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Summary
A key obstacle to the large scale adoption of wind power is the high variability of energy

production caused by weather systems and the turbulent atmosphere. Forecast errors
contribute a significant source of uncertainty for power system planning and operation
when large shares of renewables constitute the supply mix. To address these issues,
horizons for economic dispatch and financial settlement are being shortened from hourly
to minute-scale operations across a growing number of markets.

Three key uses of wind forecasts on the minute scale include: Trading in intrahour
wholesale electricity markets, supporting and managing grid balance actions, and collective
wind farm control.

Wind and power forecasts on these very-short timescales are typically obtained by
inferring patterns from past data (time series modelling) or by assuming unchanging
conditions from the latest available measurements (persistence). Yet, these methods
inevitably fail to perform under changing conditions where accurate forecasts are most
needed.

Remote sensing instruments such as long-range pulsed Doppler lidars are able to
measure the wind several kilometers away with high spatial and temporal resolution.
By directing the lidar to measure upstream (inflow), preview information about wind
patterns and structures which advect to some degree towards the site is gathered in
real time. This information can be used together with models to generate site specific
wind and power forecasts, either through the classification of anomalous events or in a
regression approach which produces deterministic or probabilistic predictions.

To explore these possibilities, a series of experimental field campaigns have been
conducted during the PhD project which build upon each other to provide high quality
reference datasets used for model formulation and testing. Scanning lidar observations
have been used to examine space-time correlations as a function of distance upstream.
The results indicate a strong relationship particularly within the first 3 km upwind of the
reference position which corresponds to an optimal forecasting window of up to 5-minutes
ahead. Gains beyond this lead time have also been shown, which can be attributed to
the effectively reduced forecast horizon as a function of distance ahead.

Three forecast methods have been implemented which range in complexity from simple
time-of-flight shifting of reconstructed horizontal wind speeds, to a linear propagation
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model which uses wind direction aligned wind speeds, to a machine learning computer
vision approach which uses 2-D lidar scans in a convolutional LSTM neural network. In
each case, the lidar based prediction models are able to fulfill the constraints of real time
use, and are evaluated against common benchmarks and reflected upon.

Specific incidents captured during the experiments including wind ramps and the
arrival of a weather front have also been examined to determine the ability of the lidar
to detect and track their arrival to the site.

Overall conclusions of the PhD project are that forward looking lidar observations are
useful in this context, particularly for detecting large scale events where the precise timing
and location is not reliably captured by numerical weather prediction (NWP) models.
Endeavors to produce multi-step time series forecasts and evaluate them statistically
have been successful, especially compared with the persistence method. However the
added value of these approaches remains ambiguous. Time series modelling techniques
like ARIMA generally perform well, and the complexity and expense of installing and
maintaining additional instrumentation may not prove to be cost effective. If these modest
gains can be linked to significant economic impacts and users are able to capitalize on
marginal improvements in the forecast accuracy, then an operational realization following
the guidelines laid out in this thesis should be considered.



Dansk sammendrag
En væsentlig hindring for udbredelsen af vindkraft i stor skala er at der optræder store

variationer i energiproduktion gennem tid grundet vekslende vejrsystemer og turbulens i
atmosfæren. Fejl i vindprognoser udgør en væsentlig kilde til usikkerhed ved planlægning
og drift af el systemet, især når de vedvarende energikilder udgør en stor del af forsyningen.
For at løse dette problem er der i et stigende antal forsyningsmarkeder blevet ændret på
tidsintervallet mellem el handelen og el leverancen. Tidsintervallet er blevet ændret fra
timer til minutter.

Vindprognoserne på minutbasis anvendes i tre sammenhænge: Handel inden for en
time på el markedet; styring af balancen i el systemet; og styring af en hel møllepark.

Vind- og elkraft-prognoser på disse meget korte tidsskalaer opnås typisk ved at anvende
mønstre fra tidligere data (tidsserie-modellering) eller ved at antage uændrede forhold
fra de seneste tilgængelige målinger (persistens). Begge metoder vil under vekslende
vindforhold give unøjagtige prognoser, og netop på de tidspunkter kan prognoser være
særligt betydningsfulde for planlægning og drift af el systemet.

Fjernmålings-instrumentet Doppler vind lidar kan måle vinden flere kilometer væk og
give observationer med høj rumlig og tidsmæssig opløsning. Når lidaren måler op mod
vinden i vindretningen vil de vindmønstre og strukturer som bevæges (advekteres) hen
mod instrumentet blive indsamlet i realtid. Målingerne kan sammen med atmosfæriske
modeller bruges til at generere stedspecifik vind- og elkraft-prognoser. Det kan udføres
enten ved klassificering af uregelmæssige hændelser eller ved en regressionsmetode, der
frembringer deterministiske eller statistiske forudsigelser.

For at udforske disse forskellige muligheder er der blevet gennemført en række eksperi-
mentelle kampagner i løbet af ph.d.-projektet. Disse er udført i en sekvens, som har givet
et referencedatasæt af høj kvalitet til anvendelse ved modelformulering og til testning.
Mere specifikt er scanning vind lidar observationer blevet anvendt til at undersøge korre-
lationer i tid og rum som en funktion af afstanden opstrøms. Resultaterne viser meget
høj korrelation især inden for de første 3 km opstrøms for instrumentet. Det svarer til at
der findes et optimalt prognosevindue på op til 5 minutter. Der er også mulighed for
at observere og forudsige vinden længere væk hvilket giver en længere tidshorisont for
prognosen.

De tre prognosemetoder, som er blevet implementeret, inkluderer en relativ simpel
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metode hvor vinden antages at bevæge sig med samme hastighed som den af lidaren
målte horisontale vindhastighed; en lineær udbredelsesmodel, der bruger vindretningen
og vindhastigheder som input; og en avanceret metode med machine learning computer
vision, der anvender 2-D lidar-scanninger i et Long Short-Term Memory (LSTM) neuralt
netværk. Alle tre lidar-baserede metoder opfylder kravene til at give en prognose, som
kan anvendes i realtid. De er alle sammenlignet med en fælles benchmark.

Specielle vindforhold observeret under eksperimenterne såsom pludselige store æn-
dringer i vindhastighed (ramps) og passage af vejrfronter er undersøgt nøje for at afklare
vind lidarens evne til at opdage og spore disse specielle vindforhold og deres ankomst til
målested.

Den overordnede konklusion af ph.d.-projektet er at vind lidar målinger er nyttige i
forhold til at lave vind- og elkraft prognoser med. Det er især stor-skala vejrhændelser,
som kan måles præcist i tid og sted, og hvor de numeriske modeller, der anvendes til
vejrudsigter, ikke forudsiger vinden præcist. Forskningen har indeholdt flertrins tidsserier
prognoser og disse er med gode resultater sammenlignet statistisk med persistens-metoden.
Dog er fordelene af flertrins tidsserie prognoser tvetydige. Tidsserie modelleringsteknikker
som ARIMA giver generelt gode resultater. Men kompleksiteten og omkostningerne
ved at installere og vedligeholde supplerende instrumentering er muligvis ikke en fordel
økonomisk set. I de tilfælde hvor der kan være en økonomisk gevinst ved at gøre brugerne i
stand til at udnytte marginale forbedringer i prognosens nøjagtighed, så kan det overvejes
at realisere korttids-prognoser med lidar-baseret måling efter de tekniske retningslinjer,
som er beskrevet i denne afhandling.
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This thesis consists of an introductory synopsis providing context for the work under-
taken, a collaborative review paper of the state of the art in the field and two results
papers which form the basis for the novel discoveries made during the PhD project. The
papers are connected by various supporting chapters, addendums and case studies. In
the end, a discussion and outlook chapter reflects on the key findings and recommends a
practical approach for future work in the field. Following this, overall conclusions of the
thesis are reiterated.
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Using Scanning Lidar Inflow Measurements, draft in preparation for submission,
2018.

3. Simon, E. and Courtney, M.: Minute-Scale Wind Vector Forecasting Using Scanning
Lidar Inputs to a Convolutional LSTM Neural Network, draft in preparation for
submission, 2019.

Other publications produced during the PhD period but outside the scope of this thesis
are not considered.



Acknowledgements
Carrying out this PhD work has been both challenging and rewarding, and I have grown

throughout it- both professionally and personally. This achievement would not have been
possible without the immense amount of guidance and support I have received along the way.
Firstly I would like to recognize my supervisor Mike, who has provided me with an outstanding
level of encouragement complemented with productive mentorship of the highest standard.
Similarly my co-supervisor Nikos for our many fruitful discussions, and for his services as PhD
coordinator. My section leaders Hans and Poul, who have given me freedom and opportunity
to pursue new ideas and for including me on equal terms within the institute. And all of my
colleagues at DTU Wind Energy who I have exchanged ideas with and in many cases befriended.
Working alongside fellow PhD students Tobias, Jonas, Pedro and Dominique has been especially
gratifying in that regard. My hosts Sue and David-John and all the wonderful people I met
during my stay at NCAR have also been extremely helpful and made my time in Boulder a real
highlight. It was also a pleasure teaching together with Pierre in the Renewables in Electricity
Markets course, and collaborating with the WFCT and WISDOM project partners. Further,
I have greatly enjoyed the many conferences I attended, and would like to thank both the
organizers and attendees I have interacted with for their valuable feedback.

The experimental component of this project has been greatly aided through the actions of a
number of colleagues. I would like to sincerely thank Guillaume for everything he has taught me
about how to design, build, and repair lidar systems, and for his invaluable assistance with the
field campaigns. Likewise Nikola who has helped immensely in developing my knowledge and
experience in the science of measurements. The technical staff at DTU have been an invaluable
resource, and I would like to express my appreciation to Per, Steen and Hector. The coding
and data analysis portion has heavily relied upon open-source software, and sincere thanks are
due to all the contributing developers for their time and effort.

Funding for this PhD project has been generously provided by the department through the
Danish taxpayers and industry partners. The Otto Mønsted Fund has also kindly financed a
portion of the external research stay costs. I would also like to thank those who have had direct
contributions to this thesis. Antoine for sharing his LATEXtemplate, Charlotte for translating
the Danish summary, and the examination committee (Rozenn, Lars, and Hannele) for reading
and evaluating this body of work.

Last but certainly not least, my eternal appreciation goes to my extraordinary family who
have given me unbounded love and support and encouraged my drive to learn and experience
the world.



Quote

“Of all the forces of nature, I should think the wind contains the largest amount of motive
power- that is, power to move things. Take any given space of the earth’s surface- for instance,
Illinois and all the power exerted by all the men, and beasts, and running-water, and steam,
over and upon it, shall not equal the one hundredth part of what is exerted by the blowing of
the wind over and upon the same space. And yet it has not, so far in the world’s history,
become proportionably valuable as a motive power. It is applied extensively, and
advantageously, to sail-vessels in navigation. Add to this a few wind-mills, and pumps, and you
have about all. That, as yet, no very successful mode of controlling, and directing the wind,
has been discovered; and that, naturally, it moves by fits and starts- now so gently as to
scarcely stir a leaf, and now so roughly as to level a forest- doubtless have been the
insurmountable difficulties. As yet, the wind is an untamed, and unharnessed force; and quite
possibly one of the greatest discoveries hereafter to be made will be the taming and harnessing
of the wind. That the difficulties of controlling this power are very great is quite evident by the
fact that they have already been perceived, and struggled with more than three thousand years;
for that power was applied to sail-vessels, at least as early as the time of the prophet Isaiah.”

Abraham Lincoln, Second Lecture on Discoveries and Inventions (1858)



Objectives of the PhD project
The following specific objectives were designed to encompass the overall goals of the

PhD project. Each theme is incorporated in the thesis text and again addressed in the
final conclusions (Section 5).

• Explore and document potential applications of minute-scale forecasts for wind
energy
• Interface with forecast users and providers to survey existing practices and encourage

community dialogue
• Perform field experiments to obtain observational data needed to build and evaluate

remote sensing based forecast models
• Implement and test novel forecast methods using lidar observations which adhere

to the constraints of real-time usage
• Benchmark the lidar forecast method’s skill to other commonly used methods
• Reflect on the potential benefits and drawbacks of a real-world fulfillment of such

a system
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1.1 Energy generation from the wind
1.1.1 Motivation and global status

Global energy systems are currently undergoing a revolution. The production of
electricity for household and industrial use has, until the recent past, relied almost
entirely on non-renewable fuel sources including coal and petroleum derivatives which
are burned to run steam turbine generators. A number of compelling motives exist which
are precipitating change to the status quo.

The first motivation being the overwhelming scientific evidence of the impacts of large
scale releases of air pollutants into the environment. Particulates have been closely
linked to lung (Hamra et al., 2014) and heart disorders (Du et al., 2016). Carbon
dioxide, a greenhouse gas, is also released through the combustion process and acts to
increase the Earth’s surface temperature through radiative forcing (Charlson et al., 1992),
as well as acidify water bodies through the formation of carbonic acid and harming
marine life (Doney et al., 2009). Other pollutants including sulfur oxides and nitrogen
oxides contribute to smog and acid rain, and are similarly linked to acute heath effects
(Brunekreef and Holgate, 2002).

Realizing the urgency of these environmental concerns, authorities across the world
have begun to enact agreements to curb their emissions contributions. These pacts can
range from city and regional planning regulations, to national legislation and international
treaties. Examples include the United Nations Kyoto Protocol and Paris Climate Agree-
ment, European Commission’s Clean Energy for all Europeans Framework (European
Commission, 2019), China’s Renewable Portfolio Standard (Patel, 2018) and Denmark’s
Energy Strategy (Danmarks Klima- og Energiministeriet, 2011). In conjunction with
improvements in energy efficiency, large impacts can be made by the exchange and
supplementation of low-carbon, renewable based generation including wind and solar.

Beyond commitments to avoiding the negatives associated with hydrocarbon based
fuels, new opportunities have emerged with the maturation specifically of the wind energy
industry. Rapid cost decreases have been demonstrated through experience, competition,
and scaling which have brought the levelized-cost-of-energy (LCOE) of onshore wind
power within reach and in many areas below that of traditional power plants without the
need for subsidies. The IRENA renewable cost database reveals a 2017 average global
LCOE for onshore wind at 60 and offshore wind at 140 USD/MWh, with projections
for further decreases in the coming years (IRENA, 2018). The 2019 tender for Saudi
Arabia’s first installation, the 400 MW Dumat Al Jandal wind farm, resulted in a record
power purchase agreement (PPA) of 21.3 USD/MWh (Masdar, 2019).

A final rationale for embracing renewable energy development in many areas is the
opportunity for leveraging locally available resources instead of relying on imported
fuels from territories which are often rife with geopolitical conflicts. Ensuring security
of supply for the local population through greater self-sufficiency can lead to more a
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balanced hegemony in regional and global politics.

While wind power only supplies about 4% of global electricity demand at present
(14% in the European Union and 44% in Denmark), the aforementioned developments
have resulted in a large and rapid expansion of planned and installed projects worldwide.
Figure 1.1 presents a timeline of cumulative globally installed wind power, with the 2017
aggregate totalling over 539 GW. The growth rate is projected to remain near 10%, year
on year (GWEC, 2017) with many large projects already approved and financed for
construction in the coming years.

Figure 1.1: Cumulative worldwide installed wind power capacity from 2001-2017. The
current value exceeding 539 GW. Source: GWEC, 2017.



1.1 Energy generation from the wind 4

1.1.2 Intermittency of wind resource
The reliable and efficient exploitation of wind power faces a unique set of challenges.

Electrical energy produced by wind turbines is derived from the kinetic energy of the
wind. Air flow generates a lift force on the blades causing them to rotate. This mechanical
energy ultimately drives the generator, producing electricity which is collected and fed
to the power grid. As the wind is not a controllable fuel source, the turbine’s output will
to a large extent be determined by atmospheric conditions.

Winds originate from differential heating of the Earth’s surface and are transported
by bulk motion. Within the boundary layer, they are largely influenced by the planet’s
surface (terrain and vegetation), human made obstacles, weather systems, and turbulent
mixing.

Wind variability is defined as the fluctuations in energy content of the wind. These
variations occur across a wide range of temporal and spatial scales. Contributions can
include diurnal, seasonal, and interannual patterns, and physical processes including:
gravity waves, cold fronts, storms, cellular convection, convective rolls, low level jets, and
sea breezes (Vincent and Trombe, 2017). Combinations of these synoptic-, meso- and
micro-scale influences lead to a high degree of intermittency in the wind, as shown in
Figure 1.2 using measurements shown with a sampling rate of 1-second.

Because the amount of extractable power from the wind is proportional to the cube
of the wind velocity, relatively small differences in wind conditions can result in large
deviations in power output. Wind ramps, or large and sudden changes in a turbine or
wind farm’s output are notoriously difficult to forecast (both the scale and timing) and
can cause (in the best case) energy to be wasted (through curtailment during up-ramps),
or in the worst case system-level shortages (during down-ramps). To prevent these
possible shortages during periods of expected variability, reserve wind power can be
secured through down-regulation (curtailment) which is then available for activation
through flexible dispatch mechanisms.

Power spectral density (PSD) plots illustrate the distribution of energies which con-
tribute to the signal’s variability, ordered by frequency. An example is shown in Figure
1.3 for wind speed and active power from a wind turbine using the same high-frequency
dataset. This was obtained using Welch’s method (Welch, 1967) with Hamming window-
ing to reduce noise in the spectra. The trends indicate that the variability decreases with
decreasing time-scales in both cases.

Without system level storage, wind power variability is mostly addressed by spatial
smoothing. Averaging occurs firstly on the turbine level, where the fastest (millisecond-
second scale) fluctuations are to a large extent compensated for by the inertia and swept
area averaging of the wind turbine’s rotor. Although individual turbine outputs within
a wind farm are strongly correlated, their collective power output is smoothed on the
second-minute scale by the aggregation effect. Most substantially, entire wind farms
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Figure 1.2: Time series example of wind speed (top) and wind power (bottom) variability
from DTU’s V52 research turbine.
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Figure 1.3: Power spectral density (PSD) of wind speed (left) and wind power (right)
from DTU’s V52 research turbine.
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dispersed over large areas provide the largest impact towards reducing variability across
all time scales due the low correlation of production between sites operating across
different weather and geographic contexts.

An in-depth report on integrating large shares of wind generation into power systems
is available in Holttinen et al., 2009, which provides further background and context for
wind power variability in addition to relevant statistics and case studies.
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1.1.2.1 Case study of wind turbine power variability
To further explore wind variability and its impact on power systems, a summary

investigation was conducted to characterize changes in electrical power output from a
real world wind turbine. The data consists of high-resolution SCADA measurements
from DTU’s Vestas V52 research turbine at Risø (DTU Wind Energy, 2019). This
model is one of the most commonly sold turbines worldwide and has a rated capacity of
850 kW. The sourced data spans from March 30 to May 4th, 2016 (35 days) during a
calibration period when the turbine’s control systems were under normal operation and
no aerodynamic modifications were present.

Measurements of the turbine’s active power signal were down-sampled from 35 Hz to
1-second averages, and normalized with respect to rated power (where a value of 100
represents the generator’s nameplate capacity). Note that it is possible to have both
values below zero (during start up when drawing power from the grid) as well as values
above 100 on the short term.

Statistics of absolute changes in the turbine’s normalized power output within various
time frames ranging from 1-second to 1-hour are presented in the following. Figure 1.4
presents a combined violin and boxplot across the selected time windows which illustrates
statistical properties such as the shape and width of the distributions, quartile positions,
median values, and spread of outliers. This is joined with Table 1.1 describing summary
statistics.

Figure 1.4: Combined violin and boxplot of normalized active power changes by various
time windows from DTU’s V52 research wind turbine.
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Table 1.1: Table of statistics for V52 power output variability over selected time windows
up to 1-hour.

1 s 5 s 30 s 60 s 300 s 600 s 900 s 1800 s 3600 s
count 2976599 2976595 2976570 2976540 2976300 2976000 2975700 2974800 2973000
mean 0.000 0.000 0.000 0.000 0.002 0.003 0.004 0.008 0.009
std 1.209 4.387 8.133 9.536 11.362 11.976 12.532 13.674 15.485
min -26.250 -54.907 -76.028 -84.816 -106.745 -105.303 -106.126 -104.044 -103.887
25% -0.225 -0.888 -1.841 -2.103 -2.630 -3.075 -3.371 -4.049 -4.957
50% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
75% 0.214 0.782 1.515 1.860 2.544 2.972 3.341 4.064 4.870
max 32.326 74.414 101.242 101.663 106.567 106.013 105.350 99.266 102.539

As expected, the variability grows with the length of the window. In all cases, the
mean and median power output change is very close to zero and probability densities are
symmetrical (normally distributed). On the very shortest timescales (1 and 5-seconds),
the variations within the interquartile range (IQR) are small. However, from 30-seconds
to 1-minute windows, the spread grows considerably. By the 5-minute case (300 s), the
standard deviation approaches that of the longer timescales.

This is further shown in Figure 1.5, where the distributions are stacked atop each other
for comparison (note the logarithmic y-axis scaling). Tail bumps present for certain time
windows near the peripheries indicate periods of automatic start up (right tail) when the
cut-in wind speed is reached and shut down (left tail) when the cut-out wind speed is
exceeded.

Figure 1.5: Distribution of changes in normalized active power over various time horizons
from DTU’s V52 research wind turbine.
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This simplified investigation has considered a single wind turbine and not collective
wind farm output or otherwise geographically distributed generation which will act to
some degree as a smoothing filter. Having said that, the case study has demonstrated
that minute-scale variability of wind power is not insignificant and attention should
also be focused on this timescale alongside the more commonly focused periods (e.g.
10-minutes and 1-hour).
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1.1.3 Wind farm control
Utility scale wind power installations consist of multi-turbine arrangements known as

wind farms. The layout is normally characterized by rows of turbines which affect each
other through complex aerodynamic interactions. The most notable being wake induced
power losses (through a reduction in the extractable energy of the wind by upstream
turbines) and fatigue loading (by increased turbulence originating from the air-blade
interaction of upstream turbines).

Modern wind turbines are designed with control systems which act to optimize their
performance from an individual perspective. However, all together this greedy approach
does not always result in the best coordination of the wind farm as a whole. The field of
wind farm control aims to collectively optimize the power and loads of the entire wind
farm in a collaborative manner by orchestrating control over each turbine’s set-points.
The overall objectives being to either maximize total active power or provide power
control by following a reference signal, and to minimize fatigue loads (Knudsen, Bak,
and Svenstrup, 2015). The two main mechanisms for dynamic wind farm control are
induction control and wake steering.

Axial induction control reduces the velocity deficit of the downstream wake leading to
larger amounts of recoverable energy available to downstream turbines. A wind turbine’s
power coefficient at its maximum operating point is much less sensitive to changes in
pitch angle than its thrust coefficient (Annoni et al., 2016). Exploiting this relationship
allows for small decreases in the upstream turbine’s production to be more than made up
for by increased production at the downstream turbines. This is accomplished by slightly
pitching the rotor outwards (towards feathered position) and adjusting the generator
torque which results in a decrease in the power and thrust coefficients and a reduction
in the tip speed ratio. Normally this is performed by reducing the active power of the
turbine (downrating), instead of manually interfacing with the turbine’s pitch and torque
set-points. P. M. O. Gebraad and Wingerden, 2015 establishes a 1.36% improvement
in annual energy production (AEP) using dynamic induction control simulations at
the Princess Amalia Wind Farm in the Netherlands. Induction control using static
set-point optimization has demonstrated far less promise, with no net increase in wind
farm efficiency during wind tunnel testing (Bartl and Sætran, 2016).

Wake steering is the intentional misalignment of an upstream turbine’s rotor in order
to redirect (steer) the wake away from downstream turbines. During normal operation,
the turbine will orient its rotor perpendicularly to the wind direction. Applying wake
redirection causes the turbine’s yaw motor to re-orient itself to an angle relative to the
wind direction (Fig. 1.6). This causes the wake to deflect away from downwind turbines,
leading to a net increase in energy production for the overall wind farm. Positive yaw
misalignment angles are normally used, as this results in a positive tilt angle which also
directs the wake downwards. Simulations have indicated the potential for power gains
using this approach while also avoiding significant load repercussions. The gains in AEP
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are on the order of 5% through the reduction of wake losses (Knudsen, Bak, and Svenstrup,
2015, P. Gebraad et al., 2017). The concept has been successfully demonstrated in a
recent field trial (Paul Fleming et al., 2017) which confirms the simulation estimates.

Figure 1.6: Comparison of the horizontal wake during normal operation (top panel) and
under wake steering control (bottom panel, 30◦ yaw misalignment). The
actual wake center-line is indicated in black, with the linear downstream
reference in pink. Simulation using NREL’s SOWFA toolbox in OpenFOAM.
Reproduced from: PA Fleming et al., 2014.

Wind farm control algorithms require estimates of the incoming wind speed and
direction. These inputs are used in a wind farm flow model together with a delay factor
to account for the wind field advection between turbine rows. The forecasts are applicable
on the minute scale for preemptive optimization by the wind farm controller and for
the individual turbines to adjust their configurations accordingly. Induction control is
sensitive to accurate wind speed inputs, while wake steering is sensitive to accurate wind
direction inputs. Improved forecast performance on this timescale therefore also enhances
the benefits of dynamic wind farm control.

The field of individual turbine control (i.e. feed-forward and model predictive control)
is largely irrelevant in the context of this project, as the timescales are in the order of
seconds ahead where direct advection (frozen turbulence) models perform sufficiently well.
There may be a case for individual turbine yaw control on the minute scale, however this
is seen as a low priority application with limited relative benefits over existing solutions.
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1.1.4 Forecasting for wind energy
The evolution of wind power together with advancements in computing and an improved

understanding of atmospheric dynamics has established forecasting as a central element
of operational research. An entire sub-industry is dedicated to developing and providing
forecasting services to end users which include: wind farm owners and operators, power
traders, asset managers, and transmission system operators (TSOs).

Wind prediction is conducted on a wide range of time scales, with lead times spanning
from a few milliseconds up to one week or more. Prediction intervals can be described
by a few broad categories, each with their own approaches and applications. Table 1.2
outlines the common forecast horizons relevant to wind energy and typical methods
applied within them. Broad overviews of the field are also presented in Costa et al., 2008,
Giebel et al., 2011 and Soman et al., 2010.

Forecasting techniques can be categorized into two fundamental classes- process driven
physical models and data driven statistical approaches. Here general introductions are
given for both. An extensive review is provided in Section 2.2.

Physical approaches such as numerical weather prediction (NWP) are based on well
established physical and mathematical laws. Parameterizations of the atmosphere, where
coarse input data (global or synoptic scale) is combined with mathematical modelling
of atmospheric properties such as air, soil and sea temperature, pressure, land cover
and surface obstacles to provide a local site forecast at varying temporal and spatial

Table 1.2: Overview of forecast intervals of interest for wind energy purposes.
Designation Typical horizon Example methods Example applications

Immediate Milliseconds to 

seconds

− Persistence

− Wind field measurements using nacelle lidars [1]

and/or upwind turbine SCADA [2]

− Wind turbine control [1]

− Grid regulation [3]

  (e.g. frequency, voltage support)

Very short-term 

(minute scale)

1-minute to 1-hour − Persistence [4]

− Statistical time series models [5]

− Markov (regime switching) models [6]

− Machine learning and artificial neural networks

(ANN) [7,8]

− Wind farm control

− Ancillary services 

    (e.g. reserve power) [2,9]

− Intrahour energy market trading [10]

− Storage management

  (e.g. battery storage control)

Short-term 1 to 72 hours − Statistical time series models [11,12]

− Numerical weather prediction (e.g. WRF) [13]

− Analogue ensemble prediction [13,14]

− Kalman filter [11,15]

− Intraday and day-ahead energy

market trading [10]

− Ancillary services

− Storage management

    (e.g. battery, hydrogen and pumped storage control) [16]

− Economic dispatch and generator planning

− Operator portfolio management

Long-term 72 hours to 10 days or 

more

− Same as short term

− Climatology

− Reserve requirement decisions

− Unit commitment decisions

− Maintenance scheduling
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resolutions. Optionally, through data assimilation the model states can be iteratively
adjusted using real-time observations to adapt the simulation and correct for biases.
These systems generally run on large supercomputers and require significant time and
computational power to generate their forecasts. Further, they have not sufficiently
demonstrated their ability to predict local microscale events that are of greatest relevance
for real-time wind farm control. Therefore they are not considered appropriate in the
context of minute-scale wind forecasting as they are ill-suited to be used operationally
with today’s computing technology.

Statistical approaches use empirical methods to model relationships between historical
observations. The models are then used with real-time inputs to extrapolate future
outcomes. Meteorological data is normally given as a time-series, where samples are
highly correlated, non-independent and naturally ordered in time. The high temporal
autocorrelation of wind measurements lends itself well to the simplest statistical approach
called persistence. Persistence simply forecasts the future value of the series to be the
same as the most recent observation, or a moving average of it. This method is widely
used on horizons from the immediate to short-range, and is a common benchmark for
evaluating more complex techniques. Autoregressive (AR) models are also appropriate,
and are widely employed, often in conjunction with moving average (MA) models.
In cases where the target signal is non-stationary, a number of transformation steps
can be taken to impart stationarity (e.g. differencing, trend removal, seasonal and
cyclical adjustments). Formulations which have demonstrated particularly adept skill are
autoregressive integrated moving average (ARIMA) models. Further details on ARIMA
modelling are given in Section 3.9. The flexibility of statistical approaches empower their
suitability for minute-scale forecasting applications. This thesis work therefore exists
within this research topic.
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1.1.5 Power system and electricity markets
The vast majority of wind power installations are grid connected and offer the sale

of their production through either long term power purchase agreements (PPA) or via
wholesale electricity spot markets.

The modern electrical grid is a network of providers and consumers of electrical energy,
interconnected via transmission and distribution lines used to transport supply from
generation facilities to homes and businesses. Electrical appliances are designed to
operate within a narrow range of the design frequency and voltage of the local AC
power grid. Deviations can result in malfunctions or damage, or even in cascading
failures as devices such as pumps, fans, motors, and power electronics drift from their
intended output or stop functioning completely. For this reason, the supply and demand
of electricity must be kept in constant balance. Variability occurring on both sides of
the equation (load and generation) drives a need for accurate forecasts, which are used
in system planning and generator dispatch. Deviations from the equilibrium between
generation and consumption requires real-time adjustments, directed by the balancing
authority (BA) through the activation of a suite of ancillary services to ensure stable
frequency and voltage levels. Traditionally, wind power plants have not participated
in these ancillary services. Grid codes are beginning to allow such involvement, for
example tertiary regulation and deviation management in Spain (de la Fuente, 2016),
and minute-scale reserves in Germany through the intentional down-regulation of wind
farms (Regelleistung, 2016).

Energy markets attempt to provide the optimum allocation of resources through the
minimization of pricing while fulfilling balance constraints. This is enacted through an
auction style clearing process, where utilities place bids to cover the forecasted demand
of their customers, and generators place bids to offer their production into the market.
The market price is then set at the intersection of the supply and demand offers, which
is calculated for each region (i.e. zone or node). The market is subdivided geographically
to account for constraints in transmission capacity, with import/export links considered.
Once offers are accepted, participants are balance responsible (BRP) for delivering their
scheduled quota within the given trading block. If any deviations occur, they may incur
financial penalties depending on the effect of their imbalance (i.e. helping or hurting the
system). It is common for market operators (e.g. in NordPool’s two-price system) to
discourage gaming tactics by preventing revenues from exceeding initial market payouts
through exploiting up- and down-regulation price movements.

Market design is highly dependent on location, but exchanges often operate day-ahead
and intraday markets with trading segments in one hour blocks, and with long lead
times between bid placement and delivery. These lengthy intervals create issues for
variable renewables such as wind. Market operators in regions with high penetrations of
renewables are moving to shorten these horizons, in certain cases to continuous intraday
markets with 5, 15, and 30 minute contracts (EPEX SPOT SE, 2019, AEMC, 2017)
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where minute-scale wind forecasts become relevant and necessary for traders.
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1.2 Remote sensing of winds
For centuries wind measurements in the atmospheric boundary layer (ABL) have

been performed using a variety of in situ techniques, where instruments including cup
anemometers and wind vanes are mounted on towers to measure the local flow at the
sensor’s position. These methods are often employed within wind energy for resource
assessment and site suitability studies, and for turbine power performance testing.

The increasing scale of modern wind turbines (e.g. the 9.5 MW Vestas V164 and
GE’s upcoming 12 MW Haliade-X) has resulted in rotor tip heights approaching 300 m,
which represents both a financial and technical challenge when relying on mast based
measurements, particularly in offshore environments.

Remote sensing (RS) is a measurement process in which observations are made at a
distance (i.e. without being physically present at the target position). This provides a
number of advantages in the flexibility and cost of running a measurement campaign,
and in enabling new ways to measure.

For performing wind measurements, active RS devices are designed to utilize the
Doppler effect to obtain velocity information. This is done by emitting an electromag-
netic or sound wave of a known frequency which backscatters off of objects within the
measurement volume and is acquired again by the receiver (e.g. telescope, parabolic
dish, microphone). The returned signal is analyzed (either directly or using coherent
detection methods) and the radial velocity is determined through its proportionality to
the frequency shift using spectral estimation. The obtained radial velocity represents
the wind velocity projected along the beam’s path (line of sight, LOS). In the case
of atmospheric measurements, the target objects are aerosols- particles such as dust,
water vapor, and particulate matter (pollutants) which are suspended in the air and are
assumed to be moving together with the wind.

Relevant RS devices represent a wide class of technologies such as Doppler radar,
Doppler sodar, and Doppler lidar which can be ground based, nacelle mounted, on fixed
or floating platforms, or on space-borne satellites. Each tool has its own advantages and
disadvantages. Operational pulse Doppler radar systems typically have large antennas
and high powered transmitters which enable them to measure at far distances (e.g. up
to 300 km for S-band Nexrad systems in the US observation network). However, they
require precipitation for reflectivity and the range resolution is insufficient for detecting
small scale motion, especially at further distances. Ka-band Doppler radars have been
developed which are more compact and are able to measure in clean air up to 30 km
(Hirth et al., 2012). These devices show potential for providing real-time microscale wind
field measurements, however initial reports on data availability have been disappointing.
In this thesis we will focus solely on Doppler wind lidar systems due to their portable
size, commercial availability, well established performance, and capability of measuring in
diverse atmospheric conditions. Compact pulsed lidar variants have a typical maximum
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range on the order of 10 km, which corresponds to advection occuring up to 30-minutes
ahead, depending on wind speed.
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1.2.1 Doppler wind lidars
Doppler wind lidars are active remote sensing instruments which use laser light in the

near-infrared band as their medium. The laser source is in most cases a 1.5 µ
m all-fiber laser, which corresponds to the spectral absorption line of atmospheric water
vapor and carbon dioxide while also satisfying eye safety requirements (Cariou, Augere,
and Valla, 2006). An added benefit is that this application overlaps with fiber optic
components used in the telecommunications industry. This has resulted in affordable
and widely available hardware options for manufacturing the lidar’s optical systems.

Doppler wind lidars are built commercially in a variety of configurations depending
on the mounting location and measurement setup. The simplest systems have fixed
telescopes which stare or switch between predetermined beam positions and are commonly
used in nacelle lidars. Units with a rotating platform and offset mirror or prism perform
repeating conical scans along a fixed path and are commonly used in certain lidar wind
profilers. Scanning lidars are equipped with a dual-axis scanner head which allows the
beam to be pointed arbitrarily in space, with little restrictions on the path, timing, and
geometric complexity of the scanning trajectory (subject to the kinematic constraints
imposed by the mechanical design). Fig. 1.7 presents a look at some of the most common
commercially available lidar systems.

Figure 1.7: Selection of commercially available lidar systems, grouped by main function.
Images sourced from the manufacturer’s respective product brochures.

Two main diverging classes of lidar technology exists- pulsed and continuous-wave
(CW) systems, which differ greatly in their spatial and temporal resolutions. CW lidars
emit a continuous focused beam, which must be re-focused for different measurement
ranges. The spatial resolution of a CW lidar is directed by the aperture of the telescope,
which results in an increase in the probe length as a function of the square of the range.
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This implies that CW lidar technology is only suitable for close ranges, up to a few
hundred meters away. In contrast, pulsed lidars emit a collimated beam using a series
of short pulses on the order of nanoseconds. This allows all distances along a pulsed
lidar’s laser path to be measured at once, using time-of-flight calculations to discern the
appropriate distances into range gates (RG) without any change in spatial resolution
with distance (i.e. the probe length is fixed, but the intensity of the returned signal is
reduced by the square of the range). Coherent pulsed Doppler lidars equipped with high
powered optical amplifiers are capable of measuring up to 30 km, although compact units
are usually limited to between 5-12 km. For these reasons, pulsed lidar variants show the
most promise in terms of suitability towards applications which cover large spatial scales,
including minute-scale forecasting.
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1.2.2 Measurement techniques
As introduced in Section 1.2.1, application specific lidar systems normally follow preset

scanning strategies, while scanning lidars allow for more complex measurement techniques.
A brief synopsis of available measurement configurations for a coherent pulsed scanning
Doppler lidar is given in the following:

• LOS (staring mode) — The beam position remains fixed and measurements are
acquired continuously at the target point.
• DBS (Doppler beam swing) — A technique used to measure vertical wind profiles

by measuring at typically four orthogonal positions around a cone and optionally
including a fifth central beam to directly measure the vertical wind component.
The conical radial speed observations exhibit a cosine function. Fitting techniques
are then used to produce estimates of the wind vector components by assuming the
wind is frozen and horizontally homogeneous between the discrete sampling points.
• VAD (velocity azimuth display) — Also used primarily for vertical wind profiling,
but in certain cases is rotated for horizontal use. The elevation angle is held
constant while sweeping across the full range of azimuths. This performs a full
conical scan which can be fit similarly to the DBS technique.
• PPI (plan position indicator) — Closely related to the VAD method, PPI scans
use fixed, low (or flat) elevation angles and sweep across a full or partial range
of azimuths. This results in conical arc slices over a large horizontal distance.
The radial speed signals similarly follow a cosine function, with the peak and
trough corresponding to the azimuth position aligned into and away from the wind
direction. When the beam is perpendicular to the wind, the observed radial speed
is zero. PPI scans produce cross-sections of the horizontal wind structure and are
processed using retrieval or fitting methods by assuming horizontal homogeneity
and by not taking vertical effects into account.
• RHI (range height indicator) — The counterpart to PPI scanning, RHI scans vary

the elevation axis while keeping the azimuth fixed. This produces cross-sections of
the vertical wind structure along an arc.
• User defined — Complex trajectories which are custom tailored for the particular
application are also possible. An example of this is the ridge transect scan used
in the Perdigão field campaign which follows the site’s topography along a fixed
height (Menke, Mann, and Vasiljevic, 2018).
• Dual and triple Doppler — Beams from multiple separated lidars can be intersected

in space (and ideally time) to measure either two or all three of the wind velocity
components with any of the above-mentioned scan patterns. The independent
measurements are then combined together when performing the wind field recon-
struction. Dual Doppler approaches have shown to slightly improve wind retrieval
results in simple terrain compared to single Doppler techniques (E. Simon and
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Courtney, 2016, Floors et al., 2016), while forgoing the assumption of horizontal ho-
mogeneity. However, this advantage is offset by the increased cost of the additional
systems and reliance on data availability with all systems.
• Dynamic — The previously described scan types are normally configured in advance
and set to repeat continuously, or to cycle through a predetermined set of scans
along a schedule. Dynamic scanning adapts the lidar’s trajectory to real-time
inputs, chiefly those derived from the measurements themselves such as wind speed
and direction. An example includes Wildmann, Vasiljevic, and Gerz, 2018 which
adjusts parameters of the scan to follow the downstream turbine wake through
changes in the wind direction.

These scanning strategies can be configured and combined to suit the measurement
objective and take site-specific particularities into account. This allows for ultimate
flexibility in the placement of devices, measurement range and spatial resolution, sampling
rate of the data, and spatial
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2.1 Introduction and context
The International Energy Agency (IEA) was established in the wake of the 1973 oil

crisis in order to ensure and regulate security of supply for energy resources in the OECD
countries. The wind energy specific sub-programme of the IEA provides a venue for
information sharing, research collaboration, and policy review in the form of Research
Tasks.

Two relevant Research Tasks were followed as a contributing member during the PhD
project. Task 32 focuses on the maturation and acceptance of wind lidars for various
applications in wind energy, including operational control. Task 36 brings together
users and creators of wind power forecasts to improve the scientific standards of forecast
methods and recommend best practices in the usage of forecast products.

Due to the relevance of both working groups to the PhD project objectives, a goal of
merging the two communities for a collaborative workshop was pursued. The workshop
was organized alongside fellow researchers in the field Ines Würth and Laura Valldecabres
Sanmartin, together with the operating agents of Task 36 (Gregor Giebel) and Task 32
(David Schlipf).

The workshop was held at Risø in June of 2018, and brought together 40 attendees
from across the world representing the entire chain of wind energy services. This includes
commercial forecast providers, wind farm operators, research scientists and academics,
transmission system operators, wind turbine manufacturers, national meteorological
institutes, power trading companies, and lidar manufacturers.

The workshop was structured with presentations of recent work on the topic, and
discussion sessions aimed at collecting inputs from the various perspectives. These
included fruitful exchanges on the needs for wind power forecasts on the minute-scale,
potential relevant methods to generate them, and possible barriers to adopting them.

An important objective of the meeting was to agree on common terminology for forecast
lead times below one hour. ’Minute-scale’ was decided upon as it denotes a clear interval
and avoids the ambiguity of nonspecific verbage (e.g. very-short-term).

The workshop presentations were live-streamed and are available in the IEA Task 36
video archive (IEA Wind Task 36, 2018).

It was recognized that the recent prominence of the field has led to a distinct gap in
knowledge, particularly on a broad level. One of the outcomes of the workshop was the
formation of a working group to distill key information into a publicly available document
which presents a state of the art review of the field, together with suggestions on future
directions to pursue, reached through a consensus approach.

The contributions of the PhD student towards this work include envisioning and
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co-organizing the workshop and leading discussion groups where the framework and
direction of the review paper was decided. Significant writing contributions were made in
the sections focusing on intrahour wind variability (Section 2), remote sensing and lidar
methods (Sections 5.1 and 5.1.1), statistical time series models (Section 5.2), and the
overall comparison of methods (Section 5.5). The portions on data assimilation theory
and practices are largely outside the scope of expertise.

The resulting open access journal article is presented in Section 2.2.
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2.2 Results from the collaborative workshop of IEA
Wind Task 32 and 36
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Abstract: The demand for minute-scale forecasts of wind power is continuously increasing with
the growing penetration of renewable energy into the power grid, as grid operators need to ensure
grid stability in the presence of variable power generation. For this reason, IEA Wind Tasks 32
and 36 together organized a workshop on “Very Short-Term Forecasting of Wind Power” in 2018 to
discuss different approaches for the implementation of minute-scale forecasts into the power industry.
IEA Wind is an international platform for the research community and industry. Task 32 tries to
identify and mitigate barriers to the use of lidars in wind energy applications, while IEA Wind Task 36
focuses on improving the value of wind energy forecasts to the wind energy industry. The workshop
identified three applications that need minute-scale forecasts: (1) wind turbine and wind farm control,
(2) power grid balancing, (3) energy trading and ancillary services. The forecasting horizons for
these applications range from around 1 s for turbine control to 60 min for energy market and grid
control applications. The methods that can be applied to generate minute-scale forecasts rely on
upstream data from remote sensing devices such as scanning lidars or radars, or are based on point
measurements from met masts, turbines or profiling remote sensing devices. Upstream data needs
to be propagated with advection models and point measurements can either be used in statistical
time series models or assimilated into physical models. All methods have advantages but also
shortcomings. The workshop’s main conclusions were that there is a need for further investigations
into the minute-scale forecasting methods for different use cases, and a cross-disciplinary exchange
of different method experts should be established. Additionally, more efforts should be directed
towards enhancing quality and reliability of the input measurement data.

Keywords: wind energy; minute-scale forecasting; forecasting horizon; Doppler lidar; Doppler radar;
numerical weather prediction models
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1. Introduction

In the past years, minute-scale forecasting of wind power has become an important research
topic in the wind energy community. Whereas traditional forecasting techniques provide a forecasting
horizon in the hour or day range [1], new methods allow us to predict the power output of wind
turbines or wind farms on a minute scale. Due to the increasing penetration of renewable energy power
systems into the grid, there is a demand for minute-scale wind power forecasts, as grid operators
need to ensure grid stability in spite of the highly fluctuating power sources. The forecasts become
even more important with increasing sizes of wind farms of several 100 MW and especially if those
wind farms conglomerate geographically as is the case for offshore sites. The objective of this paper
is to provide a summary of the needs of minute-scale forecasting and an overview of the developed
methods and the possible solutions to the barriers that prevent end users from adopting them.

The results presented in this paper are based on the outcome of the collaborative IEA Wind Task
32 and 36 workshop “Very Short-Term Forecasting of Wind Power” held in Roskilde, Denmark in June
2018. IEA Wind Task 32: “Wind lidar Systems for Wind Energy Deployment” is an international open
platform with the objective of bringing together experts from the academic and industrial communities
to identify and mitigate barriers to the use of lidar for wind energy applications. IEA Wind Task 36:
“Forecasting of Wind Power” is focused on improving the value of wind energy forecasts to the wind
energy industry. Details of the Tasks can be found in supplementary materials. During the workshop,
39 participants from academia, forecasting service providers, wind farm operators as well as the lidar
and wind turbine manufacturers discussed the future needs of minute-scale forecasting, the advantages
and barriers of different forecasting techniques and strategies for overcoming those barriers.

This paper is organized as follows: Sections 2 and 3 discuss the need for minute-scale forecasting
and explain target forecasting horizons for different applications. In Section 4 state-of-the-art
forecasting methods and the need for new methods in the minute-scale is explained. Section 5
gives a review of methods for minute-scale forecasting. In Section 6 challenges for the implementation
and commercialization of the new methods are discussed and the paper is finalized with conclusions
in Section 7.

2. Intra-Hour Variability of Wind Power Generation

In 2017, Denmark was the country with the highest wind power penetration rate (44% of the
annual consumption of electricity), followed by Portugal (24%) and Ireland (24%). In the case of
Denmark, the maximum hourly penetration rate was over 140%. With a total net installed capacity of
169 GW, the power generation capacity of wind power in Europe increased by almost 300% in the last
10 years [2]. Given the expected rising penetration levels of wind power and the increasing size of on-
and especially offshore wind farms feeding power into the grid at a single point [3], it becomes crucial
to have more precise forecasts of wind power generation with lead times of few minutes ahead and
temporal resolutions of seconds or minutes.

When generating a forecast, one useful practice is to consider the power spectral density (PSD)
of the measured physical process to understand which time frequencies contribute to the variance
of the signal. Peaks in the spectra correspond to larger relative fluctuations which are traditionally
more difficult to capture and predict. This type of analysis is demonstrated in Larsen et al. [4] using
long-term site measurements from Høvsøre test station and Horns Rev offshore wind farm in Denmark.
Boundary layer wind spectra were resolved across cycles ranging from 0.1 s (10 Hz) to 1 year. Figure 1
presents a main result of that work which compares full scale wind PSDs at 50 m height both on- and
offshore [4]. Apt [5] presents a similar PSD analysis of wind turbine output using 1-second power
data for a single wind turbine as well as a 6-turbine wind farm. Attributes of the PSD signal will
vary by location, time, sensor type, and physical property being measured. Still, from the results in
Figure 1, a strong local peak can be detected around 1 min, indicating the strong variability of the
wind at that temporal scale. This variability of the wind is associated to atmospheric phenomena like
open cellular convection, gravity waves, sea breezes or low level jets, among others [6]. At frequencies
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f > 0.02 Hz, i.e., periods below one minute, the PSD signal strongly decreases and, as reported in [7],
wind power fluctuations of large wind farms are not considered an issue due to the smoothing effect
of aggregated power.

Figure 1. Power spectral density (PSD) of wind speed with corresponding timescales denoted atop.
High frequency sonic measurements are used to devise the onshore (black) and offshore (red) lines.
Reproduced with modifications from Larsen et al. [4] with permission from Springer Nature.

Yet, the intra-hour variability of wind power not only depends on the variability of the wind itself
but on the size of the wind farm, the number of wind turbines and their geographic dispersion. Indeed,
it has been shown by several authors that for offshore wind farms, the small geographic dispersion of
the wind turbines results in an increased power variability in the minute scale, compared to widely
dispersed onshore wind turbines [8].

One of the main challenges for the integration of large amounts of wind power into the grid is the
occurrence of rapid and strong changes in wind power generation (ramp events). These unexpected
events are mainly caused by extreme changes in wind speed and/or direction in a very short period
of time, and are frequently associated with the passage of weather fronts. However, the most critical
ramp event can occur even for small changes in wind speed. When the wind speed reaches the wind
turbine’s cut-out speed, wind turbines shut down automatically for safety reasons, resulting in a large
loss of generated power. Despite being critical for the management of the grid, the dynamic allocation
of reserves and the stability of the system [9,10] there is no standard definition of a ramp event. It is
an individual process of the end-user to define critical ramps and thereby ramp events. A recent
publication on the history of wind power ramp forecasting [11] gives an overview of the definitions
used in ramp event detection, the meteorological conditions associated to those events and the current
forecasting techniques. For most wind power forecasting applications however, the definition of what
is critical for an end-user is very individual and dependent on the application as well as the available
reserves. For example, a system operator on an island grid or badly interconnected grid needs to have
all reserves available within the control zone in order to prevent a critical ramp from causing security
issues. A trader may also be very interested in ramp forecasts, as just one event with a large error may
cause 95% of the imbalance costs in a month.

Ramp events are often classified into ramp-up and ramp-down events, according to the direction
of the power gradient. As an example, the time-series in Figure 2 illustrates a number of steep ramps in
both directions. While ramp-up events can always be handled in the very short term with curtailments,
ramp-down events can become extremely critical due to the sudden missing generation. This enhances
the importance of generating accurate minute-scale forecasts of wind power.
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Figure 2. Example time series of wind speed and generated power of a single wind turbine with wind
ramps marked for a time window of 60 min and a change of power of 40%. Each data point in the time
series corresponds to a 10-minute average. Reproduced without modifications from Würth et al. [12].

3. An Overview of Different Applications for Minute-Scale Forecasting in the Wind Industry

The forecast horizon and the parameters that are needed to be forecasted depend on the
application of the forecast. Three applications have been identified where minute-scale forecasts
of wind speed or power are needed.

1. Wind farm control: Wind turbine and wind plant controllers need the information to optimize,
e.g., the power output of the turbines.

2. Physical balancing: They are required by the Transmission System Operator (TSO) in order
to optimally operate reserves for the continuous balance of the power system and grid
constraint management.

3. Economic balancing: Trading and balancing of wind power in the intra-day or rolling power
markets require minute-scale updates of the forecasts with real power output in order to reduce
imbalance costs and increase incomes.

It is expected that a next step in the evolution will be storage system planning and optimization
in the real-time markets, where the bulk of the energy production will come from renewable energy
sources. However, this paper focuses on the applications listed above. In the following each application
is discussed in more detail.

3.1. Wind Turbine and Wind Farm Control

Preview information of the wind field is helpful for the control of wind turbines and wind
plants. Wind turbine and wind farm controllers need to continuously adjust the operation of the
controlled system due to the stochastic changes in the wind inflow. However, traditional controllers
are mostly based on feedback and are only able to react to wind changes after the changes already
have impacted the turbine dynamics and farm operation. lidar-assisted control algorithms can use the
preview information of the wind to proactive adjust and thus improve the wind turbine and wind
farm operation by increasing the energy production and reducing structural loads.

Regarding the required preview time for lidar-assisted wind turbine control, the following
classification is useful:
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1. around 1 s: Feed forward control is used to compensate wind changes to reduce structural loads.
For example, the blade pitch, the rotor-effective wind speed is needed only a short time before
the wind reaches the rotor to overcome the pitch actuator dynamics [13,14].

2. around 10 s: For Model Predictive Control, the control inputs are optimized to get a chosen
compromise of load reduction, energy production, and actuator wear [15,16]. Here, a short time
horizon of wind characteristics such as wind speed, direction, and shears is used, typical 5–10 s.

3. around 1–10 min: For yaw control, a wind direction estimation is used to align the wind turbine
with the mean wind direction. Yaw control is generally done in the minute scale. In this time
scale [17], the yaw signal of lidar systems provides good agreement [18,19].

Active wind farm control is a promising technology to increase the energy production of wind
farms [20]. However, flow models are still an important research topic, and the validation of flow
models and control strategies are still ongoing. Wind previews for flow control is mainly used in
induction control and wake steering for higher energy capture and management of fatigue loading.

Regarding the required preview time for lidar-assisted wind farm control, following classification
is useful:

1. around 10 s to 10 min for induction control: Usually the blade pitch angle is used to reduce the
power and thus the thrust to weaken wake effects on downstream turbines, which increase the
overall production. At partial load this is done by adjusting the “fine pitch” settings which is
usually based on a filtered wind speed estimate. Wind previews might help to better adjust the
power balancing [21].

2. around 1–10 min for wake steering: The yaw misalignment is used to deflect wakes away from
downstream turbines and thus similar preview times compared to the conventional yaw control
is useful [22]. A preview of the wind direction might help to better adjust the yaw misalignment
in a wind farm.

Table 1 summarizes the preview times for the different applications.

Table 1. Helpful wind preview times for various wind turbine and wind farm applications.

Application Preview Time

Single turbine blade pitch feed forward control ≈1 s
Single turbine model predictive control ≈10 s
Wind farm control via induction control ≈10 s to 10 min
Single turbine yaw control and wind farm control via wake steering ≈1 to 10 min

3.2. Power Grid Balancing, Frequency Control and Power Quality in Reserve Market

The focus in this section is on grid balancing, frequency control and power quality embedded in
reserve market while the energy market and ancillary services are discussed in the following Section 3.3.
The balancing term can be employed in a much broader sense in the context of balancing longer time
scales. However, in these time scales of mainly energy and reserve market, where balancing actions
are scheduled before real time, there are several other means of observations with lower resolutions
available [23–25]. However, these are not within the time scales of minute-scale forecasting which is
the focus of this section. It should be noted that there are differences in terminology between countries
for the same and slightly different balancing actions. In this section, the EU terminology is adopted.

To guarantee the stability of the grid, supply and demand always have to be balanced in spite of
the fluctuating power sources. Power quality is achieved if the grid frequency stays within a certain
range of a rated value. An imbalance between supply and demand impacts voltage stability and grid
frequency, hence there is a need for power balancing [23,26–28].

The volatility of wind resources creates volatility in the supply and as a result, balancing control
actions are needed. One can distinguish between different time scales in this phase of controls
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embedded in the reserve market, which are known as primary, secondary, and tertiary controls.
The autonomous response of the system to supply/demand imbalances is automatically addressed
with primary controls, which is in the scale of microseconds to a few minutes mainly in the scale of
seconds. In secondary controls, there are automatic actions and manual actions in scales of seconds
to several minutes mainly in the scale of minutes. In tertiary control, both manual and automatic
controls are in action from minutes to quarter of an hour to half an hour scales. These are summarized
in Table 2. All of these actions of balancing are carried out in order to ensure power system quality.

From a market perspective primary, secondary and tertiary reserves are handled differently.
Primary reserve is contracted on bi-lateral contracts due to the high-availability requirements.
Secondary and tertiary reserves are in some countries traded by auction. The periods range from
daily to several days or weeks. Common for or all three reserve products is that the reimbursement is
split up into a price for the availability of a specific generation capability and a price for the actual
utilization [29].

Wind power and other renewable energy sources create low levels of rotational inertia since these
energy conversion systems do not normally act on rotational inertia which has impacts on the power
grid frequency. Moreover modern variable-speed turbines are disconnected by inverters from the
rotating mass of inertia. Suppliers have started to make changes to create synthetic inertia that can
emulate inertia synthetically [30]. Synthetic inertia is about acting to AC frequency, possibly after the
loss of a big power plant which makes the grid under-supplied and will result with the AC frequency
beginning to fall. This makes accurate short-term forecasting even more important since all of these
emulations are dependent on accurate estimation of wind speeds. Hence automatic control for primary
and/or secondary controls will certainly benefit from more accurate forecasting on the short-time
scales of minutes in control applications.

On another note for the data that is available in the context of this research, any forecast data that
is available on scale of microseconds to minutes can be automatically employed in the state estimator
of the controller [23,26–28]. The state estimator corrects the state of the system with observational data.

Table 2. Activation of the reserves after an imbalance.

Application Approximate Range of Operation Overlap with Other Balancing

Primary control ≈0 to 2 min Transition overlaps secondary control
Secondary control ≈2 min to 15 min Transition overlaps tertiary control
Tertiary control ≈15 min to hour scales

3.3. Energy and Ancillary Services Markets

Electricity markets need to be balanced in order to match the supply and demand of energy.
This physical balancing of the transmission grid is carried out by the transmission system operators
(TSO) or by an independent system operator (ISO). Given the increased integration of power generation
from variable sources of energy like wind and solar, the physical balancing has become more
complicated. Therefore, electricity markets with such intermittent and variable sources have to
become more flexible and introduce either rolling markets (e.g., in the UK and Australia) or introduce
shorter intra-day auctions, additional to the day-ahead auction, which have become very popular in
Europe. Among the intra-day market platforms, one can distinguish between discrete auctions or
continuous intra-day markets. In intra-day auction markets like in Italy, Spain or Portugal, intra-day
bids are restricted to a few established auctions. By contrast, in continuous intra-day markets, counter
parties match the bids using a trading platform that operates continuously. Those continuous intra-day
balancing markets operate in Europe with different lead times ranging from 5 to over 90 min and
most of the countries work with trading blocks of 15 min. Table 3 includes the lead times and smallest
trading blocks for several countries in Europe and for Turkey. A more detailed description of the
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electricity markets and their time lines can be found in [31]. Hence, the importance of the use of
updated available minute-scale forecast of wind power has arrived to stay.

Table 3. Lead times and smallest trading blocks for different countries. Sources: Epex [32],
Nordpool [33], Energy Exchange Istanbul (EXIST) [34], and BSP South Pool [35].

Country Lead Time Trading Blocks Market(Minutes) (Minutes)

Austria and Germany 5 15 EPEX Spot
Bulgaria, Denmark, Estonia, Finland, Lithuania,
Norway and Sweden 60 15 NordPool

Belgium, France and the Netherlands 5 60 EPEX Spot
Slovenia 60 15 BSP Southpool
Switzerland 30 15 EPEX Spot
Turkey 90 60 EXIST

In light of this, the forecast process can be split into three components: (1) production of a smooth
day-ahead forecast tuned for economic adjustment via the intra-day market, (2) targeting intra-day
forecasts for the predictable part of the day-ahead forecast errors and (3) application of forecasts on
the minute-scale to manage the wind power generation after gate closure of the intra-day. The two
first components correspond to current practices in long-term and short-term processes with some
enhancements. The third component is a process running on minute-scale with 1 or 2 h look ahead
(e.g., [36]).

Minute-scale forecasts are also necessary when applying to provide ancillary services, secondary
or tertiary reserve or balancing capacity for the pool of large utilities. For instance, a recent pilot project
in Germany allows wind power generators to participate in the reserve market by down-regulating
their production. The possible or available power produced by the wind farms needs to be calculated
in one-minute intervals. Furthermore, the standard deviation of the percentage error of the possible or
available wind farm power, during the pilot phase, should be less than 5% [37].

4. State-of-the-Art of Wind Power Forecasting

State-of-the-art wind power forecasting methodologies utilize wind speeds from weather forecasts
and on-site real-time measurements to compute wind power.

Figure 3 shows qualitatively the forecast error levels of a day-ahead, hours-ahead and
minutes-ahead forecast compared to a persistence error, where the persistence forecast is the most
recent available measurement. The qualitative visualization of the forecast errors in the different
time scales shall be seen in the light of their starting point and forecast error growth over time.
For example the day-ahead forecast has an almost linear error growth and is typically responsible
for approximately 1/3 of the forecast error [38] . The day-ahead forecast also starts with an inherent
error at forecast time zero due to a number of aspects. In [38] these are described as for example
(i) the initial weather conditions; (ii) sub grid scale weather activity; (iii) coordinate transformations;
(iv) the algorithm used to compute the wind power; (v) imperfection of turbines and measurement
errors. For Pahlow et al. [38] one question remained: which fraction of this background error is caused
by imperfect initial conditions of the weather forecast and which fraction is due to erroneous wind
power parameterizations. They extrapolated the linear forecast error growth from 9–45 h down to
the 0 h forecast and thereby estimated the background mean absolute error (MAE) just under 4% of
installed capacity. Part of of that gap of approximately 4% error at the initial time can be reduced
by the hours-ahead forecast with knowledge about the real power production. Pahlow et al. [38]
characterized this inherent error at the initial time to a mix of unknown technical and non-technical
constraints at the forecast location. These can be wind farm specific constraints, such as unknown
non-availability of wind turbines, but also errors due to the computation of the wind power at the
site. The hours-ahead forecasts are steeper in error growth than the day-ahead and reach this level
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typically around 4–8 h ahead in time. This time span is the typical temporal influence radius of a
measurement [38]. The minute-scale and persistence forecasts are both starting at the zero error in
their initialization. This is what characterizes this forecasting time scale, where the current state of the
power plant is fully known. The steepness of the error growth is also highest for these two forecast
techniques due to the decreasing influence of the measurement at the power plant over time. A general
industry experience is that a persistence forecast is at the same level as a hour-ahead forecast after
around one hour. A minute-ahead forecast should ideally be below the hour-ahead forecast for about
3 h as a thumb rule when evaluating the usefulness of the technique. The time between 1 h and 3 h
into the forecast is where the persistence forecast typically reaches the day-ahead forecast error level
and loses forecast skill.

Figure 3. Qualitative visualization of the forecast error development over the first hours of a forecast
for different temporal forecast techniques.

Figure 3 illustrated nicely that the margin of possible improvements by minutes-ahead forecasts
in the first 30 min of the forecast is rather small in comparison to persistence. Additionally, the average
error growth of up to 2% of the installed capacity of a short-term forecast of 15 minute time resolution
is rather steep (see Figure 3). It is therefore fair to say that the improvement over persistence, which is
the objective in the very short time ranges of minutes and hours, is therefore rather modest. This is
often used as a reason not to base decisions on forecasts, but rather use persistence, even during
ramping, where the persistence forecast is a poor approximation. If the previous 15-min forecast
already appears to be off track, then the forecast user cannot be justified in trusting the forecast. Also,
the similarity between the average error of a short-term forecast and persistence over the next 15 min
strongly indicates whether the short-term forecast performs better or worse than persistence.

Forecast providers are continuously looking for enhancements, which can improve the hour-ahead
and minute-scale forecast in the less good quality periods, because these result in the most significant
power system benefits. Use of wind speed measurements in addition to wind power measurements is
therefore a key to improve forecasts in periods, where the wind speed is in the flat ranges of the power
curve (<5 m/s or >12 m/s). Without wind speed measurements, the minute-scale forecast is in fact
unable to correct the weather forecast for phase errors in periods, where the generation is zero or at
full capacity.
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A forecast of the steady increase in wind speed from 15 m/s to above the high-speed shutdown
point at 25 m/s can also be improved by using wind speed measurements in short-term algorithms.
At the high-speed shutdown points (>25 m/s), the wind speed forecast uncertainty is at least 2 m/s
even in highly predictable events. The timing of the shutdown is therefore uncertain, even a few
minutes before it happens. Wind speed measurements from wind farms reduce this uncertainty
significantly. The timing of a high speed shutdown is important for grid security, because there
are potentially many Megawatts instantly ramping down. In combination with forecasting on the
minute-scale, such wind speed measurements can help to bridge the gap between actual generation
and both short-term and long-term forecast.

For wind speeds below the cut-in level there are similar considerations. Mostly, low aggregated
wind power generation occurs at low wind speeds. Nevertheless, a large and strong low pressure
centre may have near-zero wind speeds from different directions. Both the changes in wind direction
and wind speed are better identified by wind speed measurements than wind power measurements.
Thus information about wind speeds below cut-in can be crucial for the forecast accuracy near a low
pressure system center with highly aggregated wind power generation. During periods of moderate
and high generation, wind speed measurements can be used to calculate current potential turbine
available generation power or validate the signal of current available power generation sent by the
wind generation plant. To conclude, measurements of low, medium and high wind speeds all add value
to forecasting, while measurement signals in the steep range of the power curve are least important.

From a technical perspective of the instrumentation, one of the most reported gaps for forecasting
hours-ahead and minutes-ahead is the quality of the measurement signals. While wind farm developers
have to use calibrated instrumentation and standardized methodologies in order to obtain a bankable
level of siting accuracy in the first planning and commissioning phase of a wind project, in the following
operational phase the use of meteorological measurements is mostly not defined, documented or
standardized. Although the measurements are important in many ways, e.g., situational awareness in
extreme events, scheduling and dispatch of generation on power system level, the balancing of large
forecast errors, maintenance of instrumentation, there are no standards for the quality of the signals
in real-time environments today. For example, if a measurement stops working correctly and sends
constant values, a persistence forecast that uses only this data will benefit in performance assessment,
while a more advanced minute-ahead forecast that uses other data or models is penalized for providing
a more realistic view of the situation. Dependent on the amount of such periods with constant values,
this can easily lead to an overestimation of the performance of a persistence forecast in comparison to
minutes-ahead forecasts and thereby prevent use and application of minutes-ahead forecasts.

Due to such missing standards and industry guidelines, the main gaps for the use of and
collection of meteorological measurements and thereby advances in minute-scale forecasting can
be summarized as:

• lack of requirements in the grid codes
• lack of strategy for handling of missing or constant signals from measurements in real-time
• lack of quality of measurements in real-time

5. Review of Methods for Minute-Scale Forecasting

In the previous section we discussed the state-of-the-art in minute-scale forecasting. In this section
we investigate instrumentation that can improve forecasting with current techniques and we outline
which and how new types of instrumentation and models can be used to improve forecasting on
minute scales when persistence can no longer provide a correct picture of the weather conditions.

5.1. Minute-Scale Forecasting Based on Preview Data From Remote Sensing Devices

Remote sensing techniques are a new technology development in wind energy applications,
which have their roots in the desire to find alternative measurements for the expensive and at times
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difficult installation of meteorological masts. With increasing experience and technical advances in
technology, remote sensing devices have become viable alternatives. This has also been reflected in the
IEC 61400-12-1 2017 standard [39], where such devices have been incorporated as possible instruments
to carry out measurements for wind energy applications. A new application for remote sensing
devices is forecasting. Especially scanning devices such as scanning lidars and radars which offer
the possibility to carry out minute-scale forecasts by delivering high resolution temporal and spacial
previews of the upstream wind field of a wind turbine or wind farm. Therefore, the next subsections
give an overview of using those devices for forecasting purposes and finally lessons learned with
remote sensing instruments in real-time forecasting projects are summarized.

5.1.1. Scanning Lidar-Based Propagation Models

Doppler wind lidars measure the wind speed in direction of the laser beam, also referred to as
line of sight (LOS). Depending on the system, the measurement range varies from a few centimeters
to several kilometers [40]. Commercial lidars were first used for wind energy applications in the
early years of this millennium [41]. Nowadays they have become accepted as an alternative to
meteorological masts (met masts) due to cost and ease of installation. Ground based systems are
used for site assessment and power performance testing and are now included in international
standards [39]. Nacelle-based lidars that can measure upstream of operating turbines, are used for
feed-forward control of wind turbines [42]. These systems measure the wind speed several hundred
meters upwind, thus forecasting the rotor effective wind speed seconds before it hits the rotor just in
time to pitch the rotor blades and reduce loads. A new application for scanning lidars is within wind
power forecasting. Commercial lidar manufacturers have increased the range of their systems and
compact pulsed scanning wind lidars may now measure the wind speed up to a distance of 10 km
over an entire site from one location (see, e.g., [43,44]). There are also systems on the market that
measure 30 km and more, but these systems are bigger in size and therefore less suitable for flexible
measurement campaigns. The basic idea is to use the spatial and temporal high resolution wind field
information measured several kilometers upwind of a wind turbine or wind farm to forecast the power
output ahead in time.

The forecast process (Figure 4) is the same for both applications—control and power grid balancing.
First the raw lidar data is filtered and the horizontal wind speed and direction is reconstructed from
the measured LOS wind speeds. Depending on the number of synchronized lidar measurements,
different assumptions need to be made in order to resolve both horizontal wind speed and direction.
For instance, a velocity-azimuth display (VAD) retrieval technique is used to resolve both wind
speed and direction when only one lidar measurement is available [45]. This method assumes a
homogeneous wind field and should only be used in flat terrain where the assumption generally holds
true. Then the wind speed in the distance is propagated towards the site by means of a propagation
model. The simplest model is based on Taylor’s hypothesis which claims that turbulent structures,
so called eddies, are transported with the mean flow without changing their properties. With this
assumption the time can be calculated that the wind speed measured in a certain distance needs to
reach the turbine or wind farm. Thus the farthest measured distance determines the forecast horizon.
The forecasted wind speed at the turbine or farm location is then used either to forecast the power
output by means of a power curve model, or as an input to the wind turbine controller.

As mentioned, the forecast horizon is determined by the measurement distance of the lidar and
the magnitude of the wind speed (Figure 5). For wind speeds at rated power of a typical turbine, the
maximum forecast horizon with a state-of-the-art long-range scanning lidar that ideally measures up
to 10 km is around 15 min. The maximum horizon increases to around 40 min for a wind speed of
4 m/s that corresponds to a typical cut-in wind speed.
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Figure 4. Forecast process using scanning lidar data.

Figure 5. Forecast- horizon calculated based on Taylor for different wind speeds and measurement
ranges; the horizon is given in minutes.

The advantage of scanning lidars is that they offer the possibility to directly measure the wind
speed upstream of a turbine. All long-range scanning lidars are pulsed devices, which means that
the wind speed information is gathered simultaneously at different measurement distances. Thus the
wind flow can be tracked over the span of the measurement and local changes in the wind speed are
captured. Modern lidars have compact dimensions of around one cubic meter which allows for flexible
measurement campaigns and the installation for instance on the nacelle of a wind turbine or other
elevated points such as an offshore substation. Then the scanning of the area on, e.g., a horizontal
arc leads to the desired horizontal wind speed information after reconstruction without having to
take into account shear effects. When installing the lidar on the nacelle of a wind turbine behind the
rotor, it should be noted that due to the blade passage the available data will be reduced, and nacelle
vibrations and the tilt angle from the rotor thrust might introduce disturbances in the measurement
range and height.

Recent investigations have shown that lidar-based forecasting models were able to predict
near-coastal winds better than the benchmarks persistence and ARIMA for a forecasting horizon
of 5 min [46]. Another relevant study is Simon et al. (2018) [47] which explores space-time correlations
of upwind lidar observations measured on a flat horizontal plane. The study also shows results of a
1–60 min ahead forecast method utilizing the lidar inflow scans which significantly outperforms the
persistence method.

However, there are some drawbacks when using lidar data for forecasting. One of the major
barriers to overcome is the availability of the measurements. The lidar measures the wind speed by
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sending out laser pulsed that are back-scattered from particles suspended in the air. The wavelength
of the back-scattered light shifts relative to the speed of the aerosols according to the Doppler
principle [48]. Therefore the device records a noisy signal if not enough or too many aerosols are
in the air. It also means that the measurement range fluctuates due to environmental conditions
such as fog or rain showers [49]. And as the measurement range determines the forecast horizon,
minute-scale forecasts are not possible if the lidar is blind. As a consequence, a fallback solution
should be implemented in case the lidar does not provide measurements. Data from other sensors
such as radar or drone measurements could be one solution. Using statistical models (cf. Section 5.2)
or the coupling of the measurements with NWP models (cf. Section 5.3) could be another solution.
More investigations have to be carried out to determine the optimum conditions for good range
measurements of lidars.

Another drawback of lidars so far have been the high costs and the inaccuracies of wind field
reconstruction in complex terrain. According to the white paper of the Deutsche Windguard [50,51],
especially “in complex terrain sites, influence of the relatively large scanning volume of today’s
lidar and SODAR must be carefully considered in terms of its influence on the measurement
accuracy...”. This has been a general observation and an ongoing research topic (see, e.g., [41,43,52–55]).
In one recent large scale measurement campaign, the Land-Atmosphere Feedback Experiment
(LAFE), measurements were setup with multiple synchronized scanning lidars that enable the direct
measurements of wind field components (see, e.g., [44,56]). Their instrument setup configuration
addressed “the required combination of measurements for advanced studies of the land-atmosphere
feedback” with a combination of instrumentation of scanning lidars and surface and airborne in
situ measurements that provided the necessary overlap of measured data signals to fill gaps in the
instrument’s measurement ranges. This strategy could directly be transferred to the minute-scale
forecasting problem in real-time environments and in complex terrain and is also widely applied in
the data assimilation of NWP models (see Section 5.3).

Another significant obstacle for the application of lidars in the wind power industry is the lack
of standard or recommended practices for the use of scanning lidars for wind speed forecasting.
More research is needed to find out what the ideal measurement setup looks like, in particular how
many lidars are needed and where to place those devices within a wind farm or within a control zone
of a system operator. Also, optimal measurement strategies need to be established and transferred to
different problem areas and sizes. To that end, different use cases have to be investigated to find out
what the best campaign setup and measurement strategy is. Such use cases should include on- and
off-shore wind farms of different scales. Recommended practices then need to be consolidated so that
the widespread use of lidar for forecasting becomes possible on a commercial level.

5.1.2. Radar-Based Density Models

Radars are remote sensing systems which can determine the position, angle or motion of objects
and are being used in multiple applications including traffic control, ocean surveillance, weather
monitoring, flight control systems and antimissile systems. Similarly to wind lidars, Doppler radars
can be used for wind power forecasting as they are able to determine the velocity of the objects.
The working principle is the same as for lidars, but rather than sending light waves, they emit radio
waves. Thus, in an environment where meteorological particles with high humidity such as water
droplets or ice crystals are present, radars are able to measure the wind speed by determining the
motion of the hit particles.

The maximum range that radars can measure is given by the wavelength of the signal emitted, but
in this paper we only focus on radars which work on wavelengths that are of interest for minute-scale
forecasting of wind power. Thus, we limit our review to radars working between the C-Band and the
Ka-band radars, or with a wavelength of 3.2 cm to 8.6 mm.

Doppler-radars working in the Ka-band (35 GHz) are optimal candidates for wind power
forecasting (Figure 6). The short wavelength employed allows for high temporal and spatial resolution
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of the measured wind fields. As with lidars, Doppler radars measure the LOS wind speed. Thus,
measuring with one Doppler radar over a defined Plan Position Indicator (PPI) trajectory, the horizontal
wind speed can be determined by applying a VAD retrieval technique in the same manner as
lidar. To derive the two horizontal wind speed components, two synchronized Doppler radars
are needed [57]. The number of publications on the use of Doppler radars for wind energy applications
has grown in the last years. Hirth et al. coupled wind farm operational data with wind fields measured
by two synchronized Doppler radars (dual-Doppler radar) to further investigate wind farm wake
effects [58]. Dual-Doppler measurements of the wake behind an offshore wind farm were also reported
by Nygaard et al. [59]. The performance of wind turbines was also validated with dual-Doppler
measurements in [60].

First evidence of the promising application of Doppler radar systems for forecasting purposes was
documented by Hirth et al. [61]. An extreme wind ramp event observed by the Texas Tech University
Ka-band radars at a wind farm in Oklahoma was presented. The authors merged dual-Doppler wind
fields with operational data from 32 wind turbines to document the observed transient wind event
and its effect on the wind turbines’ performance. They also coupled data from a meteorological tower
to analyze the weather conditions that originated the transient event.

Recently, it was shown that Doppler radar observations can be employed to derive minute-scale
density forecasts of wind power. In [62] the authors proposed a methodology that uses dual-Doppler
radar observations of wind speed and direction in front of a wind turbine to forecast the power
generated in a probabilistic framework. In a case study, they predicted the power generated by seven
turbines “free-wake” wind turbines in an offshore wind farm. Predictions were generated with a
temporal resolution of one minute and with a lead time of five minutes. With their study, the authors
showed that the radar-based forecasting model is able to outperform the persistence and climatology
benchmarks in terms of overall forecasting skill and generate reliable density forecasts in the case of
optimized trajectories.

Figure 6. One of the two Doppler radar units deployed for the BEACon project [59,62].

One of the main advantages of Doppler radars is the extended range they can measure (over
30 km). Additionally, the optimal trade-off between the temporal (one minute) and spatial (50 m)
resolution of dual-Doppler radar measurements, compared to that of typical wind measurements from
met masts or satellites, makes them promising candidates for minute-scale forecasting of wind power.
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As with lidars, the same wind power forecasting process can be implemented to derive a wind power
forecast. Besides, the fact that they can perform volumetric measurements (wind field measurements
at multiple heights), allows to infer further information such as horizontal and vertical wind shear.

However, as with lidars, one of the main obstacles to the adoption of radar as a forecasting tool
is the availability of the measurements. The radar measurement principle lies in the backscattering
of particles in the air containing high humidity such as water droplets or ice crystals. Therefore, the
quality of the measurements relies on the concentration of these particles in the air [57]. Besides, the
relatively large dimensions of Doppler radars complicate their installation and reduces the range of
possibilities for placing them, especially in offshore environments. The advantage of Doppler radar
with respect to lidars is the maximum range that they can measure. However, compared to lidars, the
wider beam width of radar results in larger beam spread at large ranges.

5.1.3. Weather Radars for Prediction of Strong Wind Power Fluctuations

Although we have mainly focused on the use of Doppler radars for forecasting applications,
weather radars have been also identified as promising candidates for very short-term power forecasting
of offshore wind power. Modern weather radars working in the C and X-band measure the intensity
of precipitation. They are consequently able to anticipate precipitation fields associated with severe
wind speed and power fluctuations with lead times of minutes to few hours, as they can measure up
to few hundreds of kilometers, depending on the radar type. The capabilities of anticipating strong
wind power fluctuations in offshore wind farms using local weather radars was introduced in [63,64].
In their work the authors were able to track the arrival of precipitation events to the surroundings of an
offshore wind farm. These events were highly correlated with the strong observed power fluctuations.
The authors also identified shortcomings of the use of weather radars for wind power forecasting,
which included: interception of radar waves (cluttering), beam attenuation due to intense precipitation,
anomalous propagation of the radar waves during specific atmospheric conditions, underestimation
of precipitation reflectivity (beam filling) during convective events, and overshooting at long ranges
due to the curvature of the Earth.

5.1.4. Lessons Learned With Remote Sensing Instruments in Minute-Scale Forecasting Projects

Several research projects have been conducted with the goal of integrating remote sensing
measurement into real-time forecasting projects. For this purpose not only were scanning devices
deployed, but also ground-based profiling devices. In the largest and longest measurement campaigns
targeted towards real-time forecasting of wind energy in recent years were two projects funded by
the United States Department of Energy. In the Wind Forecasting Improvement Project (WFIP I and
II) [65] there were 12 wind profiling radars, 13 sodars and three lidars amongst other meteorological
sensors used. Lidars as well as sodars are basic equipment used in meteorological data assimilation
today and have been quality checked following meteorological standards through the Meteorological
Assimilation Data Ingest System (MADIS) [66]. This was a necessary step in order to integrate the
simulations into real-time model forecast systems [67]. In the second project, “Distributed Resource
Energy Analysis and Management System (DREAMS) Development for Real-time Grid”, a number of
sodars and lidars were used to enhance the Hawaiian system operator’s EMS (Energy Management
System) tools for situational awareness of critical events [68]. Here, the instruments were used for the
first time as part of an operational management system at a system operator in real-time.

From the above described studies and experimental measuring campaigns as well as real-time
testing it can be concluded that remote sensing instruments need to be serviced and maintained
similarly to any other real-time instrument. Skilled personnel are required in order for the the devices
to run continuously and reliably.

The following list presents the major findings and recommended technical requirements
from these studies and real-tiem tests towards ensuring high quality data during long-term
real-time operation:
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• Lightning protection and recovery strategy after lightning should be ensured.
• Instruments must be serviced and maintained by skilled staff.
• Version control must be maintained for signal processing.
• Measurements must be the originally measured values or technical requirements must include

maintenance and software updates.
• Wind data should be measured at a height appropriate for the wind farm, either at hub height or

preferable at both hub height and the lowest possible measuring height (e.g., 30 m).
• Remote sensing devices in complex terrain require special consideration.

From studied projects and measurement campaigns, it can be concluded that in active weather
conditions, i.e., at the flat range of the power curve as well as under strong precipitation events,
it must be expected that met-mast anemometers are more reliable than sodar or lidar devices.
From a forecasting and operational monitoring perspective, conditions outside of the instrument’s
operating conditions are some of the most critical conditions for grid operation, such as storms with
precipitation or high winds. Sodars are more prone to data delivery failures than lidar. In general,
however, both devices suffer under non accessibility of measurement information in—for the grid
operator—critical situations.

5.2. Statistical Time Series Models

Statistical approaches to forecasting problems mainly rely on deducing patterns from past
observational data and extrapolating these relationships to predict future values over a desired
time step. With wind energy applications in mind, in this section we consider the task of forecasting
a one dimensional time series signal such as a wind speed measurement, or a SCADA source such
as wind turbine or wind farm active power signal. The chosen forecast horizon should relate to
the time resolution of available input data, and at minimum be one sample (time step) ahead to
avoid errors introduced by interpolation. Statistical forecasting methods used on the minute scale are
largely identical to techniques employed for longer horizons. The main differences being the temporal
resolution of the data and the variability of the physical process being predicted (see Section 2).

Data acquisition systems are ordinarily capable of sampling and saving data at high frequency,
although historically this data has not always been used nor recorded. For the purposes of minute-scale
forecasting, 10-minute or hourly averaged data sets are not sufficient for capturing signal characteristics
needed to construct and validate a well performing statistical model. For this reason we recommend
that all data generators ensure that they have access to and are logging their high frequency data (both
turbine and meteorological sources), and that the instruments are properly maintained. The lower
bound of the recorded sampling rate should be at minimum twice the highest frequency in the analog
signal you wish to capture, in order to avoid aliasing in the discrete signal transformation (Nyquist
sampling theorem). In practice, 1 Hz (1 sample per second) is proposed as a compromise between
functionality and transmission/storage considerations. This will allow for future model building and
testing which can resolve fluctuations on the minute-scale.

Time series data contrasts to cross-sectional data in that it is naturally ordered in time.
Samples which are closer together will normally express a higher correlation than those further
apart. This temporal link should be explored through inspection of the autocorrelation and partial
autocorrelation function of the time series before beginning any attempts to build a model.

There are often a number of characteristic sub-components embedded in the time series which
can be obtained through decomposition techniques in order to normalise samples across time.
Examples include differencing an integrated series, removing an overall trend (usually by either
mean subtraction or model fitting to obtain the residuals), accounting for cyclic fluctuations, and
adjusting for seasonal variations.

A common assumption made by statistical forecasting methods is that of stationarity.
Stationary processes comprise of data where the mean, variance, and autocorrelation structure do
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not change over time. By implementing the techniques described above, it is possible to transform a
non-stationary time series into a stationary one which can be used with traditional forecasting methods.

Benchmarking in any forecasting exercise is crucial. Commonly for forecasting at these short
timescales the persistence and climatology models are employed; these simple methods assume that
the forecast for the target variable is the most recent available measurement or summary statistics of
historical measurements, respectively. Statistical methods for wind speed and power forecasting
are typically based on time-series models such as autoregressive [69] (AR) and autoregressive
moving average (ARMA) [70,71] models as well as other soft computing techniques such as neural
networks [72].

Purely AR models are formulated as a weighted combination of past observations (lags) where the
coefficients are normally estimated via ordinary least squares regression. The order of the AR model,
or maximum lag, is crucial and can be chosen most simply by inspection of the auto-correlation and
partial auto-correlation functions of the signal. Cross-validation or an information criterion provide
an alternative method for defining the model order. Domain knowledge of the local meteorological
conditions can also be used to extend these simple models. For example, in certain regions the
wind/power time series may exhibit strong diurnal trends which would necessitate the inclusion of
time-of-day into the model.

Beyond time series models, machine learning techniques also are widely employed.
These techniques can be more flexible than classic time series models in terms of easily allowing for
more explanatory variables and are typically more naturally able to capture non-linear relationships.
It should be noted that this comes at the expense of additional model tuning to optimize algorithm
specific hyper-parameters and possible overfitting of the data unless careful cross-validation
procedures are followed. Examples include artificial neural networks [72], hybrid multi-models
with blending [73] together with feature selection [74], and penalized regression [75].

Artificial neural networks, particularly recurrent neural networks (RNN), have been widely
applied for sequence prediction including time-series data. Long short-term memory (LSTM) networks
are explicitly designed to capture data patterns of arbitrary lags, and assimilate long-term temporal
dependencies [76]. This has led to numerous applications in energy forecasting which outperform
traditional time-series modeling approaches. Wu et al. [77] demonstrates such a probabilistic 4-h
ahead wind power forecast model employing a LSTM network architecture.

Statistical forecasting models can also be made dependent on the current behaviour of the target
time-series or on exogenous variable(s). These are termed regime-switching models and can be based
on unobserved regimes [78,79] or by observed regimes like atmospheric conditions [80,81]. It follows
that these regimes can be derived from lidar/radar measurements [64]. The benefit of regime switching
is that the statistical models can react faster to changing conditions, as opposed to having a fixed
coefficient models or by tracking slower changes in behaviour via for instance an online update of the
coefficient estimates.

Concurrent information from spatially distributed wind farm or met mast measurements also
provide a route for improvements in forecast skill [82]. Multivariate forecasts which encode information
on the spatio-temporal dependency of neighbouring sites can be tackled via a vector autoregressive
models (VAR) at these time horizons. With an increasing number of sites, making sparse estimates
of the coefficient matrices becomes more important, as does estimating them via efficient numerical
procedures [83–85].

Forecast uncertainty at these horizons can also be accounted for via probabilistic density forecasts,
quantiles, or prediction intervals [86]. These may be generated using parametric assumptions of the
forecast distribution shape [69,83] or non-parametric techniques [87,88]. Uncertainty forecasts enable
the user to manage risk in decision making and leverage more actionable information from their data,
if information content is communicated properly [89].

These discussed statistical methods have been widely proven to increase forecast skill over
persistence at time-horizons generally at a minimum of 10 min ahead. Further research is required
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to evaluate the suitability of statistical methods below this time horizon and at what time range
forward facing lidar/radar based systems or hybrid statistical and radar/lidar systems are a more
suitable choice.

5.3. Statistical Data Assimilation Based on Physical Models

Data assimilation performs an essential role in the forecasts of wind power systems. While the
concept is very inclusive, meaning assimilation of any data with any model, in this section, the term is
used in more exclusive sense without addressing statistical time series models. Time series models are
a special case of data assimilation where usually non-physical models are taken into consideration.
This was discussed in the previous section. The concept is inherent from the fact that neither the model
nor the observations are perfect. In order to have an accurate state of the system, the numerical model
itself is not sufficient and therefore guidance from observations is required. This is even more so for
weather forecast systems, where the system itself is very sensitive to initial conditions and boundary
conditions. Data assimilation was first employed in engineering; however, today it is more than an
engineering tool.

In summary, in the context of this review article, data assimilation is a technique to adopt multiple
measurements and observations of different types into a 3-dimensional model space. In meteorology it
is used to generate an initial state of the atmosphere from observations, i.e., an input field, together
with boundary conditions to any numerical weather prediction (NWP) model.

Also for the renewable energy production, data assimilation and/or state estimation has an
important role, for example in the assimilation of data into the control system on wind turbine or even
wind farm level. System operators and wind farm operators require advanced knowledge of ramp-up
and ramp-down events [90–92]. In a ramp/extreme event forecasting you want to analyze and use
outliers in order to assess the risk of a critical ramp/event that is about to occur, while some data
assimilation algorithms can dismiss outliers. The increased frequency of assimilation can address this
challenge. The frequency of assimilation is important for ramp prediction, while the challenge comes
from the model size and assimilation method chosen for the task; however, simplified models with
higher frequencies can be adapted for the applications discussed here.

The work on data assimilation spans many disciplines and several decades in which many
different methods have been developed to adapt the state of the atmosphere in numerical
weather prediction models to large sets of measurements [93,94]. The initial development of data
assimilation has started as an objective analysis (e.g., [95,96]), which is also referred to as successive
correction methods.

This work was followed by optimum interpolation (OI) (e.g., [93,97]). Optimal Interpolation (OI)
methods have lead to development of variational methods in data assimilation, where constraints
were introduced in variational data assimilation methods. These methods are namely 1DVAR,
2DVAR, 3DVAR (e.g., [98,99]) and 4DVAR (e.g., [100,101]) where D stands for Dimension. Variational
approaches can be also formulated in the context of a Bayesian problem.

In parallel Kalman filter based approaches were developed (e.g., [102,103]). The Kalman filter
is a sequential data assimilation technique and was introduced as an observer feedback control
system. The main difference between 4DVar and Kalman filters are the way that they address the
mode and mean when the distributions are non-normal. There are several existing methods used
in state estimation and/or data assimilation . Most of those methods build on the filtering theory
introduced by Kalman and Bucy [104]. For the state estimation of linear Gaussian systems the original
form of the Kalman filter has been widely applied. However, as it is linear it is not preferred for
non-Gaussian and nonlinear systems [105,106]. Therefore techniques such as extended Kalman filter
(EKF), ensemble Kalman filter (EnKF), unscented Kalman filter (UKF) and particle filter (PF) algorithms
were developed [105,106] and applied to a wide range of use cases from low to high dimensional
systems. EnKF method employs the linearization of the non-linearities with a Jacobian matrix, and also
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employs Monte-Carlo methods to estimate the background covariance errors to introduce nonlinearities
to Kalman filter (e.g., [102,107–109]).

Möhrlen et al. [36] found that some of the Kalman filter limitations in a meteorological context
are, however, not a limitation in the wind power context, because the area of observational distribution
is rather small, even if the area spans over an entire country. In atmospheric data assimilation the
measurement data used is spread widely in space (globally), but is mostly sparse in time. In a wind
power context, observations are concentrated in small areas with high time resolution. A classical KF
approach would not make sense as models would have to generate forecasts in a small area, which
is undesired, or it would require unrealistically many computing resources and observational input
of meteorological variables [36]. The physical based ensemble prediction methods, especially the
multi-scheme approach, has been found as the most efficient method due to its ability to generate
spread that has a physical/meteorological meaning in any time step with a much smaller ensemble
size [110].

One non-exclusive approach that can address the above approximations on linearities and
Gaussianity is particle filter (PF); however, it brings computational cost with it [111]. The computational
cost is also related to ensemble size; however, this can be addressed adaptively with careful selection of
ensembles introduced by Uzunoğlu [112,113]. The computational complexity in the above summarized
methods can be addressed in the subspace of ensembles that was one of the focuses of the Maximum
Likelihood Ensemble Filter (MLEF) that employs ensembles in the pre-conditioner. The computational
time is reduced by optimizing a nonlinear cost function in low dimensional sampling space for Hessian
information through maximum likelihood practice which also addresses the stochasticity and the
discontinuity. This method has been applied to many disciplines such as power systems as well as
to the wind energy industry [27,114]. In the workshop, the successful application of this method to
second scales were presented.

5.4. Extreme Event Forecasting Models

Extreme events in a meteorological sense are events that deviate from the mean and exceed
beyond specific threshold limits. In the power system, extreme events can occur under meteorological
average conditions as well and not be considered extreme, when meteorological threshold values, such
as wind speed, are exceeded. The differences are mainly due to constraints in the transmission lines
and the supply and demand relationship. Only in areas where wind turbines shut down due to high
wind speeds- so called high-speed shutdowns, can such wind speeds challenge both life and the ability
to safely control the grid.

The way to deal with extreme events in both meteorology and the power industry is by applying
uncertainty forecasts that provide an objective measure of the possible extreme. Deterministic forecasts
cannot serve such situations, as they are tuned for best average conditions, i.e., in the setup, statistical
training and model output statistics, outliers and extremes are filtered out. While statistical approaches
can be used in many life science applications, in power system applications it is crucial to employ
an approach that provides a valid uncertainty of the forecast inclusive of extremes in every hour of
the forecast. Such extreme forecasts must be established based on probabilities computed from a
probabilistic prediction system that can take the spatial and temporal scales into consideration in order
to capture the temporal evolution and spatial scale of, e.g., low pressure systems that contain wind
speeds leading to large scale shut-down of wind farms.

This can for example be provided by a physical approach based on a NWP ensemble that ideally
contains all extreme values inherent in the approach without the requirement of statistical training such
as the multi-scheme method. Alternative solutions may exist from statistical approaches by employing
an extreme event analysis to a statistical ensemble (e.g., [89]). However, statistical approaches are
always limited to past climatology and require large amounts of data. The requirement for such
forecasts is that they must be able to provide probabilities of extreme events, where each forecast or
“forecast member” provides a valid and consistent scenario of the event. The probabilities need to be
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suitable solutions for a decision process. They can be computed for very critical and less critical events,
depending on the end-users’ requirements.

In meteorology the use of sophisticated observational instrumentation for data assimilation
problems is an ongoing transformation throughout the last decades. As new technologies become
available that in some way are able to reflect some part of the atmospheric system, where the model
systems require parameterizations, such instrumentation is usually tested in research campaigns and
then deployed at specific locations (e.g., [110,115–118]). Transferring this knowledge to the assimilation
of wind power observations that are irreversible in their nature is more complex. Nevertheless, a
unified methodology that is able to decide on the value of an observational signal and it’s impact on
the total system is required to solve this task.

In Section 5.1.2 we learned that radar measurements can be used for forecasting, but require
transformation algorithms to be useful for the forward propagation of the data signals. The Kalman
Filter techniques are practical approaches that have inherent capabilities to transform such data signals
and use them in convective-scale data assimilation tasks (see, e.g., [117,118]).

With ensemble Kalman filter techniques, the input ensemble data can also be used to deal
with the uncertainty of different types of measurements, also in the transformation phase of more
advanced data signal technologies if the signals are in relation with the target parameter [36]. The
example in Figure 7 shows the functionality of an inverted Kalman Filter approach for the assimilation
of point measurements in (wind and solar) power space with a multi-scheme ensemble approach
described in [36]. In this schematic, power signals from wind and/or solar generating units and other
related meteorological observation are assimilated with the help of a so-called multi-scheme ensemble,
a physical based ensemble approach [36]. The ensemble contains 75 members with 13 different
parameterisation schemes, 10 from the physical part of the model and 3 dynamical parameterization
schemes. Details of this system can be found in [38,119]. By applying physically possible outcomes
from a 3-dimensional simulation of the atmosphere and transforming this into a vector in direct
relation to the observation, a physically consistent data assimilation is possible. This approach is a
major improvement and enhancement in energy meteorology as it opens the door to resolutions in
time and space with minimal computational requirements for short-term or minute-scale forecasting,
as the computational expensive work resides in the 6-hourly forecasting cycle of the ensemble. The
assimilation of local measurements can be done on minute basis [36].
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Figure 7. Functionality of the inverted Ensemble Kalman Filter when using different kind of
measurements. P stands for Plant.

5.5. Overview of Methods for Minute-Scale Forecasting

Table 4 provides an overview and summary of the different minute-scale prediction methods,
their forecasting horizons as well as advantages and limitations to the adoption of the methods. It also
lists next steps that are suggested as a way to overcome the limitations.

During the discussions at the workshop and also whilst writing this paper, it became clear that as
of now we are not in a position to recommend a minute-scale forecasts method that performs well in
all conditions and for all use cases. Depending on the data input and the method, there are certain
advantages and limitations that are inherent to the respective forecast types and methods. Remote
sensing-based models for example work with preview data of the wind field several kilometers
upstream of a wind turbine, but rely on the data availability of the remote sensing device which
strongly depends on atmospheric conditions. Time series models are flexible in terms of input data,
have a proven track record in power forecasting and have been used to a great extent across multiple
disciplines. However, they rely on historical data and are therefore not likely to perform well for
events outside of normal conditions. Data assimilation models have a wide range of applicability
and can incorporate different types of measurements, but there is a lack of experience in the wind
power industry.

What we propose as next steps for all methods are further investigations of the methods for
different use cases, and also a cross-disciplinary exchange of different method experts. Remote sensing
and NWP experts for example have to work together to see what the benefit in assimilating
scanning-lidar data into a physical model is. Neural-network experts could implement real-time
preview data from radar devices and investigate the possibility to forecast wind ramps when not only
relying on historical data. The solution to minute-scale forecasting will possibly lye in the diversity of
available input data and a forecasting method, that is tailored to the end user’s needs.
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Table 4. Overview of methods for minute-scale forecasting.

Type Method Input Data Forecast Horizon Advantages Limitations Next steps Ref.

Remote
sensing
based
models

Scanning
lidar-based
propagation
models

Lidar data 1 s–30 min

- Comprehensive knowledge of wind field
several kilometres upstream

- Fluctuating measurement range and
forecast horizon due to environmental
conditions

- Need for a reliable fallback method if no
data available

[14,42,43,45,
46,49,50]

- Scanning of vertical wind profiles for, e.g.,
detection of low level jets

- Ideal measurement setup for forecasting
not clear, no standard available

- Investigation of different lidar cases to
find best campaign setup → standards
definition.

- Compact size → flexible measurement
campaigns, cost-competitive to met masts

- Need for post processing is challenging in
a real-time environment

- Regular service and calibration →
decreases risk of faulty signal processing
but increases costs.

Radar-based
density
models

Doppler
radar data 1 min–<1 h

- Extended maximum measurement range
(up to 35 km)

- Data availability highly depends on the
meteorological conditions

- Explore deeply and define the conditions
and locations for optimal measurements

[61,62]
- Reconstructed wind fields with high
temporal (1-min) and spatial (50 m)
resolution

- Large beam spread at large ranges →
increased uncertainty - Investigate added value of

installing a radar system for ramp
event prediction in a wind farm
cluster

- Volumetric measurements allow us to
resolve information over the whole rotor
area

- Large dimensions of the radar→ complex
installation

Radar-based
power
fluctuation
forecast

C and
X-band
weather
radar data

10 min–2 h

- Precipitation data highly correlates with
strong fluctuations

- Clutter due to: wind turbine interference,
meteorological targets

- Further development of pattern
recognition techniques is required

[63,64]
- Extended maximum measurement range
→ 60–240 km

- Measurement uncertainty increases with
precipitation intensity

- Investigation on new wind turbine clutter
detection and mitigation techniques

- Spatial resolution: 0.5–2 km/Temporal
resolution: 1–15 min

- Underestimation of precipitation
reflectivity during convective events

- Improve cooperation between weather
radars and wind energy communities

Time
series
models

AR
AR(I)MA

SCADA,
met-mast
data,
remote
sensing

30 s–24 h

- Easy to implement and demonstrates
higher skill than persistence for most lead
times

- Relies on historical data, therefore not
likely to perform well for events outside
of normal conditions

- Collect, store, and label high-frequency
data for building and testing statistical
models at the 1 s–10 min horizons

[69–71,80,
120]

- Proven track record in power forecasting
and a large volume of reference work across
quantitative disciplines on how to design,
build, and validate models

- Data quality concerns for, e.g., sensor
faults

- Utilize statistical model benchmarks
in all minute-scale forecasting trials for
comparison

Neural
networks

Same as
above 15 s–24 h

- Ability to learn complex non-linear
relationships

- Computationally demanding, large
datasets required for training and validation

- Continue monitoring developments as the
field is rapidly evolving

[72,73,77,
120]- Flexible model construction in terms

of inputs/outputs compared to ARIMA
methods

- Requires significant background
knowledge to understand and implement,
added complexity not always an
improvement

- Leverage this power and flexibility to
extract value from high dimensional data
(e.g., from remote sensing instruments)

Data
assimilation
models

VAR models

lidar,
radar,
sodar, cup
/ sonic
anemometers

look
ahead
time
3 h–12 h
for
analysis,
forecast
1 min–12 h

- Methods have a wide range of applicability
and can incorporate different types of
measurements

- Lack of use cases in power industry to
prove the value of such information

- Setting up measurement campaigns
with open data access for research and
development

[27,36,67,
68,110]

Kalman filters - Extreme event analysis benefits from a
diversity of observations

- Lack of standards and transparency of data
exchange in power markets

- Increased collaborative research between
meteorology and wind power forecasting
community

Ensemble Kalman
filters

- Expensive ensemble computations not
required on minute scale, but, e.g., 6
h-schedule—inverted EnKF: first weather
dependent short-term algorithm for wind
power apps

- Development of standards in power
industry for instrumentation and
measurement accuracies for real-time
usage
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6. Challenges for the Implementation of Minute-Scale Forecasting in Large Energy Systems

There are several use cases for predictions shorter than 1 to 2 h. In Australia, the system runs
on a 5-min schedule [121] and requires renewable energy and load forecasts on those time scales.
In Germany, renewable energy plants can be pre-qualified to participate in the reserve market, and
need to predict their possible power with less than 5% error in the pilot phase and less than 3.3% in
the implementation phase. This is calculated in one-minute intervals. In Denmark, with hourly wind
penetrations of over 140%, the grid is run proactively in hourly steps, predicting the imbalance and
reacting accordingly on the basis of spatio-temporal forecasts [122]. So the use cases for minute scale
forecasts are present, and the best forecasts require upstream information in real time.

In a large energy system with moderate penetration from wind sources, a system operator can
choose to outsource balancing of wind. This is the approach chosen widely in central Europe. A major
reason behind the liberalized strategy in Europe is a wish to make the market more competitive which
has happened faster than anybody expected in both Denmark (2009) and Germany (2012) [123] with
the result of lower spot market prices in the NordPool market and the German-Austrian component
of EPEX.

The difference between a TSO and a power trader’s prioritized optimization lies in the target
horizon. The trader is looking up to several weeks ahead, while the TSO’s optimization horizon
is over the entire year. In particular once the power trading is privatized and handled by private
balance responsible parties, then the TSO lacks information about the generation and must rely on the
information from the trading companies. In Germany, the TSOs have today little control of renewable
energy generation and rely on out-sourced solutions for critical system information to a large degree
which has not been considered acceptable for many years from a system security perspective.

Although Germany has the highest capacity of wind and solar generation in Europe, it is apparent
that the system lacks information for optimization. This is seen in frequent downregulation of wind
farms during day-time and recovery during the middle of the night, often many hours after the wind
has dropped again. This process has become highly inefficient in recent years, because there are no
requirements for wind farms to provide real-time data to the system operator.

The German experience shows that wind energy loses efficiency and value unless there
are obligations for wind farms to provide data required by various forecasting and system
operation processes.

Based on this experience, it is crucial to define standards regarding the setup and maintenance
of instrumentation, collection and provision of data, as well as required quality of data. Beside the
standards, in transparent markets the grid codes should also contain a clear definition about the rights
on the use and the obligation to provide the data. Without such regulations, the required quality is
hard to achieve in order to improve forecasts. Corrupt and wrongly calibrated instrumentation can do
more damage to a forecast than not having data. This is one of the greatest challenges at present and
the reason for slow progress on minute-scale forecasting. Especially in large systems such as Germany
with many thousands of individual wind turbines and small wind farms, this is a difficult challenge
to overcome. Nevertheless, the need to make appropriate changes to the grid codes is the same for
all markets.

7. Conclusions

Minute-scale forecasting of wind power is a discipline that is becoming crucial to accomplish in
globally transitioning power systems with increasing amounts of variable generating power sources
from renewables. The participants of the collaborative IEA Wind Task 32 and 36 workshop have
established a framework for forecasting at the minute scale and have discussed new techniques that
will push the limits of state-of-the-art forecasting methods.
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Three applications were identified that can benefit from minute-scale forecasting and their
respective forecasting horizons. Wind turbine and wind farm controllers need wind speed forecasts
with the shortest horizon to optimize the turbine and farm operation. The task of balancing the power
grid, and finally optimizing energy markets which rely heavily on precise wind power forecasts on a
slightly longer time scale as well.

To carry out forecasts that range from 1 second to 60 min, forecasters have the choice between
different methods (Figure 8). In our discussions at the workshop and this review paper we differentiate
between using preview data from remote sensing devices, time series models that deduce patterns
from observational data to predict future values and finally methods that are based on data assimilation
into physical models. These assimilated data can originate both from remote sensing devices or other
existing observational data sources i.e., meteorological masts and wind turbine data.

Forecast 
horizon

1s 1min 10min 30min 1hour

Wind turbine and wind plant control

Power grid balancing

Scanning lidar-based models

Statistical methods

NWP models + measurements

Methods

Applications

5min

Energy and ancillary services market

Radar-based models

Figure 8. Overview of forecast horizons of different wind energy applications and forecast methods in
the second and minute scale.

By investigating more deeply the respective methods it became clear that they all have advantages,
but also limitations that need to be overcome in order to achieve reliable forecasts for commercial use.
The following list provides an overview of focus areas for the near future to advance further with
minute-scale forecasting:

• Research requirements. At this point, many methods are still under development. There
are several open questions to solve and the optimal forecasting techniques for the different
applications have not been concluded. It is also not sufficiently demonstrated that all methods
add value. More research and especially more measurement campaigns using different types
of instrumentation (lidars, radars, sodars and in situ measurements such as cup and sonic
anemometers etc.) to compare their benefits and disadvantages as individual inputs but also as
combinations of inputs is required. Both measurement experts and weather modelers need to
collaborate closely to find solutions.
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• Data requirements. All forecasting methods rely on data. This might sound obvious, but what
is needed is high resolution, high quality data delivered in real-time to forecast systems. Wind
turbine or wind farm operators often only log 10-min averages of their operational data. However,
to train and validate models, high frequency data is necessary.

• Requirement for standards. End users have more confidence in data when the collection and
use of the data is supported by Recommended Practices and standards. Community-driven
recommended practices are available for some applications of wind lidar, but not in the context
of forecasting.

• Expert training. As with any emerging technology, there are a limited number of experts that
know how to carry out a remote sensing measurement campaign, feed data into neural networks
or are capable of assimilating data into a NWP model. This forms a barrier to the widespread
commercialization of minute-scale forecasting. IEA Wind Tasks provide an ideal platform for
the international exchange and dissemination of knowledge order to establish more widespread
training in the above mentioned areas.

Supplementary Materials: IEA Wind Task 32 is operated by the Chair of Wind Energy at the Institute of Aircraft
Design at the Faculty of Aerospace Engineering at the University of Stuttgart. More details about IEA Wind
Task 32, including minutes from the workshops and other documents, can be found at www.ieawindtask32.
org. IEA Wind Task 36 Forecasting is operated by Gregor Giebel of DTU Wind Energy at Risø, Denmark.
See www.ieawindforecasting.dk for more information. General information about IEA Wind can be found at
www.ieawind.org. IEA Wind TCP functions within a framework created by the International Energy Agency.
Views, findings, and publications of the IEA Wind TCP do not necessarily represent the views or policies of the
IEA Secretariat or of all its individual member countries. IEA Wind TCP is part of IEA’s Technology Collaboration
Programme (TCP).
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3.1 Structure of the results chapter

This chapter contains the novel scientific research carried out during the PhD project.
The studies are formulated as a series of continuing works which build upon lessons
learned from the previous investigation(s). In each case, the field campaign is described
in detail, along with processing steps of the dataset and a description of the methodology
used for generating the forecasts with sufficient detail to be reproduced. In the end,
results of each technique are evaluated and conclusions are presented.

The first portion (Sections 3.2 and 3.3) relates to the initial feasibility study (WAFFLE
campaign). The next segment (Sections 3.4, 3.5, 3.6, and 3.7) contains work within the
full-scale Østerild Balcony campaign. Finally, the third component (Sections 3.8, 3.9,
and 3.10) relate to the terminal LASCAR campaign.

The main results from the two comprehensive experiments are presented in manuscript
form, which are intended for publication. The former is currently under review at the
journal Wind Energy Science, while the latter is in draft form targeted to Atmospheric
Measurement Techniques.

All work contained herein (research and writing) has been performed by the PhD
student under counsel of the supervision team and exchange hosts. Cooperation with
technical staff during the experimental periods has been attributed in the relevant sections
and in the published datasets.
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3.2 Initial investigation: WAFFLE experiment

Introduction
As a first step towards assessing the feasibility of the project goals, a short measurement

campaign was conducted to gather data for performing exploratory analysis and for
investigating the core assumption of advection based flow transport.

Work contained in this section is an expanded version of a poster presentation given
at the 3rd International Conference on Future Technologies in Wind Energy (WindTech
2017 in Boulder, Colorado).

A 3-week field experiment named ’WAFFLE’ took place between March 23rd and April
6th, 2017 at DTU-Risø campus. A single long-range scanning lidar (Leosphere WindCube
400S) was deployed at ground level in the field of DTU’s research wind turbines.

The dataset has been made publicly available in DTU’s data repository (E. Simon and
Lea, 2019b) and a subset was also utilized in an applied workshop with data and code
examples available in E. Simon, 2018.

The lidar was set to perform scans facing west to measure the dominant wind inflow
to the test site. A PPI (sector scan) configuration was used with a sampling rate of 23
seconds, maximum range of 9.6 km, and scanning elevation of 3 degrees (see depiction in
Figure 3.1).

Figure 3.1: Left: Photo of scanning lidar taken during experiment. Right: Aerial view
of measurement setup. The radius of the arc is 9.6 km.

The elevation angle was necessary in order for the beam to clear the vegetation and
other infrastructure present at the site. This however, resulted in a height change as a
function of range at a relationship of 52 meters per kilometer. During the data analysis
stage, it was determined that this elevation gradient caused a significant issue, both due
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to the probe volume averaging being affected by wind shear and the lack of correlation
of winds at higher heights- the furthest range gate (9.6 km) being at 500 m AGL while
the first (288 m) corresponding to 15 m AGL.

Methods
A rudimentary but accepted method to normalize the height differences was applied

using the wind profile power law. This is a simple engineering model based on empirical
relationships between wind speeds at two heights. During periods of neutral atmospheric
conditions, this approach has been well demonstrated to perform similarly to the loga-
rithmic wind profile law above the surface layer and up to the height of the boundary
layer. This approach is also favoured because it requires no information about the friction
velocity or surface roughness which would normally originate from met-mast observations.

u = ur

(
z

zr

)α
(3.1)

Where u and z are the target wind speed and height, ur and zr are the reference wind
speed and height, and α is an empirically derived coefficient, often given as 1/7 ≈ 0.143
for neutral atmospheric stability over open land. A sensitivity analysis of the α value
has not been performed. Peterson and Hennessey, 1978 has however investigated this
at the Risø site, and concluded that the 1/7 value provides conservative but reasonable
results and that the total mean wind power density estimate is not particularly sensitive
to the choice of α.

A 2-day period with westerly winds and neutral/near-neutral stability was chosen and
two range gates (RG) were selected which were spaced reasonably far apart but within a
range of heights relevant for wind energy purposes. Measurements at the 1200 m RG
distance (62 m AGL) and the 1800 m RG distance (93 m AGL) were reconstructed into
horizontal wind vector components using the IVAP (integrating velocity azimuth process)
algorithm from Liang, 2007 which are given in Equations 3.2 and 3.3. From there, the
scalar horizontal wind speeds and directions were obtained (Equations 3.4 and 3.5).

u =
∑θstop

θstart
(Ur ∗ cos θ) ∗∑θstop

θstart
(sin2 θ)−∑θstop

θstart
(Ur ∗ sin θ) ∗∑θstop

θstart
(cos θ ∗ sin θ)∑θstop

θstart
(cos2 θ) ∗∑θstop

θstart
sin2 θ)−∑θstop

θstart
(cos θ ∗ sin θ)2

(3.2)

v =
∑θstop

θstart
(Ur ∗ sin θ) ∗∑θstop

θstart
(cos2 θ)−∑θstop

θstart
(Ur ∗ cos θ) ∗∑θstop

θstart
(cos θ ∗ sin θ)∑θstop

θstart
(cos2 θ) ∗∑θstop

θstart
(sin2 θ)−∑θstop

θstart
(cos θ ∗ sin θ)2

(3.3)

Uh =
√
u2 + v2 (3.4)
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ψ = arctan2 (v, u) (3.5)

Where θ are the range of azimuth angles of the PPI scan, Ur are the corresponding
radial velocity measurements, Uh is the scalar horizontal wind speed, and ψ is the wind
direction.

Measurements spanning April 7-8 (7226 23-second samples or approximately 46 hours)
were used for the following investigation. The methods utilize reconstructed lidar data
at two positions which have been height corrected to 93 m AGL relative to the lidar’s
telescope: The further upwind position (1800 m RG), and the closer downwind position
(1200 m RG). The downwind position is treated as a reference, and three forecasting
methods have been performed.

The lead time for the forecasts was set at 70-seconds. This is derived from the
theoretical mean advection time by considering the average wind speed (8.55 m/s) during
the period together with the horizontal travel distance between the two points (600 m).

The first method is a persistence benchmark, which simply assumes that the wind speed
will remain unchanged over the forecast horizon from the last available measurement.
For this, only the reference signal is used (i.e. not the upwind measurements).

The second method, called ’scan-shifting’, uses measurements at the upwind position
(with no additional modelling) from the current time to predict wind speeds for the
downwind position at a given time in the future (current time + forecast length). As the
scan rate of the lidar is fixed at 23-seconds, a shift of 3 scans (69-seconds) was used to
match the chosen forecast length.

A demonstration of the scan-shift method is shown in Figure 3.2 from April 8th of
the WAFFLE experiment. When comparing the two signals in real time, a phase error
is apparent. After shifting the upwind signal as a function of scan-times, the signals
converge to a large degree.

As a further sanity check of the scan-shift method, upwind measurements were shifted
by a range of scan-times and cross-correlated with the reference values to determine if a
peak is present at the number of scans corresponding to our mean advection rate and
chosen forecast length. Figure 3.3 shows this result, where a clear correlation peak can
be seen at the number of scan-times corresponding with the theoretical position.

The final method constitutes building a regression model which takes the upwind
measurements as an input to predict the downwind wind speed at the same forecast
length. As the number of samples is small, the support vector regression (SVR) method
from Drucker et al., 1996 with radial basis function (RBF) kernel was used. This was
implemented using the scikit-learn library using recommended parameter values given in
the documentation (Scikit-learn, 2018). The model was trained on 40% of the available
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Figure 3.2: Time series example of the scan-shift method. Top: Reconstructed wind
speeds at the two range gates in real time. Bottom: Upwind signal shifted
by 3 scan-times to demonstrate agreement with downwind signal.

Figure 3.3: Cross-correlation function for a range of scan-shifts between the upwind and
downwind measurements. A peak exists at the expected location correspond-
ing to the mean advection time.



3.2 Initial investigation: WAFFLE experiment 62

data. After fitting to the in-sample data, the model was used to make predictions for the
remaining 60% of the dataset. The model was also applied to the entire dataset. This
approach is not endorsed as it evaluates the model on data which it has already been
optimized on. Since accuracy metrics were similar in both the train and test datasets,
it was done anyway to allow for comparison with the other methods by generating the
same number of samples.

In addition to evaluating forecast performance on wind speeds, a transformation to
wind power was made using a power curve model (Figure 3.4). This illustrates a generic
turbine model where units are expressed such that a value of one represents the wind
turbine generator’s rated power. The nonlinear power curve perverts forecast error
impacts at different wind speeds, so it is pertinent to also inspect errors in the power
domain.

Figure 3.4: Power curve of generic wind turbine. Normalized such that a value of one
represents the turbine’s full rated power.

Results
An overall results comparison of the three methods is presented in Figure 3.5, both

for wind speed and wind power. The two lidar approaches have improved significantly
over the persistence method, with a reduction in root-mean-squared-errors (RMSE) of
20% for wind speed and 30% for wind power. Persistence performs well at very low wind
speeds (below 5 m/s), but displays larger amounts of scatter at higher speeds. A possible
explanation for this is that lower wind speeds are often associated with the presence of a
stable boundary layer which is composed of lower levels of ambient turbulence. There
does not appear to be a marked difference in performance between the scan-shift and
SVR methods.
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Figure 3.5: Comparison of three approaches with line y=x also shown. The top row
presents the wind speed results, while the bottom row is in the normalized
wind power domain. The left panes are persistence, middle panes are the lidar
scan-shift method, and right panes are the lidar SVR approach. General
linear model fit parameters and error metrics between the forecast and
reference values are annotated.
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Conclusions
In summary, two novel forecasting methods have been applied using upwind lidar

measurements to generate 1-minute (actually 69 s) ahead wind speed and power forecasts
which significantly outperform the persistence benchmarks. The promising results
achieved promote further development of the concept. Adjustments to the measurement
setup are strongly recommended in future field campaigns, in order to avoid issues arising
from sampling horizontal winds across a sloped plane. For this reason, the extended
measurement range of the 400S scanning lidar was not capitalized upon in this particular
study.
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3.3 Addendum: Key results and lessons learned

• A short pilot experiment was carried out to investigate the use of upwind lidar
measurements for minute-scale forecasting.
• The inclined measurement plane resulted in difficulties relating positions that were

spaced kilometers apart due to the height difference between range gates.
• The empirical space-time correlation function between upwind and downwind

measurements matched well to the theoretical approximation using the mean speed
advection of the horizontal winds.
• Two novel forecasting methods using upwind lidar measurements were implemented
to predict 1-minute ahead wind speeds at the downwind reference position. A
persistence benchmark was also performed.
• The two lidar methods have demonstrated superior performance against the persis-
tence benchmark, with similar error metrics between each other (both reducing
RMSE wind speed errors by 20%).
• Forecast performance has also been evaluated in the wind power domain by applying

a wind turbine power curve model. The lidar methods have also outperformed the
benchmark by a 30% reduction in RMSE.
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3.4 Introduction to second study: Østerild
Balconies experiment

Building upon the methods and results of the initial investigation, a full scale experiment
was planned in conjunction with the New European Wind Atlas (NEWA) project. A
primary objective of the campaign was to collect data for the purpose of developing
a minute-scale wind forecasting system using upwind observations from the scanning
lidars. The resulting Østerild Balconies experiment provides cross-sectional scans of the
horizontal wind by performing PPI scans at a height raised above the ground. This
avoids the wind shear and height difference problems revealed in the initial investigation.

An in-depth report of the experiment and research results are presented in the open
access journal article Section 3.5, which is expanded upon in Addendum 1 (Section 3.6).

The data set and campaign metadata have been published on DTU’s data repository
(E. Simon and Vasiljevic, 2018).
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1 Abstract

Wind turbines and wind farms lack information about upstream wind conditions which are ultimately converted into electricity.

Remote sensing instruments such as compact pulsed scanning wind lidars can observe the incoming wind field at large distances

(up to 10 km) ahead of a wind farm and provide spatial and temporal information about the inflow on operational timeframes

not feasible with numerical weather models. On very-short horizons (below 1-hour lead times), the persistence method is5

commonly used, which fails to capture the unsteady state of the atmosphere and can introduce costly errors into the power

system by means of imbalances.

A method of measuring, processing, and predicting site-specific 1-60 minute ahead wind speeds is proposed using machine

learning methods applied to lidar observations from a field experiment in western Denmark. A direct multi-step forecast strategy

is implemented using Stochastic Gradient Descent Regression (SGDR) with model weights updated following each repeating10

lidar scan. Overall, the proposed method demonstrates improved skill over persistence, with a reduction of root-mean-squared

(RMS) wind speed errors ranging from 21 % (1-min ahead), to 10.9 % (5-mins ahead), 9.2 % (10-mins ahead), 7.1 % (30-mins

ahead), and 6.2 % (60-mins ahead) while maintaining normally distributed errors.

2 Introduction

As the share of variable generation increases in a power system, reducing forecast errors becomes crucial in maintaining power15

grid balance and stable electricity pricing through minimizing supply shocks and reserve requirements. Numerical weather

prediction (NWP) models such as Weather Research and Forecasting (WRF) are standard tools used by meteorologists for

forecasting both general weather conditions as well as energy production from wind turbines. However for very-short time

scales (< 1 hour) these methods are generally not applicable due to their coarse temporal and spatial resolutions, and long

initialization times (Giebel et al. (2011)). Site measurements combined with statistical models offer a promising approach to20
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forecasting for these lead times. Here we will explore various uses of intrahour forecasts and example methods used to generate

them.

2.1 Uses of minute-scale wind forecasts

Predictions of the wind on very-short (minute) time scales have numerous applications both within and beyond the wind

energy field. Concerning grid connected utility scale wind farms, the main uses lie in controls, grid support and participation5

in electricity markets. Consider the following use cases:

1. Forecasts of the incoming wind field near wind turbines and wind farms on this time scale allow for predictive control

towards achieving optimum operation (both for energy production and loads). Currently, turbine and farm controllers

react to what is experienced real-time by the turbine, which can delay or prevent ever reaching ideal performance. By

anticipating changes in the incoming wind (such as speed and direction changes), a controller can configure set points to10

take better advantage of the impending conditions. This can be achieved for example by preemptively yawing the turbine

so that its rotor axis is aligned to the wind direction, and/or by pitching the turbine blade flaps to achieve an optimal

aerodynamic efficiency and avoid certain extreme loads. This concept has been demonstrated using feed-forward control

on single wind turbines with continuous-wave nacelle lidars in Bossanyi et al. (2014) with look ahead times of 5 seconds.

With longer-range pulsed Doppler lidar or radar systems, the spatial coverage is much larger and thus could potentially15

be applied to a controller covering an entire wind farm.

2. Electricity market participation horizons are shortening to better accommodate an increase in variable renewable energy

generation. In the Northern European day-ahead market (NordPool Elspot), balancing costs paid by wind power produc-

ers not under support schemes such as the feed-in-tariff (FIT) can be large due to market structures and difficulties in

making accurate predictions of wind power output within the defined (hourly) trading segments. As balance responsible20

parties (BRP), market participants are liable for financial penalties, mainly enacted through trading in regulating power

markets to cover deviations between accepted bids and delivered quantities. Holttinen (2006) assesses that on average,

30-40 % of wind power estimates in day-ahead markets need to later be corrected through the intraday and regulating

power markets. Additionally, integration costs also apply to the transmission system operators (TSOs) mainly in the form

of increased reserve requirements associated with wind power’s variability and uncertainty of production. Estimates of25

EU-wide system balancing costs to TSOs are between 1-4.5 EUR per MWh of production at 20 % penetration levels

(EWEA (2015)), which are quickly being surpassed. In Denmark during 2017, this corresponds to between 3 and 15 %

of electricity prices on the wholesale market.

Elbas (NordPool’s intraday market) has, in selected markets as of 2018, introduced 15 and 30-minute gate closures

alongside the traditional hourly contracts in an effort to better accommodate wind power forecast adjustments from30

day-ahead offerings (NordPool (2019)). Similarly, in June 2017 the European Power Exchange (EPEX) announced 5-

minute ahead lead times in their German continuous intraday markets (EPEX SPOT (2017)). Bids for trading within
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each of Germany’s 4 control zones (described in Fraunhofer (2016)) can be placed up to 5-minutes before delivery.

Otherwise the gate closure is 30 minutes for cross-zonal trades in Germany (EPEX SPOT (2018)). Australia has also

announced plans to enact 5-minute dispatch and financial settlements beginning in 2021 (AEMC (2017)). We can expect

that Denmark and the rest of Europe, along with other countries with a similar high penetration of renewables to soon

follow suit by reducing lead times to delivery. This will make predicting the wind on very-short time scales more relevant5

for participating in these markets.

3. A systematic decrease in wind power forecast errors can allow for reducing the capacity requirements for real-time

balancing by grid operators. The Danish transmission system operator (TSO, Energinet) operates a number of ancillary

service markets to support grid operation (Energinet (2018)). The shortest response time currently in effect is 5 seconds

for 50 % of available power response in frequency-controlled disturbance reserves (FCR-D). The longest response time10

at present is 15 minutes for secondary automatic frequency restoration reserves (aFRR) and its manual counterpart

(mFRR). These response times are consistent with the very-short term prediction interval and can further enable wind

power plants to contribute to grid support actions. A recent pilot study in Germany demonstrates the willingness of TSOs

to allow this type of reserve market participation by wind power producers (Regelleistung (2016)).

2.2 Brief background of relevant forecasting methods15

The simplest prediction method, known as persistence, is a naïve predictor which forecasts the wind speed at time t+∆t to be

equal to the most recent observation t, where ∆t represents the forecast interval. Customarily, a moving average of the most

recent observations (usually 10-minutes) is used in order to smooth the signal and reduce noise. This method is commonly

used operationally on very-short time scales and in many cases outperforms complex physical and statistical methods (Potter

and Negnevitsky (2006)). Therefore, it is regularly used as a benchmark in testing and validating more elaborate methods. This20

study also considers the persistence approach as a control in this manner, in order to determine improved skill of the lidar

prediction method.

Statistical methods such as time series models utilize patterns from past observations to predict future outcomes. Auto-

Regressive-Moving Average model-sets (ARMA) are widely used in this context. The Auto-Regressive component involves

regressing the variable on its own time-lagged values, while the Moving Average term models the linear combination of error25

terms which accumulate over the prediction steps. This combination results in both long and short-term memory of variable

trends (Whittle (1951)).

Because ARMA-family models assume that the univariate time series input is stationary (mean and variance being constant

over time), a common processing step involves modelling the difference of the signal between time steps instead of the signal

itself. This may be done one or more times until stationarity can be assumed. This differenced model is referred to as Auto-30

Regressive Integrated Moving-Average (ARIMA).
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Observational based forecasting methods have been demonstrated before, both from in-situ measurements as well as using

remote sensing data. Utilizing meteorological and wind power data from nearby areas (1-30km) has been shown to improve

short-term forecasts by between 10-25 % over persistence using genetic algorithms (GA) in Damousis et al. (2004) for lead

times between 30 mins and 2 hours. Alexiadis et al. (1999) has also demonstrated a 20-40 % wind power forecast improvement

over persistence through an ANN spatial correlation approach used to predict wind speed and power over 15 min windows5

from 1 min to 2 hours ahead using upwind observations from sites spaced between 12 and 40 km apart.

Utilizing lidar observations to improve short-term wind forecasts is suggested in Frehlich (2012), which considers possibilities

for assimilation of long-range lidar measurements into numerical weather models. The first demonstration of a purely observa-

tionally driven approach appears in Magerman (2014), where a Lockheed Martin WindTracer lidar was deployed in a site with

complex terrain. Spatial variances in the wind were tracked as they advected towards a point representing a simulated wind10

turbine. Another relevant study includes Valldecabres et al. (2017), which combines advection of coastal lidar observations

with additional model refinements based on atmospheric processes in order to make a 5-minute ahead wind speed prediction

which outperforms both ARIMA and persistence during neutral atmospheric conditions.

In the context of this existing knowledge, we propose a local observation system which uses long-range inflow measurements

from a scanning Doppler lidar to generate a site-specific wind speed forecast up to 1-hour ahead with a time resolution of 4915

seconds (corresponding to the configured sampling rate of the lidar system used in the field experiment presented in Section

3).

2.3 Brief introduction to wind measurements with pulsed scanning Doppler lidars

Doppler lidars are active remote sensing instruments which probe the atmosphere with laser light in the near infrared band.

Light pulses emitted by the lidar are reflected off of particles suspended in the air which are assumed to be moving with the20

speed of the wind. When interacting with these moving aerosols, the wavelength of the light shifts according to the Doppler

principle. The lidar system receives the backscattered pulses and through spectral analysis is able to determine the Doppler

(frequency) shift and thus the radial speed (projection of the wind speed along the laser’s path). Time of flight calculations

allow for measurements at multiple distances along the line-of-sight, known as range gates. The addition of a steerable scanner

head (usually dual-axis) allows the lidar to measure arbitrarily in space within its mechanical and optical limits, as long as25

the target is within a clear line of sight (i.e. not blocked by an object). A detailed overview of the hardware and software

measurement chain of a typical pulsed scanning wind lidar can be found in Vasiljevic (2014).

2.4 Motivations and research questions

The following questions represent the core aims that this research work sets out to answer:

– How is a horizontal wind field correlated in time and space at relatively high heights over fairly uniform terrain?30
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– At what distance upwind of the reference sensor do the lidar observations correlate?

– Does the observed horizontal wind field advect with its mean speed?

– Can an improvement be made over persistence by utilizing long-range lidar measurements as a model input for very-short

term forecasting (1-60 minutes ahead)?

– Is it possible to track coherent events with a lead time that can be utilized for turbine/farm control (1-min), or in market5

actions (5-mins)?

3 Field experiment

3.1 Site description

The Technical University of Denmark (DTU Wind Energy) operates two test stations for very large wind turbines in western

Denmark (Høvsøre and Østerild). The field experiment for this study took place at Østerild test center, located near the town10

of Thisted with the following coordinates: 57° 2’55.94"N latitude, 8°52’51.00"E longitude.

The site is located on a coastal plain between Limfjord (6 km south) and the Vigsø Bay in the North Sea (7.5 km north). The

vegetation is mostly grasslands with scattered forestlands to the south and north-west and the presence of sand dunes along

the coastline. A terrain and vegetation map is presented in Fig. 3. Surface information is obtained using the Danish Geodata

Agency’s digital height model (DHM) with a spatial resolution of 0.4 m (Kortforsyningen (2018)).15

There are 7 turbine test stands running north-south, enclosed by two 250 m guyed aircraft warning towers equipped with

meteorological instruments. The tower positions are indicated with star markers in Fig. 3.

3.2 Measurement characteristics, configuration and calibration

3.2.1 Lidar instruments

In the Balconies experiment, two scanning wind lidars (with specifications set according to Table 1) were deployed at Øs-20

terild test center. The two instruments together form a time synchronized multi-lidar apparatus known as the Long-Range

WindScanner system (LRWS). The system is described fully in Vasiljevic et al. (2016).

The overall measurement goal of the experiment was to observe the 2-dimensional incoming wind field on a horizontal plane.

This necessitates that the lidar instruments be situated at the desired measurement height, and be set to scan with an elevation

angle of zero degrees. Purpose-built platforms were constructed and attached to the 250 m tall masts at the north and south25
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Figure 1. Location of Østerild test center in Denmark, with Risø also denoted

ends of the site (see Fig. 3). The lidars were then raised by truck mounted winch and lifted into place. Photos of one of the

platforms being lifted can be seen in Fig. 2. A video of the lifting procedure is available in Vasiljevic (2016).

Figure 2. Photos of the lidar platform during the lifting procedure

The lidars were first installed at 50 m above ground level (AGL) during the first phase of the experiment (April 12 – June 17,

2016). They were later raised to 200 m AGL in the second phase of the experiment (June 29 – August 12, 2016).
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Table 1. Lidar specifications used in the field experiment

Manufacturer/Model

DTU Long-Range WindScanner (Now 

commercially available as Leosphere 

Windcube 200S)

Laser source Er-Yb silica fiber laser (pulsed)

Mean emission power 1 W

Laser emission wavelength 1543 nm

Telescope diameter 100 mm

Pulse length 400 ns (long pulse)

Pulse energy 100 μJ (long pulse)

Pulse repetition frequency (PRF) 10 kHz (long pulse)

Photodetector sampling rate 4 ns (250 MHz)

IEC/EN 60825-1 &

ANSI-Z136.1-2007 compliant

Radial wind speed range -30 m/s to 30 m/s

Dimensions 1.5 x 0.55 x 0.65 m

Weight 150 kg

Operating conditions IP65 and ISO9227 compliant

Eye safety

The multi-lidar system was configured to scan in one of two mirrored configurations (east or west facing as shown in Fig. 4),

depending on the incoming wind direction. The direction changes were performed manually by the operator throughout the

campaign. The scan pattern was created such that the range gate positions measured by both lidars were collocated in space.

Points along the central intersecting line were synchronized in both space and time. This allows for a dual-Doppler reconstruc-

tion of the wind field at all points where the beams intersect. The reconstructed points not along the time synchronized transect5

will be averaged over the time it takes to complete one scan (49 seconds).

For the purposes of this study, only measurements taken during phase two of the experiment are used (200 m AGL). This is due

to the desire to have wind conditions as similar to offshore as possible by minimizing the effects of terrain and vegetation on the

measured winds. Further, although two lidars were deployed in the field campaign, this study only utilizes observations from

the unit ‘Sirocco’ mounted on the south tower, while it was operating the westerly scanning pattern depicted in Fig. 4. This10

was decided in order to avoid data loss (since both systems would require sufficient measurement range for a dual Doppler

reconstruction), and to avoid turbine wake effects which are present in the east. These decisions ultimately act to simplify

the system so that only one lidar would be required to demonstrate the forecasting system- as we expect would be typical of

an operational setup. This solution is further supported by the result presented in Simon and Courtney (2016) which shows

excellent agreement between both single and dual Doppler wind retrieval approaches on 10-minute averages.15
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Figure 3. Combined terrain and vegetation (tree) height map of the experiment site with met-masts locations indicated with stars (Created

by Ebba Dellwik and available in Simon et al., 2017)

Table 2 describes the measurement setup for the lidar used in this study.

Following installation of the two lidars on their mast-attached platforms, they were levelled according to their dual-axis in-

clinometer readouts. The static pointing accuracies of the instruments were assessed by mapping the Carrier-to-Noise Ratio

(CNR) of targeted landmarks, including e.g. met-masts (see Fig. 5). The north instrument “Vara” had its dual-axis inclinometer

previously calibrated for another campaign, thus the mapped and referenced positions of the landmarks matched well (differ-5

ence of 0.05° in azimuth, θ, and elevation, φ). However, the dual-axis inclinometer of the south instrument “Sirocco” had not

been previously calibrated which resulted in its imperfect levelling. Figure 6 demonstrates this imperfect levelling through a

full (360°) PPI scan obtained at supposedly zero degrees elevation. The ground reflection of the laser beam appearing along

with the expected reflection from the targeted landmarks indicates that the lidar is inappropriately levelled.

Assuming that the static pointing error originates only from the lidar’s imperfect levelling and home position offset, Vasiljevic10

and Courtney (2017) demonstrates that the elevation error follows a sine curve for the full range of azimuth angles. Therefore,

by deducing the elevation error for several well distributed azimuth positions, finding the sine curve that defines the elevation

error is possible. The sine curve can then be encoded in the motion controller to compensate the imperfect levelling and home

position offset and thus improve the pointing accuracy.

To implement this for the south instrument (Sirocco), the surrounding terrain was profiled with the lidar’s laser beam. It was15

found that the terrain at θ (azimuth) = 255° and θ = 286° from the instrument was increasing in height from approximately 5 m

to 23 m at 3.75 km and from 5 m to 44 m at 5.29 km respectively. Two RHI (range height indicator) scans with fixed azimuth
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Figure 4. Merged scanning pattern of the lidars (red dots). Switches between east/west to measure inflow. The northing coordinate is relative

to the time and space synchronized transect line. Blue areas represent regions where the beam intersecting angle is larger than 30 degrees.

(Modified figure created by Jakob Mann and available in Simon et al. (2017))

and varying elevation angles were configured to profile the terrain along these two azimuth positions. The elevation angle

ranged from 0° to 1° with steps of 0.01°. Using the RHI scans it was possible to deduce the elevation angle up to which the

laser beam was still reflected by the terrain. Since the terrain height with respect to the distance from the lidar and the height of

the instrument were known, it was then possible to calculate the elevation angle at which the laser beam would be reflected back

from the ground if the lidar was properly levelled. Using the mapped and calculated elevation angles, the elevation error was5

computed. Two values for the elevation error were derived for two different azimuth positions of the scanner head, relatively

close to each other (approximately 30° apart). Next, the north met-mast, a chimney and a wind turbine located at the azimuth

positions of 355°, 50°, and 120° respectively were mapped and the corresponding elevation errors were calculated. These five

points were then used to perform a sinusoidal fit, shown in Fig. 7, which was then implemented in the motion controller of the

south WindScanner “Sirocco”. Succeeding this procedure, the lidar’s static pointing accuracy is considered to be within 0.5°10

on its elevation axis.
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Table 2. Measurement setup for lidar ‘Sirocco’ mounted on the south mast and scanning north-west

Scan type Plan position indicator (PPI)

Azimuth angle range 255-345 degrees

Elevation angle 0.05 degrees

Accumulation time 1000 ms

FFT size 128 bins

Measurement range 105-7000 m

Range gate spacing 35 m

Scanner head motion 2 degrees / second

Reversing?

No. Scanner head resets to 

initial position after 

completing each scan

45 s per scan, plus 4 s

to reset position

Probe length full-width 

half maximum (FWHM)
75 m

Number of lines-of-sight 

(LOS)
45

Number of range gates 

(RG)
198

Scan rate

3.2.2 Mast instruments

The 250 m tall masts are equipped with a range of meteorological instruments. This study utilizes the following sensors, both

mounted on the southern mast where the lidar Sirocco is deployed.

– Cup anemometer, with top of instrument situated at 210 m AGL. Type RISØ/WindSensor-P2546A with P3118A support

pole. Boom length of 4.8 m. Wind speed data is logged at 10 Hz.5

– Sonic anemometer (3-D), with top of instrument situated at 244 m AGL. Type Metek USA-1/P2901 with P4023A support

pole. Boom length of 4.8 m. 3D velocity data is logged at 20 Hz, which is projected into vector components (u,v,w).

Note that only wind direction data from this instrument was used in this study, and that the cup and sonic sensors are not

collocated at the same height.
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Figure 5. CNRMapper example, mapping met-mast in order to determine the static pointing error

Figure 6. Uncalibrated PPI scan at 0 degree elevation from Sirocco, demonstrating the imperfect levelling of the instrument

3.3 Data filtering and processing

An overview of the dataset preparation and filtering steps are presented in Fig. 8.
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Figure 7. Sinusoidal fit of elevation error by azimuth angle for Sirocco (lidar positioned on the south met-mast)

Figure 8. Flowchart of dataset filtering and preparation steps

Measurements from the met-mast were expressly not used for filtering purposes of the lidar data. This is to demonstrate real-

world usage where such instrumentation is not available, for example at an offshore wind farm where costs of mast installation

alone can exceed 10 million euros (4C-Offshore (2017)).

Measurements from the lidar were filtered according to the following steps:

1. Carrier to noise ratio (CNR) threshold. Signal quality must be above -25 dB to be considered valid5

2. Inflow only conditions. Radial speeds must have the correct sign (negative in WindScanner convention)

3. Sparse data (data point are filtered if more than a 10-minute gap exists between them and the previous or subsequent

valid observation)

A plot demonstrating effective lidar range over the experiment is shown in Fig. 9. The figure is presented such that the range

representation is aligned with the lidar beam (horizontally). Purple data is valid, while yellow data has been removed according10
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Table 3. Data filtering timeline (n = number of 49-second samples)

Original data After CNR and RadSpeed filter After time gap filter

n = 67932 (925 hours) n = 36363 (495 hours) n = 35058 (477 hours)

to the filtering procedure described above. Due to low availability of data at ranges beyond 6 km, we have decided to only

include measurements from 105 to 5950 m into the forecast model. Note that only periods where the lidar was operating using

the westerly pattern are considered. Therefore, we do not consider data to be missing if the winds are from the east and the

lidar is configured to scan eastwards. Such periods are simply omitted from the dataset.

Figure 9. Availability of lidar measurements. Horizontal range from left (105 m) to right (7 km). Filtered data in yellow

Implications of the filtering steps can be seen in the wind roses (Fig. 10), which indicate wind direction representativeness as5

well as corresponding wind speed distributions included in the dataset.

Fig. 11 presents the scan area of the filtered lidar data (dashed lines) on top of the terrain and vegetation height map. Note that

these angles do not correspond to the entire scanned measurement area (shown in Fig. 3). This is done for ease of interpretation

of the results.

Following the outlined filtering procedure, the lidar observations were processed according to the retrieval method presented10

in the methodology (Section 4.1), and matched in time to the met-mast measurements. This was achieved by converting both

time-series to datetime format (millisecond precision) and cross-correlating the first lidar range gate to the cup anemometer

signal in order to determine if a time offset was present. The time offset was determined to be very close to 1-hour. This is

13



E

N-E

N

N-W

W

S-W

S

S-E

[0.0 : 8.0) [8.0 : 16.0) [16.0 : inf)

E

N-E

N

N-W

W

S-W

S

S-E

[0.0 : 8.0) [8.0 : 16.0) [16.0 : inf)

Figure 10. Wind rose before (left) and after (right) data filtering

Figure 11. Terrain and vegetation height map of the lidar scan area (dashed lines) after filtering. Stars represent the 250 m tall met-mast

positions. Created by Ebba Dellwik

due to the lidar recording data in UTC format whereas the mast was set to local time (Central European Time, UTC+1). The

offset was then corrected for by shifting the lidar timestamps (by 1-hour) so that the measurements are matched in time. The
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empirical time offset was found not exactly at 1-hour due to the fact that the first lidar range gate was 105 m horizontally

upstream of the cup anemometer. A 49-second moving average was applied to all mast observations before being joined with

the coinciding lidar measurements. This was done to match the sampling rate of the mast data to that of the lidar.

4 Methodology

4.1 Wind field retrieval method5

The radial speed obtained by the lidar is described by Eq. 1, when the unit is calibrated such that its azimuth angle is oriented

to the geographic direction (0° = North), and the laser beam is parallel to the ground (i.e. zero degree elevation angle).

ur(ms−1) = U ∗ cos(β− θ) (1)

where ur is the radial speed, U is the horizontal wind speed, β is the wind direction angle, and θ is the azimuth angle.

Therefore, the true wind speed is equal to the absolute value of the radial wind speed when measuring directly into and away10

from the wind. When scanning perpendicularly, the lidar will measure zero radial speed.

Commonly when processing PPI scans, a fitting function is used on a range of radial speed inputs in order to obtain the u

and v (horizontal) vector components of the wind speed. This approach was first introduced in Lhermitte and Atlas (1961) and

demonstrated in Browning and Wexler (1968) as the velocity azimuth display (VAD) method using steep elevation angles (up to

30°). Horizontal “sector” scanning at lower elevation angles builds upon this principle using e.g. the IVAP (integrating velocity15

azimuth process) reconstruction method demonstrated in Liang (2007). These fitting methods have the benefit of performing

even when measuring at angles relative to the wind, where the maximum (or minimum) radial speed is not measured directly.

However, as they assume homogeneity within the scan volume and fit a function to the measurements, there are inherent errors

introduced by these methods.

Contrary to traditional fitting algorithms- by ensuring that our lidar scan crosses into (or away from) the oncoming wind20

direction, we can utilize the lidar observations of radial speed directly. This entails finding the maximum absolute magnitude

of the radial speed within each scan, and recording both the speed value itself, as well as the azimuth position of the lidar scan

head where the maximum occurs. At this point we will obtain the wind direction aligned wind speed, and corresponding wind

direction for each range gate at each completed scan time. The method also assumes that the wind is frozen (homogeneous)

during each PPI scan (here 49 seconds) but has the benefit of significant computational speed and memory improvements over25

the traditional fitting approaches along with the avoidance of errors introduced by the fitting function. However it should also

be noted that this method can introduce a slight positive bias as points with the maximum positive perturbation are chosen. It is
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important that the peak selection be done in conjunction with the filtering steps, considering that it is possible to filter out the

local minima or maxima if filtering is done beforehand. As this wind retrieval method is not well established in the literature,

a validation has been included in the results (Section 5.1).

4.2 Model training and prediction

4.2.1 Overview of stochastic gradient descent (SGD) training5

Stochastic gradient descent (SGD) training is a process which aims to minimize an objective (cost function) by using iterative

stochastic approximation of a gradient descent function (convex minimization) (Scikit-learn (2018a)). By design it is a fast

algorithm suitable for very large training sets, and can be implemented out-of-core (i.e. datasets too large to fit in memory).

The algorithm begins with initial input conditions (step size and learning rate), and stochastically manipulates coefficient

weights of the inputs to follow the decrease (sign) in the objective function until approaching a minimum. The end result is10

a fitted linear model with weights optimized to achieve the best metric of the loss function (e.g. mean-squared-error (MSE),

mean-absolute-error (MAE), etc.). This method can be applied both to regression (SGDR) and classification problems. By

using a convex cost function such as MSE for linear regression, it is guaranteed to approach close to the global minima (and

avoid being trapped at a local minima if the number of iterations is too few). The SGD method also incorporates a regularization

penalty which can be used to counteract overfitting and perform feature selection.15

SGD models are particularly sensitive to feature scaling (also called data normalization). This step can significantly increases

model performance and training speed. Feature scaling normalizes input variables in terms of their mean, minimum, maximum,

variance, and distribution. The recommended scaling method will depend on characteristics of the input data together with

assumptions made within the algorithm itself.

The mathematical formulation of the SGDR algorithm is presented in Scikit-learn (2018a) and further elaborated in Zhang20

(2004).

4.2.2 Forecast model implementation details

The scikit-learn implementation of SGDR does not accept sparse (missing) data as inputs, so a strategy to fill or remove

them from the dataset was needed. We have chosen to fill missing data using the mean value along the line of sight using the

scikit-learn preprocessing imputer (Scikit-learn (2018b)).25

In order to ensure proper compartmentalization of past and future data, and to simulate real-world usage, a walk-forward

training and prediction architecture is implemented. At each point in time (here every 49 seconds which corresponds to the

lidar scan rate in the experiment), in-sample data is used to train and predict wind speeds from 1 to 73 scan-times ahead

(corresponding to 0.8-60.4 minute ahead lead times). Subsequently, 49 seconds later, the latest measurements are assimilated
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into the training data, which is then updated and used to predict another set of wind speeds over the prediction interval. The

model does not know how well it has performed until the proper amount of time has elapsed and the corresponding data is then

included in the updated training set.

The model training begins with an initial 500 sample spin-up, which corresponds to 6.8 hours of training data before the

first prediction is made. Separate models are trained for each prediction length, in order to fully capture the spatio-temporal5

correlations present in the observations. Training data for models with lead times 0.8 to 3.27 minutes (1-4 steps) include all

available past data, while training data for subsequent models (4.08 – 60.4 minutes or 5-74 steps) represents a rolling window

of the last 1000 observations (13.6 hours). The main practical difference is that in the incremental approach new observations

are partially fit to the already trained model from the previous time step, while in the rolling window approach a new model is

trained at each time step. This hybrid approach leads to an increase in robustness, overall skill, and computational speed. The10

two data architectures are presented in Fig. 12 and the two process flowcharts are presented in Fig. 13 and 14 respectively.

Figure 12. Walk-forward training and prediction architecture. Incremental (left) and rolling window (right)

Input features consist of wind direction aligned radial wind speeds from 105 m to 5950 m horizontal distance (upwind) from

the lidar. This corresponds to the 35 m range gate spacing of the measurement setup. As mentioned in Section 3.3, data from

5985 m-7000 m are not included as inputs due to poor availability during the experiment after signal quality filtering. Model

predictions are the 0.8-60.4 minute ahead cup anemometer measurements at 210 m AGL from the southern mast where the lidar15

is mounted. As previously mentioned, SGD training requires feature scaling for optimum performance. Since our wind speed

time series is neither stationary nor normally distributed, and contains outliers which would otherwise influence the sample

mean and variance, we have chosen to use the robust scaling method to transform our data using the interquartile range (IQR)

of each feature. Following model prediction, we inverse transform our scaled outputs back into familiar wind speed values.

The robust scaling method is described in Eq. 2.20
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Table 4. Scikit-learn SGDR model parameters

Parameter Value Note

Loss function squared_loss
Ordinary least squares (OLS) fitting using 

mean-squared error (MSE)

Learning rate constant

Used to frame our model as an online 

learning problem, where new data is 

being assimilated as time passes

Shuffle FALSE

Prevents shuffling of the training data 

since the observations are naturally 

ordered in time

Initial learning rate (eta0) 0.0001
A small learning rate is chosen based on 

hyper parameter tuning

Maximum iterations 

(training epochs)
1

Only one full training cycle is performed 

as the data is not shuffled

xs =
xi−Q1(x)

Q3(x)−Q1(x)
(2)

where xs represents the scaled variable, xi represents the unscaled input, and Qn(x) represents the nth quartile of the input

data distribution.

The model is trained using scikit-learn’s SGDRegressor class (Scikit-learn (2018c)) with parameters according to Table 4. If

the parameter is not explicitly mentioned, then the default values listed in the referenced documentation are used.5

While the walk-forward execution runs on the dataset, the 0.8-60.4 minute ahead predictions at each time step are saved in

memory along with the last (49 s averaged) wind speed observation from the met-mast (last value persistence). A 10-minute

moving average of the mast observations (10-minute average persistence) is also included as a benchmark. After all predictions

are made, the reference wind speed from the mast is joined to the predictions in order to calculate performance metrics of the

three forecast methods.10

Figs. 13 and 14 present a flowchart overview of the two methods used to produce the forecasts.

4.3 Forecast evaluation

When evaluating a regression model’s skill on (continuous) time series data, there are a multitude of metrics available. The

choice should be context driven and related to the cost function used in the model’s training/optimization. Two of the most

common standards are the mean-absolute-error (MAE) and root-mean-square error (RMSE). The root-mean-square metric15

penalizes larger errors disproportionately to smaller errors. Thus it is a good fit for evaluating forecasts of wind speed for the
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Figure 13. Forecast procedure for models with lead times between 1-4 steps ahead (0.8 - 3.27 minutes)

Figure 14. Forecast procedure for models with lead times between 5-74 steps ahead (4.1 - 60.4 minutes)

purposes of wind power prediction, since errors are amplified or attenuated by nonlinearities in the wind turbine’s power curve.

Further, the RMSE metric is sensitive to large errors which have the most detrimental effects on the power system. MAE and

RMSE units are the same as the input variable (here ms-1).

MAE(y, ŷ) =
1

n

n−1∑

i=0

|yi− ŷi| (3)

RMSE(y, ŷ) =

√√√√ 1

n

n−1∑

i=0

(yi− ŷi)2 (4)5

Where y is the known value and ŷ is the predicted value at point i over all samples n. A simple general linear model be-

tween the predictions and observations is also used to determine systematic bias (y-intercept), goodness of fit (coefficient of

determination, R2) and proportion (slope) between the two time-series.

5 Results
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5.1 Validation of wind field retrieval method

The following figures demonstrate the performance of the simple wind field retrieval method by comparing time-series plots

and 2-D histograms of the first lidar range gate with the met-mast observations. Note that the measurements are not collocated

in space. The lidar measurements are taken 105 m upwind of the met-mast, also with a height difference of 10 m for the cup

anemometer, and 44 m for the sonic anemometer (wind direction).5

It is clearly demonstrated that the retrieval method performs well for wind speed, with an ordinary least squares (OLS) coeffi-

cient of determination (R2) of 0.97, slope of 0.96 ms-1 and constant offset of 0.28 ms-1.

However, the wind direction result is distinctly mediocre in comparison. There are noticeably larger errors and an overall higher

level of scatter. Because the method utilizes the lidar measurements directly, its resolution is limited by the angular separation

between the lines of sight (here 2 degrees between each LOS). This is the cause of the striping pattern observed in Fig. 1610

(right panel). A linear regression (OLS) between the two wind direction signals produces an R2 of 0.64, slope of 0.71 degrees,

and offset of 80.44 degrees. By forcing the regression through the origin, the slope of the linear model becomes 0.99. This

indicates that the wind direction errors are normally distributed around the one-to-one line.

5.2 Spatio-temporal correlations

To demonstrate the core utility of exploiting upwind measurements for the purposes of wind speed forecasting, Figs. 17 and 1815

present the spatio-temporal relationships present in the processed dataset. Here the cross-correlation between the lidar obtained

wind speed signal (across all range gates) and the time synchronized cup anemometer measurements are shown.

Fig. 17 presents the correlation coefficient as a function of scan lags (49 s shifts) of the upwind lidar observations relative to the

cup anemometer. A distinct maximum peak is observed at the closest distance (105 m) at lag index zero. The peak then shifts

forward (to the right) as the upwind distance increases, demonstrating the temporal link as the wind field advects downwind20

towards to the mast sensor. In addition, the peak also broadens as upwind distance increases and turbulent mixing decorrelates

the measured winds between both positions.

Fig. 18 shows the same space-time correlation result as a 2-dimensional heat map. As expected, the correlation is highest

for shorter scan lags and closer distances upwind. Observations within 30-mins of each other exhibit the highest temporal

correlation.25

Using these space-time correlations, it is possible to construct a relationship between the distance upwind measured by the lidar

and the temporal lag until it reaches the mast’s cup anemometer. This is done empirically by choosing the peak of each cross-

correlation by range. Knowing the distance and average time of flight then gives a mean advection speed, which is presented

in blue in Fig. 19.
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Figure 15. Time series comparison between closest lidar and mast measurement, wind speed (top) and wind direction (bottom)

Taylor’s frozen turbulence hypothesis states that the wind field advects with its mean speed (Taylor (1938)). This allows for a

theoretical derivation which can be compared with the empirical approach. An average wind speed over the entire experiment

is taken (9.8 ms-1) which is used to construct the same relationship as shown in green in Fig. 19.
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Figure 16. 2-D histogram comparisons between closest lidar and mast measurement, wind speed (left) and wind direction (right). Also

showing the ideal relationship y=x with a black line

Although the trends do follow, there is a disparity between the forecast horizons related by the two methods, particularly at

further distances upwind. A linear model fit to the empirical data (dashed blue line) suggests a mean advection rate of 14.5

ms-1 compared to its mean speed (9.8 ms-1). This result suggests that Taylor’s hypothesis does not hold over all distances

observed and that features present in the wind field do not simply advect downwind. At shorter distances (up to about 2 km)

both approaches show good agreement which implies that advection is the primary transport mechanism up to about 3-minutes5

ahead.

5.3 Coherent structure tracking

Using the processed lidar measurements, it is also possible to visualize coherent structures as they approach the reference

position (met-mast). This is achieved by plotting a 2-dimensional heat map of the upwind measurements over space and

time. The slope of the feature represents its mean advection speed. Many such events are present in the dataset, which occur10

particularly during periods with stable atmospheric conditions (low turbulence), for example during night time. An example is

presented in Fig. 20 where a 5-minute sustained wind ramp can be detected advecting towards the mast position over a period

of 15 minutes. The subsequent abatement of the event can also be tracked over the same timescale.
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Figure 17. Cross-correlation function between the lidar and mast wind speed signals by 49 s scan lags for each upwind distance (35 m

spacing, top) and a magnified version for every 10th range gate (350 m spacing, bottom)

5.4 Overall forecast model results (wind speed prediction)

Root-mean-square errors (RMSE) as a function of lead time for the three forecasting methods are presented in Figure 21.
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Figure 18. Cross-correlation function between the lidar and mast wind speed signals by 49 s scan lags
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Figure 19. Theoretical and empirical ideal forecast horizon as a function of measurement range

Note that although the forecasts are generated in multiples of 49 s (corresponding to the lidar sampling rate), for ease of

discussion in the text, the time horizons are rounded to the nearest minute (e.g. the 6 step ahead forecast which is 294 s ahead

is reported as the 5-min model).
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Figure 20. Coherent structure tracking example with 15-minute ahead detection. Plot is wind speed over space and time upstream of the

reference met-mast

The lidar method is demonstrated to outperform both the last-value and 10-minute averaged persistence methods. The improved

model performance is most significant from 1-3 minutes ahead, and continues up to 20-minutes ahead. After this point the

performance advantage represents a near-constant reduction in root-mean-square errors ( 7 %). This is consistent with the

results obtained in Section 5.2 relating to the upwind space-time correlations. The improvement upon persistence demonstrated

by the lidar method at longer lead times could be explained as a shift in the persistence lead time as a function of distance5

measured by the lidar.

When relying on the persistence method, it is almost always better to use a 10-minute smoothed signal instead of the singular

most recent observation. Only for the 1-minute ahead predictions does the last instantaneous value approach outperform a

10-minute moving average, and then only marginally.

An example time-series of the lidar prediction and reference signal is shown in Fig. 22 for the 5-minute model.10
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Figure 21. Comparison of overall RMSE results for the three approaches by forecast lead time. Also included is the lidar method percent

improvement over the 10 minute moving average persistence forecast (right side y-scale)

Figure 22. Time series of lidar method predictions with mast measurement for 5-min horizon

From comparing the two signals, we observe that the lidar forecast tracks the reference measurement well with only a few

major errors. However, there is significantly reduced variability in the lidar forecast, which is smoothed relative to the turbulent

anemometer readings.
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5.5 Coefficients of the fitted models

Coefficient weights of two linear models (1-min and 10-min ahead) used in the lidar prediction method are shown in Fig. 23.

The iterations show how the model weights change while progressing through time. Note that as conditions are constantly

changing, we do not expect the weights to converge to any particular range of values.

Figure 23. Coefficient weights of the lidar forecast model at selected points in time (iterations, i.e. batch number). 1-minute ahead model

(top) and 10-minute ahead model (bottom). Note that the y-scales differ

We observe that for both models, the nearest observations are assigned the highest weights. The 1-min ahead model mainly5

relies on observations within 1 km upwind of the met-mast, while the 10-minute model weighs further distances more equally.
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Between approximately 2.5 km to 5.5 km, the 1-minute model assigns near-zero coefficients to the upwind measurements.

This can be through means of the regularization penalty L1 (Lasso) incorporated in the optimization, as this region does not

correlate to the wind which reaches the mast sensor along this timescale. However, inputs at the edge of the measurement range

are once again positive (non-zero). The reasons for this are not well understood, however we can speculate that this information

is not already accounted for in the other model terms and as such has relevance for predicting changes.5

5.6 Performance statistics for various time steps

Table 5 presents performance results of the three forecast methods for selected lead times. Fitted parameters using ordinary

least squares (OLS) between forecast model predictions and the reference (cup anemometer) measurements are also included.

Fig. 24 presents the probability density functions (PDFs) of absolute forecast errors (prediction minus reference) across the

three methods for the same selected lead times as described in Table 6.10

Figure 24. Forecast error distributions for 1-min (a), 5-min (b), 10-min (c), 15-min (d), 30-min (e), and 60-min (f) predictions
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Table 5. Performance statistics for various time steps

Horizon Method MAE (ms-1) RMSE (ms-1) y-intercept coefficient R2

1-min
Lidar input to 

SGDR
0.535 0.737 0.503 0.95 0.958

Last value 

persistence
0.615 0.913 0.322 0.967 0.936

10-min average 

persistence
0.656 0.934 0.536 0.946 0.933

5-min
Lidar input to 

SGDR
0.678 0.938 0.732 0.931 0.934

Last value 

persistence
0.838 1.212 0.557 0.944 0.892

10-min average 

persistence
0.754 1.054 0.619 0.938 0.917

10-min
Lidar input to 

SGDR
0.737 1.013 0.791 0.925 0.923

Last value 

persistence
0.911 1.284 0.627 0.938 0.88

10-min average 

persistence
0.811 1.116 0.675 0.933 0.907

15-min
Lidar input to 

SGDR
0.783 1.068 0.838 0.92 0.914

Last value 

persistence
0.958 1.335 0.681 0.932 0.87

10-min average 

persistence
0.852 1.165 0.722 0.928 0.899

30-min
Lidar input to 

SGDR
0.886 1.204 0.966 0.908 0.891

Last value 

persistence
1.056 1.441 0.803 0.92 0.85

10-min average 

persistence
0.954 1.297 0.855 0.915 0.875

60-min
Lidar input to 

SGDR
1.071 1.445 1.225 0.882 0.845

Last value 

persistence
1.235 1.676 1.099 0.891 0.799

10-min average 

persistence
1.138 1.541 1.136 0.887 0.826

We observe from Fig. 24 that the error distributions across the three forecast approaches are similarly shaped (normally dis-

tributed around a zero mean). Note that the figure data represents the simple difference which considers all errors to have equal
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weights (unlike the RMSE metric). The lidar method lead times up to 15-mins tend to have slightly negative (left) skew, while

exhibiting fewer over-prediction errors greater than 1 ms-1. This evidences why for example the 1-minute ahead lidar model

outperforms the last value persistence method in RMSE, while the PDF of the persistence forecast error appears to exhibit

smaller errors on average.

5.7 Model changes which did not improve the overall result5

Numerous efforts to evaluate changes in model inputs were tested, without leading to an improved result. Such attempts in-

cluded transformation of the processed wind speed data into principal components (PCA). This procedure attempts to detect

correlation between variables and reduce the dimensionality of the data by finding the directions of maximum variance and

re-projecting these into a smaller dimensional subspace while preserving the patterns between the remaining (principle) com-

ponents. Further attempts to reduce data dimensionality by thinning the input data by selecting every n-range gates where:10

n ∈ (2,3, ..10) also led to reduced model performance. This could be due to the regularization component of the SGDR train-

ing where non-contributing inputs are automatically removed from the model (their coefficients set to zero) without needing to

do so manually.

Auto-Regressive (AR) lags of all input variables were also tested in order to further increase sample weights of the more

recent observations and include short-term memory of the inputs. These were tested with lags ranging from 1 step backwards15

(49 seconds) up to 73 steps (60.4 minutes) included in the test data used for training and prediction. Each AR lagged model

performed less favorably compared to the model presented in the methodology (Section 4.2.2).

5.8 Future extensions of work

The forecast models presented are deterministic by design (single point predictions). Commercial providers and forecast users

are beginning to move towards probabilistic approaches which also contain information about the uncertainty of the prediction20

(Pinson et al. (2007)). Further, this study focuses on generating scalar wind speed predictions, and neglects the obvious utility

of wind direction forecasts, or in forecasting the vector components themselves. These are recommended directions to consider

for future work in this topic.

6 Conclusions

A novel field experiment was successfully conducted where horizontal wind fields were observed by scanning Doppler lidars25

situated alongside in-situ mast sensors. A simple lidar wind retrieval method was demonstrated which performs excellently for

wind speed but less favorably for wind direction.
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Space-time correlations between upwind lidar observations and reference cup anemometer measurements were investigated,

which reveal a distinct peak which shifts in time and broadens as a function of distance upwind. The highest correlations occur

up to around 2-3 km upwind, which indicates the region where advection transport dominates. An example of gust tracking is

also presented, which follows the structure as it advects downwind over a 15-min period.

Overall, the forecasting model utilizing these upwind lidar observations outperforms both benchmark persistence methods in5

all aspects of importance for wind speed predictions: RMSE, MAE, general linear fit and overall level of scatter. This is true

across all lead times, however the improvements are most significant for the 1-3 minute ahead forecasts corresponding to the

upwind distances with the strongest spatio-temporal wind speed correlations.

At the 1-minute horizon, RMSE wind speed predictions are reduced by 21 % compared to the benchmark (10-min moving

average persistence for the same horizon). This skill improvement continues for: 5-min (10.9 %), 10-min (9.2 %), 30-min (7.110

%) and 60-min (6.2 %). Moving beyond 20-min ahead predictions, the model settles to consistently demonstrate approximately

6-9 % improved skill. This can be explained as a shift (decrease) in the persistence lead-time by the distance upstream visible

by the lidar.

The model training algorithm with walk-forward execution was implemented in a way which emulates an operational real-time

forecast system and is able to adapt to changing conditions. The regularization penalty inside the SGD fitting is able to perform15

feature selection, making the system robust to a large number of highly correlated input features which do not need to be

expertly chosen.

This research work has applicability towards reducing forecast errors within and below 60-minute ahead lead times. This acts

to increase knowledge and reduce risk for stakeholders in countries which currently or plan to operate generator dispatch and

market clearing on very-short intervals such as Germany, Australia, and the countries which will follow.20
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3.6 Addendum 1: Case study of weather front event 102

3.6 Addendum 1: Case study of weather front
event

This section expands upon an oral presentation titled "Lidars Lifted: The Østerild Bal-
conies Experiment" given at the 97th American Meteorological Society (AMS) conference
in Seattle (E. I. Simon et al., 2017).

During the first phase of the Balconies experiment while the scanning lidars were
deployed at 50 m above ground level (AGL), a weather event was encountered with a
potentially high impact for an operational wind turbine or wind farm.

At approximately 6PM UTC on the 6th of June 2016, the arrival of a cold front
drastically changed the wind regime at the test site. Although it did not cause a
significant wind speed ramp, the wind directions of the two air masses were diametrically
opposed. The result was a near instant 180 degree shift in wind direction (from 130 to
310 degrees) as the frontal advection displaced the formerly presiding conditions.

This example of sudden and extreme veer has undesired and potentially damaging
effects for a wind turbine. From an energy production perspective by requiring significant
time and control adjustments to adapt to the new conditions, and from a loads perspective
by introducing a sudden and extreme loading of the rotor and tower structure which is
outside of normal operating conditions.

Figure 3.6 presents a meteorological look into the event using measurements from the
northern aircraft warning tower at Østerild, which is located at (57◦5’13.34" N latitude,
8◦52’50.42" E longitude).

The event is clearly visible in the lidar observations from the Sirocco unit, shown in
Figure 3.7. The frontal boundary is located where the sign of the radial speeds switch
from positive (outflow) to negative (inflow). It is first detected 7 km away from the mast
position, and the propagation can be tracked over a 2-hour period as it approaches the
test site.
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Figure 3.6: Mast measurements during a passing cold front at Østerild test center on
June 6-7, 2016. Top panel: Wind direction at 40 m AGL. Second panel:
Wind speed at 40 m AGL. Third panel: Temperature at 37 m AGL. Bottom
panel: Relative humidity at 7 m AGL.
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Figure 3.7: Lidar observations of the frontal passage event from the Sirocco unit. Images
are single PPI scans spaced 15-minutes apart. Timestamps are in UTC
format.
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This event is an example of a very difficult to forecast phenomenon. Statistical methods
including persistence and autoregressive (AR) models will fail spectacularly as there
is no connection between the recent past and impending conditions. While physical
approaches including numerical weather prediction (NWP) models are in many cases
able to predict the existence of a passing weather front, correctly predicting the precise
timing is notoriously difficult (phase error).

To further examine the usefulness of the upwind lidar system in capturing the event,
predictions from an NWP model were compared with the local site measurements.
Weather Research and Forecasting (WRF) version 3.5.1 model outputs at 2 km spatial
resolution and 1 hour temporal resolution were obtained from Andrea Hahmann at DTU
Wind Energy. The domain is shown in Figure 3.8 along with the grid cell nearest to the
met-mast. The distance from the met-mast position to the nearest grid cell is 1.16 km.

Figure 3.8: Domain for WRF simulation, with a red X denoting the chosen grid cell
nearest to the met-mast.

Four runs: two initialized on June 5th at 0Z (midnight UTC) and 12Z (noon UTC),
and two initialized on June 6th (0Z and 12Z) were used to make comparisons between
wind speed and direction predictions and the reference site measurements. Note that in
an operational context, the NWP results will not be available until some time after the
model is initialized. In this case, the computation time is on the order of 8 hours. The
met-mast measurements have been converted to UTC time for synchronization with the
WRF model outputs.
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Figure 3.9: Comparison of four WRF model predictions with reference met-mast mea-
surements.

WRF results are largely consistent across the four runs. Predictions between midnight
and 6 PM UTC appropriately match the observational data from the met-mast. However,
after this time the forecast does not capture the direction change which is a result of the
event observed by the lidar. A further example of a timing (phase) error can be seen in
the second direction veer occurring at 8 AM but forecasted to occur 12 hours later.

In summary, the lidar observations have demonstrated a clear value in capturing and
tracking a weather event of potential concern as it approaches a wind turbine or wind
farm. The event was not predicted by the WRF NWP approach, but was detected 2
hours beforehand by the scanning lidar and its propagation was tracked until arriving to
the met-mast position.

This result supports the use of upwind lidar data for detecting and forecasting the
arrival of large scale events at a local site. Particularly for sites with recurring localized
weather patterns, this application carries promise when used as a classification and
warning system to the operator or automated control systems.
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3.7 Addendum 2: Key results and lessons learned

• An extensive field campaign was conducted using an improved lidar configuration
for measuring long-range inflow of horizontal winds.
• A simple wind retrieval method was demonstrated which works well for wind speed

but less favorably for wind direction
• Space-time correlations between a met-mast and upwind lidar positions were inves-

tigated, which indicate a sharp discernible peak up to 2-3 km distance upstream.
• The average advection behavior was compared between theoretical (Taylor’s frozen

turbulence hypothesis) and empirical (lidar retrieved winds) which shows agreement
at the same scales as the space-time correlation result.
• A direct multi-step wind speed forecast model was implemented which emulates
real-time scanning lidar inputs to predict 1-60 minute ahead wind speeds at the
met-mast position.
• A rolling (walk-forward) training and prediction approach was used which assimi-

lates the last observations to update model weights used in subsequent predictions.
• Root-mean-square wind speed forecast errors were reduced by 21% (1-min ahead),
10.9% (5-mins ahead), 9.2% (10-mins ahead), 7.1% (30-mins ahead), and 6.2%
(60-mins ahead) compared to a 10-minute moving average of persistence.
• Gust events were detected upstream, which were able to be tracked up to 15-minutes

before arriving to the met-mast position.
• A weather event (frontal boundary pass-through) was captured and tracked with a

lead time of 2-hours which was not predicted by numerical weather models.
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3.8 Introduction to third study: LASCAR experiment
After achieving promising results in the preceding investigation (Section 3.5), an

augmented study was planned which would utilize the 2-Dimensional upwind lidar scans
directly, in lieu of processing them into 1-Dimensional time series through a wind retrieval
algorithm.

Arising from the space-time correlations observed in the Balconies experiment, a new
field campaign was designed and conducted which focused on the 3-4 km spatial scale
and 5-minute temporal scale. The LASCAR experiment built upon the measurement
lessons learned so far to trade maximum range and angular resolution for scanning speed
in order to better track spatial patterns as they advect downwind.

Additionally, the importance of accurately forecasting wind direction has been made
clear by recent work in the field of wind farm control. Therefore the design criteria has
been expanded to include both wind speed and direction forecasts.

The resulting study is presented in Section 3.9.

The data set and campaign metadata have been published on DTU’s data repository
(E. Simon and Lea, 2019a).
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Abstract.

The increasing share of wind power in energy systems leads to integration challenges for real time grid balancing and elec-

tricity market participation. As energy services move towards faster decision-action timeframes, improving the accuracy of

wind power forecasts becomes crucial for ensuring system reliability and stable pricing. Forecasts on the minute-scale are tra-

ditionally based on statistical approaches using historical data. Remote sensing instruments such as pulsed scanning Doppler5

lidars are able to measure at long distances upwind of a wind turbine or wind farm and provide a preview of the approaching

wind resource. Recent developments in machine learning have produced a convolutional-recurrent neural network unit called

ConvLSTM. This enables models to learn from spatiotemporal patterns present in 2-Dimensional image sequences and use

them to predict future outcomes.

To explore the possibilities of lidar-based wind forecasting, an artificial neural network (ANN) has been developed which10

utilizes lidar scans of the upstream horizontal wind field to predict downstream horizontal wind vectors in a multi-output

fashion up to 5-minutes ahead. The results of the ANN-lidar model have been benchmarked against three common statistical

approaches (persistence, AR, and ARIMA). The ANN-lidar approach has demonstrated skill below the 4-minute horizon, but

has also highlighted challenges towards advancing the state of the art.

1 Introduction15

1.1 Minute-scale forecasting of winds

Meteorological forecasts with time resolutions on the minute-scale are becoming increasingly useful in the wind energy field.

The underlying variability of the wind resource, together with constraints from the power system and energy markets drives

a need for accurate site-specific forecasts of impending conditions, particularly at large wind power plants. To date, the state

of the art for producing such forecasts is normally based on time series modelling of past observational data (Giebel et al.20

(2011)). Another advanced approach is to adapt the output from previously computed ensemble numerical weather prediction
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(NWP) models to real-time measurements (Moehrlen (2004)). The inclusion of local measurements in this manner has shown

potential towards improving the inability of NWP models to correctly predict the timing, magnitude and duration of wind

ramps- that is, large and sudden changes in the extractable energy in the wind (Mahoney et al. (2012)). However, in light

of these developments, the most widely used technique by the wind power industry on timescales below 1-hour remains the

persistence method.5

Persistence assumes that short-run future conditions will remain unchanged from the recent past. Due to the high temporal

autocorrelation of winds on very-short timescales, this method has performed acceptably well to date. Yet by design, the

persistence method fails to predict changes (such as weather fronts and ramp events) which results in undesired discrepancies

in expected and actual production, as well as imperfect information being fed to control systems.

As energy systems across the world transition to higher shares of variable renewable generation, these forecast errors become10

increasingly problematic for maintaining stable frequency control and limiting financial risk for imbalances in the energy

markets. Owners of wind power assets have historically been supported by agreements such as the feed-in-tariff (FIT) or other

power purchase agreements (PPA) which disregard the timing of their production. As these programmes phase out, operators

will face financial consequences for forecast errors as balance responsible parties (BRP).

To date, a number of national and regional grid operators support trading of energy in markets with delivery times on the minute-15

scale (EPEX SPOT (2019)), with others expected to follow suit as their share of renewable generation increases. Minute-scale

wind forecasts are also an integral component of wind turbine and farm control applications, which aims to maximize energy

production while minimizing fatigue and extreme loading of the structures.

1.2 Remote sensing of winds

With the advent of remote sensing technologies, it is now possible to measure winds at a distance, without the expense and20

limitations of tower based in situ sensors. Lidar technology in particular has benefitted from rapid cost decreases partly due

to hardware overlaps with optical fiber components used in the telecommunications industry. Doppler wind lidars have found

applicability in wind energy and proven their practicality within areas including: wind resource assessment (Brower (2012)),

power performance verification (Wagner et al. (2014)), independent sensor (Ahsbahs et al. (2017)) and model (Veiga Rodrigues

et al. (2016), Mann et al. (2018), Vollmer et al. (2015)) validation, NWP data assimilation, operational turbine control (Schlipf25

et al. (2012)), among others.

In this paper we will solely refer to coherent pulsed scanning Doppler lidar technology. These instruments are active remote

sensing devices which use shaped pulses of laser light, typically with a wavelength of 1.54 µm to probe the atmosphere.

This wavelength was chosen as it corresponds to the absorption line of atmospheric water vapour and CO2, meets eye safety

standards, and is compatible with hardware components developed in the telecom industry (Cariou et al. (2006)). Laser pulses30

are emitted in a collimated beam from the lidar’s telescope which backscatter off of aerosols (particles suspended in the air) and

in turn shift their frequency according to the Doppler principle. A small portion of the backscattered pulses are received by the
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lidar’s optical chain and through spectral processing a radial velocity is obtained. This radial velocity represents the projection

of the wind velocity along the beam angle (line-of-sight, LOS). As pulsed lidars do not focus their beam, measurements at

multiple distances (range gates, RG) are taken simultaneously. The values are calculated by range weighting of the spectra and

discerned through a time-of-flight calculation based on the fixed speed of light. It is important to note that the lidars do not

measure at discrete points in space, but rather a volume-average of the backscattered pulses.5

Scanning lidars are equipped with a movable scanner head with two degrees of freedom used to steer the beam along a given

trajectory. This is achieved through control of the system’s azimuth and elevation motors, while range gating accounts for the

third degree of freedom. These capabilities allow for measuring in 1D (staring), 2D (plane), and 3D (volumetric) modes. In

this study, we will employ the following two scan types:

Figure 1. Depiction of Doppler beam swinging (DBS, left) and plan position indicator (PPI, right) scanning trajectories

– Doppler beam swinging (DBS) scans. Skyward facing DBS scans are used to measure the vertical wind profile by sam-10

pling at normally four orthogonal directions in addition to a vertical beam (Strauch et al. (1987)). Under the assumption

of horizontal homogeneity and sampling concurrency, the horizontal wind vector is deduced with the vertical component

being directly measured.

– Plan position indicator (PPI) scans. PPI scans are conducted by sweeping across a range of azimuths while holding the

elevation angle constant. At zero degrees elevation this follows an arced horizontal plane representing a cross-section of15

horizontal winds projected along the azimuth of each beam direction.

Traditionally, radial velocity measurements from PPI scans are used to obtain horizontal wind vectors through single-Doppler

velocity retrieval (SDVR) techniques such as the integrating Velocity Azimuth Process (IVAP) (Liang (2007)). This method
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treats the line-of-sight measurements as different perspectives of the same homogeneous wind which reduces the data dimen-

sionality to a time series of the horizontal wind components (u,v) at each range gate.

Wind patterns are discernable in the 2D scans themselves and contain spatial information which is largely lost using the classic

SDVR techniques. By treating the PPI scans as a 2-dimensional image, we are able to employ techniques from the fields of

image processing and computer vision to make use of the spatial patterns contained within the scan. This is the chosen direction5

of this study.

1.3 Concept of lidar based forecasting

Remotely measured wind fields present the potential for improving these very-short term forecasts by integrating wind patterns

measured upwind of a wind turbine or wind farm’s position into a prediction model. The observed winds advect to some

degree downstream and the motion of coherent structures such as gusts, weather fronts, and turbulent eddies can provide10

forward looking information about conditions which arrive in the order of minutes ahead.

Pulsed scanning Doppler lidars are well suited for this application due to their high spatial and temporal resolution, extended

field of vision (up to 10 km (Leosphere (2018)), 12 km (Halo Photonics (2018)) or 30 km (Mitsubishi Electric (2018))),

configurable scan patterns, and ability to measure throughout diverse environmental conditions.

A number of studies have been conducted to date concerning forecasting for wind energy purposes using lidar observations15

directly. Carpenter (2013) demonstrates an advection based method which propagates wind fields of a site-specific ramp phe-

nomenon downstream to produce a forecast up to 45 minutes ahead which significantly improved upon persistence while

achieving peak performance at the 10 minute ahead forecast horizon. Magerman (2014) tracks spatial variances of turbulence

and extractable energy content in the upstream wind to produce a wind power forecast several minutes ahead, and also tracks a

ramp event occurring due to a frontal passage over a one hour timescale. Valldecabres et al. (2017) demonstrates a lidar based20

advection approach to generate 5-minute ahead wind speeds of near-coastal flow. Another work by Valldecabres et al. (2018)

applies a similar advection based methodology to dual Doppler radar measurements for producing probabilistic wind power

forecasts up to 5-minutes ahead. A recent work by Simon et al. (2018) utilizes horizontally scanning lidars mounted alongside

a met-mast to make wind speed predictions up to 1-hour ahead.

1.4 Artificial neural networks (ANN)25

Artificial neural networks (ANNs) are computing systems which take inspiration from the structure of the cerebral cortex. That

is, they are designed to simulate the way the human brain processes and analyzes information. ANNs are capable of both self-

learning and generalization, and have demonstrated their prowess for modelling complex non-linear relationships (Ogunmolu

et al. (2016)). Core applications of this technology include natural language processing (Kim (2014)), pattern recognition

(Taigman et al. (2014)), and sequence prediction (i.e. forecasting) (Laptev et al. (2017)). Supervised learning tasks use labelled30
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training data (known inputs and outputs) to refine model weights through the forward activation of outputs and the backwards

propagation of errors. Once a model is fit to a set of known observations, it can then be used as an analytical tool for predicting

out-of-sample data.

Recommended background readings for further general context in the field include Goodfellow et al. (2016), Google Develop-

ers (2019) and Li (2018).5

The tracking of wind patterns from real-time 2D lidar scans applied as a forward prediction engine represents a spatiotemporal

sequence forecasting problem. There are two classes of neural networks which are relevant for different elements of this

application. Convolutional neural networks (CNN) apply a sliding kernel to an input image, which extracts features from the

image while preserving the spatial relationships. CNNs are widely applied to computer vision and object tracking tasks, and

use a feed-forward architecture which only allows signals to travel in one direction (input to output). The second class are10

recurrent neural networks (RNNs), which in contrast to feed-forward designs, include loops to allow signals to travel in both

directions of the network. Computations from past inputs are fed back into the network which imparts the ability for memory

of sequences of inputs. As time series signals contain a high degree of temporal autocorrelation, RNNs are routinely applied

to forecasting tasks. Today’s state of the art RNNs mainly comprise of long short-term memory (LSTM) units (Hochreiter and

Schmidhuber (1997)) which were designed to use gating rather than activation functions to avoid the vanishing or exploding15

gradient problem (Greff et al. (2017)).

Shi et al. (2015) has introduced a combination of both classes which aims to capture spatiotemporal correlations by designing

a model where the input-to-state and state-to-state transitions are convolutional (i.e. the input and recurrent transformations).

The ConvLSTM unit is well suited for problems where both the spatial features and their correlations in time are fundamental

features of the phenomenon. In the seminal work, Shi et al. applied the ConvLSTM approach to precipitation nowcasting using20

radar reflectivity images as inputs which significantly outperforms fully connected (FC) LSTMs. The ConvLSTM units will

similarly be applied here using the Doppler lidar scans together with pooling layers to extract the dominant features.

2 Motivations and research questions

The following questions represent the core aims that this research work sets out to answer:

– How do 2-dimensional lidar scans correlate to each other? Can the advection of winds be tracked?25

– Can 2D lidar scans be utilized as images in a convolutional LSTM neural network for generating minute-scale predic-

tions?

– Can such a model forecast wind vectors at a reference position minutes ahead with higher skill than relevant benchmark

methods?
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– Can this be accomplished in real-time so that the predictions can be put to practical use?

3 Field experiment

3.1 Site description

The field experiment for this study took place at the Risø Campus of the Technical University of Denmark, situated at the

following coordinates: 55° 41’ 21.2604" N latitude, 12° 6’ 1.6632" E longitude. The site is located along the shore of Roskilde5

fjord, a predominately shallow inland body of water containing a number of small islands (see Fig. 2). Winds are measured

both over land and water. The onshore topography is characterized by mostly flat terrain rising upwards from the shoreline

at an average slope of 5 degrees. Onshore background surface roughness is estimated at 0.05 m. Trees and shelter belts exist

nearby, along with small patches of forest. The small low-lying island wholly included in the measurement area is Elleore, a

self-proclaimed independent Kingdom (Mislan and Streich (2019)). The western bank of the water is the peninsula Bognæs, a10

mainly forested area used for hunting and recreation.

Figure 2. Digital surface model of the surrounding area. The lidar deployment area is denoted with a red X. Heights are relative to mean sea

level
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3.2 Measurement characteristics, configuration and pre-processing

3.2.1 Experiment overview

A field experiment involving a total of six scanning wind lidars was conducted during the autumn and winter of 2017-18 (Oc-

tober 12, 2017 – February 27, 2018). The goal of the experiment (designated LASCAR) was to obtain detailed measurements

of the wind particularly for westerly inflows which develop over Roskilde fjord. Observations were made across flat horizontal5

and vertical planes, together with vertical profiles of the horizontal winds. In this study, we utilize data from two of the lidar

systems deployed in the experiment.

All lidar instruments are of the DTU Long-Range WindScanner variety (Vasiljevic et al. (2016)). Key parameters of the mea-

surement scenario are presented in Table 1 and Table 2 for each scanner respectively.

Figure 3. LASCAR experiment overview, with positions of the two scanning lidars and the met-mast denoted. The radius of the arc is 4 km

3.2.2 Sirocco unit – Plan position indicator (PPI)10

In order to measure winds at the same height across all distances, the Sirocco unit was raised above ground with its elevation

axis set to zero degrees. The lidar was deployed on the rooftop of Risø building 313, as shown in Fig. 3. This was accomplished
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Table 1. Lidar specifications for the ‘Sirocco’ unit

Pulse length 200 ns (middle pulse)

Pulse energy 50 µJ

Pulse repetition frequency 

(PRF)
20 kHz

Probe length (FWHM) 35 m

Scan type Plan position indicator (PPI)

Azimuth angle range 250 ° - 280 ° (30 ° sector size)

Elevation angle 0 ° 

Accumulation time 400 ms

FFT size 64 bins

Measurement range 80 – 4000 m

Range gate (RG) spacing 20 m (197 RGs)

Scanner head motion 2.5° / s

Reversing?
No. Scanner head resets to initial 

position following each scan

Number of lines-of-sight 

(LOS)
30 (1° LOS spacing)

Scan rate 13 s / scan (including reversing)

using a crane truck which lifted the device from the ground onto the roof, which was then carried manually into its position at the

edge of the flat rooftop. The lidar’s height above mean-sea-level (AMSL) was measured at 22.07 m using a Leica Geosystems

CS15 field controller and GS15 GPS receiver which has a 15 mm vertical static root-mean-square (RMS) accuracy (Leica

Geosystems (2012)). Several points at the base of the building and coastline were also measured, leading to a determined

height above ground-level (AGL) of 8.53 m and height above water-level (AWL) of 20.65 m at the time of measurement during5

typical conditions. The water level is subject to change, particularly during storms and under presiding northerly winds when

water is transported into the fjord.

The system was levelled along both axes of the telescope using a digital level along with the system’s internal inclinometer.

Standard procedures were followed to map multiple objects (hard targets) spaced across a range of positions in order to perform

a static pointing calibration. Once the system’s position and orientation were known, offsets were hardcoded into the motion10

controller such that the zero degrees azimuth reference matched to north.

The lidar was configured according to Table 1 and set to perform repeating PPI scans as depicted with the red outline in Fig.

3. This entails keeping the elevation angle fixed while scanning over a range of azimuths to produce an arc slice through the

horizontal wind.
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Table 2. Lidar specifications for the ‘Brise’ unit

Pulse length 100 ns (short pulse)

Pulse energy 25 µJ

Pulse repetition frequency 

(PRF)
40 kHz

Probe length (FWHM) 25 m

Scan type Doppler beam swinging (DBS)

Number of lines-of-sight 

(LOS)
5 beam method

Half cone angle 15 °

Accumulation time 1 s

FFT size 64 point

Measurement range 50 – 1000 m

Range gate (RG) spacing 10 m (96 RGs)

Scan rate 15 s / scan

3.2.3 Brise unit – Doppler beam swinging (DBS)

The Brise unit was deployed at ground level in the lee of the same building as Sirocco. Using the Leica controller, the height of

Brise relative to Sirocco was found to be -7.8 m with a total Pythagorean distance between the two system’s telescopes equaling

31.86 m. The relative height difference differs from Sirocco’s height AGL as the terrain slopes down around the building. The

same levelling and calibration procedures were performed on Brise as Sirocco. The lidar was configured according to Table5

2 and set to perform repeating DBS scans. This entails measuring along 4 fixed positions along a cone, followed by a central

vertical beam which provides a direct measure of the vertical wind component.

3.2.4 Other instrumentation

Conventional (in situ) measurements from a nearby meteorological mast are used as an independent reference for validation

purposes. The source of the data is the meteorological mast 400 m directly southwest of the lidar deployment location (in-10

dicated in Fig. 3). The mast is an IEC compliant reference for DTU’s Vestas V52 research turbine. Ultrasonic anemometer

measurements from 44 m AGL are used, as this is the closest instrumented height to Brise’s 50 m AGL range gate.

3.3 Data filtering and processing

A 12-hour continuous subset of the experiment has been selected for this study. Measurements obtained between November

14th at 16:45 and November 15th at 04:45 represent a population size of 3270 13-second samples (corresponding to the lidar’s15
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scan rate). The criteria used for selecting this period was for both lidar systems to be operational and the winds to originate

broadly from the west (inflow to the experimental setup).

3.3.1 Sirocco unit (PPI scans)

A flowchart overview of the data processing steps for Sirocco is presented in Fig. 5.

Processing of the PPI scans from Sirocco began with reading in the radial speed measurements produced by the lidar system5

from all scenarios within the given time period. Timestamps were parsed from LabVIEW epoch time into datetime objects,

with time zone conversion from UTC to local time (Central European Time, or UTC+1) in order to match the met-mast data

logger convention.

Filtering steps included the removal of partial scans which can exist at the partition between scenario files. A carrier to noise

ratio (CNR) threshold filter was applied which discarded measurements below -26 dB (low signal quality) and above 0 dB10

(hard target contamination). A radial speed filter was then applied which ensures that only periods of inflow, when the wind

direction was approaching the lidar were considered. Next, a line-of-sight (LOS) filter was applied to reduce the angular width

of scan from 30° to 21°. This was required as the azimuth range between 250° and 258° was contaminated by turbulence

generated by a small patch of wooded trees. Finally, a range gate (RG) filter was applied which reduced the maximum distance

included to 3 km. This was due to low data availability at the opposite bank of the fjord due to the presence of sloped terrain15

and vegetation blocking the lidar’s beam.

Using the filtered dataset, each scan was projected from radial dimensions (azimuth, range) to Cartesian coordinates (x, y)

on a 10 m resolution meshgrid, and filled using nearest-neighbor interpolation. This approach was chosen to allow the use of

standard loss functions, instead of needing to redefine spherical implementations for training the model. As a side effect, this

step also increases the magnitude of the data represented in memory.20

The 2-D lidar scan images were then scaled to values between zero and one. This acts to normalize the feature range of the

scans when input to the neural network. A custom method was applied which prevents outliers from significantly affecting

the scaling of the data. First, the mean, minimum and standard deviation across both dimensions were calculated. Next, the

maximum values were determined as four standard deviations above the mean (Eq. 1). The scaling was then applied following

Eq. 2. Any values above four standard deviations over the mean were then set to one. An example of a processed scan is given25

in Fig. 4. Note that the scaling range was determined for each scan independently, and therefore does not use any past or future

information.

Xmax =X + 4σ2
X (1)

Xscaled =
X −Xmin

Xmax −Xmin
(2)
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Figure 4. Example of processed scan image from a Sirocco PPI scan

To construct the data structure used for model training, processed scan images over the past input lag length at each scan-time

were copied to a new dimension of the array. This represents the inputs fed to the forecasting model as each prediction and

subsequent updated fit is made. The number of samples was then reduced at the beginning by the number of input lags, and

at the end by the number of samples forecasted to remove periods with partial data on this axis. The final dataset structure is

5-dimensional with the shape (time, lags, x dimensions, y dimensions, channels), with radial speed being the only channel.5

Figure 5. Flowchart of data processing for rooftop lidar (Sirocco)
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3.3.2 Brise unit (DBS scans)

A flowchart overview of the data processing steps for Brise is presented in Fig. 6.

Processing of the DBS scans from Brise began similarly to Sirocco, with reading in the lidar measurements, parsing timestamps

and removing partial scans at the boundary between scenario files. The same CNR filter thresholds as before were used to filter

out observations with low signal quality or hard target contamination. Next, quality checks were performed which ensured that5

the beam positions were separated by index multiples of 5 (corresponding to the scan strategy outlined in Section 3.2.3).

The wind field reconstruction procedure was performed for all range gates following Section 3.4, and the lowest available

height was chosen (50 m AGL). This corresponds to 42.2 m above the position of Sirocco. The reconstruction results in a

sampling rate equal to the lidar’s LOS measurement speed, which was downsampled to match that of Sirocco (i.e. 13-second

averaging).10

Horizontal wind components u and v were used to compile the data structure for the reference measurement used in training

the model and evaluating forecast errors.

Any undefined values as a result of filtering steps were set to zero. The forecast lead times were also copied to a new timestep

axis. The same procedure was followed to reduce the number of samples at the beginning by the number of past lags and at the

end by the length of the prediction interval. The final dataset structure is 3-dimensional with the shape (time, forecast leads,15

channels), where the two channels are reconstructed u and v components from the DBS measurements.

Figure 6. Flowchart of data processing for ground based lidar (Brise)

3.4 Wind field reconstruction (DBS measurements)

A flowchart of the DBS wind field reconstruction process is presented in Fig. 7. To perform the vertical profiling wind field

reconstruction with the highest temporal resolution, a sliding window function is needed, which uses the latest available beam

measurement to calculate the corresponding value at each timestep. The u and v horizontal wind components are each calculated20

from two orthogonal beam measurements, while w in this case is directly measured by the vertical beam. It is also possible to

independently calculate w from the four orthogonal beams, as is done in the traditional four beam DBS configuration.
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When implementing the reconstruction process, a vectorized approach was used. This avoids iterating through the entire dataset

and results in a major computational speed advantage. The five line-of-sight (LOS) beams were split up accordingly by their

azimuth and elevation angles. Quality controls were then performed to ensure that the beam index positions were separated by

the correct LOS separation. Next, the measurements were interleaved along a new dimension according to the corresponding

beam-pairs. Finally, the reconstruction equations were applied across the entire dataset at once for each range gate.5

u=
Urwest −Ueast

2sinφ
(3)

v =
Urnorth

−Ursouth

2sinφ
(4)

w = Urvertical
(5)

wcalc =
Urnorth

+Ursouth
+Ureast

+Urwest

4cosφ
(6)

Uh =
√
u2 + v2 (7)10

ψ = arctan2(v,u) + c (8)

where Ur are the radial speed measurements, ϕ is the half cone angle, Uh is the scalar horizontal wind speed, ψ is the wind

direction, and c represents a potential wind direction offset due to the lidar’s orientation.

Figure 7. Flowchart of DBS wind field reconstruction from Brise

4 Forecasting methodology

4.1 Model training and prediction15

4.1.1 Metrics

To evaluate performance of the forecast methods, the root-mean-square error (RMSE) between the predictions and reference

values is used. This provides a single measure of predictive skill which penalizes larger errors relative to smaller ones. The

RMSE metric is therefore sensitive to outliers which represent the largest potential impacts to the power grid and energy

13



markets.

RMSE =
n∑

i=1

(ŷi − yi)
2

n
(9)

The predicted horizontal wind components u and v are similarly transformed to scalar wind speed and direction values using

Eq. 7 and 8 for the purposes of the error analysis.

4.1.2 Forecast model implementation details5

The lidar based forecast model utilizes the Keras framework in Python with Tensorflow backend. Training has taken place on

a Google Cloud Compute instance equipped with one NVIDIA Tesla P100 GPU (graphics processing unit). The computation

time for processing each batch (i.e. 13-second sample) is 32 ms, which is well within the time constraints for operational use.

An overview of the training and prediction process is outlined in Fig. 8.

A walk-forward testing strategy was used, which emulates online learning of the model during real-time operation. This allows10

the model to be constantly updated with the latest available data when making out-of-sample predictions, as the samples

are highly correlated in time. Therefore, the input layer has a batch size of one. The inputs are processed and scaled PPI

images from Sirocco (i.e. rolling 5-minute window of upwind lidar observations), which are used to predict the u and v vector

components reconstructed from DBS measurements by Brise across the 5-minute interval which follows.

Progressing chronologically through the dataset, each sample results in an updated model fit, and a forecast generated spanning15

13-seconds to 5-minutes ahead. Subsequently, the dataset walks forward and the latest observations are assimilated resulting

in an updated model and a new forecast. As properties of the target data would not be known ahead of time, it is necessary to

perform feature scaling of the target signal (i.e. Brise reconstructed wind components) at every step using in-sample observa-

tions. This is achieved using Scikit-learn’s MinMaxScaler (Scikit-learn (2018)) to match the feature space of the processed PPI

scan images. This step is not applicable to Sirocco as the scaling has been applied across the image dimensions instead of time20

(Section 3.3.1).

Figure 8. Flowchart of ANN-lidar forecast model operation
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The neural network architecture is shown in Fig. 9. It is comprised of two sets of 2D convolutional LSTM layers (Tensorflow

(2018)) which are downsampled using 2D MaxPooling (Keras (2018b)) layers before being flattened and then shaped using

a fully connected (Dense) layer. Both ConvLSTM2D layers use ReLU (rectified linear unit) activation and neither dropout

nor recurrent dropout was applied. As there are multiple stacked recurrent layers, it was necessary to return the entire hidden

state output for each timestep so that the dimensionality for the next layer’s input sequence is correct. In addition, the LSTM5

layers are stateful, meaning that the computed hidden states can be propagated between training batches. To preserve the time

dimension of the multi-output model, TimeDistributed wrappers (Keras (2018a)) were applied to the non-recurrent layers. The

model was compiled using the Adam optimizer (Kingma and Ba (2014)) and mean-squared-error (MSE) loss function. The

model was then trained using the walk forward approach previously described, with one fitting epoch (training iteration) per

batch (sample), and the model’s internal states being reset following each epoch.10

Figure 9. ANN-lidar model architecture

Following each forecast, the predicted values are inverse transformed into their (non-scaled) feature space for evaluation against

the reference values.

4.1.3 Benchmarking (Persistence and ARIMA)

Two forecasting strategies based on standard methods applied within this timescale were carried out in order to benchmark

the relative skill of the more neural network approach. These benchmark methods rely only on the univariate target signal,15

without any of the forward-looking information provided by the rooftop lidar (Sirocco). Scalar quantities of wind speed and

direction are used in both cases. These are derived from the reconstructed horizontal winds of the DBS lidar (Brise) as outlined

in Section 3.3.2.

The first benchmark is the persistence method, which forecasts future values to be the same as the most recent observation.

ŷt+∆t = yt (10)20

where y is the reference signal and ∆t is the forecast horizon.

The second benchmark is a time series modelling approach called ARIMA (autoregressive integrated moving average). This

method utilizes past lags (AR) of the target variable and a moving average model (MA), along with differencing (I) of the

series to transform it to a stationary process. Stationarity is determined through unit root testing, typically using the augmented

Dickey–Fuller test. Seasonal adjustment here is not necessary, but would need to be applied for longer time series. The model25

15



parameters ARIMA (p,d,q) represent the number of lags (p), the degree of differencing (d), and the order of the moving

average model (q). The p parameter is determined through inspection of the autocorrelation function (ACF) and partial auto-

correlation function (PACF), with consideration to increased computational demand for increasing number of lags (Fig. 10).

The ACF describes the linear dependence of the signal with itself over a range of past values, while the PACF excludes the

effects (indirect correlations) of intermediary lags. The d parameter is determined by performing an increasing number of dif-5

ferencing steps until the series becomes stationary (where the mean, variance, and probability distribution does not change with

time). The final (q) (MA) component represents a weighted moving average of the past q error steps (exponential smoothing).

Figure 10. ACF (left) and PACF (right) plots (top: wind speed, bottom: wind direction) beginning from lag zero. The area outside the shaded

region represents the 95% confidence interval where the correlation is non-zero (i.e. strong serial correlation)

The non-seasonal ARIMA formulation can be written as:

ŷ′t = c+φ1y
′
t−1 + · · ·+φpy

′
t−p + θ1εt−1 + · · ·+ θqεt−q + εt + c (11)
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Where y′ is the arbitrarily d-differenced series, θ are parameters of the AR model, and ε are white noise error terms.

The ARIMA forecasts were generated in the same manner as the walk-forward training and prediction approach outlined in

Section 4.1.2. The model was incrementally fit using in-sample data and predictions were made at each time step in a multi-

output setup across the entire forecast length (i.e. every 13 s from 1 to 23 steps (5 minutes) ahead).

Two model formulations were tested, separately for wind speed and wind direction. Benchmark #1 is of order (5,1,0) which5

neglects the MA component and becomes a differenced fifth order AR model. Benchmark #2 is an ARIMA model of order

(5,1,1). The parameters were fit using conditional sum-of-squares likelihood maximization.

Note that the wind direction signal over the time period chosen does not approach the boundary between 0 and 360 degrees, so

it is not necessary to consider this when calculating the errors.

5 Results10

5.1 Validation of wind field reconstruction method

To demonstrate the correct processing of the DBS measurements from Brise (according to Section 3.4), a validation has been

included which compares the lidar obtained wind field to that measured at the nearby met-mast described in Section 3.2.4. The

met-mast observations have been downsampled to match the sampling rate of the lidar. The data points have a time resolution

of 13-seconds and the sample size is 3220 observations.15

The comparisons show generally good agreement between both independent instruments considering their spatial separation.

The lidar reconstructed wind speeds from Brise indicate a small positive bias which increases with wind speed. The wind

direction however is slightly underestimated relative to the met-mast. Nevertheless, the results confirm that there are no serious

flaws in the source data or reconstruction methods.

5.2 2D correlation of PPI scans20

A core assumption of the forecast model is that spatial patterns in the lidar scans are trackable as they advect downwind. An

inspection of the cross-correlations between scan pairs has provided insight into this assumption. Six processed PPI scans from

Sirocco are shown in Fig. 12, which are spaced in intervals of 3 scan-times (i.e. 40 s between each frame) for compactness. The

darker structure with a higher radial speed visibly advects downwind while also transforming its properties due to turbulence.

The tail is centered at 2500 m upwind in the first frame, and 300 m in the last frame. This corresponds to an advection speed25

of 11 m/s, which closely matches the wind speed during the period (11.2 m/s).
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Figure 11. Validation of 50m lidar reconstructed DBS measurements (Brise) against 44m sonic measurements from nearby met-mast. a)

u-component, b) v-component, c) wind speed, d) wind direction

Fig. 13 presents a 2D cross correlation result between one base image and the 1st to 8th scans which follow. This indicates the

spatial distribution of correlations between the two images. The point where the maximum exists represents similar features

appearing in both images. The advection rate of the structure from the correlation method (1km in 104 s = 9.6 m/s) also matches

the average wind speed during the period (9.53 m/s). The 2D cross correlation was calculated using a 2D convolution function

with the second image reversed along both axes.5

5.3 Forecast results

Overall RMSE comparisons of the three forecast methods are presented in Fig. 14 both for wind speed and wind direction.

This compares the RMSE performance by lead time of the various benchmarks together with the Lidar-ANN model.

The Lidar-ANN method outperforms two of the benchmarks (persistence and the integrated AR model) for the first 17 scan-

times ahead (0.22-3.68 minutes). Following this and up to the maximum forecast length, the Lidar-ANN skill quickly deteri-10

orates. The ARIMA(5,1,1) benchmark achieves the lowest RMSE across lead times, except for the first two forecast steps (13
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Figure 12. Example of PPI scan sequence (order: top-left to bottom-right) in intervals of 3 scans (i.e. 40 seconds between frames)

s and 26 s). Persistence performs well only at the shortest lead time (13 s ahead). Table 3 indicates the relative RMSE skill of

the Lidar-ANN approach compared with the three benchmark methods.

The Lidar-ANN model predictions for the 1.08 minute ahead forecast horizon are shown in Fig. 15 and Fig. 16. Through

inspection of the time series, it is clear that the model predictions follow the overall reference signal. However, they do not

capture the fine variations (i.e. turbulence). This is shown as scatter around the y=x line in 16.5

Lidar-ANN model predictions exhibit larger amounts of scatter at higher wind speeds (> 10 m/s). The errors are also larger for

wind directions where the inflow is not closely aligned with the center of the lidar scan (i.e. far from 270°).
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Figure 13. Example case of 2D cross-correlations between a base image and 1 to 8 scan-times (13-104 s) ahead. This period has a wind

speed of 9.53 m/s and direction of 284 degrees. The center point of the images is denoted with a plus sign
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Figure 14. Forecast RMSE by lead time for all methods (left: wind speed, right: wind direction)

6 Discussion

There has been no tuning performed in the way of hyperparameter optimization, and the overall architecture of the model has

been inspired from other frame prediction problems in the computer vision field. This suggests that the ANN-lidar model per-

formance could be further improved through such changes, in combination with a sensitivity analysis. Other suitable methods

which were explored early during this study but not prioritized include traditional image processing algorithms such as: the5

Sobel filter for separating gradients in the x and y direction, edge detection approaches including the Canny operator to de-

fine and track coherent structures, and dense optical flow methods for calculation the motion between frame pairs (Farnebäck

(2003)).

A fact of the lidar PPI scans is that they do differ from the majority of image sources as they are not a snapshot in time, but

rather acquired throughout the scanning period. As the scanner head motion sweeps through the scan area, features can be10

smeared or otherwise distorted. This limitation could be addressed with interpolation between neighboring scans. However, as

the effect is largest with structures moving perpendicularly to the beam angle, this issue has been disregarded as the scan rate

is fast (13 s) and the wind direction is generally aligned with the beam when measuring inflow.
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Table 3. Results comparison of Lidar-ANN model to benchmarks by lead time. Improved skill is colored green while diminished skill is

colored red

Persistence (%) ARIMA (5,1,0)  (%) ARIMA (5,1,1)  (%) Persistence  (%)
ARIMA (5,1,0)  

(%)
ARIMA (5,1,1)  (%)

0.22 3.30 18.53 11.10 13.09 16.89 8.41

0.43 19.68 15.60 3.57 25.65 14.15 2.22

0.65 18.71 13.58 -0.57 25.05 12.71 -0.44

0.87 18.77 12.16 -3.47 22.56 11.66 -2.29

1.08 18.35 11.94 -4.26 21.05 10.54 -3.97

1.30 17.17 11.45 -5.70 21.13 9.70 -5.15

1.52 16.62 9.71 -6.97 21.88 8.24 -5.86

1.73 16.50 9.15 -7.07 21.41 7.54 -6.43

1.95 16.96 9.37 -7.12 20.42 7.45 -6.75

2.17 18.37 9.61 -7.05 20.28 7.53 -6.90

2.38 18.51 10.00 -6.67 20.87 7.78 -6.64

2.60 18.86 9.92 -6.90 22.09 8.04 -6.26

2.82 18.09 9.26 -7.54 22.05 7.88 -6.29

3.03 17.04 8.08 -8.73 21.97 7.35 -6.91

3.25 16.26 6.64 -10.45 21.18 6.64 -7.77

3.47 15.91 4.70 -12.75 20.27 5.85 -8.75

3.68 13.21 1.67 -16.27 19.73 5.07 -9.61

3.90 7.00 -3.43 -22.32 18.89 3.91 -10.93

4.12 1.20 -12.17 -32.62 17.80 1.61 -13.53

4.33 -9.94 -25.84 -48.69 14.10 -2.89 -18.77

4.55 -30.19 -47.14 -73.88 5.25 -12.62 -29.98

4.77 -57.58 -79.64 -112.31 -14.97 -34.33 -55.07

4.98 -98.38 -127.87 -169.25 -54.31 -82.12 -110.15

Wind speed Wind direction

Relative improvement of Lidar-ANN model compared with:
Lead time 

(mins)

A necessary point of mention is that current commercial scanning lidar systems are expensive to purchase, require skilled

technical staff to operate and maintain, and do not always provide sufficient signal across the entire measurement range.

Therefore the added value must be large enough to justify its use. As shown in this and other minute-scale wind prediction

studies, the “free” statistical approaches which utilize only historical data from existing instruments perform well on these

time scales. However it is necessary to both have access to and store the high-frequency measurements for building and testing5

statistical time series models like ARIMA. This is highly suggested for operators who have an interest in improving their

forecast performance.
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Figure 15. Time series of Lidar-ANN forecast (blue) with DBS reference signals at the 1.08-minute forecast interval. (top left: u-component,

top right: v-component, bottom left: wind speed, bottom right: wind direction)

7 Conclusions

This study has demonstrated a groundwork introduction for utilizing ANN methods together with 2D upwind lidar scans for

the purpose of minute-scale wind forecasting. The field experiment has successfully provided detailed measurements of the site

inflow at large distances (3 km effective) upstream, together with high resolution wind profiles which constitute the downstream

reference.5

Coherent wind structures present in the horizontal PPI scans from the rooftop scanning lidar have been shown to correlate

strongly with scans taken in the range of up to 5-minutes apart. This enables the tracking of spatiotemporal features present in

the scans on very-short timescales. A recently developed convolutional recurrent neural network cell (ConvLSTM) has been

identified as appropriate for modelling the complex space-time relationships present in the scan image sequences. An ANN
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Figure 16. Scatterplot comparison between Lidar-ANN forecast and DBS references for the 1.08-minute forecast interval for: a) u-

component, b) v-component, c) wind speed, d) wind direction

approach consisting of these cells and inspired by video frame prediction engines has been applied to create an online learning

forecast model. The model inputs at each timestep consist of the past 5-minutes of upwind lidar scans, which are used to predict

the horizontal wind vector at the downwind reference position with a forecast horizon spanning 13-seconds to 5-minutes ahead.

The model has been designed to emulate real-time operation, and when utilizing hardware optimized for ANN operations (i.e.

a GPU or AISC), the model is fully capable of producing forecasts which are usable for real-time decision making.5

The horizontal wind vector components (u and v) have been utilized as the predictand in order to enable forecasts of both wind

speed and direction. This allows for better integration into wind farm controllers and power curve models.
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The ANN-lidar model has demonstrated a high degree of skill for predictions up to 4-minutes ahead. When comparing perfor-

mance with other standard benchmarks, the ANN-lidar method outperforms persistence as well as the integrated AR model.

However, the ARIMA benchmark has shown remarkable skill in achieving a lower RMSE than the ANN-lidar method fol-

lowing after the first two timesteps (i.e. from 39 s onwards). This signifies the challenge of demonstrating value with complex

approaches over time series modelling which use already available historical data. Nevertheless, model refinements and tuning5

are recommended, in conjunction with training on a larger dataset to explore further prospects of the approach.
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3.10 Addendum: Key results and lessons learned

• A field campaign was conducted which produced rapid high resolution inflow PPI
scans and reference DBS measurements at the Risø test site.
• 2-Dimensional cross-correlations between pairs of scan images show the advection

of coherent spatial features up to 3 km downwind and up to 5-minutes ahead.
• An appropriate machine learning algorithm (ConvLSTM) was identified which is

able to learn spatiotemporal patterns from sequences of images.
• The ConvLSTM units were used to build an artificial neural network (ANN) which

uses upwind lidar PPI scans to predict wind vectors at the position of the profiling
lidar with a multi-step output up to 5-minutes ahead.
• Horizontal wind vector components (u and v) were predicted to enable both wind

speed and direction forecasts.
• The ANN-lidar approach outperformed two of the three benchmarks up to 4-minutes

ahead (persistence and integrated AR model).
• The ANN-lidar model scored the lowest RMSE against all benchmarks during the

first two forecast periods (13 s and 26 s ahead).
• At the 1-minute ahead timestep, the ANN-lidar model outperformed persistence
with 18% and 21% lower RMSE, and the integrated AR model by 12% and 11%
for wind speed and wind direction respectively.
• ARIMA time series modelling has demonstrated superior skill from the third forecast
period onwards leading to a diminished indication of the ANN-lidar method’s
worthiness.
• The ANN-lidar model is computationally capable of running in real time for advisory

or automated decision input to other processes.
• This approach should be further refined (e.g. through model tuning and datasets
with dissimilar conditions) to determine if the increased complexity and cost
provides added value for industrial use.
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Discussion and outlook
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4.1 What remote sensing can be used for in the
context of minute-scale wind forecasting

Two approaches to remote sensing based forecasting have been demonstrated in this
thesis work which indicate the usefulness of such a system.

The first is predicting the wind speed and direction minutes-ahead using upwind radial
speed measurements together with a propagation model. The second is using the upwind
observations to detect and track coherent structures advecting towards the site. These
can include events such as weather fronts and wind ramps.

Various applications of operational forecasts on these timescales (i.e 0-60 minutes)
have been identified, including the following:

• Wind farm control including induction control and wake steering/deflection.
• Trading in electricity markets with lead times below one-hour. Present day examples

include Australia, and the EPEX Spot markets for national trades within Germany,
France, Austria, Switzerland, Belgium and the Netherlands.
• Power grid balancing for voltage and frequency control by TSOs. This includes

reserve capacity and regulating actions through ancillary service markets which are
presently operating in the Spanish and German grids using wind power plants.
• Asset management by wind power owners and operators, including portfolio opti-

mization and storage (e.g. battery) control.

Site measurements from remote sensing devices offer high-resolution information about
local conditions which dominate the minute-scale wind variability. As the wind is
fundamentally chaotic, it is arguable that numerical weather prediction (NWP) models
on their own will continue to struggle considerably in the lasting future to correctly
resolve these microscale turbulence features. Boundary conditions used for initializing
NWP models may originate from remote sensing devices like Doppler lidar or radar
(i.e. data assimilation), but present computational resources do not enable results to be
available fast enough for real time operation on the minute scale.

In contrast, all forecast methods demonstrated in this body of work are capable of real
time use. However it remains to be answered if any skill increase towards reducing forecast
errors can be capitalized upon by the wind power industry. The lidar instrumentation
used in the field experiments must be purchased, installed and maintained by skilled
technical staff to provide accurate and reliable measurement data. These additional
capital and operational expenses may not translate into a net benefit when compared
with ’free’ methods which use only existing data sources. That being said, as remote
sensing device manufacturers mature and compete to improve product cost, and large
wind farms approach and exceed the gigawatt scale of installed capacity, the business
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case for installing and operating such a system may become feasible as even very small
gains can result in significant economic impacts.

Within the minute-scale, all proposed methods must be benchmarked against statistical
time series modelling approaches such as ARIMA which in surprisingly many cases
outperforms the more complex lidar based methods examined here. The question as to
whether or not ARIMA approaches can be consistently beaten using lidar propagation
models also remains unanswered. The greatest opportunities for constructive impacts
seem to lie in using the lidar system for detecting and tracking anomalies, either through
a pure data driven approach or in a hybrid manner with existing NWP models. Although
partly investigated, this was not the main theme addressed in the PhD project.
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4.2 Recommended practical implementations
In this section, a number of practical suggestions are made towards an operational

realization of a lidar based forecasting system.

Current commercially available pulsed scanning lidar systems are suitable tools, but
are designed with excessive capabilities relative to the design requirements of propagation
based and extreme event detection forecasting methods. Significant application specific
simplifications can be made which would increase the robustness and reliability of the
instruments as well as decrease their cost and maintenance demands. Fixed beam
formulations similar to existing nacelle lidar models could be adapted for this purpose
by increasing the power of the laser source and fibre amplifiers to achieve measurement
ranges equal to the high-power scanning variants.

The significant added cost, complexity, and reliance on concurrent data availability
using multiple systems in dual or triple Doppler configurations leads to the recommen-
dation for deploying single units to scan at each region of interest upstream, and for
obtaining wind field information either using the radial speed measurements directly, or
through SDVR post-processing techniques to obtain the reconstructed horizontal wind
vector components.

The field experiments have utilized two versions of publicly available scanning lidar
hardware- the Leosphere Windcube 200S and 400S. The 400S has an expanded mea-
surement range compared to the 200S system, and is preferred for this application in
order to provide increased data availability at further distances. Ultimately, the scanning
geometry of the WAFFLE experiment where the 400S was used led to a lack of success
in capitalizing on the increased range. This was due to the ground based deployment
where the instrument was not scanning horizontally. The experiments have also taught
us that for feature tracking, it is preferable to trade detail (spatial resolution) for a higher
scan rate (temporal resolution). The coherent structures naturally morph and transform
as they advect. Increasing the scan rate allows for improved tracking, in addition to
reducing distortion of the features due to the fact that the scans are not an instantaneous
snapshot in time.

Although all field experiments performed during the project took place onshore, they
have all attempted to emulate offshore conditions as much as possible (i.e. by reducing
the effects of surface roughness and taking place in coastal environments). This is the
recommended direction for any real world realization of such a system. The increased
turbulence from terrain and surface effects, together with the possibility to deploy cheaper
and simpler ground based instruments (e.g. masts and profiling lidars) around the site
makes the idea better suited for the constraints of offshore locations.

A proposed framework for operating at a wind farm would be to install a simplified
turbine mounted device within the first and/or last row (see Fig. 4.1), or several devices
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placed at the corners of the turbine array to provide spatial coverage for all wind
directions. Mounting the device at close to hub height (either atop the nacelle or fixed
to the tower) will ensure that the horizontal wind measurements are not affected by
wind shear or vertical wind motion (a lesson learned during the WAFFLE campaign).
Similarly to traditional nacelle lidars, beam blockage by the turbine blades and tilting
from trust loading of the rotor and structure are necessary considerations. An alternative
setup would be to deploy a traditional ground based or tower mounted scanning lidar
(onshore) or atop a substation platform in offshore environments. In this configuration,
the scanning lidar would perform either continuous 360◦ PPI scans, or would perform an
initial calibrating sector scan to determine the general wind direction, and then launch
repeating scans centered in that direction.

Figure 4.1: An example of a conceived operational system at the Horns Rev 2 offshore
wind farm. The wind rose is shown in the top right corner, with data obtained
using the Global Wind Atlas. Two lidar systems are mounted on the dark
blue turbines and measure within a given angular width of the presiding
wind direction (indicated with red arrows). This allows for coverage of the
predominant climatology at the site: NW to SW winds (a-b), and S to E
winds (c).

When processing measurement data, it is recommended to utilize advanced filtering
techniques such as the dynamic method (Beck and Kühn, 2017) instead of a strict
threshold filter to increase the effective measurement range. In cases where the lidar
device does not provide sufficient data quality, a fall back approach should be included
which instead relies of the persistence method within the first 30-seconds, and ARIMA
time series modelling after that horizon. The level of sophistication required for processing
lidar PPI measurements is lower for wind speed than direction. In the case of wind speed,
the simple maximum-absolute-magnitude retrieval method is sufficient. However the
high sensitivity and low resolution of this method for wind direction retrieval makes it
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ill advised. In cases of needing accurate wind direction information, it is preferable to
apply fitting algorithms such as IVAP.

In regards to forecast model formulation, two separate approaches are reviewed. The
first being event detection, either for extreme events or for anticipated situations predicted
by NWP models (i.e. a hybrid approach). This method utilizes real time measurements
together with a static set of rules (i.e. model) to determine if an event is detected within
close proximity to the site. Examples include monitoring the upstream wind speed
or direction gradient to detect approaching weather regimes changes, or other highly
localized meteorological phenomena. This is formulated as a classification problem and
as such does not require any past information being time-independent by design. This
method can however be optionally combined with a spatiotemporal advection model to
predict the arrival timing of the event.

The second approach is based either on a simple time of flight shifting of upwind
measurements, or on regression models which employ real time spatiotemporal correlations
to predict wind vectors minutes-ahead. Due to the high temporal autocorrelation of
the wind signals and the short stability of atmospheric conditions, model weights in
the latter approach should be tuned as close to real time as possible. This can be done
be incrementally re-fitting the existing model with new observations as they become
available, or by training a new model on a rolling window of past observations or on
the entire dataset at each timestep. It is also recommended to generate forecasts in a
multi-output fashion (i.e. a vector forecast spanning a range of lead times) to ensure
that all space time correlations can be extrapolated into the forecast.
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4.3 Opportunities for extension of work
The limited duration of this project has imposed limits on the scope of the research and

field work carried out. For future work on the subject, a number of possible continuations
are suggested together with the open-ended questions presented earlier in this discussion
section.

All forecasts in this body of work have been deterministic (single point predictions).
Probabilistic forecasts are emerging as the new standard as they also contribute infor-
mation about the range and distribution of uncertainties around the predicted values.
This is useful for modelling sensitivities and in decision making, e.g. applying optimal
bidding strategies to minimize risk when participating in the auction markets (P. Pin-
son, Chevallier, and Kariniotakis, 2007). Outputs from multiple deterministic models
can be transformed into prediction intervals by methods including quantile regression
averaging (Nowotarski and Weron, 2015), support vector quantile regression (He, 2017),
or approaches based on logistic regression.

As discussed in Section 4.2, a suggestion for future field measurements is to define an
adaptive scan trajectory which tracks the general wind direction, instead of repeating a
fixed pattern which may not be focused upwind of the site. Other continuations of the
measurement efforts include trials with large-scale Doppler lidars such as the Lockheed
Martin WindTracer or Mitsubishi Diabrezza A which can measure at distances up to
30 km for increased look-ahead time. It is also suggested to explore beyond flat cross
sections of the horizontal wind, by including e.g. vertical cross sections from RHI scans,
or even 3-D volumetric trajectories to account for wind shear and the vertical structure
of atmospheric motion.

State of the art wind farm models (e.g. PossPOW from DTU) have been recently
applied for second-scale forecasting, using SCADA signals from within the wind farm
to predict power production at downstream turbine rows during periods of normal and
down-regulated operation (Göçmen et al., 2019). This system is envisioned to eventually
interface with an operational wind farm controller and also enable grid support in the
form of reserve power provisions. A coupling between one of the approaches outlined
in this thesis which predicts for the first row, together with a wind farm model for the
remaining turbines presents a natural combination which should be explored in future
work.



CHAPTER 5
Conclusions
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This PhD project has presented a framework for applications of minute-scale wind
forecasts, and outlined various methods used to generate them in real time.

A collaborative workshop on the topic was convened through the IEA platform which
brought together users and providers of wind power forecasts to exchange ideas and
knowledge. The main outcomes have been reported in an open access journal article,
which presents a broad overview of the field.

Applications of minute-scale wind forecasts mainly focus on three key areas: wind
farm control, grid regulation and balancing, and trading in intrahour electricity markets.

In contrast to traditional closed-loop feedback control systems which adapt to imme-
diate conditions at the turbine or wind farm, advanced control strategies using inputs
from forecasts on the second and minute scale allow for preemptive optimization in
anticipation of impending conditions. This acts to increase total production and decrease
fatigue loads, leading to an expected extension of the turbine’s lifetime and increased
revenues for the owner. Short range nacelle lidars have become the standard for providing
second-scale previews for individual wind turbine control, but lack the spatial coverage
and measurement range needed for use in farm level control on the minute scale. Long
range variants including high energy pulsed lidar or Doppler radar are however capable
of measurement distances up to 5-30 km (design dependent) and are thus seen as suitable
instruments for providing inputs to forecast models used for medium to long range
control (i.e. in the range of 10-seconds to 10-minutes). The primary stakeholders for
these applications are wind turbine manufacturers and plant operators.

The second major application lies within grid integration of wind power and is mainly
applicable to national and regional transmission system operators (TSOs), balancing
authorities (BA), and industrial participants in regulating roles (i.e. those supplying
balancing capacity). The requirement of continuous physical balance between supply
and demand in the electrical grid is strained by increased variability and production
uncertainty introduced by the wind power generators. Imbalances between scheduled
and realized production need to be accounted for by balancing controls which can occur
either on the demand side (e.g. demand response or load shedding) or on the supply side
(e.g. hydro or gas turbine governing, storage actions, wind power curtailment). Primary
controls are normally automated actions on the seconds-scale and thus are not relevant
in this context. However, secondary and tertiary balancing include both automated and
manual actions with response times on the minute-scale. Improved wind power forecasts
on the minute-scale can therefore reduce balancing costs and possibly enable wind power
producers to participate in balancing roles in the future.

The third key application relates to the trading of power in wholesale electricity markets.
Market operators such as NordPool and EPEX offer spot trading of electric power on
day-ahead and intraday timescales with dispatch and pricing determined through an
auction style bidding format. Participants in these markets are balance responsible for
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their deviations between offered (accepted) supply and actual deliveries. For conventional
power plants with controllable fuel resources, these imbalances are usually insignificant.
However the variable non-controllable nature of the atmosphere combined with errors in
the longer-term wind power forecasts can lead to large financial losses in cases where the
direction of the imbalance is unfavourable to the grid. The forecasts for unsubsidized
wind power players in day-ahead markets are normally generated by numerical weather
prediction (NWP) models, with corrections being made through the intraday markets to
reflect updated predictions about real production. The lead time to gate closure for these
short term markets is arbitrarily chosen by the market operator. Traditionally power has
been traded in 1-hour blocks, but is beginning to be reformulated into blocks of 5, 10, 15,
or 30 minutes with gate closures also on the minute-scale as this reduces balancing costs
and thus pricing to consumers. The utility of remote sensing based forecast models is
therefore also applicable in this field, with the main stakeholders being plant operators,
energy traders and energy asset managers.

The fundamental variability of the wind on very-short time scales justifies the need for
real-time measurement inputs to minute-scale forecasting models. Physical-computational
approaches are limited by their knowledge of boundary conditions and ability to deliver
results with the required lead time. Alternatively, time series modelling approaches are
able to exploit the strong temporal autocorrelation of the wind to demonstrate skill
on the minute scale. However they are limited by their ability to only infer patterns
from historical data. Therefore, a remote sensing based approach has been envisioned
which can measure spatially distributed winds with a high sampling rate. The added
value in this approach is that upwind measurements constitute the wind resource which
is advecting towards the site. The local observations can then be used as inputs to a
forecasting model.

To gather data for testing and evaluating the potential for remote sensing based
forecasts, a series of field experiments were conducted using DTU’s fleet of pulsed
scanning Doppler lidars. The initial WAFFLE investigation (Section 3.2), which used a
ground-based unit in plan position indicator (PPI) configuration to measure winds with
a low elevation angle, saw a breakdown in correlations at distance of the horizontal winds
due to the effect of wind shear and the natural vertical decorrelation of winds. This was
rectified in the following Østerild Balconies field campaign (Section 3.4) by mounting
the lidar alongside a meteorological mast at the desired height and scanning along a
flat horizontal plane. The 1-D wind retrieval correlation results from the Balconies
experiment demonstrated a sharp correlation peak with a spatiotemporal relationship
extended out to 3 km upwind before significantly broadening. In the final LASCAR
field trial (Section 3.8), a similar setup was used where the lidar was deployed on the
roof of a building and performed flat, rapid PPI scans focusing up to 3 km upwind. 2-D
correlations of this dataset were inspected, which show the ability to track coherent
spatial features of the upstream wind field as they advect downstream in time, over a
timescale of up to 5-minutes.
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Two classes of remote sensing based forecasts have been identified. The first being
classification based approaches which can be used to detect extreme events and warn
of incidents expected to occur but at an unknown time. An example of such an event
is the weather front passage with 180◦ direction change captured during the Balconies
experiment at Østerild (Section 3.6). The boundary was first detected 2-hours before
arrival to the site, and its propagation was tracked over the same period. Furthermore,
the event was not contained in the NWP (WRF) forecasts yet would have a substantial
impact on both the energy production and loads of the turbines. This type of forward
information is invaluable as statistical models based on historical data have no skill in
correctly predicting these types of events.

The second category represents regression based approaches which give a deterministic
or probabilistic forecast output minutes-ahead. This has been the main area of focus
in this body of work. The first technique, applied on the WAFFLE dataset, is a basic
approach which shifts the IVAP reconstructed upstream wind speed signal by the time-
of-flight distance to the downstream reference position. This method (at the 1-minute
horizon) has achieved a 20% and 30% reduction in RMSE over persistence for wind speed
and wind power respectively.

The following study, applied on the Østerild Balconies dataset, uses a wind direction
aligned retrieval method to obtain upwind wind speeds which are fit to a linear model
using stochastic gradient descent regression (SGDR). The model is incrementally fit
following each newly available measurement, and a range of 1 to 60-minute ahead wind
speeds are predicted. This method has achieved similar improvements over (10-minute
average) persistence on the 1-minute scale (21%), 10.9% at the 5-minute scale, 9.2% at
10-minutes, 7.1% at 30-minutes, and 6.2% at 60-minutes.

The final and most complex technique was applied on the LASCAR dataset. The
2-D radial speeds were input into a convolutional-recurrent neural network (ConvLSTM)
which exploits spatiotemporal patterns from sequences of lidar scan images to forecast
wind vectors in a multi-output fashion up to 5-minutes ahead. The wind vector approach
was used in order to extend the forecasts to include wind direction. This had not been
incorporated into the previous studies because its importance for wind farm control had
not yet been established. At the 1-minute ahead timestep, performance is similar to
the first two lidar based techniques: 18% and 21% RMSE improvement over persistence
for wind speed and wind direction respectively. However, the ARIMA time series
model benchmark demonstrates statistically higher skill for time horizons greater than
30-seconds, leading to questions of the added value and justification of the resource
requirements needed to deploy and operate the instrument for routine forecasting purposes
(i.e. not extreme events).

Overall, remote sensing instruments including long-range pulsed Doppler lidars present
a promising resource for inputs to generating minute-scale wind power forecasts. They
provide spatial and temporal information with a high level of detail about impending
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conditions and can detect changes in the wind resource before arrival to the site. This
can take the shape of either an anomaly classification system for extreme events, or as a
routine (continuous) forecasting tool which can be used in advanced control and trading
algorithms. The former provides clearer added benefits, as there are no existing methods
to attain this information on the minute scale with high accuracy (particularly the timing
of such events). The latter has been applied to produce wind speed and wind vector
(speed and direction) forecasts, with the vector approach preferable due to its usefulness
in wind farm control and in the transformation of wind resources to wind farm power
output. Derived products such as the wind direction variance (meandering) and wind
speed variance (a measure of turbulence) are also available using this method, which
are relevant for use in wind farm models. The worthiness of the continuous approach is
highly dependent on a range of factors including; local meteorological and topographical
conditions at the site (e.g. site specific weather patterns, on/off-shore deployment), the
scale of the wind farm (e.g. spatial, layout, installed capacity), economic constraints (e.g.
market mechanisms, balancing penalties, cost of instrumentation and maintenance), and
technical characteristics (e.g. model formulation, data quality control, integration with
other processes).

Ultimately, as the next generation of wind power forecasting methods are developed,
the improved accuracy and widespread use of minute-scale practices will lead to the
more efficient utilization of wind power and thereby a reduction in the levelized cost of
electricity.
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