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Towards solving large–scale topology optimization problems with1

buckling constraints at the cost of linear analyses2

Federico Ferraria,1, Ole Sigmunda,2,∗
3

aDepartment of Mechanical Engineering, Technical University of Denmark, Kongens Lyngby, (DK)4

Abstract5

This work presents a multilevel approach to large–scale topology optimization accounting for lin-
earized buckling criteria. The method relies on the use of preconditioned iterative solvers for all
the systems involved in the linear buckling and sensitivity analyses and on the approximation of
buckling modes from a coarse discretization. The strategy shows three main benefits: first, the
computational cost for the eigenvalue analyses is drastically cut. Second, artifacts due to local
stress concentrations are alleviated when computing modes on the coarse scale. Third, the ability
to select a reduced set of important global modes and filter out less important local ones. As a
result, designs with improved buckling resistance can be generated with a computational cost little
more than that of a corresponding compliance minimization problem solved for multiple loading
cases. Examples of 2D and 3D structures discretized by up to some millions of degrees of freedom
are solved in Matlab to show the effectiveness of the proposed method. Finally, a post–processing
procedure is suggested in order to reinforce the optimized design against local buckling.

Keywords: Topology Optimization, Linearized buckling, Multilevel methods, Large–scale6

computing, Stress analysis7

1. Introduction8

This paper describes the benefits of using a multilevel approximation method for computing9

buckling modes in the context of large–scale Topology Optimization (TO). In particular, we show10

that besides remarkable computational savings, some issues arising when buckling criteria are ac-11

counted for in TO may be alleviated.12

Topology Optimization is rapidly spreading to engineering practice as a promising, powerful13

tool for the conceptual design of whole components, or for highly detailed microstructures and14

architected material [21, 53]. Therefore, large–scale applications have become a hot topic [1, 20]15

and this may be credited to the leverage effect of rapidly increasing computational capabilities and16

the emergence of new manufacturing techniques.17
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However, there are still important issues to be overcome when considering geometric nonlin-18

earities, as required from a stability analysis. In such situations, the computational effort due19

to analysis substantially increases and the optimization problem becomes much harder, showing20

poor conditioning and many local, possibly non–physical, solutions. Therefore, even the simplest21

approach to stability optimization, based on linearized buckling, is far from being a customary22

and free–from–issues practice in TO. This puts a severe limitation on the dissemination of TO to23

engineering practice, as realistic structures must meet stability requirements, whereas they could24

even be weakened if optimized without accounting for this phenomenon [52]. Hence, there is still25

a substantial gap between the scale of compliance–based TO problems and those accounting for26

buckling, yet some works have appeared on this topic in recent years. Dunning et al. [23] optimized27

a 3D structure for minimum mass with 144,000 design variables, by using a robust eigenvalue solver28

capable of dealing with clustered eigenvalues [42]. However, their approach still needs (at least) one29

factorization of the full system matrix, which is undesirable for large scale problems. While studying30

mass and compliance minimization for the Common Research Model wing, Chin and Kennedy [20]31

considered buckling constraints on 2D panels. They reported the huge sensitivity of the obtained32

designs to the number of constrained buckling modes. Bian and Feng [14] proposed an assembly–33

free iterative solver for the eigenvalue problem coupled with a voxelization–based discretization,34

leading to low memory requirements and parallelization capabilities, and solved problems in the35

order of 2 to 5 · 105 DOFs.36

The following issues are systematically pointed out from these and other works [19, 28]:37

1. High computational cost due to repeated solution of large eigenvalue problems;38

2. High sensitivity of the results to the set of buckling modes considered in the formulation;39

3. Activation and clustering of many buckling modes as the optimization progresses.40

The issues above are partly interlaced, as the need to account for a large set of buckling modes41

increases the computational cost of many standard eigensolvers [34, 59]. This is even worsened42

by the appearance of artificial and/or not physically meaningful deformations associated with low43

eigenvalues [39, 12]. Buckling modes appearing in low–density regions are a classical issue for44

TO formulations involving eigenvalues and several approaches are available to identify and filter45

them [38, 43, 29]. However, even some localized buckling modes appearing in solid regions may46

be physically meaningless or undesirable to take into account within the optimization process, at47

least for two reasons. First, some highly localized instabilities are due to stress concentrations and48

singularities linked to geometrical irregularities, and these phenomena are eventually worsened by49

discretization effects. Second, physical but still local modes, such as the failure of single bars, may50

be inconvenient to consider, especially as the design space becomes larger and the structural layout51

more intricate. In this case, as hierarchical structures form (c.f. [53, 28]), and many thin bars52

appear, the number of active modes grows rapidly, making it unfeasible to include them all in the53

optimization process.54

We aim at developing a methodology which efficiently takes into account the most global buckling55

modes only, driving the optimization towards a structure having global stability. Subsequently, tiny56

and slender features which may undergo local buckling may be fixed in a post–processing phase57

by means of a local reinforcement. A similar effect is often used in truss TO, where buckling58

of individual bars is ignored or handled by separate constraints on element compressive stresses59

[33, 3, 4].60

Our goal can be accomplished with inspiration from another multilevel concept outlined in61

[27], in the context of dynamic eigenvalue problems. The strategy there was to compute an ap-62

proximation to vibration modes from a coarse discretization, project them on the (much finer)63
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Algorithm 1 Linearized Buckling Analysis (LBA)

1: Select a reference load vector f ∈ Rn
2: LA : Compute the equilibrium displacement u = K [x]

−1
f

3: Set up the stress stiffness matrix G [x,u (x)] ∈ Symn×n

4: EA : Compute the pairs (λi,ϕi) ∈ R× Rn, i = 1, . . . , r by solving

(K [x] + λG [x,u (x)])ϕ = 0 , ϕ 6= 0 (1)

discretization where the optimization takes place, and use them as drivers for a harmonic response64

(linear) problem. The method was given a physical motivation, replacing the eigenvalue problem65

with a frequency response one, and similarities between the two were discussed by the authors66

[8, 27]. A multilevel concept is exploited also here, with the main focus on cheaply computing a67

satisfactory approximation to some buckling modes without ever solving an eigenvalue problem on68

the fine discretization. However, in contrast to [27], the approximate buckling modes and their69

associated load factors estimated by means of the Rayleigh quotient, are now directly used to run70

the optimization. We emphasize that this multilevel approach helps filtering the aforementioned71

unphysical artifacts and localized buckling modes originating on the fine grid, thus significantly72

simplifying and speeding up the optimization process.73

The outline of the paper is as follows. In section 2 we set up the problem and describe the steps74

for the multilevel approximation of buckling modes and load factors. In section 3 we present 2D75

results showing the potential of the method to produce buckling resistant designs with very low76

computational cost. Then, the designs are carefully discussed in section 4 and the ability of our77

approach to overcome some artificial effects is discussed. A post–processing strategy to reinforce78

the design against local buckling is proposed in subsection 4.1. A fairly large 3D example is shown79

in section 5 and conclusions are drawn in section 6, including a discussion about open issues.80

2. Setting and methods81

We consider a continuum body Ω ⊂ Rd, d = {2, 3}, and its discretization Ω1 = ∪me=1Ωe, obtained82

through a uniform and regular grid of m elements Ωe. Hereafter Ω1 will be referred to as the fine83

discretization and n denotes the total number of Degrees of Freedom (DOFs).84

Let x̂ = {x̂e}me=1 be the vector of design variables. We consider a three field approach to impose85

a length scale on the design [37]. Physical variables xe are given by the relaxed Heaviside projection86

(η ∈ [0, 1] and β ∈ [1,∞)) [54]87

xe (x̃e, η, β) =
tanh(βη) + tanh(β(x̃e − η))

tanh(βη) + tanh(β(1− η))
(2)

where x̃e = x̃e(x̂e) is obtained thorough a standard density filter [16], with radius rmin.88

The global elastic stiffness matrix K = K[x] and the global stress stiffness matrix G =89

G[x,u(x)], which depends on both design variables and displacements u, are assembled from the90

elemental ones Ke[xe] = Eκ(xe)Ke0 and Ge = Eσ(xe)Ge0[ue(xe)], respectively. These depend on91
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the two different interpolations of the Young modulus [12]92

Eκ (xe) = E0 + xpe (E1 − E0)

Eσ (xe) = xpeE1

(3)

where the contrast in coefficients is E1/E0 = 106 and the Poisson ratio is fixed to ν = 0.3.93

The element matrices Ke0 and Ge0 are obtained using incompatible finite elements (i.e. 6–DOFs94

Wilson quadrilaterals in 2D and 11–DOFs hexahedra in 3D) whose description and implementation95

details can be found e.g. in [57, 56, 46]. The benefits of such elements applied to buckling problems96

have been observed [28] and we remark that, for an elementwise constant material distribution,97

these are equivalent to some mixed elements [44, 45].98

Accounting for geometrical non–linearities [15], buckling under the applied load f is described99

by the modes ϕi ∈ Rn and the associated Buckling Load Factors (BLFs) λi ∈ R, i = 1 . . . n. Thus,100

the fundamental BLF, which can be characterized by the Rayleigh quotient [55]101

λ1 (x,u) = min
v∈Rn,v 6=0

R (x,v) := − vTK [x]v

vTG [x,u]v
(4)

provides an approximate measure of the stability of the discretized system. In the following we102

consider the buckling modes to be normalized such that ϕTi K[x]ϕj = δij .103

For a simple eigenvalue λi the sensitivity w.r.t. each variable xe is expressed as [47]104

∂λi
∂xe

= ϕTi

(
∂K

∂xe
+ λi

∂G

∂xe

)
ϕi − λizTi

∂K

∂xe
u (5)

where zi solves the adjoint system105

Kzi = ϕTi (∇uG)ϕi (6)

and the chain rule must then be applied to recover the filter and projection dependence (2).106

2.1. Approximation of the buckling modes by the multilevel procedure107

In a standard nested TO approach the BLFs and buckling modes are computed at each optimiza-108

tion step through a Linearized Buckling Analysis (see Algorithm 1), consisting of a linear analysis109

(LA) and an eigenvalue analysis (EA). The latter represents the main computational burden in110

the LBA, rapidly increasing with the number of DOFs. Moreover, a large and growing number of111

eigenpairs may be required in order to consider all the active buckling modes [39, 19, 28], further112

increasing the cost of each analysis.113

Therefore, we propose to take advantage of the multilevel discretization used for setting up114

the multigrid preconditioner when performing the LA [7] in order also to cheaply compute an115

approximation to the buckling modes. Let Ω` be the coarsest discretization, Ωj an intermediate116

one and Ijj+1, Ij+1
j the interpolation and restriction operators between two consecutive levels [18].117

The procedure is summarized in the following steps118

1. Solve the coarse scale eigenvalue problem119 (
K` [x] + λ`G` [x,u (x)]

)
ψ` = 0 , ψ` 6= 0 (7)

where K` [x] and G` [x,u (x)] are obtained from the fine scale operators through Galerkin120

projection [18] (we omit the superscript ` = 1 when referring to quantities on the fine scale);121
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2. The set of q lowest coarse scale modes, say Ψ` = {ψ`i}
q
i=1 is projected on Ω1 through each122

Ωj , by means of the iteration Ψj = Ijj+1Ψj+1;123

3. Once on the finest scale Ω1, the following linear problem is solved computing an approximation124

of the fine scale modes Φ̃ = {ϕ̃i}
q
i=1125

K [x] Φ̃ = G [x,u (x)] Ψ (8)

4. Finally, the corresponding BLFs are calculated as126

{λ̃i}qi=1 = R(Φ̃) = − Φ̃TK [x] Φ̃

Φ̃TG [x,u (x)] Φ̃
(9)

The idea is now to use the pairs (λ̃i, ϕ̃i), in place of the fine scale eigenpairs (λi,ϕi), to run the127

optimization, thus eliminating the need for solving any eigenvalue equation on Ω1. Therefore, the128

pairs (λ̃i, ϕ̃i) are used within the sensitivity expressions (5) and (6). This is formally not consistent,129

as (λ̃i, ϕ̃i) is not an eigenpair and we have the following residual130

y = (K [x] + λ̃1G [x,u (x)])ϕ̃1 (10)

The formally consistent sensitivity expression, which requires the solution of an extra adjoint131

problem, is given in AppendixA. However, here we treat (9) as yet another approximation to the132

exact Rayleigh quotients and the contribution associated with (10) is not accounted for.133

The procedure above is rooted in the method originally described in [27], where an analogy with134

Preconditioned Inverse Iteration (PInvIt) [30, 40] was pointed out. Steps 1 and 2 were recognized135

as a cheap way for computing a very good initial guess for the inverse iteration on the fine scale [27].136

Here the focus is on more than numerical details. The pivotal advantage of the proposed method137

lies in the filtering of some artificial and/or highly localized buckling modes, but still preserving the138

quality of “global” ones. By computing only these latter, the optimization runs towards a structure139

with improved global stability without overly enlarging the set of constrained modes.140

For the sake of brevity and to quickly focus on the core results, we do not discuss numerics any141

deeper. The interested reader may find some further details and validations in AppendixA.142

3. Design of a 2D structure for minimum compliance143

Let us consider the geometry sketched in Figure 1 (a), originally discussed in [28]. Points a and144

b are hinged and a downward load, having total magnitude |F | = 2 · 10−2, is spread over a length145

of Lx/10 near points c. Square regions near these three points, with dimension Lx/10, are set to146

be solid during the optimization. The values of Young’s moduli used in Equation 3 are E1 = 1 and147

E0 = 10−6 over the design domain, while Ep = 103 for the prescribed solid regions (to alleviate148

problems with local stress concentrations at load and supports).149

We address the compliance minimization problem for a maximum volume fraction f̄ = 0.16 and150

minimum BLF λ̄ = 1.0151

P1


min

x̂∈[0,1]m
J (x) = uTK [x]u

s.t. min
i∈B

λ̃i ≥ λ̄

V (x) ≤ f̄ |Ωh|

(11)
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Opt. Post-Proc. (BW)

i λi δi (10−4) ` = 1 ` = 2 ` = 3 ` = 4

1 1.000 - 1.001 1.002 1.005 1.021
2 1.015 1.08 1.125 1.130 1.139 1.207
3 1.026 1.46 1.134 1.262 1.271 1.328
4 1.038 1.01 1.256 1.314 1.324 1.387
5 1.045 0.52 1.264 1.331 1.351 1.430
6 1.064 0.71 1.297 1.339 1.371 1.444
7 1.071 0.77 1.306 1.359 1.383 1.486
8 1.097 1.52 1.317 1.363 1.418 1.501
9 1.111 43.90 1.329 1.401 1.423 1.544
10 1.116 631.12 1.333 1.405 1.457 1.563
11 1.166 643.31 1.349 1.410 1.488 1.586
12 1.221 1,058 1.353 1.442 1.501 1.614

Table 1: Eigenvalues from the optimization (columns Opt.) and post–processed BW design for the structure from
Figure 1(b). The coarse level used in the optimization is ` = 3. The relative difference between the compliance
obtained from optimization, and those computed on the post–processed BW design for different ` is always below
10−6

Opt. Post-Proc. (BW) P–R

i λi δi (10−5) ` = 1 ` = 2 ` = 3 ` = 4 L ∆λi/λi %

1 0.997 - 0.999 1.001 1.002 1.005 1.0 ≈ 0
2 1.010 6.21 1.001 1.099 1.170 1.181 212.6 0.08
3 1.021 7.28 1.066 1.166 1.235 1.249 184.4 0.11
4 1.032 11.76 1.154 1.224 1.253 1.279 3.1 0.31
5 1.047 56.58 1.164 1.228 1.266 1.307 166.6 0.14
6 1.060 90.63 1.216 1.240 1.293 1.321 41.7 2.28
7 1.094 320.4 1.229 1.263 1.305 1.356 3.9 2.19
8 1.098 251.3 1.233 1.289 1.311 1.394 2.0 1.57
9 1.117 338.9 1.260 1.304 1.334 1.404 150.6 1.65
10 1.136 420.5 1.285 1.327 1.360 1.416 8.8 2.02
11 1.139 334.8 1.298 1.348 1.377 1.435 4.6 3.09
12 1.162 458.5 1.302 1.357 1.381 1.459 13.1 2.0

Table 2: Eigenvalues from the optimization (columns Opt.) and post–processed BW design for the structure from
Figure 1(c). The coarse level used in the optimization is ` = 4. The relative difference between the compliance
obtained from optimization, and those computed on the post–processed BW design for different ` is always below
10−6. The columns below P–R display the TV measure of the modal strain energy, according to (17), and the
change in the BLFs after the thickening operation R[x] (18)
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(a)

F

(b) Ω1 = 840× 360

F

(c) Ω1 = 1680× 720

Figure 1: Geometry of the two–bar frame example introduced in [28] (a) and minimum compliance designs, corre-

sponding to f̂ = 0.16 and λ̄ = 1.0, on two different discretizations (b), (c)

We recall that, due to linearity, the compliance can be evaluated in any reference state and152

it is convenient to consider the state (f ,u) already solved for in connection with the linearized153

buckling analysis (Step 2 in Algorithm 1). The buckling constraint has been implemented with a154

bound formulation [11], imposing a small gap between eigenvalues in order to prevent their complete155

coalescence. Specifically, the constraint mini∈B λ̃i is replaced by the set156

αiλ̃i/λ̄− 1 ≤ 0 , i ∈ B

where α = 0.99, and the lowest 12 buckling modes are considered within the optimization. However,157

eigenpairs up to the 24th are still computed in this test problem for monitoring purposes. No158

substantial differences have been observed if instead considering aggregation of these constraints159

(with e.g. p–norm or Kreisselmeier–Steinhauser [36] functions), provided that the aggregation160

parameter is chosen high enough [28].161

The optimization problem is run for 700 steps, increasing the penalization p from 1 to 6 each162

25 steps, with ∆p = 0.25. The filter radius is rmin = 8h and the projection parameters are fixed163

to η = 0.5 and β = 6. The Method of Moving Asympotes [51] is used to update the design164

variables x̂. Figure 1 (b) and (c) show the optimized designs corresponding to the two different165

fine discretizations Ω1 = 840× 360 (6.07 · 105 DOFs) and Ω1 = 1680× 720 (2.424 · 106 DOFs). The166

coarse levels for the multilevel procedure are set to ` = 3 and ` = 4, with cut in the DOFs number167

of 16 and 64 times, respectively.168

The effect of a finer discretization, increasing the design freedom, is clearly seen with a more169

complex distribution of thinner bars, for the same value of λ̄ and f̄ . The optimization progress170

is shown in Figure 2 (a, b), referring to the structure of Figure 1 (b). The initial compliance171

and fundamental BLF are J(0) = 2.501 · 10−3 and λ1(0) = 0.597, respectively and we see that in172

the beginning of the optimization λ1 is increased to quickly meet the buckling constraints. The173

compliance is also reduced, as we are considering p = 1. Then, as p is raised, the compliance174
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(a) (b)

Figure 2: Optimization histories for problem P1 solved on the discretization Ω1 = 840×360. (a) shows the evolution
of the normalized compliance (black curve) and of the fundamental BLF (blue curve). (b) shows the evolution of the
BLFs corresponding to the constrained buckling modes

increases as the optimizer strives to fullfill the buckling constraint. The distinct jumps in the175

compliance and BLFs evolution curves correspond to increases of the penalization parameters,176

while in the last 150 steps, when p = 6, the value of λ1 is stable. The optimized design has a177

compliance of J(700) = 2.743 · 10−3, about 7.9% higher than the initial one, and both the volume178

and buckling constraints are active.179

From Figure 2 (b) we clearly notice the activation of more and more BLFs as the optimization180

progresses and the following quantity [28]181

δi = λi/λ1 − α(i−1) , i = 2, . . . , |B| (12)

can be used to quantify this coalescing phenomenon. At the end of the optimization, coefficients δ2182

to δ8 are below 10−4 and therefore the corresponding modes can be considered active. Moreover,183

λ9 to λ12 are also very close to the active set (see Table 1).184

Similar observations apply to the design corresponding to the finer discretization Ω1 = 1680×720185

in Figure 1(c). The compliance for this design is J(700) = 2.789 · 10−3 and the value of the 12186

lowest BLFs is reported in the second column of Table 2. We recognize that the more complicated187

structural pattern is associated with the coalescence of more BLFs and the activation of more188

buckling modes. Coefficients δ2 to δ6 are below 10−4 and those up to δ12 are below 10−2.189

Now, refer to Figure 3 and the Table therein in order to discuss computational savings. The190

time spent performing the Linearized Buckling Analysis (tLBA) directly on the fine scale Ω1, using191

direct solvers for both the Linear Analysis (LA) and the Eigenvalue Analysis (EA), is compared to192

that for the multilevel approach (starting from ` > 1). The simulations have been performed with a193

laptop equipped with an Intel(R) Core(TM) i7-5500U@2.40GHz CPU, 15GB of RAM and Matlab194

2018b, running in serial mode.195

As the multilevel approximation starts from a coarser mesh, the computational savings become196

apparent. For the case Ω1 = 840 × 360, choosing ` = 3 we cut the computational time by 8197

times and for the case Ω1 = 1680 × 720 and ` = 4 the cut is reaching 15 times. Moreover, and198

most importantly, we can back up our main claim: the cost for obtaining the approximation of199
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Ω1 = 840× 360 Ω1 = 1680× 720

` tLBA(s) sF eR tLBA(s) sF eR

1 120.0 1.0 0.981 649.6 1.0 0.979
2 47.7 2.5 0.644 257.3 2.5 0.639
3 15.1 8.0 0.587 69.1 9.4 0.568
4 - - - 42.5 15.3 0.512

Figure 3: Average time spent for a Linearized Buckling Analysis (tLBA) referred to the examples discussed in
section 3. The plot refers to the discretization Ω1 = 1680× 720. For ` = 1 the LA and EA are performed on the fine
discretization while ` > 1 defines the coarse discretization for the multilevel procedure. sF = tLBA(`)/tLBA(` = 1)
are the saving factors and eR represents the weight of the EA compared to the overall tLBA.

the fine scale buckling modes approaches that of solving the linear system. Indeed, from the ratio200

eR = tEA/tLBA, we see how the cost for the EA and that for the LA become almost equal (eR201

approaches 0.5) as Ω` becomes coarser (see plot and Table in Figure 3).202

4. Post–processing of the obtained designs203

To validate the designs obtained in section 3, we perform a full linearized buckling analysis204

on Ω1 using direct solvers for both the linear and eigenvalue equations. The designs show some205

grayscale, which can be quantified by the non–discreteness measure [49]206

mnd =
4

m
xT (1− x) ≈ 2.3% (13)

To rule out any effect due to grayscales, we first recover a completely Black and White (BW)207

design by means of a sharp Heaviside projection with η = 0.5. We stress that even if the projection208

operation does not produce any noticeable change neither in the topology, nor in the compliance209

values, it does affect the BLFs, their distribution and the associated buckling modes (see Table 1210

and Table 2). This is expected, as buckling response is generally very sensitive to structural211

modifications, and this feature is even sharpened for an optimized design.212

Let us start analysing the design of Figure 1(b). The active buckling modes for the BW design,213

computed again starting from ` = 3, are shown in the top row of Figure 4, and we remark that the214

fundamental buckling mode remains unchanged after the projection operation. Numerical values of215

the lowest 12 BLFs are listed in Table 1 (see column ` = 3). The value of λ1 is kept essentially the216

same, whereas the higher BLFs all increase by 0.7 to 22%. Also, the coefficients δi are substantially217

increased, in the order of 10− 21%; therefore gaps between eigenvalues are widened.218

Then we analyze the design starting from different coarse grids up to ` = 1, which means that219

the LBA is directly performed on the fine scale Ω1. In order to keep track of the modification or220

switching of buckling modes between grids, we compute the following coefficient cjr ∈ [0, 1]221

cjr = ϕ̃Tj K[x]ϕr (14)

9



Figure 4: Buckling modes ϕi computed by the multilevel procedure starting from different coarse levels ` for the
structure of Figure 1(b) projected to a completely Black and White (BW) design. ` = 3 is the coarse level used
for running the optimization and ` = 1 refers to a full LBA on the finest discretization. Coloring (blue to red)
corresponds to the strain energy density distribution (low to high), in logarithmic scale

which, considering the normalization ϕ̃Tj K[x]ϕ̃j = 1 ∀ j, is a variant of the well–known Modal222

Assurance Criterion (MAC) [5] accounting for the modal strain energy [17]. Equation (14) measures223

the degree of similarity of mode ϕ̃j , computed starting from a coarse scale Ω`, to a mode ϕr on224

the fine scale Ω1. We have cjr = 0 for two orthogonal modes and cjr → 1 as ϕj resembles ϕr more225

closely. It is emphasized that, in order for the MAC to be reliable, only values very close to 1 (e.g.226

cjr > 0.95) should be accepted [6]. Coefficients cjr computed for the current example are shown in227

Figure 6(a, b).228

Combining the information of the plots with the buckling modes represented in Figure 4 we can229

observe the following230

1. Some very localized modes appear when performing the LBA directly on the finest level ` = 1231

(see ϕ3, ϕ5, ϕ6 and ϕ8 in Figure 4), whereas these are not found with the multilevel strategy232

starting from ` = 3. Also the coefficients cjr in Figure 6 (a) show how these very localized233

modes do not correlate with any of the modes computed starting from the coarse level;234

2. On the intermediate level ` = 2 there are still some localized effects (e.g. ϕ6 and ϕ9) which235

can be correlated with some of those on the fine level, but with a lower level of confidence236

(cjr ∈ [0.85, 0.95]). This is another indication of the mesh dependency of these modes, which237

therefore should not be trusted as physically meaningful;238

3. We emphasize that, if Ω` is choosen coarse enough, with the multilevel procedure we can239

compute considerably less buckling modes and still represent the physical and global ones.240

This is clear from Figure 6 (a,c), where the 12 modes computed from the coarse scale match241

with global and physically meaningful fine scale modes up to the 28th and 24th, respectively.242

The same post–processing operations have been carried out for the design of Figure 1 (c), and243

results are reported in Table 2. Similar conclusions can be drawn regarding the effect of the BW244
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Figure 5: Buckling modes ϕi computed by the multilevel procedure starting from different coarse levels ` for the
structure of Figure 1(c) projected to a completely Black and White (BW) design. ` = 4 is the coarse level used
for running the optimization and ` = 1 refers to a full LBA on the finest discretization. Coloring (blue to red)
corresponds to the strain energy density distribution (low to high), in logarithmic scale

projection, and the computed buckling modes are shown in Figure 5. Again, we recognize some245

extremely localized deformations among the modes computed on the finest scale (see ϕ2, ϕ3, ϕ5246

and ϕ9). In addition to these, now there are other local modes associated with the failure of single247

bars (see ϕ6, ϕ10 etc.) and also their occurence is shifted to higher modes as we increase the coarse248

level `. Again, the coefficients cjr shown in Figure 6 (c,d) tell us that very localized modes on Ω1249

do not match with any modes on coarser grids. On the other hand the local, single–bar failures250

have a match, with a low cjr value (see blue points in Figure 6 (c,d)) and therefore they are very251

sensitive to the mesh fineness. From Figure 6 (c) we notice that the fine scale mode ϕ12 is matched252

(with low confidence) simultaneously by two modes (ϕ7 and ϕ10) computed through the multilevel253

procedure. This has to be expected, especially for modes involving a single bar, as many of these254

might appear and have similar BLFs (i.e. similar strain energy).255

We can discuss the accuracy of the BLFs approximations referring to the error measure256

ε
(`)
λi

= 1− λ̃(`)
i /λi (15)

where λ̃
(`)
i are the BLFs approximations given by the Rayleigh quotient (9), with modes computed257

starting from a certain coarse scale, and λi are those directly computed on the fine scale. The trend258

of this quantity is shown in Figure 7. We immediately appreciate how λ1, which in this context259

is the safety measure for the obtained design, possesses a very good accuracy (ε
(`)
λ1
≈ 0.2 − 0.5%260

for both designs). The accuracy seems to rapidly deteriorate for higher buckling modes, especially261

if comparing them by keeping the original sorting according to their magnitude (see plots (a,c)).262

However, if we compare only the modes which can be paired by the MAC (cjr ≥ 0.95), sorting263

them accordingly, which is much more meaningful from a physical point of view, we have a good264
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(a) Design of Figure 1(b) (b) Design of Figure 1(b)

(c) Design of Figure 1(c) (d) Design of Figure 1(c)

Figure 6: Distribution of coefficients cjr defined by (14) for the two designs of Figure 1(b,c). Values cjr > 0.95 are
shown in red and values cjr ∈ [0.85, 0.95] are shown in blue, while cjr < 0.85 are not represented.

approximation of all the BLFs associated with global modes (see Figure 7 (b,d)). From Figure 7265

(b) we notice how the accuracy of BLFs computed starting from ` = 4 is considerably lower. Also,266

many relevant modes are missed (see the gap between ϕ8 and ϕ50). This means that a too coarse267

scale has been selected to adequately represent the behavior of the inner frame of bars. Therefore,268

a tradeoff between accuracy and computational efficiency must be expected, at some level, when269

applying the multilevel procedure of subsection 2.1.270

We can conclude that by using the multilevel approximation strategy we can not only capture271

the most meaningful and global buckling modes, but also associate them with BLFs approximations272

with suitable accuracy.273

4.1. Discussion on localized buckling modes274

If the interpolations for Eκ and Eσ are not such that the Rayleigh quotient (4) remains bounded275

as xe → 0, artificial buckling modes are likely to happen in low density regions [39]. With the choice276

of (3), originally proposed by [12], we have not found this issue. According to the criterion proposed277

in [29], based on the ratio between the strain energy density associated with low density regions and278
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(a) Design of Figure 1(b) (b) Design of Figure 1(b)

(c) Design of Figure 1(c) (d) Design of Figure 1(c)

Figure 7: Behavior of the error measure defined in (15) as the multilevel procedure starts from different coarse
levels `. In plots (a,c) all the computed BLFs are considered and sorted according to magnitude when applying
(15). In plots (b,d) only the BLFs of modes that can be paired through the MAC (cjr ≥ 0.95) are shown and the
corresponding sorting is used when applying (15).

the overall one, some high order modes occasionally become spurious as the optimization proceeds.279

However, the evolution of the fundamental BLF is generally smooth, and jumps are associated with280

the increase of the penalization factor (see Figure 2).281

The localized buckling modes discussed in the previous section have nothing to do with grayscales,282

as they appear in solid regions of the pure BW design. With the goal of obtaining a preliminary de-283

sign, dealing with these localized modes in the optimization process does not seem a good strategy,284

at least for the following two reasons285

1. Extremely localized deformations, such as ϕ3, ϕ5 and ϕ6 in Figure 4 or ϕ2, ϕ3 and ϕ5 in286

Figure 5, are artifacts due to stress concentrations and/or singularities [2], linked to sharp287

geometric variations, such as corners or sharp boundaries (see Figure 8(a)). In reality, the288

critical condition in those regions will be the reaching of a limit stress and material failure,289

before geometric instability. We underline that such stress concentrations are by no means a290
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(a) Ω1, ζ1 = 1.93 (b) Ω2, ζ2 = 0.83 (c) Ω3, ζ3 = 0.41

Figure 8: Log–modulus plots of the scalar measure of the stress stiffness matrix defined by (16) (normalized w.r.t.
the maximum value) on the three discretization levels for the structure of Figure 1(b)

prerogative of density–based TO. Other researchers, using alternative parameterizations (e.g.291

level–set [23]), have experienced similar artifacts;292

2. As an intrinsic trend, compliance or mass–optimized designs may show many thin bars, es-293

pecially for fine discretizations and/or low volume fractions while building up a hierarchical294

structure with extreme buckling response. Thus, many local modes involving single bars may295

appear, and taking all of them into account would overly increase the number of eigenpairs296

to be computed.297

Therefore, we on purpose overlook local modes in the optimization process, achieving a design298

with “global” stability more easily. An exhaustive discussion of local buckling [10, 48] is beyond299

the scope of this work. However, we point out that a global, “averaged” approach has since long300

been recognized as being meaningful for studying the geometric stability of continua [2], as local301

effects are not soundly defined.302

Concerning Point 1, we have already discussed how local artifacts can be alleviated by the
multilevel approximation strategy when Ω` is set coarse enough. This is due to the intrinsic filtering
effect of the Galerkin projection, which applied to the fine–grid stress stiffness matrix G[x,u(x)]
essentially corresponds to a smoothing of stresses. This is visualized in Figure 8, showing the
following scalar representation of the stress stiffness matrix

G`i =
√

(G`2i)
2 + (G`2i−1)2 (16)

on three levels `. Labeling G`k = G`kk, the diagonal coefficients of the stress stiffness matrix corre-303

sponding to the `–th level, (16) associates to each node i of the discretization an equivalent value304

accounting for the contribution of the two DOFs. On Ω1, this quantity appears very localized305

in regions where localized modes appear (see Figure 4), wherease it becomes progressively more306

spread on coarser levels. Moreover, the parameter ζ` = maxi G`i /K`i , where K`i is defined as in307
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(a) |∇π6| (b) |∇π10| (c) Ne (d) ϕ6 (e) ϕ10

Figure 9: Illustration of the local thickening post–processing operation. (a,b) show the log–scale variation of |∇π|
associated with the two modes representing a single–bar failure for the design of Figure 1 (c). The set Ne correspond-
ing to the threshhold |∇πj∗|e| ≥ 10−2 maxe∇πj∗|e is shown in (c) and (d,e) show the two modes for the reinforced
structure

(16) corresponding to the stiffness matrix, descreases while shifting on coarser grids, attesting the308

decrease of local effects.309

The optimized design may be reinforced against buckling of single bars in a post–processing310

step, marginally affecting the structural volume. The procedure may build on first identifying such311

local buckling by computing the Strain Energy Density (πj|e = ϕTj|eKe[xe]ϕj|e, e = 1, . . . ,m) for312

each mode, and the Total Variation of this quantity [31]313

Lj = L (πj ,Ω≥) =

∫
Ω≥

|∇πj | dΩ (17)

where ∇(·) here is the spatial gradient and Ω≥ := {Ωe ∈ Ω1 | xe ≥ x̄} identifies the solid domain314

on the fine discretization. We may choose x̄ = 1 for a pure BW design. If Lj = 0, the quantity315

πj is constant on Ω≥, and the corresponding ϕj is a global mode. On the other hand ϕj becomes316

more and more localized as Lj →∞.317

Once identified the localized modes, say j∗ ∈ B, a local dilation–like operator [49] is introduced318

R[xe] = max
k∈Ne

xk (18)

where Ne is the set of neighboring elements Ωk s.t. dist(Ωe,Ωk) ≤ rth and |∇πj∗|e| exceeds a fixed319

value ∀j∗ ∈ B. Equation 18 is used to perform a local thickening of the critical bars, according to320

the width rth.321

For example, for the structure of Figure 1 (c), modes ϕ6 and ϕ10 each involve the buckling322

of a single thin bar and are associated with values L6 = 41.7 and L12 = 13.1, which are very323

high if normalized w.r.t to the one of the fundamental buckling mode L1 = 1.0. Based on the324

distribution of |∇πj∗ | for j∗ = 6, 12, the set Ne is built (here considering elements where |∇πj∗|e| ≥325

10−2 maxe∇πj∗|e) and the operator R performs the local thickening as shown in Figure 9 (d). In326
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Figure 10: Setting for the 3D cantilever example. The beam is fully clamped at the built in end and a uniform load
with total magnitude ‖f‖ = 3.6 ·104 acts on the top face. A layer of passive, solid elements with thickness t = ez/30,
is at the top face (see Ωp shown in red), while the shaded area denoted by Ωv is the extended domain used for
padding the density filter (see [22] for details)

(a) (b) (c) ϕ1 (d) ϕ2

Figure 11: Compliance design obtained from (19) for λ̄ = 0 (a). The value of the volume fraction is f = 0.1295. In
(b) we can see some cross sections illustrating the concentration of material in a single strut at the center and (c,d)
show the lowest two buckling modes, and the distribution of strain energy associated with these deformations

the end, these local modes are avoided within the set B, with a minute increase of about 0.36% in327

the structural volume. The variations of the BLFs are reported in the last column of Table 2, and328

we notice that all of them increase a few percent, with those corresponding to global modes barely329

affected by this local reinforcement.330

5. Mass minimization of a 3D cantilever beam331

We now consider the mass minimization problem for the 3D structure sketched in Figure 10,332

inspired by the example presented in [23]333

P2


min

x̂∈[0,1]m
f = V (x) /|Ωh|

s.t. min
i∈B

λi ≥ λ̄

uTK [x]u ≤ 6J̄(x = 1)

(19)
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(a) λ̄ = 0.25, f = 0.135 (b) λ̄ = 0.5, f = 0.145 (c) λ̄ = 0.75, f = 0.172 (d) λ̄ = 1.0, f = 0.221

(e) λ̄ = 0.25 (f) λ̄ = 0.5 (g) λ̄ = 0.75 (h) λ̄ = 1.0

Figure 12: Some designs obtained for increasing values of the lower bound on the fundamental BLF (a–d) and
corresponding views with sections (e–h). Physical densities xe ≥ 0.9 are plotted

for some values of λ̄ ∈ [0, 1]. The buckling load factor of the fully solid design (f = 1) is λ1 = 2.393;334

therefore we are always starting within the feasible set.335

The fine scale discretization is set to Ω1 = (134 + 2, 44 + 4, 94 + 2), corresponding to 626,688336

design variables and 1,953,483 DOFs, about 4.5 times more than in [23]. The multilevel procedure337

is built with ` = 3 and on Ω` we just have 34,125 DOFs. The density filter radius is set to338

rmin = 4
√

3 and, in order to alleviate boundary effects, we adopt the domain extension strategy339

suggested in [22]. Therefore, in the above we referred to the fine discretization with the convention340

Ω1 = (ex + dx, ey + dy, ez + dz), where dj is the number of elements extending the domain for each341

direction. For this example, 24 modes are computed and the lowest 12 BLFs are constrained.342

The optimization is run for a total of 600 steps and, in order to obtain efficient designs with low343

grayscale, the following continuation strategy is used for p and β. The optimization is started with344

p = 3 and β = 1, then p is raised with increments ∆p = 0.25 each 25 steps, up to the value pmax = 6.345

As this penalization value is reached, β is doubled each 50 steps up to the value βmax = 32.346

Figure 11 (a) shows the optimized design when only considering the compliance constraint347

(λ̄ = 0) and we see how the material is mainly localized near the centerline of the structure. Near348

the tip, the top face is supported by some thin members, converging in a single strut connecting349

with the built-in end at the foot. It can be clearly recognized how the strut is taking an I-shaped350

configuration while progressing towards the built-in end, then splitting into two regions, optimizing351

the bending response. The volume fraction for this design is f = 0.1295, and the compliance352

constraint is active. The fundamental BLF is λ1 = 0.067; thus, from a practical point of view the353
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Figure 13: Details of the 3D design obtained for λ̄ = 1 (left) and some of the buckling modes. The colormap (blue
to red) on buckling modes refers to the logarithm of the strain energy density (low to high)

design is worthless, as it would buckle under the external load. The fundamental buckling mode,354

shown in Figure 11 (c) resembles a global twist of the structure in the y − z plane, which is poorly355

restrained by the supporting structure.356

Intuitively, material should be deployed far from the centerline, to resist rotations in the y − z357

plane when including the buckling constraint. Designs obtained for higher values of the lower bound358

λ̄ are displayed in Figure 12. As expected, the material is progressively moved away from the359

centerline and for λ̄ ≥ 0.5 two distinct shear plates appear. An internal distribution of reinforcing360

beams is also emerging as λ̄ is increased further (see Figure 12(c)).361

A detailed view of the design corresponding to λ̄ = 1 is given in Figure 13, where some of362

the buckling modes are also displayed. All the constrained modes ϕ1 − ϕ12 represent global,363

physically meaningful deformations, either involving a twisting of the structure or a warping of the364

two shell–like struts. Some of the modes associated with higher BLFs still represent very localized365

deformations (see ϕ14); however these are remarkably shifted outside the considered range of BLFs366

by the multilevel approach.367

Optimization histories for the design corresponding to λ̄ = 1 are shown in Figure 14 (a, b).368

Again, jumps in the compliance and BLFs correspond to increases of the penalization or projection369

parameters. Figure 14 (c) shows the relationship between λ̄, the volume fraction of the optimized370

design and the δi parameters, defined in (12). As we expected [28], with a maximum prescribed371

compliance, the volume fraction of the optimized design increases as λ̄ is raised. Also, more and372

more buckling modes become simultaneously active: for the design corresponding to λ̄ = 1 we have373

δ2 and δ3 < 10−5 and δi < 5 · 10−2 up to δ10.374

The average computational time for performing the LA (see AppendixA for details) is about375

185s. The time spent for the calculation of the 24 buckling modes can be split into 38s for Steps376

1–2 in subsection 2.1 and about 375s for solving (8) on the fine discretization (i.e. ≈ 420s for the377
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(a) (b) (c)

Figure 14: (a) shows the evolution of the volume fraction (black curve) and of the fundamental BLF (blue curve)
and (b) the evolution of the BLFs corresponding to the constrained modes for problem (19) with λ̄ = 1. (c) shows
the relationships between λ̄ and the volume fraction of the obtained designs, normalized with respect to that of the
design corresponding to λ̄ = 0 (blue curve, plotted against the left axis), and the eigenvalue separation parameters
δi (plotted against the right axis)

overall EA). Therefore, the ratio tEA/tLBA = 0.69 indicates again the efficiency of the multilevel378

procedure. Comparing to [23], reporting a computational times of about 120s when computing 25379

buckling modes for a much smaller 3D problem (≈ 4.6·105 DOFs) and using a parallel algorithm, the380

presented multilevel approach seems to enhance the efficiency considerably. This also considering381

that no parallelization (which is possible for all the methods presented) was considered for the382

present examples.383

6. Concluding discussion384

The goal of this work was to cut the complexity and computational cost of structural Topology385

Optimization accounting for buckling, to make it feasible for large–scale problems. The results386

presented in section 3 and section 5 indicate that a multilevel strategy for selecting buckling modes387

and to approximate the corresponding buckling load factors makes this goal achievable. The com-388

putational effort for obtaining buckling modes and load factors is reduced to a fraction of that389

required from a full scale eigenvalue analysis; moreover, it scales approximately as the cost of a390

multi–load linear compliance problem.391

We also discussed how the multilevel strategy alleviates some artifacts due to stress concentra-392

tions and filters out some local buckling modes. Within this context these are seen as very positive393

effects, as motivated in subsection 4.1. Basically, minimum mass or compliance optimization inher-394

ently produces hierarchical layouts with many thin bars prone to undergo local buckling. Taking395

into account all of these modes would be computationally unfeasible and also unneccessary to the396

goals of achieving a preliminary design meeting global stability.397

The authors believe that a rational and effective approach to tackle local buckling within topol-398

ogy optimization of continua is still an open question, which definitely requires further research399

efforts. Nevertheless, the procedure we have proposed here represents a first effective method for400

improving the overall geometric stability of large–scale topology optimized designs.401
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Algorithm 2 Linearized Buckling Analysis by the multilevel iterative method

1: set ` and build Ω1 ⊃ Ω2 ⊃ . . .Ωj ⊃ . . . ⊃ Ω` . Build nested discretizations
2: assemble K [x] on Ω1 . Fine scale stiffness matrix
3: solve f −K [x]u = r on Ω1 . LA performed by mgPCG

4: assemble G [x,u (x)] on Ω1 . Fine scale stress stiffness matrix
5: restrict K` = I1

`KI
`
1 and G` = I1

`GI
`
1 . Galerkin projection of matrices on Ω`

6: compute (λ`i ,ϕ
`
i), i = 1, . . . , q . Solve coarse scale eigenvalue problem

7: set Ψ` = {ϕ`i}
q
i=1, Λ` = diag{λ`i}

8: for j = `− 1, . . . , 0 do
9: Ψj ← Ijj+1Ψj+1 . Project modes on the next finer grid Ωj

10: λ̃j1 ← mini Λ̃j+1
i . Set current shift on Ωj

11: Y j = (Kj + λ̃j1G
j)Ψj . Compute residuals Y j = [yj ]qi=1

12: Ψj ← S[Y j ] . Smooth modes Ψj iterating on the residuals
13: Λ̃j ← R[Ψj ] . Ritz projection to compute approax. λ̃i on Ωj
14: end for
15: solve K [x] Φ̃ = G [x,u(x)] Ψ . Solve one fine scale system by mgBPCG

16: Λ̃ = R(Φ̃) . Estimate BLFs associated with fine scale modes
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AppendixA. Further details on numerical procedures405

Algorithm 2 shows the detailed steps for performing the LBA by using iterative solvers and406

multilevel preconditioners.407

The LA (Line 3) is performed by the Conjugate Gradient method, preconditioned by a geometric408

multigrid built on the set of nested discretizations {Ωj}`j=1 [13]. The convergence criterion adopted409

is the one proposed by Arioli [9], which is based on a direct estimate of the energy norm of the410

error (i.e. εK = ‖u(k) − u‖K where u(k) is the approximation at the k–th CG step) making use411

of quantities which are already computed by the CG iteration (see Eq. 20 in [9] and the relative412

discussion). By using this criterion, convergence has been observed to occurr in 5 to 13 iterations413

for the 2D examples, and in 6 to 25 for the 3D one (see Figure .15(a)).414

The adjoint equation (6) is solved by the block version of the mgPCG [41, 26] and it is our415

experience that this may require more iterations. This is reasonable, because the right hand sides416

ϕTj (∇uG)ϕj ∈ Rn are now distributed over the whole domain; therefore the error propagates slower.417

The multilevel steps for computing an approximation to the fine scale modes (Lines 4–14 in418

Algorithm 2) have already been outlined in subsection 2.1; here we just point out that419

• The coarse scale eigenvalue problem (Line 6) is solved by the Krylov–Schur algorithm [50]420

and (λ`,ϕ`)i are the only “true” eigenpairs in the overall process; i.e. the only computed421

running the algorithm to convergence (measured by a tolerance τ = 10−8 on the residual);422

• On each grid Ωj , the projected modes Ψj are smoothened by iterating on the associated423

residuals, in order to filter high frequencies introduced by the projection. Since the matrix424

20



(a) (b)

Figure .15: Some convergence plots corresponding to example Figure 1 (c). (a) shows the convergence of the mgPCG

iteration, where ξ(k) (solid line) estimates the energy norm error (dashed line), as proposed in [9]. (b) shows the
measure of the residuals of the eigenvalue equation defined by Equation 10 (solid line) and the error in the BLFs
(dash–dot line), as the optimization progresses

Aj := Kj + λ̃1G
j is not positive definite (as λ̃j1 > λj1), a Kaczmarz iteration [32] (denoted as425

S[·] in Algorithm 2) is used, which amounts to the Gauss–Seidel iteration for (Aj)TAj [58];426

On the fine grid Ω1 the buckling modes approximation can be improved by taking one step of427

inverse iterations (Line 15–16). Again, this set of linear equations is solved by a preconditioned428

iteration which, for each vector ϕ̃i, has the form [30]429

ϕ̃i(k+1) = ϕ̃i(k) − P−1(K + λ̃1G)ϕ̃i(k) (A.1)

where P is the preconditioner and ϕ̃i(0) = ψi. Equation A.1 is a gradient method for the mini-430

mization of the Rayleigh quotient Ri = R[ϕ̃i] [25, 24], with descent direction431

∇PRi = P−1(K + λ̃1G)ϕ̃i (A.2)

Referring to [40] for details and proofs, we recall that, if Ri(0) ∈ (λi, λi+1), for each step (A.1)
we have either Ri(k+1) < λi (if i > 1) or Ri(k+1) ∈ [Ri(k), λi] and the following estimate applies [35]

Ri(k+1) − λi
λi+1 −Ri(k+1)

≤ c2
Ri(k) − λi
λi+1 −Ri(k)

(A.3)

where c2 ∝ (1− λi/λi+1).432

From (A.3), the sequence {Ri(k)}k monotonically converges to the fine scale eigenvalue λi; and433

by the definition of c2 we see that as the BLFs start to coalesce together the ratio λj/λi+1 → 1, so434

does c2 and the convergence rate deteriorates.435

Finally, the consistent expression of the sensitivity for the BLFs λ̃i, accounting for the residual436

yi defined in (10), is437

∂λ̃i
∂xe

=
1

1− pTi Gϕ̃i

[
ϕ̃Ti

(
∂K

∂xe
+ λ̃i

∂G

∂xe

)
ϕ̃i − λ̃izTi

∂K

∂xe
u + pTi

(
∂K

∂xe
+ λ̃i

∂G

∂xe
− ∂yi
∂xe

)
ϕ̃i

]
(A.4)
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where pi = −2(K + λ̃iG)−1yi is the adjoint variable associated with (10). Figure .15(b) shows438

the evolution of ‖yi‖∞ for the lowest four modes, in the optimization progresses for the design439

Figure 1(c). Even if this measure is not generally small, the corresponding BLFs approximations440

(represented by dashed lines) are still accurate, especially for λ̃1. Therefore, we treat (λ̃i, ϕ̃i) as an441

approximation of the “true” eigenpair, and apply the sensitivity expression (5).442
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