Scalable Synthesis of Carbon-Supported Platinum–Lanthanide and –Rare-Earth Alloys for Oxygen Reduction

Roy, Claudie; Knudsen, Brian P.; Pedersen, Christoffer M.; Velazquez-Palenzuela, Amado; Christensen, Leif H.; Damsgaard, Christian Danvad; Stephens, Ifan E. L.; Chorkendorff, Ib

Published in:
A C S Catalysis

Link to article, DOI:
10.1021/acscatal.7b03972

Publication date:
2018

Document Version
Other version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Figure S1 A) Gibbs free energy in kJ normalised to the moles of HCl produced in the reaction for the thermal reduction of rare earth chlorides, M=Y, La, Sm, Gd, Tb, Tm using hydrogen as a reducing agent over metallic Pt as a function of temperature. B) Approximated equilibrium partial pressure of HCl for the thermal reduction of MCl$_3$ salts by hydrogen over pure Pt assuming the pressure of H$_2$ being a constant at 1 bar. For any partial pressure below the equilibrium line for the given alloy entails that the reacts proceeds and that the alloy is formed. For flow systems maintaining partial pressures below the equilibrium is feasible.
Figure S2 PXRD on samples synthesised from Pt/C and YCl₃ at different temperatures and after acid wash are presented. The synthesis was performed in a quartz reactor under H₂ flow of 10mL/MIN. Reference peak positions for Pt (black square), Pt₃Y (blue circle), Pt₂Y (green triangle) and PtSi (purple diamond) are labelled. Only reference peak positions with relative peak intensity larger than 10% are shown.
Figure S3. A) RRDE polarization curves at 1600 rpm and 50 mV s\(^{-1}\) for the ORR on Pt/C (green curve), Pt\(_x\)Y/C (60 min at 800\(^\circ\)C) (purple curve), Pt\(_x\)Y/C (360 min at 800\(^\circ\)C) (red curve) and Pt/C TKK 60\% (taken from nanoparticles catalysts in O\(_2\)-saturated 0.1 M HClO\(_4\). Kinetic current density normalized by (A) specific surface area and (B) mass of Pt at 0.9V\(_{\text{RHE}}\) for Pt/C and Pt\(_x\)Y/C annealed for 30 and 360 min at 800\(^\circ\)C, based on data from A).
Figure S4. Tafel plots of Pt/C (green), PtₓY (60 min) (purple) and PtₓY (360 min) (red) in O₂-saturated 0.1 M HClO₄ at 1600 rpm with iR correction.