-stage robust optimization under the worst-case realization of wind uncer-70 

tainty, where the obtained solutions are feasible for all uncertain scenarios. Moreover, another solution to properly utilize the 71 

feasible reserve capacity and regulation of CHP units is to build a proper regulation model. Ref. [4] proposed a feasible region 72 

model for the DHS taking into account the building thermal inertia, which can be directly used in the central dispatch. A regulating 73 

region method to describe the heating-restricted reserve capacity of CHP units was proposed in [25].  74 

However, the reserve capacity schedule for the IEHS in the studies mentioned above are optimized with minimum reserve 75 

requirements or allocated based on a proportionate amount. As such, the schedule problem boils down to a deterministic optimi-76 

zation and the optimality of the final solution is not guaranteed [26]. With the increasing penetration of wind power, it is essential 77 

to determine the reserve allocations adaptive to wind uncertainty. Ref. [27] presented a fuzzy-based method for the energy and 78 

reserve optimization. However, it is difficult for system operators to choose proper fuzzy membership functions representing the 79 

bound of uncertainty sets. In [28], stochastic optimization (SO) was adopted to optimize the energy and reserve dispatches jointly 80 

based on a number of scenarios representing the wind uncertainty, but the computational burden is heavy in order to ensure the 81 

performance of solutions. The robust optimization (RO), without requiring distribution information of uncertain parameters, has 82 

been extensively studied in the optimal operation of power systems, e.g., security constrained unit commitment (SCUC) [29]-[30] 83 

and security constrained economic dispatch (SCED) [31]. However, the RO has not been well studied to investigate the energy and 84 

reserve co-optimization for the IEHS, where the DHS is able to provide reserve capacity.   85 

Therefore, in order to ensure the economic and secure operation for the IEHS, this paper proposes a two-stage robust energy and 86 

reserve co-optimization scheme to improve the economic efficiency while maintaining the operation security under the worst 87 

realization of wind power by utilizing the feasible reserve capacity provided by the DHS. The major contributions of this paper are 88 

as follows. 89 

(i) The energy and reserve schedule for the IEHS is formulated as a two-stage optimization problem. Compared to the existing 90 

optimization framework, the physical operation constraints for the real-time corrective adjustments of the EPS and DHS are con-91 

sidered to ensure the feasibility of day-ahead schedules.  92 

(ii) An adaptive robust co-optimization scheme for the IEHS is proposed to maintain the secure operation against all possible 93 

realizations of wind power uncertainty. The spatial correlation of wind uncertainties is incorporated to control the conservatism of 94 

robust solutions.  95 

(iii) The additional reserve capacity provided by the DHS is fully used by exploiting the regulation capabilities of CHP units 96 

and EBs, as well as utilizing building thermal inertia, which can compensate the wind forecast error with higher economic effi-97 

ciency. 98 

The rest of the paper is organized as follows. The structure of the IEHS and mathematical model of two-stage robust energy and 99 

reserve co-optimization for the IEHS are described in Section 2. Section 3 details the solution method for the adaptive robust 100 

optimization model. In Section 4, the case studies and simulation results are given and discussed. Finally, the conclusions are 101 

drawn in Section 5. 102 

2. Two-stage adaptive robust energy and reserve co-optimization for IEHS 103 

2.1 Overview of IEHS  104 

The proposed IEHS consists of the EPS and DHS, which are connected by coupling components. The schematic structure of an 105 

IEHS is shown in Fig. 1. Electric loads are supplied by wind power, thermal units and CHP units, while heat loads are met by CHP 106 

units and EBs. Electric power and heat are provided to consumers through the EPS and DHS, respectively.  107 

DHS have different operation modes, including constant mass flow and constant temperature (CM-CT), constant mass flow and 108 

variable temperature (CM-VT), variable mass flow and constant temperature (VM-CT), or variable mass flow and variable tem-109 

perature (VM-VT) [32]. In this paper, it is assumed that the DHN is under the CM-VT control strategy, as the heat loss has been 110 

proved independent of mass flow rate [33]. As such, the model of DHS is linear. 111 



 112 
  Fig. 1. Schematic structure of an integrated electricity and heating system 113 

2.2 Objective function 114 

A two-stage robust energy and reserve co-optimization scheme for the IEHS is formulated. The first-stage problem is to deter-115 

mine the day-ahead energy and reserve schedule with predicted wind power. The second-stage problem corresponds to the real-116 

time regulations to address the error between actual wind power and the predicted one. An adaptive robust approach is adopted to 117 

formulate this type of two-stage optimization problem [34], considering the worst-case scenario of wind uncertainty. In this regard, 118 

the proposed scheme is cast as the following min-max-min form [35]. The objective is to minimize the total system cost of the 119 

IEHS in both day-ahead and real-time stages, as shown in (1). The max-min calculation in the objective function represents the 120 

regulation cost in the worst-case realization of wind power within an uncertainty set. In the proposed model, not only non-CHP 121 

units but also CHP units provide reserve capacity for the power system to cope with uncertainties. Moreover, the operation con-122 

straints of the EPS and DHS in the real-time operation are also considered. Thus, the feasibility of energy and reserve schedule is 123 

always ensured. 124 
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      (1) 125 

2.3 Mathematical formulation of EPS and DHS operations in two stages  126 

The day-ahead energy and reserve schedule is optimized in the first stage and will be kept in the second stage (real-time regula-127 

tion). Both of day-ahead and real-time operation constraints of the IEHS consist of the constraints of EPS and DHS, respectively. 128 

2.3.1 Uncertainty set description 129 

In the RO, it is of great importance to construct a suitable uncertainty set. Since the predicted wind generation Pw,t
we adopted in 130 

the first stage is inaccurate, there is an error after the wind generation is revealed in the second stage. Generally, the wind uncer-131 

tainty is represented by a box uncertainty set that is a polyhedron, which is described as (2). The whole uncertainty set includes 132 

all possible deviations from the predicted wind generation.  133 

max max
, , , , , , ,we we WD

w t w t w t w t w tP W P P W w t T                                (2) 134 

Due to the geographically close location of wind farms and the inertia of local meteorological system, there is a spatial corre-135 

lation between the stochastic outputs of neighboring wind farms. The correlation between wind farms is obtained through linear 136 



models based on the statistical data, which is expressed as aqu,tPu,t
we+bqu,t. According to [36], ሾPq,t

෪ െ ሺ𝑎qu,tPu,t
we ൅ 𝑏qu,tሻሿ/σqu,t fol-137 

lows the t-distribution, where σqu,t is the standard deviation. Since the correlation between wind farms is also uncertain, the cor-138 

relation is formulated in an interval with a certain confidence level (2α-1), which is described as ,  139 

 , , , 2 , , , , 2 ,( ) ( ) , , ,we we WD
qu t u t qu t n qut q t qu t u t qu t n qu ta P b t P a P b t q u t T                           (3) 140 

Taking into account the spatial correlation of wind farms, the uncertainty set is described as (4). The solution of the proposed 141 

robust energy and reserve co-optimization scheme is less conservative by eliminating the extreme scenarios that unlikely happen. 142 

max max
, , , , ,

,
, , , 2 , , , , 2 ,

, ,

( ) ( ) , , ,

we we WD
w t w t w t w t w t

w t we we WD
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P W P P W w t T
P
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U




          (4) 143 

2.3.2 Day-ahead operation constraints of EPS 144 

In this stage, the schedules of electric power and heat output are optimized and the reserve capacity is determined to cope with 145 

wind uncertainties. The DC power flow is employed in this optimization model. At each bus of the EPS, the total generation and 146 

electric loads must be balanced at all times: 147 

, , , , , , ,( ), ,
CHP G WD EB LD N
n n n n n n

CHP G we EB load N
h t g t w t i t l t nm n t m t

h g w i l m

P P P P P B n t T 
     

                       (5) 148 

Constraints (6)-(7) are generation capacity constraints for CHP units and non-CHP thermal units considering reserve capacity, 149 

respectively. Constraints (8)-(9) ensure that each unit provides reserve capacity within its ramping rate.  150 

          ,min , , ,max CHP
, , , , , ,, , ,CHP CHP CHP D CHP CHP U CHP

h t h t h t h t h t h tP P R P R P h t T                           (6) 151 

,min , , ,max , ,
, , , , , , ,, , 0 , ,G G G D G G U G G U G up G

g t g t g t g t g t g t g t gP P R P R P R PR g t T                          (7) 152 

    , , , , CHP
, ,0 , 0 , ,CHP U CHP up CHP D CHP down

h t h h t hR PR R PR h t T                             (8) 153 

, , , ,
, ,0 , 0 , ,G U G up G D G down G

g t g g t gR PR R PR g t T                                 (9) 154 

The output of CHP units and non-CHP thermal units has ramping rate constraints (10)-(11). Constraint (12) limits the electricity 155 

consumption of EBs. Constraint (13) is the transmission line limits.  156 

, , CHP
, , 1 , ,CHP down CHP CHP CHP up

h h t h t hPR t P P PR t h t T                                  (10) 157 

 , ,
, , 1 , ,G down G G G up G

g g t g t gPR t P P PR t g t T                                     (11) 158 

EB,max
,0 ,    ,EB EB

i t iP P i t T     
                                  

(12) 159 

max max
, ,( ) , ,N

nm nm n t m t nmf B f n t T                                                                   (13) 160 

2.3.3 Day-ahead operation constraints of DHS   161 

As illustrated in Fig. 1, the DHS consists of heat sources, heat transmission network and end users. The heat transmission 162 

network consists of hot water pipelines including supply pipes delivering heat to load nodes, and return pipes carrying mass flow 163 

back to heat source nodes.  164 

1) Heat sources 165 



CHP units and EBs, as the most common heat sources, represent the linkage between the EPS and DHS. CHP units are typically 166 

classified into back-pressure and extraction-condensing units [37]. Due to the linear relationship of electric-heating generation, the 167 

back-pressure CHP unit is adopted in this paper. 168 

 CHP
, , , ,CHP CHP CHP

h t h h tH P h t T                                      (14) 169 

EBs are considered as electric loads in EPS, which consume electricity to generate heat. The model of the EB is described as 170 

bellow. 171 

, , , ,EB EB EB EB
i t i i tH P i t T                                         (15) 172 

The heat generated from heat sources are used to warm up water or steam and the heat production has correlation with temper-173 

atures of supply and return pipelines, as shown in (16).  174 

 
CHP

CHP , , HS
, , , , , ,     , ,

EB
j j

EB HS S HS R HS HS
h t i t j t nd t nd t j

h i

H H c m j nd t T 
 

                           (16) 175 

2) District heating network 176 

The steady state energy flow model is considered in this paper. The continuity of mass flow rate means that, for each node in 177 

the DHN, the mass flows entering the node are equal to the mass flows leaving the node [33], which is depicted as follows. 178 

,

,
, , , , 0, ,

HS S pipe HD
nd ndnd

HS S pipe HD ND
j t nd p p t l t
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m a m m nd t T
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,

,
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In the above equations, and,p is defined in the following matrix A which is the network matrix that relates the nodes to the pipes 181 

in all supply pipelines [38]. The possible values of and,p are +1, -1 and 0, which represent the mass flow injects into or leaves 182 

from the node nd through pipe p, and pipe p does not connect to node nd, respectively.  183 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

 

p

p

n nd nd pd

a a a

a a a

a a a

 
  
 
  

   
A                                      (19) 184 

The mass flow passing through the pipeline will cause heat losses. The temperature drops caused by heat losses in the pipeline 185 

are given in (20)-(21), which is consistent with the flow direction. Since most district heating systems consist of an underground 186 

pipeline network and the temperature variation is relatively small, the ambient temperature is treated as a constant [39].  187 

  ,
,/, a , a ,

, , , ,
S pipe

p p p p tk d l c mS out S in S pipe
p t t p t t e p t T                                       (20) 188 

  ,
,/, a , a ,

, , , ,
R pipe

p p p p tk d l c mR out R in R pipe
p t t p t t e p t T                                       (21) 189 

According to the energy conservation law, when the mass flow of pipelines enters a node, the temperature of the mixed fluid is 190 

determined by (22)-(23).  191 
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nd ndnd nd
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The temperature of pipelines flowing out of one node are equal to the mixed temperature at this node. 194 



, , ,
, , , , ,S in S ND ND S pipe

p t nd t nd p t T                                     (24) 195 

, , ,
, , , , ,R in R ND ND R pipe

p t nd t nd p t T                                      (25) 196 

3) Heat load 197 

In this paper, a heat load aggregator in the DHS manages all the buildings that connect to the same heat substation, which is 198 

represented as one consumption node [25]. Generally, the indoor temperature of customers is centrally controlled and is assumed 199 

to be the same. The heat consumption at one node is calculated by (26).   200 

 HD , , HD
, , , , ,     , ,HD S HD R HD HD

l t l t nd t nd t lH c m l nd t T                                  (26) 201 

Due to the large thermal inertia of buildings, the imbalance between heat supply and demand can be temporally accepted in the 202 

DHS. The temperature could be maintained for a while when thermal supply changes. Thus, the thermal inertia of building space 203 

heating is used, which is reflected by the thermal dynamic process of buildings [39]. When thermal supply is larger than space 204 

heating demand, the indoor temperature rises in an acceptable range accordingly, which indicates that the surplus heat can be stored 205 

in the building temporarily. To simplify the thermal dynamic process, it is modeled based on the model described in [40], as shown 206 

in (27). More detailed description can be found in [41]. The left hand side of (27) is the variation of the indoor air heat energy.  207 

, HD Build HD
, , ,     ,

in
l t

air air l t l t

dT
c V H H l t T

dt
                                    (27) 208 

In order to solve the model, the differential equation shown above is transformed into a discrete difference equation with time 209 

interval of one hour (t). 210 

HD Build HD
, 1 , , ,( ) ,     ,in in

air air l t l t l t l tc V T T H H l t T                                  (28) 211 

Equation (29) shows the relationship between the heat load used for space heating and the difference between the indoor and 212 

outdoor temperatures of buildings. 213 

Build HD
, , ,( ),     ,in env

l t l t l tH KF T T l t T                                    (29) 214 

Considering human thermal comforts, the indoor temperature of the building could vary in a certain range deviated from the set 215 

point.    216 

,min ,max HD
, ,  ,in in in

l l t lT T T l t T                                      (30) 217 

For facilitating the discussion in the following section, inequalities (10)-(13) and (30) are transformed into a compact form as 218 

in (31), and equalities (14)-(29) are transformed as in constraint (32), since the operation constraints in the second stage are similar 219 

as the corresponding constraints in the first stage. 220 

, , , , ,( , , , , ) 0DA CHP G EB in
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h t i t l t nd t nd t p t p t nd tLE H H H                             (32) 222 

2.3.4 Real-time regulation constraints of EPS and DHS 223 

The second-stage problem is formulated to cope with the wind power forecast error in the real-time operation. Based on the 224 

uncertainty set and day-ahead schedule from the first stage, the output of thermal units, CHP units and EBs in the IEHS are adjusted 225 

adaptively [42]. Constraints (33)-(36) represent that the regulation of generators in real-time operation is restricted within the 226 

scheduled reserve capacity in the day-ahead stage.  227 
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Constraint (37) represents the power rebalance in the real-time operation. Constraints (38) and (39) denote the limits of the wind 232 

spillage and load shedding, respectively.    233 
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      (37) 234 
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l t l tL P l t T                                       (39) 236 

Constraints (40) and (41) are the compact form of the operation constraints of the EPS and DHS under uncertainty in the second 237 

stage, which are similar to the corresponding day-ahead operation constraints (31) and (32). 238 
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h t i t l t nd t nd t p t p t nd tLE H H H                       (41) 240 

2.4 Robust compact formulation  241 

The robust energy and reserve co-optimization scheme described above can be written in a compact matrix form as follows: 242 

( , )
min max minT T

F


x y x uu U
c x d y                                          (42) 243 

s.t.                                    n
+, , Ax b Bx a x                                         (43) 244 

where 245 

( , ) { |F  x u y Cy Dx h                                         (44) 246 

  Gy Mu g                                           (45) 247 

n
+}y                                                (46) 248 

where x is the first-stage decision vector representing the continuous variables related to the energy and reserve schedule of the 249 

EPS and DHS; y is the second-stage decision vector representing the real-time regulation variables; u is the uncertain variables 250 

of wind power. Constraint (43) represents all constraints in the first stage (5)-(30). Constraint (44) denotes the inequalities in the 251 

second stage (33)-(36) and (38)-(40). Constraint (45) refers to (37) and (41). Constraint (46) states that y are positive variables.    252 

3. Solution methodology 253 

The proposed two-stage adaptive robust optimization is solved by the C&CG algorithm [43], which is a cutting plane based 254 



method. First, the proposed model is decomposed into a master problem (MP) and a subproblem (SP). Second, the SP is trans-255 

formed into a mixed-integer linear programming (MILP) with its Karush-Kuhn-Tucker (KKT) conditions. Third, the MP and SP 256 

are solved iteratively. In each iteration, the optimal solution of the SP is considered as a significant scenario and new variables and 257 

corresponding constraints are added to the MP.  258 

The MP is described as follows, which minimizes the total system operation cost under the worst-case wind realization ul
* 259 

obtained from the SP in the previous iteration. 260 
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,

min T


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x
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, ,n l n l O    x y                                        (52) 266 

where ŋ is the auxiliary variable, yl are the new variables generated from the SP and added to the MP, O is the index set for wind 267 

uncertainty scenarios l, and ul
* is the optimal value obtained from the SP in the last iteration, which is considered as the worst-case 268 

realization.  269 

With the optimal result x*obtained from the MP, the SP below is to identify the worst-case scenario.  270 

SP:                                       
*( , )

max min T

F u U y x u
d y                                            (53) 271 

s.t.                                        *Cy Dx h                                             (54) 272 

  Gy Mu g                                             (55) 273 

n
y                                                 (56) 274 

In this paper, the inner min problem of the SP is a linear problem (LP), thus strong duality holds and the KKT conditions are 275 

satisfied [44]. Reformulated with the KKT conditions, the max-min SP can be transferred into an equivalent single-level problem 276 

which can be solved by commercial solvers.  277 

KKT-SP:                                                           
*, ( , ), , ,
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F u U y x u λ μ υ
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s.t.                                         (54)-(56) 279 
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0, 0, isfreei j   μ                                          (61) 283 

where λ, µ, ν are dual variables for constraints (54)-(56), and i and j are the indices of the corresponding constraints. The nonlinear 284 

complementary constraints (58)-(59) are linearized with the big-M method [43], and the KKT-SP is converted into a MILP problem.   285 



The procedure of the C&CG algorithm is conducted iteratively, which is shown in Fig. 2. 286 

(1) Initialization. Set the upper bound as ∞ and lower bound as -∞, convergence error ɛ=0.01, iteration index l=0, and O=Ø; 287 

(2) Solve the MP (47)-(52), and derive the optimal solution (xl+1
* , ŋl+1

* ,y1
*,y2

*,...,y௟
*) and update the lower bound LB=cTxl+1

* +ŋl+1
* ; 288 

(3) Solve the KKT-SP (57)-(61) with the optimal solution xl+1
*  obtained in step (2), and get the optimal solution (yl+1

* ,ul+1
* ), then 289 

update the upper bound UB={UB,cTxl+1
* +d

T
y

l+1

*
}; 290 

(4) Convergence check. If UB-LB≤ɛ, return yl+1
*  and terminate. Otherwise, generate new variables yl+1 and add corresponding 291 

new constraints (49)-(52) to the MP, and update l=l+1, O=O∪{l+1}, then go to Step (2). 292 

 293 
Fig. 2. Solving procedure of C&CG algorithm 294 

4. Simulation results 295 

The topology of the test IEHS is shown in Fig. 3. The system consists of a modified 6-bus system [16] and 4-node DHS [45]. 296 

The EPS includes two thermal units (G1 and G2), two wind farms (W1 and W2) and one CHP unit. W1 and W2 with 200 MW and 297 

150 MW installed capacity are located at Bus 2 and Bus 4, respectively. The electricity loads are distributed at Bus 1 and Bus 2. 298 

The power to heat ratio of the CHP unit is 1.5. In the DHS, the mass flow is fixed and the temperature is variable. The supply 299 

temperature of the node with heat sources is fixed at 80 ℃ to guarantee the quality of heat supply. The temperature in supply pipes 300 

varies from 60-80 ℃, and the temperature in return pipes depends on the absorption of heat demands. An EB with 12 MW capacity 301 

is located at Bus 3 and has a fixed electricity-to-heat ratio of 1. In this paper, the heat is used for space heating of buildings. The 302 

heat demands of each aggregator are assumed to be the same. The standard indoor temperature is set as 20 ℃. The minimum and 303 

maximum thermal comfort temperature of end users are set to be 18 ℃ and 22 ℃ [46]. The profiles of hourly electric load and 304 

heat load are shown in Fig. 4(a). The predicted and actual deviation of the outputs of two wind farms are shown in Fig. 4(b). The 305 

proposed energy and reserve co-optimization scheme was simulated in the General Algebraic Modeling System (GAMS) using the 306 

CPLEX.  307 
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 308 
Fig. 3. Test system with 6-bus EPS and 4-node DHS  309 

 310 

          (a)                                                     (b) 311 

Fig. 4. Profiles: (a) hourly electric demand and total heat demand and (b) predicted generation and deviation of two wind farms 312 

4.1 Case study scenarios 313 

To demonstrate the effectiveness and advantage of the proposed two-stage adaptive robust optimization scheme, a conventional 314 

single-stage optimization scheme is used for comparison. 315 

(1) M1: Conventional single-stage energy and reserve optimization model. It is optimized under the pre-defined system reserve 316 

requirement without considering the re-dispatch constraints in the real-time stage. CHP units provide full reserve capacity like non-317 

CHP units. The optimized model is formulated as follows [19]. 318 
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(2) M2: The proposed two-stage robust energy and reserve optimization model. It consists of two stages: day-ahead energy and 321 

reserve pre-dispatch and adaptive real-time re-dispatch. The CHP unit provides available reserve capacity that is constrained by 322 

EPS and DHS operation constraints in both two stages.  323 

Five case study scenarios are defined. Case 1 is a base schedule without any flexibility in the DHS. EBs and the thermal inertia 324 

of buildings, as well as the reserve capacity of CHP units, are not considered in this case. In Cases 2 and 3, EBs and the reserve 325 

capacity of CHP units are considered. In Cases 4 and 5, the thermal inertia of buildings is additionally introduced. Cases 2 and 4 326 

are optimized by M1, while Cases 1, 3 and 5 are optimized by M2. Case details are listed in Table 1. 327 

Table 1 Study cases 328 

Cases CHP as reserve EB Thermal inertia Optimized method 

Case 1 ×  × × M2 

Case 2 √ √ × M1 

Case 3 √ √ × M2 

Case 4 √ √ √ M1 
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Case 5 √ √ √ M2 

4.2 Results and discussions 329 

4.2.1 Feasibility analysis of real-time regulation 330 

The validity and advantage of the proposed two-stage robust model (M2), as well as its influence on the feasibility of real-time 331 

regulation, are firstly analyzed. Fig. 5 shows the comparison results of the real-time power regulation in Cases 2-5. Here, since the 332 

cost of wind power spillage is not considered in this paper, neither downward reserve nor downward regulation is scheduled.  333 

From Fig. 5(a), it can be seen that, in Case 2, there is not sufficient available real-time regulation. Since EBs are not scheduled 334 

in the day-ahead stage, CHP units cannot increase their outputs in the real-time operation in order to keep heat energy balance. 335 

Therefore, when the EPS needs upward regulation, the actual available upward regulation that CHP units can provide is 0. Even 336 

though the introduction of buildings thermal inertia enables CHP units to change their outputs to some extent in Case 4, the actual 337 

regulation that CHP units can provide is also insufficient, as shown in Fig. 5(c). As such, the electric loads in Cases 2 and 4 have 338 

to be shed due to the lack of regulation, which results in the high regulation cost of load shedding in the real-time operation. 339 

However, Fig. 5(b) and (d) show that, in Cases 3 and 5, the reserve capacities dispatched in the day-ahead stage are both sufficient 340 

for corresponding real-time regulation. The above observations demonstrate that, in the conventional optimization model (M1), 341 

the assumption that CHP units have full reserve capacity as thermal units is overoptimistic and this will result in the regulation 342 

shortage in the real-time stage.  343 

In summary, the proposed two-stage robust optimization model (M2), considering the real-time operation constraints of the 344 

IEHS, can guarantee the feasibility of day-ahead energy and reserve dispatches. Thus, the economic and secure operation of the 345 

IEHS considering uncertainty is ensured.  346 

           347 

       (a)                                                 (b)  348 

          349 

     (c)                                                  (d)  350 

     Fig. 5. Required regulation and actual available regulation of generating units: (a) Case2 (b) Case3 (c) Case4 (d) Case5 351 

4.2.2 Economic benefits of introducing DHS flexibility  352 

Cases 1, 3 and 5 with M2 are chosen to evaluate the economic benefits of introducing the DHS flexibility and the additional 353 

reserve capacity provided by the DHS. The total system operation costs of the three cases are listed in Table 2, which consists of 354 

the costs of energy and reserve dispatches in the day-ahead stage and the regulation cost in the real-time stage. Fig. 6 illustrates 355 
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the optimal dispatches of heat energy and reserve capacity in Cases 1, 3 and 5.  356 

Case 1 is the base case without considering EBs, building thermal inertia or the thermal comfort in the IEHS. Thus, there is no 357 

flexibility in the DHS. CHP units cannot adjust their outputs and hence non-CHP thermal units are obliged to provide reserve, as 358 

shown in Fig. 6(b). According to Table 2, it can be seen that, compared to Case 1, the reserve capacity cost in Case 3 decreases 359 

from $ 8843.48 to $ 4455.49. There are two reasons. On the one hand, the EBs in Case 3 enables CHP units to adjust their outputs 360 

in the real-time operation and then provide reserve capacity, as shown in Fig. 6(d). Since the reserve price of CHP units is lower 361 

than that of thermal unit G2, the reserve capacity cost is reduced. On the other hand, in the two-stage robust optimization, EBs can 362 

also serve as reserve to compensate the wind power forecast error. Compared with the reserve capacity provided by CHP units and 363 

thermal units, the price of the reserve capacity provided by EBs is relatively cheaper. As such, EBs are scheduled in a priority to 364 

meet part of heat demand in the day-ahead stage, which is shown in Fig. 6(c). When the power system needs upward reserve, the 365 

EB can lower its output in the real-time operation and hence reduce the consumption of electricity. Since heat supply from EBs is 366 

less efficient and more costly than CHP units, the day-ahead energy cost in Case 3 increases a little bit compared with Case 1. Even 367 

so, the total system operation cost in Case 3 decreases by $ 4513.66 overall, as shown in Table 2. Therefore, introducing EBs in 368 

the IEHS can not only increase the flexibility of CHP units and reduce the operation costs, but also improve the reserve capacity 369 

of the IEHS by adopting two-stage robust optimization scheme.  370 

Table 2 Total costs of three cases 371 

Costs($) Case 1 Case 3 Case 5 

Energy cost 48405.83 50599.45 50071.50 

Reserve capacity cost 8843.48 4455.49 4102.90 

Regulation cost (worst case) 9442.19 7122.90 7012.99 

Total cost 66691.50 62177.84 61187.39 

       372 

      (a) Optimal schedule of heat energy in Case 1            (b) Optimal schedule of reserve capacity in Case 1 373 

     374 

      (c) Optimal schedule of heat energy in Case 3            (d) Optimal schedule of reserve capacity in Case 3 375 
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     376 

      (e) Optimal schedule of heat energy in Case 5            (f) Optimal schedule of reserve capacity in Case 5 377 

     Fig. 6. Optimal schedule of heat and reserve capacity in the day-ahead stage 378 

Based on Case 3, the building thermal inertia and thermal comfort are taken into account in Case 5. The indoor temperature can 379 

vary in a comfort interval in Case 5. Table 2 shows that, compared with Case 3, the reserve cost in Case 5 decreases by $ 352.59. 380 

As shown in Fig. 6(e), the total heat demand of buildings can be temporarily different from the heat supply in Case 5, indicating 381 

that the indoor temperature rises and the surplus heat is stored in the building when the heat supply is more than heat demand. 382 

Consequently, the flexibility of the CHP is further improved by considering the thermal inertia and thermal comfort. Thus, EBs 383 

can be further utilized to provide available reserve capacity and G1 with the cheapest reserve price can provide more reserve in 384 

Case 5, which is shown in Fig. 6(f). Therefore, compared with Case 3, the reserve capacity cost in Case 5 is reduced. According to 385 

the results, it can be concluded that, with introducing the building thermal inertia into the two-stage robust optimization for the 386 

IEHS, EBs can provide more reserve capacity and the total system operation cost can be further reduced. 387 

4.2.3 Benefits of considering spatial correlations between wind farms   388 

The wind farm spatial correlation affects the total system costs of energy and reserve schedules. According to [47], the spatial 389 

correlation between wind farms is dependent on the wind direction and weather patterns. Generally, the correlation of the outputs 390 

of wind farms is high and positive with a short distance, whereas the correlation is negative with an increased distance. Since the 391 

interval of wind uncertainty spatial correlation is the input of the proposed robust model, it does not affect the proposed model and 392 

solution methodology. Thus, the negative correlation between wind farms is chosen to demonstrate the benefits of considering 393 

wind farm spatial correlations. Based on Cases 1, 3 and 5, the proposed robust energy and reserve co-optimization is simulated 394 

with and without wind farm spatial correlations. The comparison of corresponding system operation costs in three cases are shown 395 

in Table 3. It can be seen that, in all three cases, the reserve capacity cost and total system cost are reduced with the consideration 396 

of the spatial correlation of wind farms. This is because the extreme scenarios, when the maximum deviations of two wind outputs 397 

happen simultaneously, are not included in the uncertainty set by considering wind farm spatial correlation. Thus, the uncertainty 398 

set obtained in this paper covers less area than the typical box uncertainty set and the conservatism of robust solutions is reduced.  399 

Table 3 Total system costs of three cases without and with consideration of wind farm spatial correlation 400 

Costs($) 
Without correlation With correlation (95%) 

Case 1 Case 3 Case 5 Case 1 Case 3 Case 5 

Energy cost 48405.83 50599.45 50071.50 48374.36 49901.79 49480.72 

Reserve capacity cost 8843.48 4455.49 4102.90 8266.95 4181.79 3882.53 

Regulation cost (worst case) 9442.19 7122.90 7012.99 7317.46 5777.69 5552.04 

Total cost 66691.50 62177.84 61187.39 63958.77 59861.27 58915.29 

5. Conclusion 401 

To cope with the wind power uncertainty, this paper proposes a two-stage adaptive robust energy and reserve co-optimization 402 

scheme for the integrated electricity and heat system with utilizing the additional reserve capacity provided by improved flexibility 403 
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from the district heating system and considering the spatial correlation between wind uncertainties. First, electrical boilers and the 404 

building thermal inertia are introduced into the district heating system, thus the district heating system can provide additional 405 

reserve capacity to the electric power system. In addition, by considering the operation constraints of the electric power system 406 

and district heating system in the real-time stage, the optimal schedule of energy and reserve capacity of the integrated electricity 407 

and heat system is always guaranteed. The adaptive robust model is reformulated with the Karush-Kuhn-Tucker conditions and is 408 

solved by the column-and-constraint generation algorithm. The case study results show that the conservatism of optimized robust 409 

solutions is reduced by considering the spatial correlation between wind uncertainties. Compared with the conventional single-410 

stage optimization, the proposed scheme can reduce both reserve capacity cost and the total system operation cost while maintain-411 

ing secure operation.  412 
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