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Abstract Daily scheduling of surgical operations is a complicated and re-
current problem in the literature on health care optimization. In this study,
we present an often overlooked approach to this problem that incorporates a
rolling and overlapping planning horizon. The basis of our modeling approach
is a Markov decision process, where patients are scheduled to a date and room
on a daily basis. Acknowledging that both state and action space are only
partially observable, we employ our model using a simulation-based method,
where actions are derived from a heuristic search procedure.

We test the potential of using this modeling approach on the resulting
hospital costs, and number of patients that are outsourced to avoid violating
constraints on capacity. Using data from a Danish hospital, we find a distinct
improvement in performance when compared to a policy that resembles a
manual planner. Further analysis shows that substantial improvements can be
attained by employing other simple policies.
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1 Introduction

Surgical procedures are one of the key elements of a hospital and involves
many different clinical specializations from organ to orthopedic surgery.

According to statistics from the Organisation for economic co-operation
and development [14], the number of surgical procedures is increasing relative
to the population size across several countries. Australia, Canada, Finland,
and the United Kingdom have experienced an increase of roughly 50% over
the past 20 years. For Austria and Denmark, the increase is roughly 100%,
and in Portugal, the increase is roughly 350% over the same period.

It seems reasonable that the use of resources in this part of the hospital has
received a substantial amount of attention in the Danish health care sector.
In September 2015, the Danish Ministry of Health [22] published a report on
the overall status of the public health care sector, showing that waiting time
for surgery has been increasing for a fourth of the investigated departments
in the period from 2011 to 2014. Other governmental reports suggest a lack of
resource utilization for Operating Theatres (OTs) as well. In March 2015, the
National Audit Office of Denmark [21] published a report on the use of staff
resources based on four departments in orthopedic surgery with the conclusion
that staff working hours are not ensured to be fully utilized for a majority of
cases.

On the other hand, ensuring an efficient utilization of surgical resources
can be quite intractable. To attain an efficient use of both staff and equip-
ment resources, several decisions on multiple organizational levels have to be
considered [15, 18]. These range from long-horizon planning problems, such
as deciding on the overall required capacity, to day-to-day scheduling (and
re-scheduling) of patients.

From interviews, we found that manual planners have a time-consuming
and complicated task at hand. In our case hospital, planners have to ensure
that equipment in the room is compatible with the surgical procedure. Simul-
taneously, planners must ensure that patients are treated by the same surgeon
they were examined by and that the waiting time does not violate a hard
upper limit. Therefore, including overtime-costs and capacity efficiency yields
an impractical if not impossible task for the manual planner.

Our objective in this study is to provide hospital planners with a decision
tool capable of optimizing the scheduling of patients for operation, respecting
the constraints that are relevant to the hospital. In our case, we consider that
patients are scheduled on a day-to-day basis and require that a rolling and
overlapping planning horizon is taken into account. Thus, the decisions that
are made on each day have to be anticipative.
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Our methodological approach will be a simulation-based Markov Decision
Process (MDP) that minimizes the long-term costs of overtime and setting up
operating rooms.

In Section 2 we describe the scheduling problem in details. Next, in Sec-
tion 3 we present our simulation-based MDP and describe how an allocation
of patients can be derived using this approach. In Section 4 we apply our ap-
proach to data from a Danish hospital and assess our MDP implementation
by comparing to other scheduling methods. Finally, we present our conclusion
and suggestions for future work in Section 5.

1.1 Literature Review

The problem of OT planning is a recurrent topic that has been covered by a
substantial amount of papers. There exists several surveys on the subject of
which some of the recent have been conducted by Cardoen et al., 2010 [5],
Guerriero & Guido, 2011 [15], May et al., 2011 [18], and lately Samudra et al.,
2016 [25] where 137 journal papers on the subject of OT planning were found
in the period of 2004 to 2014.

With respect to the organizational decision levels, Guerriero & Guido,
2011 [15] find that the studies can be classified into three categories: Strate-
gic (long-term decisions), tactical (medium-term decisions), and operational
(short-term decisions). May et al., 2011 [18] add further three decision levels
denoted: Very long-term, very short-term, and contemporaneous. The deci-
sions relevant to the very long-term are related to the layout of physical re-
sources [32], such as the construction of operating rooms. Long-term decisions
are related to patient flow patterns and assigning overall capacity to surgi-
cal groups [3,29]. Medium-term decisions involve defining the master surgical
schedule, where the clinical specializations are assigned to specific rooms and
time-windows [31]. On the short-term, the patient procedures are assigned to
a specific time and room on a day-to-day basis, and on the very short-term
and contemporaneous level, last-minute scheduling and re-scheduling is con-
ducted [1, 4, 9–12,17,20,23,27].

Focusing on the short-term operational level of OT planning, we have found
a range of different approaches and problem structures. Studies can mainly be
categorized into considering completely deterministic ”off-line” problems [4,6,
12,30,33], to incorporating uncertainty features such as random procedure time
[1, 9, 17] and disruptions caused by emergency demand [11, 17]. Surprisingly,
we only encountered two studies on the allocation of patients where stochastic
future arrivals were accounted for [23,34]. However, Samudra et al., 2016 [25]
shows that incorporating stochasticity constitutes more than half of the papers
on OT planning.

The specific modeling approaches of short-term OT planning range from
mathematical programming and heuristics [1, 4, 9, 11, 12, 30, 33] to Discrete-
event and Monte Carlo simulation [10, 27], and further to a mixture of these
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[17]. For the purely deterministic cases Xiang et al., 2015 [33] and Van Huele
& Vanhoucke, 2014 [30] combine the surgical scheduling problem with a staff
rostering problem. Xiang et al., 2015 [33] develop a modified Ant Colony Opti-
mization algorithm and test the model by using both data from the literature
and real data from a Chinese hospital. Van Huele & Vanhoucke, 2014 [30]
approach the problem by using Mixed Integer Linear Programming (MILP)
based on the most frequent objectives and constraints from the literature. In
Fei et al., 2010 [12] and Cardoen et al., 2009 [4] the focus is more on the
scheduling and sequencing of the surgical procedures. Fei et al., 2010 [12] use
an approach comprising two phases where patients are firstly assigned a date
by using a column-generation-based heuristic, and subsequently sequenced by
using a hybrid genetic algorithm. Cardoen et al., 2009 [4] focus on the se-
quencing of procedures and develop MILP models which lead to either exact
or heuristic solutions.

For the studies that incorporate uncertainty, Batun et al., 2011 [1] and
Lamiri et al., 2008 [17] use Stochastic Programming (SP) to minimize the to-
tal cost of scheduling patients over a planning horizon. Specifically, Batun et
al., 2011 [1] develops a two-stage stochastic MILP and investigates the impact
of parallel surgery processing and pooling operating rooms. Related hereto,
Lamiri et al., 2008 [17] develops an SP model, and moreover a method com-
bining Monte Carlo simulation and a MIP model to schedule elective patients
within a specific planning horizon, and emergency patients on the same day
of arrival.

Methods based on MILP modeling can in some cases become too ineffi-
cient as found by Erdem et al., 2012 [11], where a MILP model and Genetic
Algorithm (GA) are developed to reschedule elective patients upon the arrival
of emergency patients. For the MILP model, Erdem et al., 2012 [11] finds that
a commercial solver is sufficient for only a limited ”light” case, and therefore
develops a GA to find solutions close to optimality for the more complex cases.
In addition, Denton et al., 2007 [9] focus on heuristic methods for deriving the
sequencing of patients in operating rooms, and find that a simple sequencing
rule can be used to optimize both waiting time and overtime-costs.

As the above shows, random duration of procedures and the impact from
emergency arrivals draws a lot of attention, but there is limited focus on over-
lapping planning horizons originating from uncertain future arrivals. However,
Range et al., 2016 [23] schedule elective patients based on a MILP model and
solve the problem with column generation. Future arrivals are accounted for
by measuring the expected number of future patients who cannot be scheduled
for surgery.

Another study that accounts for uncertain future arrivals is Zhang et al.,
2019 [34]. Similar to the approach by Fei et al., they use a model that consists
of two phases. In the first phase, future decisions are incorporated by selecting
unscheduled patients with an MDP that minimizes the expected long-term
costs. In the second phase, the selected patients are finally assigned to the
respective surgical blocks with an SP model.
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In this study, we also consider the problem of allocating patients to a day
and room as a sequential decision problem with overlapping planning horizons.
We assume that surgical operations can begin at any time within the opening
hours of the operating room and even stretch into overtime. Our model is a
heuristic approach that accounts for random inter-arrival times, and procedure
duration, and is based on a simulation-based MDP that derives an allocation of
patients in one phase by minimizing the combined long-term costs of overtime
and setting up operating rooms.

2 Problem Description

Finding a good schedule yields multiple objectives for the hospital planner.
Long waiting times and overcrowding of wards may cause a decrease in both
subjective and objective care quality as was found by Hansagi et al., 1992 [16]
and McMillan et al., 1986 [19]. To make things even more difficult, planners
in our case hospital are required to keep the patient waiting time within a
hard upper limit, where insufficient operating room capacity leads to expen-
sive overtime-costs. Outsourcing patients to other units is one way of avoiding
these problems but comes with qualitative and logistical costs.

In this study, we consider a hospital where a planner schedules surgical
operations on a daily basis. The hospital treats both elective and emergency
patients in a range of different clinical specializations, but operating rooms are
reserved for each patient type and for each respective area of specialization.

In contrast to other studies, such as Erdem et al., 2012 [11], we assume
that emergency resources are rarely insufficient so that we may limit our scope
to the scheduling of elective patients only. We further focus on a single clini-
cal specialization and assume that resources are negligibly shared with other
specializations.

Patients have continuous random inter-arrival time, but we assume that
the hospital planner can postpone allocating the patients until the end of the
day. Procedure requests from elective patients occur only on regular workdays;
hence the hospital planner has to make a maximum of five decisions a week.

We assume that all patients have an upper limit on waiting time from
the moment the surgical operation is requested. Thus, due to uncertainty in
procedure duration and inter-arrival times, capacity may in some instances be
insufficient so that patients have to be outsourced to an internal or external
treatment unit.

An overview of the scheduling problem is depicted in Figure 1.
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Scheduled pro-
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Fig. 1: Overview of the scheduling problem. Requests are unscheduled until
the end of the day, after which they will be allocated to a fixed date and room
or outsourced to a different treatment unit.

For the remaining of this paper we will refer to scheduled surgical opera-
tions as procedures. Unscheduled procedures are referred to as requests. Days
on which the number of requests are positive, such that the hospital planner
must decide on an allocation of these, will be referred to as allocation epochs.

2.1 Constraints & Dynamics of the Problem

Our aim is to derive a cost-optimized schedule for all requests that have arrived
during the day, repeating this process for all future days. When a decision
is made, the hospital planner considers a discrete planning horizon of total
length, H ∈ N, such that from the end of the current allocation epoch, t ∈ Z,
all days that are considered in the scheduling problem are t+ 1, t+ 2, . . . , t+
H − 1, t+H.

Let X ∈ N0 be a random variable defining the total amount of requests
received on an arbitrary day. Then for all days where X > 0 a scheduling
problem has to be solved with a planning horizon that has been ”rolled”
accordingly. Let δ ∈ Z>t define the subsequent allocation epoch to t. Further,
let Ωi, where |Ωi| = H, define the specific set of days contained in the planning
horizon of an allocation epoch, i. Hence, if δ < t + H, then Ωt ∩ Ωδ 6= ∅, as
illustrated in Figure 2.

Let R define a finite set of operating rooms available to the hospital, then
the planner has to make a decision involving both the finite and discrete plan-
ning horizon, and the operating room resources in R. The feasibility in schedul-
ing a procedure for a specific room, r ∈ R, depends on a predefined surgical
schedule as well as other constraints which are presented in the following Sec-
tion 2.1.1. Furthermore, all allocations may induce a cost from setting up the
room or when procedures stretch into overtime. Our assumptions related to
these costs will be presented in Section 2.1.2.
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t δ t+H δ +H

0 1 2 3 4 5

Fig. 2: Example of a rolling and overlapping planning horizon of H = 3 days.
Requests are illustrated by black dots along the time-line. As a result, planning
has to be conducted at t = 0 and δ = 2, leading to Ωt = {1, 2, 3}, Ωδ = {3, 4, 5}
and Ωt ∩Ωδ = {3}.

2.1.1 Constraints

Constraints relevant to the scheduling problem range from the availability of
predefined capacity to less tangible factors such as preferences of the staff. In
the below, we present each of these constraints separately.

1. Number of rooms. The hospital planner can choose to allocate a request
to an unopened room provided that this action does not violate an upper
limit on open rooms. Let ykl ∈ {0, 1} be 1 if room k ∈ R is being used on
day l ∈ T , where T = {t+ 1, · · · , t+H} is the set of workdays within the
current planning horizon; and otherwise 0. Further, let cl ∈ N define the
maximum number of rooms that is allowed to be opened on day l ∈ T . We
assume that the structure of cl is weekly cyclical such that cl = cl+5. Then,
an allocation to a room k ∈ R on day l ∈ T is only allowed if subsequently∑
k∈R ykl ≤ cl.

2. Equipment. Any procedure cannot be allocated to any room, even if cl is
not violated. To account for potential equipment requirements, as well as
other preferences that may exist, each procedure type i ∈ P , where P is
the set of all procedures that may occur, is constrained to a subset, Ui, of
the available rooms, such that Ui ⊆ R.

3. Physicians. When a request is received by the hospital planner, a specific
physician has already been assigned to conduct the procedure. We assume
that physician-rosters are not flexible so requests can only be allocated to
days for which the physicians are expected to be available at the hospital.
Let J define the set of scenarios (or patterns) of days for which physicians
will be available. As T is always a finite set, so is J . We assume that
a request is randomly assigned to a specific pattern j ∈ J with known
probability.

4. Opening hours. Lastly, all operating rooms have a pre-specified time-
interval for which they are expected to be open. Let Yi ∈ R>0 be a random
variable with known distribution that defines the duration of a procedure
type, i ∈ P . Furthermore, let rikl ∈ N0 define the number of procedure
i ∈ P that are allocated to room k ∈ R on day l ∈ T . Then, an allocation
to a room k ∈ R on day l ∈ T is only allowed if there exists at least
one sequence such that all procedures are expected to start within the
opening hours. That is,

∑
i∈P\α(rikl · E[Yi]) + (

∑
i∈P (rikl)− 1) ·m < wk,

where m ∈ R>0 is a fixed buffer time, wk ∈ R>0 is the time-capacity of
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room k ∈ R, and α is the allocated procedure with the longest expected
duration for that room and day.

We assume that all allocations are final such that each respective procedure
is locked in both room and date. Further, as neither of the above constraints
are allowed to be violated, and the occurrence of requests is independent from
the current schedule, we allow for requests to be outsourced to yield a feasible
solution with a maximum number of allocations. In this regard, we assume that
allocating all current and future requests is always preferred over outsourcing
any of them.

2.1.2 Costs

In combining a suitable schedule, the hospital planner has to consider that
there might be a number of implications related to each respective solution.
We found from interviews as well as from other studies [27] that some hospitals
assess their performance on the utilization of time-capacity for each operating
room. Such measure is convenient with respect to day-to-day monitoring and
obtaining sufficient data, but does not provide an immediate relation between
setting up new rooms and the risk of stretching procedures into overtime. For
this reason, we evaluate the implications related to a specific schedule on a
sum of ”penalties”. We refer to these as costs as we mainly relate them to
direct costs, such as overtime, cleaning, setting up equipment, and so on. We
have categorized these costs into two respective groups, presented below:

1. Setup. To account for the logistical costs related to equipment and staff
preparation we assume that by opening a room the hospital receives a fixed
setup cost. That is, the setup cost is induced only when the first procedures
are allocated to the room, and does otherwise not depend on the utilization
of time-capacity.

2. Overtime. As mentioned earlier, all procedures are subject to a random
duration, and thus are in risk of stretching into overtime. If this is the case,
we assume the hospital always pays a supplement to the staff independent
of the type of procedure. In addition, some amount of discontent may arise
among the staff leading to more errors and a decrease in the treatment
quality. As a result we notice that the total penalty related to overtime
can be a non-linear increasing function of the duration of overtime.

3 Modeling & Solution Approach

In this section, we present the approach we use to minimize the long-term
expected costs of scheduling requests for operation. Our modeling approach is
based on a Markov Decision Process (MDP) framework, for which, due to the
problem size, we propose a simulation-based ”on-line” solution method.

In Section 3.1 we present the specific structure of our modeling approach
along with an exact solution method from standard theory. Next, in Section
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3.2 we present our solution approach which is based on a simulation-based
rollout method resulting in a heuristic policy.

3.1 A Markov Decision Process

Now, recall that we consider a finite set of procedures, P = {ProcedureA, ProcedureB, · · · }.
Any procedure, i ∈ P , is to be conducted within a fixed planning horizon,
H ∈ N, such that the set of future workdays in the planning horizon are in
the set T = {t + 1, t + 2, · · · , t + H}, where t ∈ Z is the day from which the
planning horizon is observed. Further, let R = {Room A,Room B, · · · } define
the total set of available operating rooms, and rikl ∈ N0 define the number of
procedure i ∈ P that have been scheduled on future day l ∈ T in room k ∈ R.

In addition, we consider a finite set of all patterns for which physicians can
be available within the planning horizon, J = {Pattern A, Pattern B, · · · }.
Together with P , these availability-patterns make up all of the attributes of
any request that may occur. In other words, for any current day let pij ∈ N0

specify the number of requests of type i ∈ P that are constrained by pattern
j ∈ J . Lastly, let W = {Monday, Tuesday, · · · , F riday} define the set of
weekdays for which procedures can be allocated, and d ∈ W , then based on
the above definitions, we introduce an MDP with state definition,

s = [pij , rikl, d] (1)

divided into three parts: (1) The number and attributes of all current re-
quests, pij , (2) the amount of each procedure scheduled to future day and
room, rikl, and (3) the current weekday, d. Notice that d can be redundant
depending on the structure of the problem from one case to another. If the
constraints on room-capacity, cl, and availability-patterns, J , can be general-
ized such that they are independent on the type of weekday in l ∈ T , then the
state definition can be reduced to s = [pij , rikl].

Furthermore, the reader should notice that the value of pij is generated by
a purely stochastic process, whereas the transition into a state with any value
of rikl will always be deterministic in terms of the decision by the planner.
Now, let λi define the stationary occurrence rate of requests of type i ∈ P ,
and Xij ∈ N0 be a random variable defining the occurrence of a request i ∈ P
constrained by pattern j ∈ J . Then the requests, Xij , are generated according
to a multivariate Poisson process with parameters λij = λiξij ∀i, j ∈ P, J .
Here, ξij ∈ R0<ξij≤1 is the probability that a request of type i ∈ P is con-
strained to pattern j ∈ J ; hence

∑
j∈J ξij = 1 ∀i ∈ P . The assumption that

requests are generated by a Poisson process was found adequate by Spratt et
al., 2019 [26].

In the following, we present how this modeling approach relates to the
action space and transitions of the MDP.
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3.1.1 Actions & Transitions

From one day to the next, the MDP changes from a current state s ∈ S to
a new state s∗ ∈ S. This transition occurs consistently and with fixed time-
interval. In addition, for each transition an action has to be chosen from the
action space, As, available at each decision epoch — that is, at the end of
every day, where the planner must decide on an allocation of the requests. Let
π define a policy such that for any s ∈ S, π(s) = a, where a ∈ As. Thus for
any arbitrary policy π ∈ Π, where Π is the set of all policies, the MDP will
evolve as a Markov chain in discrete time.

Let a be a vector of the elements aijkl ∈ N0, defining the number of requests
of type i ∈ P constrained by pattern j ∈ J that are allocated to room k ∈ R on
future day l ∈ T . To account for the outsourcing of requests we further extend
a with the elements qij ∈ N0, defining the number of type i ∈ P and pattern
j ∈ J that are outsourced. Thus, a has a total of |P × J × R × T | + |P × J |
elements. The size of As is, however, dependent on the values of rikl in the state
s, which is limited by the constraints presented in Section 2.1.1. As contains
any feasible value of a; hence 1 ≤ |As| ≤ (|R× T |)

∑
i,j∈P,J pij .

Notice that
∑
k,l∈R,T aijkl + qij = pij ∀i, j ∈ P, J , and as the planning

horizon is rolling rsikl +
∑
j∈J aijkl = rs

∗

ik,l−1 ∀i, k, l ∈ P,R, T \ {t+ 1}, where

rsikl and rs
∗

ikl are the schedules for the current state s ∈ S and subsequent
state s∗ ∈ S, respectively. Moreover, notice that for l = t + H all rooms are
freed such that rikl = 0 ∀i, k ∈ P,R. However, as procedures are constrained
to specific rooms, the only feasible solution may for some cases be to out-
source all current requests. If for some decision epoch the number of requests∑
i,j∈P,J pij = 0, then the only action is to let

∑
i,j,k,l∈P,J,R,T aijkl + qij = 0,

in which case the MDP merely transitions into the next state resulting in
rsikl = rs

∗

ik,l−1 ∀i, k, l ∈ P,R, T \ {t+ 1}.
Lastly, the transition probability, pss

∗

a , of changing from s ∈ S to a subse-
quent s∗ ∈ S by choosing a ∈ As, is merely pss

∗

a = Prob{X11 = p11, X12 =
p12, · · · , X|P ||J| = p|P ||J|} if rsikl+

∑
j∈J aijkl = rs

∗

ik,l−1 ∀i, k, l ∈ P,R, T \{t+
1}; otherwise pss

∗

a = 0.

3.1.2 Cost Function

In the previous section we introduced the policy π ∈ Π, where Π is the set of
all possible policies for the MDP. Furthermore, recall that for any policy the
MDP evolves as a discrete-time Markov chain. Let V π∞(s) define the expected
long-term costs that are induced by this Markov chain, starting at state s ∈ S,
under the policy π ∈ Π. That is,

V π∞(s) = E

[ ∞∑
t=0

γtC(st, πt(st))

∣∣∣∣∣s0 = s

]
(2)

where C(st, πt(st)) is the cost induced from taking action π(st) in state
st at time t, γt ∈ R<1 a discount factor, and t = 0 is any arbitrary point in
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time. We define the optimal policy, π∗, as the policy which obtains V π
∗

∞ (s) =
minπ∈Π V

π
∞(s) ∀s ∈ S, and thus an essential element in minimizing the ex-

pected long-term costs is the definition of how each action is penalized through
the cost function, C(st, πt(st)) = C(s,a). The reader should notice that the
optimal myopic solution to the scheduling problem is included in the set Π,
and thus we have that V π

∗

∞ (s) ≤ V π
η

∞ (s), where πη is the policy for which
πη(s) = arg mina∈As E[γ0C(s,a)] ∀s ∈ S.

Now recall that we consider two different types of costs:

1. A fixed setup cost, κ ∈ R>0, is induced whenever a procedure is scheduled
to a new room — that is, whenever

∑
i∈P rikl = 0 and

∑
i,j∈P,J aijkl > 0

for any k ∈ R and l ∈ T in the current state, s.
2. An overtime-cost that accounts for procedures stretching into overtime

for any k ∈ R. Let the total capacity utilization of a room be defined
by τ ∈ R0, and let f(δ) define the overtime-cost for an overtime of size
δ ∈ R0, where δ is the amount of time that τ exceeds the capacity, wk, for
a room k ∈ R. Now, let pk(τ) define the probability density function for
a capacity utilization of amount τ in room k ∈ R. We then penalize an
action according to the total expected amount of overtime,

∑
k∈R ok, for

the subsequent day, l = t + 1, where ok is defined in (3). Notice that this
formulation generalizes to any continuous distribution, pk(τ), for which
τ ≥ 0 and overtime-cost function, f(δ), for which δ ≥ 0.

ok =

∫ ∞
wk

pk(x)f(x) · dx (3)

To ensure that actions are penalized for outsourcing requests, we further
introduce a large penalty, φ ∈ R>0 for every outsourced request. Finally, the
resulting cost function is presented in (4), where yskl and ys

∗

kl is 1 if a room
k ∈ R is scheduled for use on day l ∈ T in the current state s ∈ S or subsequent
state s∗ ∈ S, respectively; and otherwise 0.

C(s,a) =
∑
k∈R

ok +
∑

k,l∈R,T\{t+H}

(ys
∗

kl − ysk,l+1) · κ+
∑

i,j∈P,J
qij · φ (4)

3.2 A Heuristic Approach

In our case the size of a single state and especially the state space, S, can
be very large, even for small problem instances. Assuming a rather limited
case where physicians are always available such that |J | = 1, procedures are
constrained to only one room, and further that cl = cl+1 ∀l ∈ T , leading to
s = [pi, ril], there are a total of |P |+ |P × T | elements in each state. That is,
for a case with merely |P | = 10 different procedures, and a planning horizon
of |T | = 20 days, a single state is comprised of 210 elements. Additionally, by
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assuming a maximum number, n, of requests per type, i ∈ P , and a capacity
limit, m, of procedures per day, the state space would have a total size of |S| =

(n+1)|P | ·
(

1
|P |!

∏|P |
i=1(m+ i)

)|T |−1
states — for which a direct implementation

of an exact algorithm would be a computational challenge. Furthermore, in the
worst case the action space attains a size of |As| = (|R × T |)

∑
i,j∈P,J pij . For

these reasons, we assume that an analytical approach to solve the MDP would
be completely intractable.

The method presented in this section is based on a simulation-based ap-
proach. That is, instead of deriving an optimal action π∗(s) for each of the
states s ∈ S, we only rely on deriving a good action for the current state. Our
approach is based on a rollout algorithm proposed by Bertsekas & Castañon,
1999 [2], and later extended to parallel rollout by Chang et al., 2004 [8].

Consider some arbitrary allocation epoch, t, in which the requests pij are
scheduled. These requests will be constrained by the occupation of the pro-
cedures that are already in the schedule, rikl, and for any policy induce the
long-term cost V π∞(s). Now consider an optimal policy, π ∈ Π, that has been
derived for a finite model-horizon H ′. Then as H ′ → ∞, the policy π → π∗

for the infinite case. The cost of such a policy would then be,

V πH′(s) = E

[
H′∑
t=0

γtC(st, πt(st))

∣∣∣∣∣s0 = s

]
(5)

quite similar to (2). We assume for the remaining of this paper that γt = 1
for t = 0, 1, . . . ,H ′. From the definition in (5), we note that the decision a
hospital planner has to take from the current state s, should be derived from
the sum of first the current known cost C(s,a), and second an expected long-
term cost from a sequence of future actions. Thus, we let a rollout policy, π′,
be defined as the result of a sequence of actions that has been derived under
(6),

π′(s) ∈ arg min
a∈As
{C(s,a) + E[Ṽ πH′−1(f(s,a, ω))]} (6)

where E[Ṽ πH′−1(·)] approximates (5), and Ṽ πH′−1(·) represents the total cost
of a path of decisions over the horizon t = 1 to H ′. Further, we let the subse-
quent state relative to s be defined as s∗ = f(s,a, ω). That is, the combined
result of the current state, s, the action, a, and a random disturbance of the
system ω.

Similar to Bertsekas & Castañon, 1999 [2], we fix the disturbances, ω, to
a finite set of values such that we limit our scope to a mere sample of the
potential subsequent states. That is, we randomly sample N disturbances and
then evaluate Ṽ πH′−1(f(s,a, wj)) for j = 1, 2, . . . , N , yielding the N paths
illustrated in Figure 3. Thus, for the decision of choosing an action in the
rollout policy, π′, (6) changes to (7).
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s

f(s,a, ω1) f(s,a, ω2) . . . f(s,a, ωN )

Ṽ π
H′−1

C(s,a)

Fig. 3: For the expression in (7), these are the subsequent paths and costs that
are observed from the current state s.

π′(s) ∈ arg min
a∈As
{C(s,a) +

1

N

N∑
j=1

Ṽ πH′−1(f(s,a, ωj))} (7)

Notice that in practice, wj is sampled by using pseudo-random numbers
that are then converted into obtaining the requests, pij , at each subsequent
state.

How to evaluate Ṽ πH′−1(f(s,a, ω)) will be presented in the following Section
3.2.1. Moreover, the expression in (7) requires a full enumeration of the state
dependent action space As. As mentioned previously, the size of As can be
quite intractable, and therefore we require a robust search procedure to reduce
the computational requirements. We present this procedure in Section 3.2.2.

3.2.1 Simulation-based Value Evaluation

Let Λ define a non-empty finite set of policies that all perform well for the hos-
pital scheduling problem. By choosing the one policy that performs the best
related to the current state, s, we allow for a rollout policy that continually
adapts to the system. This is the basis of parallel rollout [8]. A related approach
is to choose an action based on the current weighted average performance of
the policies in Λ, which is the method we will employ in this study. We base
our approach on a Simulated Annealing Multiplicative Weights (SAMW) al-
gorithm proposed by Chang et al., 2007 [7]. Let φ(π) define the weighting of
policy π ∈ Λ, such that

∑
π∈Λ φ(π) = 1. The aim of the SAMW algorithm is

then to concentrate the weighting on the currently (related to s) best policies
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in Λ.

Let φi(π) define the weight of policy π at iteration i. Then,

φi+1(π) = φi(π)
β
−Ṽ πi
i

Zi
(8)

where Ṽ πi corresponds to Ṽ πH′−1(f(s,a, ωj)) at iteration i for any of the
disturbances ωj . In addition, we have that π ∈ Λ and βi ∈ R>1 is a ”cool-
ing” parameter that decreases as function of iteration i. Furthermore, Zi is a
normalization parameter,

Zi =
∑
π∈Λ

φi(π)β
−Ṽ πi
i (9)

Now, we let ωj1, ω
j
2, . . . , ω

j
H′ , where ωj = ωj1, define a path of random distur-

bances such that we get Ṽ πi =
∑H′

t=1 C(st, π(st)), where st = f(st−1, π(st−1), ωjt ),
s0 is the current state s, and π(s0) is the current action a. In each itera-
tion we generate a new range of disturbances (except for ωj1) and calculate
Ṽ πi ∀π ∈ Λ.

Letting T define a fixed number of iterations, we get the sample mean
estimate ψ(π) = 1

T
∑T
i=1 V

π
i for each policy π ∈ Λ, which finally yields the

approximation,

Ṽ π
∗

H′−1(f(s,a, ωj)) =
∑
π∈Λ

ψ(π)φT (π) (10)

We use (10) to derive the last term of our rollout expression in (7). That
is, (10) is used for each of the subsequent states that are illustrated in Figure
3. The overall structure of the SAMW algorithm is presented in Algorithm
1, where we predefine T experimentally to ensure a limited runtime of the
algorithm. Moreover, notice that all disturbances, ωjt , can be generated prior
to the running of Algorithm 1 as will be elaborated in Section 3.2.2.

Algorithm 1 The Simulated Annealing Multiplicative Weights algorithm.

1: φ(π)← 1/|Λ| ∀π ∈ Λ . Initialize the distribution
2: for i = 1 to T do
3: disturbances← getNewDisturbances() . New disturbances: ωj2, ω

j
3, . . . , ω

j
H′

4: Ṽ πi ← evaluate(disturbances, π) ∀π ∈ Λ
5: φ(π)← update(φ(π), Ṽ πi ) ∀π ∈ Λ . Update the distribution using (8)
6: end for
7: ψ(π)← average(Ṽ πi ∀i) ∀π ∈ Λ
8: Ṽ π

∗ ← weightedAverage(ψ(π) ∀π ∈ Λ, φ(π) ∀π ∈ Λ) . Derive approximation using
(10)

return Ṽ π
∗
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3.2.2 The Search Procedure

Our approach for deriving an action, a, from the current action space, As, is
based on a Greedy Randomized Adaptive Search Procedure (GRASP) [24].
That is, we conduct an iterative search consisting of two levels: (1) A greedy
randomized solution, followed by (2) a local search procedure. We use this
approach due to the combinatorial and greedy cost structure of the problem,
ensuring that any immediate greedy allocation of requests will result in a low-
cost solution.

GRASP is generally known to perform well in various scheduling problems,
as shown in the bibliography by Festa & Resende, 2002 [13], and has previously
been employed to solve a surgical scheduling problem by Cartes & Medina,
2016 [6] where the proposed model performed adequately compared to the
optimal solution. A generalized structure of the GRASP heuristic is presented
in Algorithm 2.

Algorithm 2 Generalized structure of the GRASP heuristic.

1: while elapsedT ime < maximumTime do
2: a← buildGreedyRandom(s) . Construct greedy randomized solution from current

state s
3: stop← false
4: while stop = false do
5: a← localSearch(a, s) . Try to improve the solution by local search
6: stop← checkStoppingCriteria()
7: end while
8: end while

return bestFound(a) . Return best solution from the entire search

For the greedy randomized solution, we generate a candidate list by enu-
merating all feasible allocations for each of the current requests, pij . Next,
each of these allocations are ranked according to their apparent lowest cost
increase. We then restrict this list to the α ∈ N allocations with highest rank,
and finally pick an allocation by random for insertion in the schedule, rikl.
This process is conducted recursively until all requests have been allocated to
the schedule.

For the ranking of each candidate allocation we conserve runtime for the
later local search procedure, by only considering the current cost function,
C(s,a). Recall from (4) that the cost induced at every state is comprised of
firstly a fixed setup cost, secondly an overtime-cost, and lastly a penalty for
outsourcing requests. Thus, for an allocation to a room k ∈ R on a day l ∈ T
we evaluate a candidate on the difference,

∆i = oikl − oi−1kl + (yikl − yi−1kl ) · κ+ q · φ (11)

where ∆i is the increase in cost if the i’th allocation is conducted for
i = 1, . . . ,

∑
i,j∈P,J pij . Further, oikl ∈ R0 and yikl ∈ {0, 1} is the overtime-cost

and open-room indicator for the room k ∈ R and day l ∈ T for which the
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request is allocated, similar to (4). Notice that we can consider the cost on
allocation, so oikl ≥ oi−1kl and yikl ≥ yi−1kl . In addition, q ∈ {0, 1} indicates if
the request is outsourced; and κ and φ is the fixed setup cost and outsource
penalty, respectively. Lastly, o0kl and y0kl are inherited directly from the current
state, s.

Afterwards, the local search procedure improves the solution that has been
created on the greedy randomized level by intensifying the search. This is the
only time in the search that the value function, Ṽ πH′−1, is taken into account.
We base this level on a first-best hill climber using the evaluation function,

z = C(s,a) +
1

N

N∑
j=1

Ṽ πH′−1(f(s,a, ωj)) (12)

based on the expression in (7). Our implementation of GRASP for the
problem of searching for a suitable action a ∈ As is presented in Algorithm 3.

Algorithm 3 Our GRASP implementation in the search for an action a ∈ As
1: a∗ ← (0, 0, · · · , 0)T

2: z∗ ←∞
3: disturbances← generate() . Generate all required disturbances: ωjt
4: while stillT imeLeft do
5: a← (0, 0, · · · , 0)T

6: for all
∑
i,j∈P,J pij do

7: list← getCandList(a, s, α)
8: a← pickRandom(a, list) . Pick randomly from restricted candidate list
9: end for

10: y ← 0
11: N ← getNeighborhood(a, s)
12: while y < noImproment and y < |N | and stillT imeLeft do
13: z, i← evaluateNewRandom(N , disturbances) . Evaluate random element i

from N
14: if z < z∗ then
15: z∗ ← z
16: a∗ ← update(N , i)
17: N ← getNeighborhood(a∗, s)
18: y ← 0
19: else
20: y ← y + 1
21: end if
22: end while
23: end while

return a∗

Here, we construct the neighborhood, N , from an enumeration of every
feasible single move of a procedure to a new room or day along with all feasible
swaps between two procedures. We terminate the local search procedure by
using an upper bound on evaluations without improvement, or if the entire
neighborhood has been evaluated.
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To make all solutions to the action a comparable, the disturbances that are
required for the SAMW algorithm, as well as for (12), are generated during
the initialization of the algorithm. Furthermore, we reuse the T sequences,
ωj2, ω

j
3, . . . , ω

j
H′ between each sample path j. So, accounting for the model

horizon, H ′, the number of iterations in the SAMW algorithm, T , and the N
subsequent states, we require a total of N + T · (H ′ − 1) randomly generated
disturbances for the execution of Algorithm 3.

4 Implementation & Results

In this section, we demonstrate our simulation-based MDP based on data
from a Danish hospital. We use data on patient arrivals and ward resources to
estimate the occurrence of requests, procedure duration, and room availability.

In Section 4.1 we present the hospital case along with a number of assump-
tions related to our model implementation. Next, in Section 4.2 we present the
parameter tuning, followed by Section 4.3 where our approach is compared to
a range of myopic policies using simulation.

4.1 Case & Data Description

For the investigated hospital, requests occur according to |P | = 288 different
types. The occurrence-process is further assumed to be Poisson, in accordance
with Spratt et al., 2019 [26], and stationary with known parameters. Each
request will be subject to an availability-pattern for which we assume that
every successive period of five days has at most one day where the designated
physician is unavailable. In addition, all patterns occur with equal probability.
Furthermore, the procedure duration is random, but with known mean and
variance.

Data for the ten most frequent types of requests, accounting for 52% of the
total occurrence rate, are presented in Table 1.

We assume that all requests have to be allocated. However, if the hospital
does not have sufficient capacity within the current planning horizon, then a
minimum number of requests are allowed to be outsourced. The fixed planning
horizon is set to H = 20 days within which the capacity on the number of
open rooms depends on the weekday, as shown in Table 2. In total, the hospital
has three different rooms at disposal for which the opening-hours results in a
total time-capacity of wk = 7.5 hours.

The planner further has to account for equipment compatibility between
procedure types and rooms. The compatibility between procedures and rooms
for the ten most frequent types are presented in Table 3, where 1 indicates
that the procedure is compatible with the room; otherwise the indicator is 0.
Between all allocated procedures we assume a fixed buffer time of m = 0.5
hours.
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Type Occurrences pr. day Duration Mean (h) Duration Variance (h2)
Procedure A 0.57 2.26 2.15
Procedure B 0.49 2.26 2.05
Procedure C 0.14 1.44 1.41
Procedure D 0.11 2.91 2.99
Procedure E 0.10 1.25 1.01
Procedure F 0.07 1.64 1.25
Procedure G 0.07 1.75 1.37
Procedure H 0.06 2.69 2.30
Procedure I 0.06 2.56 2.12
Procedure J 0.06 1.65 1.40

Table 1: Occurrence rate, sample mean duration, and variance obtained for
the ten most frequent types of requests. These account for about 52% of the
total occurrence rate. The full list has been uploaded to the journal.

Weekday Monday Tuesday Wednesday Thursday Friday
Limit on open rooms 1 2 2 2 2

Table 2: Upper limit on number of open operating rooms for each respective
weekday.

Type Room A Room B Room C
Procedure A 1 0 0
Procedure B 1 1 0
Procedure C 1 1 1
Procedure D 1 1 1
Procedure E 1 1 1
Procedure F 1 1 1
Procedure G 1 1 1
Procedure H 1 1 1
Procedure I 1 1 1
Procedure J 1 1 1

Table 3: Compatibility between procedure types and rooms. Shown for the ten
most frequent types. Number 1 indicates that a procedure is compatible with
a room; otherwise the indicator will be 0. The full list has been uploaded to
the journal.

4.1.1 Model Implementation

In accordance with hospital data studied by Spratt et al., 2019 [26] and Strum
et al., 2000 [28] we assume the capacity utilization of room k ∈ R is distributed
according to a log-normal distribution. This distribution has probability den-
sity function

pk(τ) =
1

%kτ
√

2π
· e
−(ln τ−γk)2

2%2
k (13)
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where γk = ln(µ2
k/
√
σk + µ2

k), %k =
√

ln(σk/µ2
k + 1), µk is the sum of

the expected durations for all procedures allocated to room k ∈ R, and σ2
k

is the corresponding sum of their variances. In addition, we use a polynomial
function to evaluate the cost of performing procedures in overtime δ, assuming
that f(0) = 0. That is,

f(δ) = b1δ
2 + b2δ (14)

In practice the parameters b1 and b2 would be adjusted to attain the de-
sired slope and relation to the payed overtime-costs, and the more intangible
costs of stretching the procedure duration into overtime. Later, we will assess
the result of adjusting these parameters on the performance of our model.

For the SAMW algorithm we employ two base-policies in the set Λ. These
have been chosen to account for the uncertainties in the resulting costs and
at the same time maintain a reasonably fast evaluation time. We will refer to
these base-policies as:

1. The Anticipative Increased Cost Policy (AIP)
2. The Anticipative Weighted Cost Policy (AWP)

In both policies, the current requests, pij , are allocated to the schedule,
rikl, according to their expected duration, E[Yi], in ascending order. Each
request at a time, they evaluate all feasible room-day pairs, k, l ∈ R, T , within
the planning horizon and allocate the requests based on the lowest anticipative
cost. The latter is estimated differently in each of the policies.

1. The AIP estimates the increased cost similar to (11), but for the difference,
oikl−o

i−1
kl , accounts for the future procedures that have not appeared in the

schedule, yet. Specifically, the total capacity utilization is estimated from
µkl and σkl (cf. the distribution in (13)), where each parameter is a sum of
the already allocated procedures and an estimate of the future procedures.
Thus, prior to allocating the request, the AIP assumes that

µkl = ηl · E[YG] +
∑
i∈P

(rikl · E[Yi]) + (
∑
i∈P

(rikl)− 1) ·m (15)

and

σ2
kl = ηl · V ar(YG) +

∑
i∈P

(rikl · V ar(Yi)) (16)

for each feasible room-day pair, k, l ∈ R, T , where E[YG] =
∑
i∈P E[Yi] ·

λi/λG is the global weighted average duration, V ar(YG) =
∑
i∈P V ar(Yi) ·

λi/λG is the global weighted average variance, and λG =
∑
i∈P λi is the

global rate of occurrence. Lastly, ηl ∈ R>0 estimates the additional number
of requests that day l ∈ T will be subject to in the future. Thus,

ηl =

l∑
x=t+1

(λG/(H · |R| − dx)) (17)
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for l ≥ t+ 1; otherwise ηl = 0. Further, dx ∈ N0 is the number of room-day
pairs that are closed (due to capacity depletion) within the horizon relative
to day x ∈ Nt+1≤x≤l.

2. For the AWP policy, each allocation depends again on the requests that
have not appeared in the schedule yet. However, the AWP is based on the
notion that uncertainty should be employed as a ”weight” rather than an
estimate of the potential overtime-costs. Consider the difference oikl− o

i−1
kl

from (11). This time oi−1kl is evaluated by merely summing over the known
procedures in rikl, whereas the resulting overtime-cost, oikl, is based on

(15)-(17). However, we change (17) to ηl = ν ·
∑l
x=t+1(λG/(H · |R| − dx)),

where ν ∈ R>0 determines the ”weight” of these uncertain requests, and
is determined experimentally.

4.2 Adjusting the Parameters

The MDP model parameters were assessed and adjusted by applying the model
to a simulation framework. That is, we simulated the arrival of requests and
their resulting utilization of capacity in the system by generating pseduo-
random numbers. In this simulation, we have assumed that requests occur
according to a Poisson process, and that the total capacity utilization of any
room is distributed according to a log-normal distribution as defined by (13).

We randomly generated three different sets of seeds covering a simulation
period of 565 days, and then replicated each run of the simulation on each
respective set twice. 365 days were used to burn-in the simulation for which
we used the AIP policy to save runtime, leaving 200 days to assess the model
performance of the MDP. On each respective day, the MDP was given a 20
minutes time-limit (cf. Algorithm 3). This limit was chosen to ensure that
results resemble a practical setting.

Tests were conducted using three different levels for each respective param-
eter. The parameters that were subject for testing, and their levels, are pre-
sented in Table 4. The number of sampled paths, N , and the SAMW iterations,
T , were tested with interaction resulting in a total of (3×3+3+3)×2×3 = 90
simulations. The remaining parameters were adjusted during preliminary test-
ing of the model.

For the cooling schedule, βi, we tested both a fixed cooling parameter, such
that βi remained constant for all T iterations, and an exponential decreasing

continuous function, βi = β(i) = 1+C(ε, T )−(i−1), where C(ε, T ) = e−
ln(−1+ε)
T ,

and ε defines the final cooling value after T iterations.

Lastly, for the overtime function in (3) we used a setting with b1 = 10 and
b2 = 4, and a fixed setup-cost of κ = 100. The penalty for outsourcing requests
was set to φ = 1 · 106.
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Level
# Parameter 1 2 3
1 SAMW Iterations (T ) 20∗ 50 100
2 Cooling Schedule βi = 2 (fixed)∗ ε = 1.1 ε = 1.001
3 Sampled Paths (N) 5∗ 10 30
4 Model Horizon (H′) 50 150∗ 300

Table 4: Parameters that have been subject to simulation. Parameter 1 & 2
are related to the SAMW algorithm (Algorithm 1), and 3 & 4 to the rollout
expression (7). The bold font indicates the preliminary setting of the param-
eters during the simulations, whereas the star indicates the setting employed
in the experiments in Section 4.3.

We measured the performance of each setting on the cumulated cost (over
the 200 day simulation period) of both the overtime- and setup-costs; and
the penalty from outsourcing requests. The parameters were then compared
in a dot-plot and on their respective correlations to the amount of cumulated
value. Interestingly, the cooling schedule showed to be more effective when
held constant at βi = 2 and decreasing in performance as ε increases; hence
when βi decreases at a faster rate. The cooling schedule had a distinct effect on
the performance, whereas the remaining parameters were more inconclusive.
The effect from the number of SAMW iterations, T , was almost negligible
with respect to the cumulated value, whereas the number of sampled paths,
N , and the model horizon, H ′, depended more on the specific set of seeds for
the simulation.

As regards the value of ν in the AWP, we employed a hill climber heuristic
where the average performance was recursively evaluated over ten different
sets of seeds until convergence. This resulted in a final weight of ν = 16.969.

4.3 Numerical Experiments

In this section, we apply our MDP model based on the results from the param-
eter tests, and compare the performance to a range of different policies. These
include a policy that resembles the behavior of a ”manual” planner, which we
will refer to as the Manual Policy (MP). Next, we compare the MDP perfor-
mance to a more advanced heuristic search procedure.

The MP is based on the following assumptions:

1. The expected duration of each procedure is known to the planner.
2. The planner is familiar with procedure variability, but the exact distribu-

tion nor spreading is not known. For this reason, a fraction of the available
capacity is used as a buffer such that a new procedure is not allowed to
start within this time-interval. We will test two different buffer levels in
our numerical experimetns. To ensure the planner can utilize the remaining
capacity we allow the buffer to be violated by a maximum of 10% of the
total capacity.
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3. The exact costs are unknown to the planner. For this reason, the planner
will try to utilize the setup-cost for a new room as much as possible. Firstly,
the requests are sorted in ascending order similar to the policies in Λ, and
then allocated in sequence to the room-day pair that results in the least
amount of excess capacity. If there are no feasible allocations for the room-
day pairs that are already in use, the planner will allocate the request to
the latest unused room-day pair such that this new room will be subject
to as many future requests as possible.

Our experiments were conducted using simulations similar to the tests in
Section 4.2. Thus, a period of 365 days were used to burn-in the simulation,
and 200 days to assess the performance of the model. However, simulations
were extended to eight different sets of seeds and replicated five times on each
set. Besides testing the model on a range of different seeds, we varied the
parameters in the overtime function (14) on four different levels, presented in
Table 5. Later, we will refer to the overtime-cost settings using the conventions
presented in this table. Again, the MDP runtime was fixed at 20 minutes for
each day over the entire length of the simulation.

Our experiments in this section include the MDP, MP and the policies in
Λ. For the MP, we decided to employ a capacity buffer of 20% which resembles
the fraction that is most commonly used by our case hospital. Also, to test if
higher room utilization leads to a better performance we included tests with
a 10% buffer.

Reference b1 b2
Low 10 4

Medium 100 10
High 300 100

Very High 10,000 500

Table 5: Parameter settings for the overtime function (14). All four levels are
tested at each of the eight sets of seeds.

In order to compare the performance across the different combinations of
seeds (and thereby the behavior of the requests generated) and overtime-costs,
we standardized the cumulated cost, including the penalty for outsourcing, by
employing the conversion

xijk =
yijk −mink∈Kij{yijk}

maxk∈Kij{yijk} −mink∈Kij{yijk}
(18)

where yijk is the resulting cost of simulation run k ∈ Kij using seeds i and
overtime-cost setting j. Thus, for the five replications of the MDP, the MP
with both 10% and 20% capacity buffer; and the policies in Λ, |Kij | includes
9 runs for each combination of i and j.
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The results are presented in Table 6 showing the performance of each model
and overtime-cost setting, presented as both the average and standard devi-
ation standardized cost. Furthermore, average runtimes of each model are
presented in Table 7.

Table 6 shows a distinct difference between the MDP and the remaining
policies, measured on both the average and standard deviation performance.
The difference is especially distinct between the MDP and the MP, regardless
of the capacity buffer. Notice that the MP with 20% capacity buffer yields an
average of 1.000 and a standard deviation of 0.000 for the first three overtime
settings because this policy resulted in the highest cost across all eight sets of
seeds.

Interestingly, the benefit of using the MDP increases as function of the
overtime cost. Simultaneously, the difference between the policies decreases,
resulting in quite indifferent performance at the highest overtime cost level.
Otherwise, the MP performs substantially better with a 10% instead of a 20%
capacity buffer. Still, the anticipative policies in Λ yield substantially lower
costs than both MP settings, where AWP results in both lower average and
standard deviation cost than all the remaining policies, except at the highest
level. The relative difference between the average performance of the MDP
and AWP is quite large, but given the runtimes in Table 7 which shows that
AWP derives a decision in about 3 milliseconds, the latter might be a suitable
choice in many settings.

Average Std. Deviation
Overtime MDP MP 10% MP 20% AIP AWP MDP MP 10% MP 20% AIP AWP

Low 0.009 0.473 1.000 0.188 0.075 0.014 0.120 0.000 0.149 0.053
Medium 0.075 0.499 1.000 0.234 0.096 0.027 0.130 0.000 0.161 0.050

High 0.015 0.526 1.000 0.267 0.136 0.016 0.133 0.000 0.158 0.054
Very High 0.019 0.977 0.927 0.800 0.857 0.016 0.037 0.097 0.107 0.070

Table 6: Performance of the MDP compared to the MP with a capacity buffer
of 10% and 20%; and the base-polices in Λ. The models are compared on their
standardized cost.

Average runtime (s)
MDP 1200.00

MP 10% 2.47 · 10−3

MP 20% 1.97 · 10−3

AIP 2.79 · 10−3

AWP 2.92 · 10−3

Table 7: The average runtime in seconds for the MDP, the MP, and the base-
policies in Λ. Note that the MDP always has a fixed runtime of 1200 seconds
(20 minutes).
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We emphasize that performances of advanced approaches (such as the
MDP) are only relevant if a computational setup can be introduced into the
hospital operations, which is an obvious advantage of a manual approach.
However, if this is possible, then we should consider how another well-known
scheduling method compares to the MDP performance. This is the purpose of
the following section.

4.3.1 Further Validation

In this section, we compare our MDP to a GRASP heuristic with a myopic
cost-structure. That is, we re-used the basic algorithmic structure that was
presented in Algorithm 2, but without the anticipative costs. Instead, during
the local search, we evaluate the solution on the sum of the expected overtime-
cost and the fixed setup-cost over the entire planning horizon. Thus,

C ′(s,a) =
∑

k,l∈R,T\{t+H}

okl+
∑

k,l∈R,T\{t+H}

(ys
∗

kl −ysk,l+1)·κ+
∑

i,j∈P,J
qij ·φ (19)

We chose to compare our MDP to the myopic GRASP due to its perfor-
mance in other scheduling problems [13, 24], and because the method can be
applied without excessive computer programming, which is an advantage to
hospitals converting from manual to computational planning.

Just as in our previous experiments, we simulated the performance of the
GRASP heuristic with 20 minutes of runtime, and replicated each run five
times on each combination of seeds and overtime-cost setting.

The result of the simulations are presented in Table 8, showing the average
and standard deviation performance for each model and overtime-cost setting.
The average performance has further been depicted in Figure 4. Again, the
models are compared on their standardized cost according to (18), but re-
calculated to fit the only two models that are compared in this section.

Average Std. Deviation
Overtime MDP GRASP MDP GRASP

Low 0.276 0.201 0.422 0.354
Medium 0.302 0.357 0.328 0.382

High 0.392 0.463 0.365 0.411
Very High 0.453 0.493 0.294 0.303

Table 8: Performance of the MDP compared to the GRASP heuristic. The
models are compared on their standardized cost

Table 8 shows that the performance of the two models is much more equal
compared to our previous experiments. In fact, the GRASP outperforms the
MDP in both average and standard deviation cost when the overtime-cost is
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set to ”Low”. This corresponds to the parameters b1 = 10 and b2 = 4 which is
the setting that the MDP was adjusted for. However, as the cost of stretching
procedures into overtime increases, so does the MDP performance resulting
in lower average (cf. Figure 4) and standard deviation cost for the remaining
overtime settings.

We should further emphasize that in the cheapest setting, the overtime-
cost does not exceed the cost of opening a new room until about 3 hours into
overtime, which is longer than the expected duration for most of the occurring
requests in our data. This may not apply to many real hospital settings. In
addition, these experiments were conducted for a reasonably short simulation
of 200 days; hence, if the improvement of exploiting the rolling and overlapping
nature of the problem is small, then such advantage might only show for much
longer periods of simulation.
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Fig. 4: Performance of the MDP and GRASP measured on their standardized
cost. On average, the MDP yields better decisions when the overtime-cost is
anything but at the cheapest level.

5 Conclusion

Aiming to apply and test a new approach to the problem of scheduling OTs,
we developed a simulation-based MDP. The advantage of this type of modeling
approach is that a sequence of decision problems are taken into account, which
is often disregarded in OT planning.

Specifically, our approach derives a heuristic policy by evaluating a num-
ber of potential future scheduling paths from the currently observed state.
This process is based on a predefined set of base-policies and employs an algo-
rithm known as Simulated Annealing Multiplicative Weights (SAMW) [7]. We
further consider that the state-dependent action space is intractable, and for
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this reason we derive an action with a Greedy Randomized Adaptive Search
Procedure (GRASP).

In order to validate our approach we conducted a number of numerical ex-
periments based on simulation, and compared our results to both simple and
more advanced myopic scheduling methods. Firstly, we validated a policy that
resembles a manual planner. This indicated that a distinct improvement can
be attained if our model is employed rather than scheduling requests manu-
ally. Furthermore, we found that a substantial improvement can be attained
by employing a policy that accounts for future requests by weighting their con-
tribution to the overtime-costs. We refer to this as the Anticipative Weighted
Cost Policy (AWP). In addition, we found that a GRASP disregarding the
rolling horizon performs only slightly worse than our MDP, and in fact better
when the cost of stretching into overtime is sufficiently low.

5.1 Future Work

In future work more extensive numerical experiments should be considered.
The difference in performance between the simulation-based MDP and myopic
GRASP should be investigated by extending the period over which simulation
is conducted, employing more levels on the overtime-cost setting, and more
effective base-policies in Λ. Additionally, further work into more simple policies
should be investigated to benefit the hospital cases where requests have to be
allocated within a short time (e.g. below a few seconds).
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