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Can we predict short term extreme conditions from

10-minute data only?

Ásta Hannesdóttir, Gunner Chr. Larsen and Elin Svensson

Technical University of Denmark, Department of Wind Energy, Frederiksborgvej 399, 4000
Roskilde Denmark

E-mail: astah@dtu.dk

Abstract. In this study we compare 50-year return values of extreme estimates from a model
to values estimated from data analysis. The outputs present a suite of extreme wind load
conditions relevant for wind turbine design. The input parameters for the model consist of only
statistical wind data, rather than high-frequency measurements that are less available. The
model generally predicts lower extreme values than prescribed in the IEC wind turbine safety
standard and is therefore of great interest to wind turbine manufacturers. This is the first time
a systematic validation of the full suite of extreme models is performed in the whole wind speed
range. The accuracy of the model predictions is estimated using a comprehensive data set from
a complex terrain site. It is found that the mean absolute percentage error between the data
analysis and the model outputs lies within the range of 8.1% - 65.8%.

1. Introduction
The model of Larsen[1] predicts a set of extreme wind load conditions relevant for wind turbine
design. These extreme conditions correspond to four prescribed extreme conditions of the
IEC standard for wind turbine safety [2, 3], namely extreme operating gust (EOG), extreme
wind shear (EWS), extreme coherent gust with direction change (ECD) and extreme direction
change (EDC). Assuming the IEC prescribed Weibull or Rayleigh distribution of mean wind
speeds, the advantage of using the Larsen model is that the only required input parameters
are the reference turbulence intensity (Iref) and annual-average wind speed (Vave) combined
with knowledge of the site-specific terrain type. This model is of great interest to wind turbine
manufacturers and others performing site assessment or turbine certification, as it generally
predicts lower extremes than those prescribed in the IEC standard. Furthermore, the model
parameters may be estimated solely from data consisting of 10-minute average wind speed and
standard deviations that often are readily available, thus limiting the need for high-frequency
measurements. While the model is based on solid theory of extreme excursions [7, 8] it has
not yet been systematically validated against high-frequency measurements, where the extreme
wind speed excursions have been estimated as function of wind speed. Only crude preliminary
validation has been made on selected parts of the model [5, 6], without wind speed dependence,
without rise time considerations, and without proper filtering of the wind speed measurements.

The aim of the current study is to:

• Implement the Larsen model, using site-specific Iref and 10-minute mean wind velocity
distribution, while all other assumptions and inputs come from IEC formulations.
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• Use site-specific turbulence length scale and updated turbulence intensity considerations
for the Larsen model.

• Estimate extreme values corresponding to the EOG, ECD, EDC and EWS directly from
measurements.

• Compare the Larsen model predictions with the estimated extreme values.

High-frequency wind measurements from a moderately complex site is used to estimate
extreme events. The measurements are low-pass filtered with the same cut-off frequency as
used for the parameter estimation of the Larsen model. The joint description of the estimated
extreme values and wind speed are extrapolated to 50-year return period contours, by means
of the inverse first-order reliability method (IFORM) [11]. We assume the results from the
IFORM analysis may be used as a basis to compare with the Larsen model outputs and evaluate
whether the model is suitable for site-specific extreme estimates by use of 10-minute wind speed
statistics only. The focus of the current study is not only to validate the Larsen model, but also
to investigate how good extreme estimates can be achieved with the model based entirely on
IEC turbulence assumptions.

2. Site and measurements
The Perdigão 2017 field campaign took place in Vale do Cobrão in central Portugal. The area is
characterized as moderately complex and consists of a two-dimensional valley located between
two parallel ridges (Figure 1). The terrain is covered by a vegetative canopy with an average
height of around 10 m [9]. A wind turbine is located on the southeastern ridge, while the
dominant wind direction is perpendicular to the ridges [9]. In the field campaign, the area was
monitored by a dense network of instruments, including nine meteorological masts belonging to
DTU Wind Energy. The mast locations are shown in Figure 2, where 100 and 60 m masts are
marked with red and orange circles, respectively. In this study, wind data from Tower 29 has
been used. Tower 29 is located on the northeastern ridge (at a height of approximately 450 m)
and is equipped with a Gill WM Pro sonic at 10, 20, 30, 40, 60, 80 and 100 m a.g.l. The sonic
measures with a frequency of 18 Hz. The boom directions ranges from 130-138◦ [10].

Figure 1. The valley between the parallel ridges in
Perdigão, looking northwestward.

Figure 2. Position and tower
numbers of the meteorological
masts in Perdigão.

The data availability from January 2017 to June 2018 for mast 29 can be seen in Figure 3,
where the white colour indicates missing data.
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Figure 3. The data availability for mast 29 during the measurement period. Grey shows
available data, and white shows missing data.

3. The Larsen model
This section contains a brief description of the Larsen extreme wind load condition model.
More details about the Larsen model and parameter estimations may be found in [1]. Detailed
descriptions the theoretical background and derivations of the model expression are given
in [5, 8, 6]. A Python code with an implementation of the model can be found at the
following GitLab repository: https://gitlab.windenergy.dtu.dk/astah/Calibration_of_

IEC_extremes

3.1. Theory
The basis behind the Larsen model is an asymptotic expression for the distribution of the large
wind velocity fluctuations for a given recurrence period. This approach combines a carefully
selected transformation of relevant turbulence stochastic processes with earlier asymptotic
extreme derivations done by Cartwright and Longuet-Higgens [7], where wind velocity excursion
are assumed to be Gaussian-distributed. The first step in the Larsen derivation is to assume that
the extreme wind velocity fluctuations (ue) follow a Gamma distribution with a shape parameter
of 1/2,

f
(
ue(z);σu(z), C(z)

)
=

1

2
√

2πC(z)σu(z)|ue(z)|
exp

(
−|ue(z)|

2C(z)σu(z)

)
, (1)

where σu(z) is the standard deviation of the total data population at altitude z, and C(z) is a
height- and terrain-dependent dimensionless constant. The parameter C(z), may be estimated
by fitting eq.1 to the tail of a distribution of normalized wind velocity excursions:

ue(t, z) =
u(t, z)− Ū(z)

Ū(z)
, (2)

where u(t, z) is the fluctuating wind velocity and Ū(z) is the ten-minute average wind speed. By
applying a monotonic transformation to ue (eq. 1) and normalizing with σu, the transformed
variable (ζm = ue/σu) may be expressed by a Gumbel distribution. This distribution gives
the asymptotic expression of ue with any desired return period T . The mode of the Gumbel
distribution (i.e. the most likely extreme) is given by

M [ζm] = 2C(z) ln(κT ). (3)

Here κ gives the expected rate of local extremes and is expressed as

κ ≡ e−1/C(z)

√
m3

2

m2
0m4

(4)

https://gitlab.windenergy.dtu.dk/astah/Calibration_of_IEC_extremes
https://gitlab.windenergy.dtu.dk/astah/Calibration_of_IEC_extremes
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where m0 is the zeroth-order spectral moment, or the variance, and m2 and m4 are the second-
and the fourth-order spectral moments respectively. These spectral moments may be evaluated
on closed form assuming the Kaimal spectrum (see Appendix A). Here we use the the Kaimal
spectral model, as it is expressed in the IEC standard,

Si(f) = 4σ2
i

Li
Ū

(
1 +

6fLi
Ū

)−5/3

(5)

where the subscript i refers to either the u− or the v-component of the wind velocity and L is
the length scale of turbulence.

The extremes defined/specified in the IEC code represent large gusts that are assumed to
be coherent across the wind turbine rotor, which is an abstraction. This assumption may be
approximated within the model framework by defining a cut-off frequency as

fc =
Ū

2DR
(6)

where DR is the rotor diameter considered in the model application. By choosing a fluctuation
’spatial size’ of twice the rotor diameter the turbulent excursions may be assumed approximately
coherent across the rotor.

The wind velocity variance (m0 in eq. A.1) and the other spectral moments are influenced
by the introduced low-pass filter, where the variance becomes

σ2
if =

∫ fc

0
Si(f)df = σ2

i

[
1−

(
1 + 6fc

Li
Ū

)−2/3
]
. (7)

The reason for applying this cut-off frequency in the evaluation of spectral moments is to
filter out the small-scale fluctuations of the wind field, or the high frequencies of the Kaimal
spectrum. With this choice of fc the model outputs become rotor size dependent.

3.2. Parameter estimation
The model theory and predictions can be applied with a few additional formulations that are
provided in the IEC standard. We can apply the normal turbulence model (NTM) for the
turbulence standard deviation,

σu = Iref

(
3

4
Ū + b

)
(8)

where Iref is the reference turbulence intensity. It should be noted that by setting b = 5.6 m/s,
σu represents the 90th percentile of the standard deviation as function of wind speed. The
average standard deviation may be approximated by setting b = 3.8 m/s [2, p. 26].

For the vertical shear estimation we additionally need the coherence model

Coh(D, Ū , f) = exp

−12

√(
fD

Ū

)2

+ 0.12

(
D

Lu

)2
 (9)

which is a function of frequency f , mean wind speed Ū and the vertical distance D (the rotor
diameter), or the spatial extent of the estimated shear event.

We will estimate the terrain- and height-dependent parameter C(z) directly from
measurements. It is however possible to use the prescribed equation from [1] for the parameter

C(z) = az + b (10)
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where a and b are constants that depend on the terrain type. The constants have been estimated
for offshore/coastal (a = 0.0013, b = 0.3026), flat/homogeneous (a = 0.0003, b = 0.3011) and
hilly terrain (a = 0.0009, b = 0.3581).

The ratio σv/σu = 0.8 may also adapted from the IEC standard, though in the current
analysis this ratio is estimated from the measurements. This is because the IEC value refers
to flat and homogeneous terrain, which is contrary to the terrain conditions at the investigated
site. Finally, the Kaimal turbulence length scale is given in the IEC standard as, Lu = 340 m,
Lv = 113 m (for heights above 60 m). We adapt this formulation in the current analysis as well
as estimates directly from measurements.

3.3. EOG
The gust amplitude of the EOG load case may be estimated within the model framework by
multiplying eq. 3 with the filtered standard deviation eq. 7 of the u-component of the wind
velocity

M [u] = 2C(z)σuf ln(κT ). (11)

3.4. ECD
In the Larsen model the ECD load case is considered as joint extremes of turbulent dictated
u-component and v-component wind velocity fluctuations. The derivation of the joint maxima
can be found in [6], where the mode of the u-component extreme is

M [uj ] = 2C(z)σuf ln

(
T
mv4mu2

mu0mv2

)
(12)

and the mode of the v-component extreme is

M [vj ] = 2C(z)σvf ln

(
T
mu4mv2

mv0mu2

)
. (13)

The total amplitude of the ECD gust may be calculated as

Vcg =
√
M [uj ]2 +M [vj ]2 (14)

and the associated direction change during these joint extreme becomes

M [θ] = tan−1

(
M [vj ]

Ū ±M [uj ]

)
(15)

3.5. EDC
The extreme direction change is defined here as an extreme wind velocity v-component excursion,
with a zero u-component excursion,

M [v] = 2C(z)σvf ln(κT ) (16)

Based on this extreme v-component excursion, the direction change is calculated by

M [θ] = tan−1

(
M [v]

Ū

)
(17)
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3.6. EWS
Details of the derivation is available in [5] which, besides estimates of extreme short-term wind
shears, also offer an estimate of the most likely spatial shape of the extreme shear excursion.
Referring to [5] the extreme short-term wind shear excursion is defined by

M [δu] = 2C(z)σeff ln(κT ) (18)

where σeff is the effective standard deviation defined as

σ2
eff = 2(1− ρ)σ2

uf . (19)

Here ρ is the correlation coefficient estimated across a distance D. The formulation of the
correlation coefficient may be found in Appendix B.

3.7. Return period function
The return period T is defined for the model implementation as function of wind speed. Here
we use 50-years with the unit of seconds, (i.e t = 50 · 365 · 24 · 60 · 60 s). By multiplying t with
the wind speed distribution f(Ū) we obtain a wind speed dependent return period:

T (Ū) = t · f(Ū) (20)

T (Ū) gives the time span within a particular wind speed bin during the defined return period.
In order to have wind speed dependent model estimates we use T (Ū) as input for the extreme
predictions given in equations 11, 12, 13, 16 and 18.

3.8. Gust rise-time factor
The last relevant and important consideration of the Larsen model is the gust rise-time factor.
This factor is introduced in the model as the extreme value predictions are not bound to any
specific rise time. However, the gusts prescribed in the IEC standard all have specific rise times,
and therefore we define the gust rise-time factor as a function of a predefined time-span,

fgr

(
τg,

Li
Ū

)
= 1−

R(τg,
Li

Ū
)

R(0)
(21)

where R(τg,
Li

Ū
) is the autocovariance as function of the time lag τg, or gust rise time. The

autocovariance may be estimated with the inverse Fourier transform of the Kaimal spectrum,

where the complete formulation of fgr

(
τg,

Li

Ū

)
is found in Appendix C. The gust rise-time factor

is multiplied with all the model excursion (eqs. 11–13, 16 and 18) to achieve the desired gust
rise time.

4. Basis for comparison
Before comparing the Larsen model extreme predictions to the Perdigão measurements it is
important to process the measurements using some of the same assumptions that are used in
the model description. To get a meaningful basis of comparison, the measurements are low-pass
filtered with the same cut-off frequency as used in the estimation of the spectral moments in
the Larsen model. Here we apply a second order Butterworth filter to each ten minute sample
of the measurements with a cut-off frequency as defined in eq. 6.

Figure 4 shows an example of u-component wind velocity measurements that have been low-
pass filtered. It may be seen how the small fluctuations, or high frequencies are removed from
the filtered signal. These small fluctuations will therefore not influence the estimated extreme
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Figure 4. The longitudinal component of wind velocity measurements from 100 m in Perdigão.
The measurements shown are: raw (blue), low-pass filtered (orange), and 10 minute mean
(green).

statistics of the turbulent fluctuations. The applied low-pass filtering introduces a phase shift
in the signal of approximately 2 seconds.

In this study we use the low-pass filtered measurements to estimate extreme values. For each
10-minute sample we subtract the same sample that has been shifted by the corresponding rise
time and find the maximum value. The ECD is a special case though, as it is considered as a
joint event of u-component and v-component extremes. In this case the index of maximum of
the joint event is found by

ECDidx = max

(
Uf (t+ ∆t)− Uf (t)

max(Uf (t+ ∆t)− Uf (t))
·
|Vf (t+ ∆t)− Vf (t)|

max(|Vf (t+ ∆t)− Vf (t)|)

)
(22)

where Uf and Vf are respectively the u- and v-component of the filtered wind speed signal. The
rise times for the different load cases are chosen according to the IEC standard which are: 3 s
for the EOG, 6 s for the EWS and EDC, and 10 s for the ECD. These same rise times are also
used in the Larsen model rise-time factor (eq. 21). These values are then finally extrapolated
to give a 50-year return period contour with the IFORM (see next section).

5. Environmental contour method/ inverse FORM
The IFORM is a widely used method within wind energy to estimate the 50-year return period
contour of a joint probability distribution, e.g of turbulence standard deviation (σ) and 10-
minute mean wind speed (Ū). More information on the IFORM may be found in e.g. [12], [11]
and [13].

According to the IEC standard [3] the 10-minute mean wind speed is assumed to follow a
Weibull distribution, and the 10-minute standard deviation of turbulent stream-wise velocity
component fluctuations (σu) is assumed to follow either a log-normal- or a Weibull distribution
conditional on mean wind speed (which is a new option ed.4 [3]). In this study we follow the
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assumption of Weibull distributed wind speed and turbulence, and assume further that all the
estimated wind velocity extremes, e.g. ∆u3s, follow Weibull distribution conditional on mean
wind speed.

In IFORM analysis we need to obtain a ”reliability index” β, which has its name from
traditional FORM. The reliability index translates the desired return period Tr (here 50-years)
into a measure in standard Gaussian space,

β = Φ−1

(
1− Tt

Tr

)
−→ Φ−1

(
1− 1

50nm

)
(23)

where Φ−1 is the inverse Gaussian cumulative distribution function (CDF), Tt is the duration
(here 10 minutes) of the period we measure each extreme within, and nm is the number of
10-minute measurements we record over a one-year period. The length of the reliability index
β may be estimated with

β =
√
u2

1 + u2
2 (24)

where u1 and u2 are the coordinates of a contour in standard Gaussian space. These coordinates
may be transformed to the physical variable space of the current analysis using the Rosenblatt
transformation [14]:

Ū = F−1
Ū

(
Φ(u1)

)
, ∆u = F−1

∆u|Ū

(
Φ(u2)

)
(25)

where FŪ is the Weibull CDF for the 10-minute mean wind speed, and F∆u|U is the conditional
Weibull CDF for ∆u:

FV (V ) = 1− e(Ū/A)k (26)

F∆u|Ū (∆u) = 1− e(∆u/A(Ū))k(Ū)
(27)

Here k and A are respectively the shape and scale parameters of the Weibull distribution, and
k(Ū) and A(Ū) are respectively the shape and scale parameters of the conditional Weibull
distribution.

An important step in the current analysis is to estimate the shape parameter k(Ū) and the
scale parameter A(Ū) as function of mean wind speed from the measurements.

6. The C(z) parameter at Perdigão
The wind velocity excursions (eq. 2) were calculated at 20 m, 60 m and 100 m height at Perdigão.
Figure 5 shows the distribution of the excursions at 100 m height with a Gaussian fit to the
distribution and the Gamma function (eq. 1) fit to the tail.

In this example the tail is defined as excursions beyond 5 times the standard deviation of
the data distribution, which is 0.13 m/s at 100 m, 0.14 m/s at 60 m and 0.22 m/s at 20 m. It
may be seen how the tail of Gamma distribution resembles a straight line on the semi-log plot.
Though the straight line does not follow the data distribution in the whole tail range it does so
at the tail edges, which are responsible for the extreme excursions.

The fitting of eq. 2 to the tails of the data distributions gave the following parameter
estimates: C(100m) = 0.49, C(60m) = 0.48, and C(20m) = 0.43. These parameter estimates
are used in the following section for the Larsen model.

7. Length-scale dependence
It may be seen from eqs. 11–13, 16 and 18 that the model excursions have a linear dependence
on the 10-minute standard deviation, σi. However, it is not as intuitive to see the dependence
of the Kaimal turbulence length scale on the modeled extremes. This is mainly due to the fact
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Figure 5. Wind velocity excursions (u-component) from linearly detrended measurement.

that the length scale enters both in the extreme amplitude estimates (eq. 11) and in the gust
rise-time factor (eq. 21). Figure 6 shows the length scale-dependence of the product of the EOG
excursion and the gust rise time factor with τ= 3 s at three different wind speeds. It is seen
how the modelled EOG amplitude decreases with increasing length scale.

0 200 400 600 800 1000 1200 1400
L [m]

2

4

6

8

10

12

f(
,U

/L
)

M
[u

eo
g]

U=6m/s
U=10m/s
U=14m/s

Figure 6. The product of the gust rise-time factor and the EOG excursion as function of the
Kaimal turbulence length scale at three different wind speeds.

8. Comparison of IFORM analysis and Larsen model outputs
In the following section we compare the outputs of the Larsen model with the results from the
IFORM analysis. One of the input parameters to the model is Iref = 0.16, which has been
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estimated according to the IEC standard from the measured 10-minute standard deviations
(linearly detrended) from Perdigão.

Other general parameters include: D = 80 m for the EWS case and D = 100 m for the
rest of the cases (corresponding to a medium-size rotor diameter). The 80 m choice for the
EWS case is because the measured (extreme) shears are determined combining measurements
performed at 20 m and 100 m heights, respectively. The measurements have been low-pass
filtered with a cut-off frequency fc = Ū/(2DR) except for the EWS case where they are filtered
with fc = Ū/(DR). The terrain and hight dependent parameter C(z) is C(100) = 0.49 for all
load cases except for the EWS, where we use C(60) = 0.48. The latter choice is because 60 m
is the average altitude for the shear analysis. The ratio σv/σu = 0.96 has been estimated from
the detrended measurements.

We tested the model with two different setups. In the first setup we used the Kaimal
turbulence length scale, Lu = 340 m, Lv = 113 m adapted from the IEC standard with the
90th percentile 10-minute standard deviation (eq. 8 with b=5.6). For the second model setup
we used the average 10-minute standard deviation (eq. 8 with b=3.8) and the Kaimal turbulence
length scale estimated from the high frequency measurements at 100 m. The turbulence length
scale was estimated by fitting eq. 5 to the power spectrum of 30-minute samples of wind speed
measurements. The average of the estimated length scales was found to be Lu = 135 m and
Lv = 112 m, which reflects the complex nature of the investigated site. See table 8 for the
differences in the model setup.

Table 1. Model setup differences.

Setup 1 Setup 2

Lu = 340 m Lu = 135 m
Lv = 113 m Lv = 112 m
σu = Iref

(
3
4 Ū + 5.6

)
σu = Iref

(
3
4 Ū + 3.8

)

We have calculated the mean absolute percentage error (MAPE) between the model estimates
and the corresponding points on the IFORM curves at discrete mean wind speeds Ū =
[4,5,...,14,15] m/s:

MAPE =
100%

n

n∑
i=1

∣∣∣∣Ai − FiAi

∣∣∣∣ (28)

where Ai are points from the IFORM curve, and Fi are Larsen model outputs.

For the comparison a lower threshold was applied to the mean wind speed, and the extremes
estimated from the measurements. It is worth mentioning, that this is consistent with the
asymptotic character of the Larsen model with focus on large extremes. The thresholds are:
3.5 m/s on the wind speed, 1 m/s on the EOG and EDC extremes, 3 m/s on the EWS and 15◦ on
the EDC. Because these thresholds were applied, we used the 3-parameter Weibull distribution
fit to the 10-minute wind speed and all estimated extreme values. The location parameter of
the Weibull distribution equals the threshold applied to the data.

8.1. EOG comparison
The Weibull parameters have been estimated as function of wind speed for the IFORM
analysis. This is done by binning the extreme estimates ∆u3s and fitting the 3-parameter
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Weibull distribution to each bin. To estimate the conditional parameters, a second order
polynomial is fit to the A(Ū) and k(Ū) parameters. Thus, the estimated parameters are:
A(Ū) = 1.3 · 10−2Ū2 − 0.12Ū + 0.39 and k(Ū) = 9.2 · 10−3Ū2 − 0.11Ū + 1.2. For the 10-minute
mean wind speed the estimated Weibull parameters are: k = 2.8, A = 6.4 m/s.

In Figure 7 the estimated ∆u3s as function of wind speed are shown with blue dots. The
output from the IFORM analysis is shown with an orange curve, and the Larsen model outputs
with a green and a purple curve. The Larsen model setup 2 curve gives the highest estimates
in the whole range.

Figure 7. 3-second wind velocity extremes estimated from low-pass filtered measurements (blue
dots). 50-year return period curves estimated with IFORM (orange), the Larsen model setup 1
(green) and Larsen model setup 2 (purple).

The MAPE between the IFORM and Larsen setup 1 curves is: 16.2%
The MAPE between the IFORM and Larsen setup 2 curves is: 12.4%

8.2. ECD comparison
Figure 8 and Figure 9 show the joint event of u-component and v-component, respectively. The
extremes have been estimated with eq. 22. The estimated extremes are shown with blue dots,
the IFORM estimated 50-year return period curve with orange and the Larsen model outputs
with green and purple curves. It is seen that the Larsen model predicts lower values in the whole
wind speed range for the u-component extremes, except for model setup 2 for wind speeds be-
tween 12 and 14 m/s. The Larsen model setup 1 predicts the highest values for the v-component
extremes for wind speed bins 8 m/s - 15m/s.

The estimated conditional Weibull parameters for the u-component are: A(Ū) = 1.8·10−2Ū2−
0.11Ū + 0.72 and k(Ū) = 4.9 · 10−3Ū2 − 2.0 · 10−2Ū + 1.0
The estimated conditional Weibull parameters for the v-component are: A(Ū) = 1.8 · 10−2Ū2−
0.16Ū + 0.93 and k(Ū) = 0.011Ū2 − 0.14Ū + 1.5
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For the 10-minute mean wind speed the estimated Weibull parameters are: k = 2.1, A = 5.0
m/s.

Figure 8. 10-second u-component wind
velocity extremes estimated from low-pass
filtered measurements (blue dots). 50-year
return period curves estimated with IFORM
(orange), the Larsen model setup 1 (green)
and Larsen model setup 2 (purple).

Figure 9. 10-second v-component wind
velocity extremes estimated from low-pass
filtered measurements (blue dots). 50-year
return period curves estimated with IFORM
(orange), the Larsen model setup 1 (green)
and Larsen model setup 2 (purple).

u-component curves:
The MAPE between the IFORM and Larsen setup 1 curves is: 23.8%.
The MAPE between the IFORM and Larsen setup 2 curves is: 12.6%.
v-component curves:
The MAPE between the IFORM and Larsen setup 1 curves is: 8.1%.
The MAPE between the IFORM and Larsen setup 2 curves is: 13.3%.

8.3. EWS comparison
The extreme shear is estimated between 20 m and 100 m and here the measurements have been
filtered with fc = Ū/D. The Larsen model predicts the stochastic part of the extreme shear
only, and therefore we have added the mean background shear to the model predictions. This
mean background shear is estimated from:

Ū(z) = Ūhub(z/zhub)
α (29)

with α = 0.2.

The estimated conditional Weibull parameters are: A(Ū) = 6.2 · 10−2Ū2 − 0.54Ū + 1.75 and
k(Ū) = 1.5 · 10−2Ū2 − 9.9 · 10−2Ū + 1.03. For the 10-minute mean wind speed the estimated
Weibull parameters are: k = 2.3, and A = 5.0 m/s. In Figure 10 the estimated extreme shear
events are indicated with blue dots, the IFORM estimated shear curve with orange and the
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Larsen model EWS estimates with green and purple curves. The Larsen model shows lower
estimates in the whole wind speed range.

Figure 10. 6-second extreme wind velocity shear estimated from low-pass filtered measurements
between 20 m and 100 m (blue dots). 50-year return period curves estimated with IFORM
(orange), the Larsen model setup 1 (green) and Larsen model setup 2 (purple).

The MAPE between the IFORM and Larsen setup 1 curves is: 40.8%.
The MAPE between the IFORM and Larsen setup 2 curves is: 20.3%.

8.4. EDC comparison
In Figure 11 the estimated extreme 6-second direction change is shown with blue dots. The
Larsen EDC model for both model setups is shown with a green and a purple curve. The Larsen
model outputs underestimate the direction change in the whole wind speed range. Therefore,
we also implemented the ECD model to predict the extreme direction change for comparison,
which may be seen in Figure 12.

The estimated conditional Weibull parameters are: A(Ū) = 3.0 · 10−2Ū2 − 0.79Ū + 10.2 and
k(Ū) = 2.8 · 10−3Ū2 − 3.5 · 10−2Ū + 1.0. For the 10-minute mean wind speed the estimated
Weibull parameters are: k = 1.5 and A = 3.8 m/s.
EDC model curves:
The MAPE between the IFORM and Larsen setup 1 curves is: 49.6%.
The MAPE between the IFORM and Larsen setup 2 curves is: 54.4%.
ECD model curves:
The MAPE between the IFORM and Larsen setup 1 curves is: 24.2%.
The MAPE between the IFORM and Larsen setup 2 curves is: 21.7%.

9. Discussion
Comparing Figures 7–12 and the MAPE between the Larsen model and the IFORM analysis
we observe the smallest differences for the EOG and the ECD load cases. The IFORM- and the
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Figure 11. 6-second extremes wind direc-
tion change estimated from low-pass filtered
measurements (blue dots). 50-year return pe-
riod curves estimated with IFORM (orange),
the EDC Larsen model setup 1 (green) and
Larsen model setup 2 (purple).

Figure 12. 6-second extremes wind direc-
tion change estimated from low-pass filtered
measurements (blue dots). 50-year return pe-
riod curves estimated with IFORM (orange),
the ECD Larsen model setup 1 (green) and
Larsen model setup 2 (purple).

Larsen model curves show somewhat different shapes, as the IFORM curves are estimated by
fitting the Weibull distribution to the observed extreme data points, while the Larsen model only
takes average values as input parameters. There are many possible factors that can contribute
to these discrepancies, and we will discuss a few points here.

It is shown how the model output is sensitive to changes of the Kaimal turbulence length
scale. It is seen in Figure 6 that the sensitivity to such changes is highest for the lower turbulence
length scales, which is precisely in the range that we observe and implement.

The site specific estimate of Lu is 2.5 times lower than what given in the IEC standard. This
is expected as our estimates are made in complex terrain, while the IEC prescription is for more
flat and homogeneous terrain. The lateral component of the turbulence length scale is however
approximately the same, and therefore the site specific ratio, Lv/Lu = 0.83, is much higher
than what is given in the IEC standard. The Larsen model setup 2, results in higher extreme
estimates for the model outputs, as lowering the turbulence length scale dominates the effects
of lowering σu and/or σv. This is with two exception though: The v-component of the ECD
and the EDC, because in these cases Lv is approximately the same, so the higher σv leads to
the higher estimates for model setup 1.

We observe high extreme direction changes for low wind speeds that decrease with increasing
mean wind speeds. This might relate to buoyancy effects associated with non-neutral
stratification of the atmospheric boundary layer, which are known to be relatively more
significant in the low wind speed regime. Being based on the observed extremes, the IFORM
curve displays well this decrease, similar to how extreme direction change is modelled in the
IEC standard. However, the Larsen EDC model does not predict this general shape and greatly
underestimate the extreme direction change, especially in the low wind speed range. Higher
direction changes are modelled by applying the ECD model to predict the direction change, but
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this model still underestimates the direction change for wind speeds below 11 m/s.
The Larsen model output for the EWS showed lower estimates compared with the IFORM

analysis. A likely explanation is that the IEC coherence model is relatively conservative (cf. [4]),
thus in turn leading to a high correlation coefficient. It may be seen in eq. 19 that conservative
coherence estimates lead to lower prediction of extreme shear excursion than if a lower non-
conservative value of ρ is used.

A possible further development of the model could be to provide more terrain dependent
options of the model input parameters. E.g. the Kaimal turbulence length scales (Lu and Lv)
and different coherence models to estimate the correlation coefficient. This might lead to more
realistic and more conservative model outputs.

It should be noted that the IFORM analysis does not provide ’true’ 50-year return values,
as this analysis is also based on assumptions. If e.g. the extreme distribution fits were based
on a log-normal assumption, alternative to the chosen Weibull assumption, different extreme
50-year return period curves would result. It is seen from Figures 8 and 11 that there are some
data points that fall outside the 50-year return period contour, although the number of data
points roughly corresponds to one year. This indicates either measurement errors, or that the
Weibull distribution underestimates the tails of the measured/estimated extreme values. It is
also interesting to note, that for the majority of the IFORM Weibull fits, the shape parameters
come close to one, and thus approach the assumed exponential character of the tails assumed
in the Larsen model.

There are many different kinds of flow phenomena that may be expected in the complex
terrain in Perdigão [9]. These may not be represented by a model that is based on homogeneous
turbulence and neutral conditions. These phenomena can also show up as extreme values in
data distributions, making it difficult to fit a theoretical distribution to the data.

10. Conclusion
In this paper we implement the Larsen model for the first time in complex terrain. The model
outputs are compared with IFORM analysis made on a comprehensive data set, spanning the
whole wind speed range. The comparison between them gives a MAPE in the range 8.1% and
65.8%. The IFORM and the Larsen model predictions give the most similar results for the
EOG- and the ECD load cases. The EWS load case underestimated the extreme share in the
whole wind speed range, but could potentially improve by using a more appropriate coherence
model. The EDC load case does not predict the expected extreme direction change, and this
load case requires new kind of modelling. The Larsen model should not be used for load- or
site assessment on its own in the current state i.e. by using the IEC assumptions for input.
However, with further validation, calibration and mapping of the input parameters, the Larsen
model shows potential to provide very accurate extreme gusts predictions.

Appendix A.
The low-pass filtered spectral moments evaluated with the Kaimal spectrum are
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Ū

)−2/3

+
27

4

]
(A.2)

m4 = σ2
i

Ū4
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where Ū is the 10-minute mean wind speed, Li is turbulence length scale of the i’-component,
and fc is the cut-off frequency to apply in the model application.

Appendix B.
The correlation coefficient for EWS is determined as
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1
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This integral has to be solved numerically to estimate ρ. It is seen that ρ is wind speed
independent by expressing it using the reduced frequency. Previous analysis [4] has shown
the IEC coherence to be larger than observed in measurements, therefore typically giving rise
to larger than measured correlation coefficients and thus in turn too low efficient turbulence
standard deviations.

Note that for the EWS load case, we consider a higher cut-off frequency for the low-pass filter
than for the other load cases. Here we use fc = U/DR, when we estimate σuf as in eq. 7. This
is done because the EWS load case is not assumed a coherent excursion across the rotor in the
IEC standard. Rather it represents fluctuations of opposite sign across the rotor.

Appendix C.
When the autocovariance in eq. 21 is formulated with the inverse Fourier transform of the
Kaimal spectrum, the gust rise-time factor becomes:

fgr(τg,
Li
Ū
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Here Γ() is the gamma function and 1F2() is the generalized hypergeometric function. The
gust rise-time consideration is applied by multiplying the factor with the extreme excursions
described in the paper. By applying the gust rise-time factor, only the largest fluctuations
within a certain time-span are taken into consideration.
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