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Preface 

The presented work has been submitted to the Department of Health Technology at the Technical 

University of Denmark (DTU) in order to fulfill the requirements of the PhD degree. The presented 

research was conducted first at the Veterinary Institute, later at the Micro-and Nanotechnology 

Department and finally at the Department of Health Technology. The work was carried out from 

November 2016 to October 2019 under the supervision of Associate Professor Katharina Lahl and 

Associate Professor Vasileios Bekiaris. In addition, three months of research within the stated 

period were conducted at the Monash Biomedicine Discovery Institute, Melbourne, Australia, at 

Associate Professor Meredith O’Keeffe’s lab. 

 

This thesis consists of an introduction to the research topic, followed by the main manuscript 

together with complementary results, discussion and conclusion of the major findings of this work. 

Finally, a brief description of future perspectives is included. 
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Abstract 

The intestine is continuously challenged to generate protective immunity against harmful antigens, 

such as pathogens, and tolerance against harmless materials, such as food. Dendritic cells (DCs) are 

key regulators of innate and adaptive immune responses and play important roles in the generation 

of immunity to intestinal antigens. DCs acquire antigen in the periphery and migrate to draining 

lymph nodes where they prime immune responses. Different DC subsets differ in their capacity to 

induce distinct immune responses and this is thought to be in part due to differential expression of 

pattern recognition receptors (PRRs). Targeting specific DC subsets has been exploited in 

vaccination strategies in order to develop more efficient, targeted therapies. However, little is 

known about the specific requirements for activation and migration of different DC subsets.  

 

Herein, we hypothesized that distinct intestinal DC subsets differ in their migratory patterns 

following stimulation with poly(I:C), a synthetic analog of dsRNA signaling through TLR3. 

Although TLR3 is highly expressed in cDC1, poly(I:C) induced migration of cDC1 and cDC2 

equally in a cell-extrinsic, TLR3 dependent manner. TLR3 activation by poly(I:C) induced early 

expression of pro-inflammatory cytokines, including type I IFNs, TNF-α and IL-1β. By using 

different genetic mouse models, we found that TNF-α was required for migration of both cDC1 and 

cDC2 in response to poly(I:C). However, we also detected a previously unrecognized role for 

intrinsic type I IFN signaling in cDC1 but not cDC2 activation and migration in response to 

poly(I:C). Stimulation with R848, a TLR7 ligand, showed similar results, suggesting type I IFN as a 

signal required for activation and migration of cDC1 in response to different TLR ligands. In 

contrast, IL-1β signaling was dispensable for migration. In addition, we found that pDCs were not 

required as a cellular source for type I IFN and TNF-α in the context of poly(I:C) injection. 

Preliminary studies suggest a role for macrophages instead, but future experiments are needed to 

confirm these facts. 

 

Collectively, these findings suggest distinct requirements for migration of DC subsets in response to 

poly(I:C). Future experiments assessing the functionality of cis vs trans-activated DCs will 

elucidate whether the observed differences on DC subset migration translate into different immune 

responses. 
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Dansk resumé 

Tarmene bliver konstant udfordret af fremmede antigener og er derfor nød til at generere 

beskyttende immunitet mod skadelige antigener såsom patogener, og tolerance mod ufarlige 

antigener såsom fødevare. Dendritceller (DC'er) spiller en stor rolle i reguleringen af både det 

uspecifikke og specifikke immunrespons, og har stor betydning for dannelsen af immunitet overfor 

antigener i tarmen. DC’er optager antigener i periferien og migrerer derefter til de drænende 

lymfeknuder, hvor de igangsætter det primære immunrespons. Forskellige undergrupper af DCer 

adskiller sig i deres evne til at inducere forskellige immunresponser. Dette menes at være delvis på 

grund af forskelle i udtrykkelsen af ”pattern recognition receptors” (PRR'er). Man har udnyttet, at 

man kan ramme specifikke DC-undergrupper i vaccinationsstrategier til at udvikle mere effektive 

og målrettede behandlingsformer, dog er der meget begrænset viden om de specifikke krav til 

aktivering og migrering af forskellige DC-undergrupper. 

 

Heri antog vi, at forskellige DC-undergrupper i tarmen varierer i deres migrationsmønstre efter 

stimulering med poly(I: C), en syntetisk analog af dsRNA, som signalerer gennem TLR3. Selvom 

TLR3 er højt udtrykt i cDC1, inducerede poly(I: C) tilsvarende migrering af både cDC1 og cDC2, 

begge afhængigt af ekstern TLR3 signalering. Aktivering af TLR3 ved hjælp af poly(I: C) 

inducerede i første omgang ekspression af pro-inflammatoriske cytokiner, så som type I interferoner 

(IFN'er), TNF-α og IL-1β. Ved brug af forskellige genetiske musemodeller fandt vi at TNF-α var 

nødvendig for migrering af både cDC1 og cDC2 som et respons på poly(I: C) stimulering. 

Derudover opdagede vi en endnu ikke beskrevet rolle for type I IFN-signalering i aktivering og 

migrering af cDC1, men ikke cDC2, i respons på poly(I: C). Stimulering med R848, en TLR7-

ligand, gav lignende resultater, hvilket antyder at type I IFN-signalering er nødvendig for aktivering 

og migrering af cDC1 som respons på forskellige TLR-ligander. I modsætning til dette var IL-1β-

signalering ikke nødvendig for migration. Derudover fandt vi at pDC'er ikke var påkrævet som en 

cellulær kilde til type I IFN og TNF- α i forbindelse med poly(I: C) injektion. Indledende forsøg 

antyder en rolle for makrofager i stedet, men fremtidige eksperimenter er nødvendige for at 

bekræfte dette. 

 

Samlet set tyder disse fund på forskellige krav til migrering af DC-undergrupper som respons på 

poly(I: C). Fremtidige eksperimenter, der vurderer funktionaliteten af cis vs trans-aktiverede DC'er, 

vil undersøge, om de observerede forskelle på migrering af DC-undergrupper bliver omsat til 

forskellige immunresponser. 
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1. Background 

1.1 The intestine 

Architecture of the gut 

The intestine is a continuous tube that expands from the end of the stomach – pylorus – to the anus 

and is broadly subdivided into the small (SI) and large (LI) intestine. These two different regions 

differ in their anatomy because they have distinct physiological functions. The SI is responsible for 

food digestion and absorption of nutrients, while the LI is where water reabsorption occurs. 

Small intestine 

The SI is the first section of the intestinal tract, placed between the pylorus and the ileocecal valve. 

It is divided into three main segments: the duodenum, the jejunum and the ileum (Figure 1). The 

duodenum and the jejunum are characterized by finger-like projections termed villi. On top, a layer 

of absorptive epithelial cells covers the villi with membrane projections called microvilli. This 

“brush border” contains enzymes needed for digestion and increases the surface area of the SI to 30 

m
2
 
2
. Hence, the SI is the major digestion and nutrient absorption site. The ileum, with shorter villi, 

has a lesser role in nutrition. 

 

Figure 1. The intestinal tract. The intestinal tract consists of a long tube divided into SI and LI. The SI starts at the 

end of the stomach and consists of the duodenum, the jejunum and the ileum. The LI consists of the caecum, the colon 

(ascending and transversal), rectum and finishing at the anus
1
. 
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Large intestine 

The undigested contents from the SI then enter the LI. The main segments of the LI are caecum, 

colon, rectum and anus (Figure 1). The LI lacks a brush border and its main role is water 

reabsorption and elimination of indigestible foodstuffs. Moreover, the LI constitutes a complex 

reservoir of beneficial microorganisms, known as commensal microbiota. These commensals 

contribute to nutrition of the host by fermenting indigestible carbohydrates such as dietary fibers to 

absorbable metabolites such as short-chain fatty acids (SCFA). Additionally, commensals provide 

protection by competing for niches with pathogens. 

Intestinal wall 

The intestinal tract consists of distinct layers (Figure 2). The mucus protects the mucosa, which is 

the layer in direct contact with the lumen. The mucosa consists of a single cell layer of specialized 

intestinal epithelial cells termed epithelium, an underlying connective tissue called lamina propria 

(LP) and a thin muscle layer named muscularis mucosa. The LP functions as scaffold for the villi 

and contains blood supply, lymph drainage and nervous system for the mucosa. The LP also 

contains large amounts of immune cells. The muscularis mucosa separates the LP to the submucosa, 

which consists of a highly vascularized connective tissue. Finally, the serosa is the thick fibrous 

layer that separates the intestine from the peritoneal cavity. 
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Figure 2. The intestinal wall. The intestinal mucosa is in direct contact with the lumen and consists of the epithelium, 

the LP and the muscularis mucosa. Below the muscularis mucosa, we find the submucosa, which is highly vascularized, 

providing with blood and lymphatic supply. The underlying muscle layer is responsible for the peristaltic movements to 

transport the food along the intestine. Finally, the serosa is the layer of tissue separating the intestine from the peritoneal 

cavity.  

Tolerance vs Immunity 

The intestine is continuously exposed to foreign antigens from the daily-ingested food as well as 

from the community of commensal bacteria. As a consequence, the intestine is constantly 

challenged to generate tolerance against harmless materials and protective immunity against 

harmful antigens. Tolerance needs to be generated towards nutrients as well as the commensal 

bacteria, which consists of approximately 10
14

 microorganisms from around 500 different species
1
. 

At the same time, the thin epithelial layer is constantly self-renewed. However, the exposure of the 

intestine to the outside increases the risk of pathogen entry and the immune system needs to 

establish protective immunity against it. Therefore, the intestine contains a large number of both 

innate and adaptive immune cells that allow for the generation of the proper immune response 

tailored to the specific Ag. 

 

 



17 

 

1.2 The intestinal immune system 

In higher animals, the immune system consists of two arms: the innate and the adaptive. The innate 

immune system, evolutionary ancient, provides immediate protection by detecting invariant features 

of invading microbes. Contrarily, the adaptive immune system is temporally delayed as it uses 

antigen-specific receptors that are newly generated. It is the combination of both the innate and the 

adaptive immune systems that recognize and eliminate invading pathogens with the maximal 

efficacy and minimal self-damage, as well as leading to protection from re-infection by the same 

pathogen (Figure 3)
3
. 

 

 

Figure 3. The innate and adaptive immune system. The innate immune system is the first line of defense. The innate 

immune cells include dendritic cells (DC), macrophages (mø), Natural Killer (NK) cells, mast cells and granulocytes 

(neutrophils, basophils and eosinophils). The adaptive immune system is delayed and consists of B and T cells which 

carry highly antigen-specific receptors. Although Natural Killer T (NKT) cells and γδT cells are developed as cells of 

the adaptive immune system, they function as innate-like cells, hence their placement at the interface. 

Innate immune system 

The innate immune system is the first line of defense upon pathogen invasion. It is triggered by 

pattern recognition receptors (PRRs) that serve as sensors of common microbial structures known 

as pathogen-associated molecular patterns (PAMPs)
4
. Additionally, these receptors can sense 

damaged-associated molecular patterns (DAMPs) produced by a cell in response to injury. PRRs 

are expressed mainly by hematopoietic immune cells. However, non-immune cells such as non-

hematopoietic mesenchymal stromal cells or epithelial cells can also express PRRs
5,6

. The 

activation of the innate immune system happens quickly, within minutes to hours after infection. It 

detects the nature of infection, provides the first line of host defense and determines the class of 

adaptive immune response to be initiated. The cells contributing to innate immunity in the gut are 

described below. 
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Intestinal epithelial cells (IECs): the intestinal epithelium is a single cell layer that separates the 

lumen from the LP. Epithelial cells are increasingly recognized as contributors to immune 

regulation as they express a vast range of innate immune receptors that are pivotal for intestinal 

homeostasis
7–10

. Several subsets of IECs comprise the intestinal epithelium, and they appear to play 

distinct immune functions (summarized in Figure 4). For example, goblet cells produce mucus, a 

gel-like substance that covers the intestinal epithelium and acts as a chemical barrier to trap and 

prevent bacteria from direct contact to the epithelium. Germ-free mice have very poor mucus 

production but toll-like receptor (TLR) ligands restores the mucus production, suggesting a major 

role of microbial sensing in mucus production
11,12

. In addition, Paneth cells are the major producers 

of antimicrobial peptides (AMP) such as lysozyme, defensins and regenerating islet-derived protein 

3 gamma (REGIIIγ), and their production is largely dependent on the intrinsic expression of 

nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and myeloid 

differentiation primary response 88 (MyD88)
13,14

. Production of REGIIIγ is also dependent on 

interleukin (IL)-22, which is produced by innate lymphoid cells (ILCs) and CD4
+
 T cells in 

response to pathogen invasion
15

. These studies confirm that microbial recognition by IECs is 

essential for intestinal immune homeostasis. 

 

 

Figure 4. The intestinal epithelium. Several types of epithelial cells constitute the intestinal epithelium and all 

differentiate from the stem cells present at the crypt. Paneth cells are responsible for protecting the stem cell niche by 

production of AMP; goblet cells produce mucus; tuft cells produce IL-25 in response to parasitic infections; enterocytes 

are responsible for nutrient absorption; microfold (M) cells are specialized epithelial cells present at the follicle-

associated epithelium (FAE). Enteroendocrine cells secrete hormones that play crucial roles in regulating processes 

such as control of glucose levels, food intake and stomach emptying. 
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Innate lymphoid cells (ILCs): recently described as lymphocyte populations of the innate immune 

system, ILCs also populate the intestinal mucosa. ILCs lack recombined antigen-specific receptors 

but rapidly respond to inflammatory mediators produced by IEC or cells of the myeloid lineage, 

such as macrophages and dendritic cells (DCs). Although previous studies have shown the limited 

expression of PRRs by ILCs, recent studies have proven that ILCs can express functional PRRs 

such as TLR3
16,17

. ILCs are classified into three distinct groups that mirror those of effector T 

helper (Th) cells from the adaptive immune system: group 1, 2 and 3 ILCs. Accordingly, group 1 

ILCs (ILC1) are dependent on transcription factor T-bet and produce interferon (IFN)-γ, and are 

generally involved in the clearance of intracellular pathogens
18,19

, like Th1 cells. ILC1 additionally 

include classical natural killer (NK) cells. Mirroring Th2 cells, group 2 ILCs (ILC2) express the 

transcription factor GATA3 and secrete IL-5 and IL-13 in response to IL-25, IL-33 and thymic 

stromal lymphopoietin (TSLP), which are secreted by IEC and thought to be involved in the 

clearance of parasitic infections
18,20

. Lastly, group 3 ILCs (ILC3) include lymphoid tissue inducer 

cells (LTi), responsible for secondary lymphoid tissue organogenesis during embryogenesis, and 

those ILCs analogous to the Th17 cell lineage. ILC3 depend on the expression of transcription 

factor retinoid-related orphan receptor gamma t (ROR-γt) and produce cytokines IL-17A and/or IL-

22 in response to IL-23, IL-1α and IL-1β, among others
18

. Production of IL-22 by a subset of ILC3s 

plays a crucial role during intestinal Citrobater rodentium infection
15,21

. Taken together, ILCs are 

key players in maintaining intestinal homeostasis
22–24

. 

 

Mononuclear phagocytes (MNP): MNP consist of intestinal macrophages and classical DCs 

(cDCs), both known to be involved in antigen sampling and presentation. Distinction of these 

populations has been controversial, since they share the expression of surface markers such as 

major histocompatibility complex (MHC)-II and CD11c
25

. However, recent studies have shown that 

the surface molecule CD64 is expressed in intestinal macrophages and absent in cDCs
26

, leading 

CD64 to be a useful marker to identify intestinal macrophages
27

. Accordingly, intestinal 

macrophages can now be more accurately identified by the combined expression of F4/80, CD64 

and CX3CR1
28

. In contrast, DCs express high levels of CD11c and MHC-II and, although some 

subsets can express intermediate levels of CX3CR1, they lack F4/80 and CD64
29

. As DCs are the 

main subject of this thesis, they will be discussed in detailed in Chapter 1.3. 

 

Intestinal macrophages are the most abundant MNP in healthy intestinal LP and represent the 

largest pool of macrophages in the body
30

. As major phagocytic cells, the main function of 

macrophages is to engulf and clear pathogens, cellular debris and bacterial products as well as 

production of mediators for epithelial cell renewal
31

. In steady state, they are constantly replenished 

by the Ly6C
hi

 blood monocytes which undergo a local differentiation into tissue-resident 

macrophages, where they lose Ly6C
hi

 and upregulate F4/80, CD64, CX3CR1 as well as CD11c and 

MHC-II, becoming highly phagocytic (Figure 5)
25,26

. Additionally, tissue-resident macrophages 

secrete IL-10, an anti-inflammatory cytokine that plays a pivotal role in maintaining intestinal 

homeostasis. IL-10 induces survival and expansion of T regulatory (Treg) cells and it is responsible 

for the hyporesponsiveness of macrophages to TLR ligands
28,32–34

. Accordingly, IL-10 receptor 

deficiency leads to severe spontaneous colitis in mice and is responsible for a type of early onset of 
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inflammatory bowel disease (IBD) in children
35,36

. In addition, macrophages sense intestinal 

microbes by MyD88 and NLRC4 inflammasome, which leads to production of IL-1β. Macrophage-

derived IL-1β in steady state mantains intestinal homeostasis by maintenance of Th17 cells and 

crosstalk with ILC3
37–39

. Under inflammatory conditions, however, blood-derived monocytes 

accumulate at the site of inflammation and respond to TLR ligands and pro-inflammatory cytokines 

(Figure 5). In physiological conditions, macrophages do not migrate to mesenteric lymph nodes 

(mLNs) and are unable to prime naïve CD4
+
 T cells

33,40
. However, some monocyte-derived MNPs 

can upregulate C-C chemokine receptor type 7 (CCR7) and migrate to lymph nodes during certain 

inflammatory conditions, a topic under intensive investigation
41

. Collectively, macrophages play 

crucial roles in maintaining intestinal homeostasis. 

 

 

Figure 5. Intestinal macrophages in health and inflammation. In steady state, intestinal macrophages are constantly 

replenished by blood-born monocytes (Ly6C
hi

CCR2
+
). Once in the intestine, they undergo a local differentiation into 

tissue-resident macrophages, characterized by loss of Ly6C and upregulation of CD64, F4/80 and CX3CR1. Production 

of IL-10 by macrophages maintains them hyporesponsive to TLR ligands in an autocrine manner and maintains a 

population of Tregs. Under inflammatory conditions, there is an increased recruitment of monocytes that differentiate 

into CX3CR1
int

 cells, which are responsible for pro-inflammatory cytokine production and recruitment of other immune 

cells such as neutrophils. 

Plasmacytoid DCs (pDCs): pDCs are fully differentiated in the bone marrow (BM) and seed the 

intestine in a CCR9-dependent manner. In contrast to the general role of type I IFN production that 

characterizes pDCs, intestinal pDCs produce only low levels of type I IFN at steady-state due to the 

unique intestinal microenvironment, characterized by the presence of tolerogenic mediators such as 

IL-10, transforming growth factor (TGF)-β and prostaglandin E2 (PGE2)
42

. In contrast, intestinal 

pDCs have been shown to induce oral tolerance by triggering differentiation of Treg cells
43

. In 

addition, pDCs can also trigger immunoglobulin (Ig) A induction in a T cell independent pathway
44

. 
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Unlike DC, pDCs do not migrate to the mLNs, but can drive DC migration in response to TLR 

ligands via production of by Type I IFN and tumor necrosis factor (TNF)-α
45,46

. In addition, they 

are thought to play protective roles to commensal bacteria such as B. fragilis as well as in food 

allergy
47–49

. 

 

Granulocytes: although usually associated with allergy and parasitic infections, granulocytes are 

also present in healthy intestine. Eosinophils account for up to 30% of the myeloid population and 

they are thought to play important roles in tissue repair
28,50

. Mast cells represent 2-3% of total cells 

in human intestinal LP and they produce mediators involved in epithelial barrier integrity and 

peristalsis
51–53

. They seem to play a role in interaction with the enteric nervous system as well as 

tissue remodeling
51–53

. In contrast, neutrophils are present in low numbers in healthy gut but 

increase upon pathogen invasion. The main role of neutrophils is to kill microbes invading the 

mucosa and to prevent their systemic spread by the release of degradative enzymes, production of 

reactive oxygen species (ROS) and the release of neutrophil extracellular traps (NETs), composed 

of chromatin laced with antimicrobial peptides. NETs released by neutrophils can trap and kill 

extracellular bacteria such as Shigella spp
54–56

. Of note, neutrophils can also contribute to tissue 

damage during infection
56

. 

Adaptive immune system 

Initiation of the adaptive immune response is a slower process than that of innate immunity. This is 

mainly because it relies on antigen (Ag)-specific recognition from a highly diverse repertoire of 

receptors, requiring Ag-specific clonal expansion before contributing to immunity. Adaptive 

immunity is mediated by B and T cell lymphocytes, and the receptors are called B-cell receptor 

(BCR) and T-cell receptor (TCR), respectively. 

 

B and T cells develop in the bone marrow and thymus, respectively. While B cells can directly 

recognize and bind Ags through the BCR, T cells recognize Ags through the TCR only if presented 

on a MHC molecule. The BCR consists of a membrane-bound Ig, formed by a pair of heavy and 

light chains, as a result of a random rearrangement of Ig subgenes. Activated B cells in germinal 

centers (GC) express activation-induced cytidine deaminase (AID) enzyme, responsible for creating 

somatic hypermutations (SHM) that will lead to highly specific antibodies against pathogens
57

. In 

addition, Ag recognition promotes class-switch recombination (CSR) of the constant region to tailor 

the effector response to the Ag encountered (leading to IgM, IgD, IgG, IgA or IgE). By contrast, 

TCR specificity remains static after the DNA rearrangement in the thymus
58

.  

Inductive sites 
The inductive sites of the intestine are the main location where priming of adaptive immune 

responses occurs. They consist of organized lymphoid structures including the mLNs and the gut-

associated lymphoid tissues (GALT), which comprise solitary intestinal lymphoid tissue (SILT, 

including mature isolated lymphoid follicles (ILFs) and colonic patches) and Peyer’s patches (PPs).  
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mLNs: The mLNs consist of a chain of lymph nodes draining the SI and colon. Distinct nodes of 

the mLNs are known to drain different segments. While the central nodes of the mLNs have shown 

to drain the SI, the most distal node from the mLN chain together with another node at the opposite 

end of the mLNs drain the colon
59

. In contrast, the transverse colon and the descending colon 

together with the rectum are drained by the duodenopancreatic and the caudal lymph node, 

respectively
59

. 

The segregation of mLNs draining different sections of the intestine likely provides a mechanism by 

which immune responses in the distinct sites of the intestine can be independently controlled. 

Accordingly, a recent study has shown that different nodes within mLNs are immunologically 

specific to the site they drain by containing distinct subpopulations of stromal cells and DCs
60

. 

 

GALT: The gut-associated lymphoid tissues are lymphoid tissue aggregates that lie at the mucosa 

and submucosa. They contain B cells, T cells and DCs similarly to lymph nodes, but they lack 

encapsulation. DCs in GALT lie in a region called subepithelial dome (SED), which is separated 

from the lumen by a follicle-associated epithelium (FAE). The FAE contains specialized epithelial 

cells, called microfold (M) cells, which lack microvilli and enzymes but instead take up and 

transport Ags from the lumen to the underlying DCs (Figure 6)
1
. However, M cells are also the site 

of entry of many pathogens such as Salmonella, Yersinia and some viruses
61,62

. The best 

characterized GALT are PPs that can be seen macroscopically. SILTs are smaller and can only be 

seen microscopically. 

 

 

Figure 6. Structure of PPs. PPs are the best characterized GALT. They consist of a FAE containing M cells. Ag taken 

up by M cells is transferred to underlying DCs present at the SED. Ag-bearing DCs will then move to the interfollicular 

regions (IFR) and interact with T cells. DC can also interact with B cells at the follicle. 
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T cell activation 
Generation of T cell responses generally occurs in the mLNs. The structure of mLNs resembles that 

of other lymph nodes (LNs), including a subcapsular sinus, a cortex where B cell follicles lie, and a 

paracortical area, populated by T cells. B cells express C-X-C Motif Chemokine Receptor (CXCR)5 

and travel to B-cell follicles guided by chemokine CXCL13 expressed by follicular dendritic cells, 

whereas T cells are guided to the T cell zone (TCZ) by chemokine (C-C motif) ligand (CCL)19 and 

CCL21 produced by fibroblastic reticular cells
63

. Lymph, containing Ag as well as DCs, travels 

from the intestine to the LNs through afferent lymphatics. DCs migrate to the mLNs in a CCR7-

dependent manner, following a gradient of CCL19 and CCL21 produced by lymphatic endothelial 

cells (LEC). Once in the LNs, DCs will localize mainly to the TCZ
63,64

. In parallel, naïve B and T 

cells circulating in blood enter the mLNs through high endothelial venules (HEV) in a process 

dependent of α4β7-Mucosal Addressin Cell Adhesion Molecule-1 (MAdCAM-1) interaction
65

. 

Naïve CD8
+
 T cells are activated by cognate Ag presented on MHC-I molecules by DCs, leading to 

generation of cytotoxic T lymphocyte (CTL) responses. By contrast, naïve CD4
+
 T cells recognize 

their Ag presented on MHC-II molecules, and will subsequently develop into different Th effector 

cells (e.g. Th1, Th2, Th17, Tregs and T follicular helper (Tfh), summarized in Figure 7), depending 

on the stimuli received by the presenting DC.  

 

 

Figure 7. Location of immune cells in the mLNs and distinct Th effector cell lineages in mice. Left: Migratory DCs 

enter the mLNs through afferent lymphatics and are recruited to the TCZ in a CCR7-dependent manner, following the 

CCL19 and CCL21 gradient. Naïve B and T cells enter the mLNs from the blood via HEV. B cells are recruited to the B 

cell zone (BCZ) by a CXCL13 gradient whereas T cells are recruited to the TCZ via the CCR7-CCL19/21 axis. Right: 

Recognition of cognate antigen by naïve CD4
+
 T cells on MHC-II molecules on DCs leads to differentiation of distinct 

T cell lineages. Intracellular pathogens induce Th1 cells; Tfh cells provide help to B cells for antibody production; Th17 

maintain tissue homeostasis by clearing extracellular bacteria; Th2 are responsible for parasite clearance and Tregs 

suppress the rest of the Th cells and induce tolerance. 

B cell activation 
PPs are the main sites where B cells differentiate into IgA-secreting plasma cells. IgA class 

switching is a complex process and can be achieved either through T cell-dependent (TD) or T cell-
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independent (TI) pathways. TD-IgA responses require the help from CD4
+
 activated T cells through 

binding of CD40L, as well as the cytokines TGF-β, IL-5 and IL-6
66–68

. Bioavailable TGF-β is 

thought to be primarily provided by DCs, which express the integrin αVβ8 responsible for TGF-β 

activation
66

. In addition, IL-5 and IL-6 play complementary roles by inducing differentiation and 

secretion of IgA, respectively
69,70

. PPs have constant germinal center reactions, showing the 

continual immune stimulation of the intestine. Accordingly, PPs are the main site for TD-IgA 

induction (Figure 8). 

 

In contrast, TI-IgA responses are GC-independent and depend on A proliferation-inducing ligand 

(APRIL) and B-cell activating factor (BAFF)
71,72

. Both APRIL and BAFF can be expressed by DCs 

and IECs in response to commensal microbiota and TLR stimulation
73–75

. Additionally, IECs also 

produce TSLP, which induces DCs to produce more APRIL and IL-10, contributing further to the 

IgA induction
68

. Inducible nitric-oxide synthase (iNOS), an enzyme induced also in DCs by 

commensal bacteria and TLR ligands seems to play a role in both TD and TI-IgA induction
76

. 

Moreover, pDCs can also induce TI-IgA by production of membrane-bound BAFF and APRIL, 

which are induced by type I IFNs produced in low levels by GALT stromal cells (Figure 8)
44

. 

 

It is still unclear whether IgA
+
 plasma cells in the gut are primarily primed through TD or TI 

pathways. Mice deficient in CD40, which lack TD-IgA induction, showed normal levels of IgA
+
 

plasma cells in the LP
77

. However, SHM was not achieved, leading to induction of low affinity 

IgA
77,78

. Accordingly, ILFs that consist of mainly B cells, together with DCs and LTi cells, a type 

of ILC3, are thought to be important sites for TI-IgA class-switch in mice
79

. 

 

 

Figure 8. Induction of IgA by TD and TI pathways. Upon TLR stimulation by commensal bacteria, TD-IgA 

induction requires the help from T cells by CD40L interaction, together with TGF-β, IL-5 and IL-6. Alternatively, TI-

IgA induction can be achieved by APRIL and BAFF produced by DCs and IECs. Additionally, TSLP from IECs 

induces DC to produce IL-10, which has been shown to further contribute to TI-IgA induction. pDCs can also 

contribute to TI-IgA-induction by providing membrane-bound APRIL. Production of NO by DCs plays a role during 

both TD- and TI-IgA induction. 
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Gut-homing receptors imprinted in lymphocytes 
The compartmentalization of the intestinal immune system is specific, as B and T cells primed in 

intestinal sites return to the mucosa. This is achieved by the induction of gut-homing receptors such 

as CCR9 and α4β7. The ligands of such receptors, CCL25 and MAdCAM-1, are highly expressed in 

the SI and the HEV of mLNs, allowing homing of lymphocytes back to the intestine. For T cells, 

expression of CCR9 and α4β7 is induced by DCs in the mLNs and PPs in a process dependent on 

retinoic acid (RA)
80–82

. Although early studies suggested that only CD103
+
 DCs were able to 

metabolize RA due to their unique expression of the enzyme retinaldehyde dehydrogenase 1 

(RALDH1), a recent study has shown that all migratory DC subsets have the capability of inducing 

gut-homing receptors
83

. In addition, stromal cells as well as IECs express RALDH1 and can 

produce RA
84,85

. Of note, G protein-coupled receptor 15 (GPR15) is involved in homing of T cells 

to the colon, but its expression on effector vs regulatory T cells seems to differ between mice and 

humans
86,87

. 

 

Intestinal activated B cells home to the intestine by expression of α4β7. Imprinting gut-homing 

receptors in B cells also depends on RA. Accordingly, DCs seem to be responsible for imprinting 

expression of CCR9 through the metabolism of RA
67

. Gut homing of B cells is important for 

protection against intestinal infections such as rotavirus, as mice lacking β7 integrin show decreased 

protection
88

. Additionally, CCR10 is required for IgA-producing B cells to home to the colon in a 

mechanisms dependent of its ligand CCL28
89

. 

Effector sites 
The effector sites of the intestine comprise the intraepithelial compartment and the LP. However, 

unlike the inductive sites, they are characterized by the diffuse distribution of lymphocytes among 

non-immune cells and connective tissue, e.g. the cell matrix. 

 

Intraepithelial lymphocytes (IELs): IELs are specialized T cells present at the base of and in 

between IECs. The majority of these T cells express CD8, either the conventional heterodimer 

CD8αβ or the unconventional homodimer CD8αα. In addition, the vast majority of IELs in mice 

express the γδTCR
90

. The minority of IELs that express CD4 express the αβTCR and their numbers 

increase towards the colon
91

. IELs interact with IECs by the expression of integrin CD103, which is 

thought to maintain the population at the epithelium
90

. Although IELs are though to play important 

protective roles, their exact functions are still unknown. Of note, γδTCR IELs may be involved in 

certain cases of pathology, as epithelium from celiac disease patients show increased numbers of 

γδTCR IELs
92,93

. 

 

Effector T cells in LP: Within the LP, most of the T cells are CD4
+
, with smaller proportions of 

CD8αβ
+
 T cells, at least in mice. Differences of the type of effector T cells can be seen along the 

length of the intestine, likely due to the difference in luminal contents. The most common T cells 

present in a healthy gut are CD4
+
 T cells, particularly Th17 cells, INF-γ-producing Th1 cells and 

forkhead box (Fox)p3
+
 Treg cells

94
.  
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Th17: Th17 cells are the most abundant CD4
+
 effector memory T cells in the LP, accounting for 

30%-40%. In general, Th17 cells play crucial roles in response to extracellular bacteria and fungi 

and their development depends on the combined actions of TGF-β and IL-6, which induce 

recruitment of signal transducer and activator of transcription (STAT)3 and RORγ
95

. The 

development of Th17 cells is largely dependent on microbiota, as germ-free mice show low 

numbers of Th17 in LP
96

. However, steady state development of Th17 is likely to be a complex and 

multifactorial process
94

. Dietary compounds such as long-chain fatty acids can also drive Th17 

differentiation
97

. The major cytokines secreted by Th17 are IL-17A, IL-17F and IL-22
98

. The 

cytokine IL-17A drives IECs to secrete granulocyte-colony stimulating factor (G-CSF), which in 

term drives recruitment of neutrophils to keep barrier integrity
98,99

. Both IL-17A and IL17F drive 

the expression of β-defensins by IECs, but IL-17F seems to be more important for the protection of 

colonic epithelial cells during C.rodentium infection
99

. IL-22 stimulates IECs to produce 

antimicrobial peptides such as REGIIIγ and reinforce tight junctions
15,100

. 

 

Th1: Classical Th1 cells are developed in response to intracellular bacteria or viruses through the 

activation of STAT1 and STAT4 by type I (IFN-α/β) and II (IFN-γ) IFNs and IL-12, respectively. 

This, in turn, promotes expression of transcription factor T-bet and IFN-γ, the two major signatures 

of Th1 cells
94

. Although present in healthy gut, their function in steady state remains unclear. In the 

intestines, IL-27 is thought to play a role in Th1 cell differentiation, as mice deficient for IL-27 

receptor display reduced CD4
+
 IFN-γ

+ 
T cells in the LP

94
. 

 

FoxP3
+
 Tregs: Tregs constitute a large proportion of the intestinal LP. Their main function is to 

maintain immune tolerance to dietary antigens and commensal microbiota as well as suppressing 

tissue damage by effector T cells during infections
101,102

. The intestine harbors both natural Tregs 

derived from the thymus (nTregs) and peripherally differentiated Tregs (pTregs). The pTregs can be 

broadly divided into specialized FoxP3
+
CD4

+
 Tregs to food antigens in the small intestine 

(FoxP3
+
RORγt

-
) and to commensal microbiota in the colon (FoxP3

+
RORγt

+
)
102

. Naïve CD4
+
 T cells 

can also develop into the Foxp3
-
CD4

+
 Treg1 subset, which seems to exhibit the strongest 

immunosuppressive capacity by secretion of high amounts of IL-10. SCFA, RA and TGF-β are 

crucial for the development of pTregs
102

.  

 

LP B cells: most of the B cells in the LP are IgA-secreting plasma cells and their numbers increase 

at the distal end of the intestinal tract. IgA is produced as a dimeric or multimeric form and is 

secreted mostly as a dimer into the lumen through translocation mediated by the polymeric Ig 

receptor (pIgR), which is expressed on the basolateral membrane of IECs
103

. A fraction of secretory 

IgA (sIgA) is transported to the liver through the blood stream. In the liver, sIgA is transported to 

the bile and secreted to the intestinal lumen
104

. In humans, 3-5g of sIgA is secreted daily in the 

intestinal lumen, being the most produced Ig of the body
104

. Mice lacking the J-chain or the pIgR 

showed decrease protection against intestinal toxins and higher susceptibility to Salmonella 

infections, respectively
105,106

. Interestingly, humans with IgA deficiency have enriched bacteria 

from taxa with potentially inflammatory features
107

. Therefore, IgA may have a role not only in 

neutralizing toxins and protection against pathogens but also as non-inflammatory immune 
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exclusion in the gut. Unlike mice, with only one isotype, humans have two IgA isotypes: IgA1 and 

IgA2. IgA1 is predominant in the small intestine whereas IgA2 increases significantly in the colon. 

IgA2 is more resistant to bacterial proteases than IgA1 and, thus, the presence of this isotype in the 

colon may be due to its special adaptation to the bacterial-rich environment of the colon
108

. 
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1.3 Intestinal dendritic cells 

DCs are defined as large stellate cells that can efficiently present Ags on MHC molecules and 

activate naïve T cells
109,110

. DCs were first described by Nobel laureate Ralph Steinman in the early 

1970s, who named the cells after the Greek word “Dendron”, which means tree, due to their tree-

like shape
1
. DCs are part of the MNP system, together with macrophages and monocytes. DCs are 

characterized by the unique ability to migrate from tissue to draining lymph nodes where they 

present antigens to naïve T cells, generating adaptive immune responses
111

. This capability makes 

DCs key players in linking innate and adaptive immune responses. 

 

Despite the functional and developmental differences between macrophages and DCs, the 

separation of these two populations has been controversial. This is because surface markers once 

proposed to be unique for DCs are shared by macrophages, including CD11c and MHC-II
25,28,112

. 

Yet, markers such as F4/80 and CD64 are expressed in intestinal macrophages
26

. Hence, in addition 

to their different ontogeny, the expression of CD64, among other macrophage markers, allows for 

the identification of intestinal macrophages
26,27

. DCs are further subdivided into two main groups: 

the cDCs and the pDCs. In general, murine cDCs are identified as CD45
+
Lineage

-
CD11c

hi
MHC-

II
+
CD64

-
F4/80

lo
 
113

. 

Defining cDC subsets in the gut 

In mice, there are four main intestinal cDC subsets based on the expression of CD11b and CD103 

integrins: cDC1 are CD103
+
CD11b

-
, cDC2 comprise both CD103

+
CD11b

+
(here referred as cDC2) 

and CD103
-
CD11b

+
 (here referred as CD103

-
 cDC2), and CD103

-
CD11b

-
 (double negative, DN) 

comprises the last subset (Figure 9). Type I (cDC1) and Type II (cDC2) nomenclature was assigned 

based on Guilliams et al
29

. Additional cell markers are used to further characterize cDC subsets in 

different species and/or tissues. For example, cDC1 also express XCR1, CD8α and Clec9A, which 

suggests their similarity to LN-resident CD8α
+
 DCs

29,114,115
. In contrast, cDC2 express SIRPα, 

similar to CD11b
+
 LN-resident DCs

114
. Interestingly, human intestinal cDC subsets share 

developmental, phenotypic and functional characteristics with mouse intestinal cDC subsets, 

highlighting the relevance for translational investigation of the function of gut cDC subsets in 

intestinal immunity
116

. 

 

The distribution of cDC subsets varies depending on the anatomical location. The SI contains 

mainly cDC2, with minor contribution by the rest of the subsets. Contrary, cDC1 are highly 

represented in the colon (Figure 9). Interestingly, the presence of specific subsets in different 

anatomical location seems to contribute to the regional immune specialization of the intestine
59,60

. 

Indeed, a recent study has shown that cDC subsets migrating from different sections of the intestine 

are immunologically different, with SI-derived DCs preferentially giving rise to tolerogenic 

responses, whereas DCs from more distal parts leading to pro-inflammatory T cell responses
60

. All 

four subsets can be found at different sites of the intestine, including the LP and GALT. However, 

as ILFs and colonic patches cannot be removed from the LP preparations, the exact origin of all 

subsets is still unclear. Studies on RORγt-deficient mice, which lack ILFs, PPs and colonic patches, 
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displayed normal numbers of all cDC subsets but DN, suggesting that DN cDC exclusively locate 

to GALT whereas cDC1 and the two subsets of cDC2 derive from the LP
83

. 

 

 

Figure 9. Intestinal dendritic cell subsets. There are four different intestinal DC subsets characterized by the 

differential expression of CD103 and CD11b: cDC1 are CD103
+
CD11b

-
 (blue), cDC2 are CD103

+
CD11b

+ 
(red), 

CD103
-
CD11b

+
 are considered CD103

-
cDC2 (orange), and lastly the CD103

-
CD11b

-
, named herein double negative 

(DN, grey). The SI contains higher numbers of cDC2, whereas the colon contains more cDC1. The DN are thought to 

be mainly present in GALT tissue and are not represented in the figure. 

Ontogeny of intestinal cDCs 

cDCs develop in the BM in a process called hematopoiesis. In the BM, a multipotent hematopoietic 

stem cell (HSC) undergoes several differentiation steps, leading to common monocyte precursors 

(cMoP) and common DC precursors (CDP). While intestinal macrophages and monocytes 

differentiate from cMoP, DCs originate from CDP. Subsequently, CDPs are thought to generate 

pre-cDCs and pre-pDCs, and pre-pDCs fully differentiate into pDCs in the BM (Figure 10). Fully 

differentiated pDCs together with monocytes and pre-DCs leave the BM and seed lymphoid and 

non-lymphoid tissues, where they will further differentiate under the influence of soluble mediators 

such as granulocyte macrophage colony-stimulating factor (GM-CSF) and/or macrophage colony-

stimulating factor (M-CSF) and FMS-like tyrosine kinase 3 ligand (Flt3L). The pre-cDCs are 

thought to further develop into pre-cDC1 and pre-cDC2 that are committed to cDC1 and cDC2 

development, respectively
117

. 
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Figure 10. Development of DCs. Schematic view of the development of DCs, pDCs and monocytes/macrophages from 

the bone marrow to their fully differentiated stages. Transcription factors required for each subset are written along the 

arrows.  

Whether specific precursors in the BM preferentially lead to intestinal DCs is still unclear. Zeng et 

al identified a population of DC progenitors that gave rise to both CD103
+
 DC subsets in the 

intestine as well as splenic CD8α
+
 DCs when adoptively transferred

118
. Importantly, their 

development depended on RA
118

. These progenitors, called pre-mucosal DCs (pre-µDCs) also 

maintained the ability to differentiate into pDCs and some DCs in the spleen
118

. Another study 

showed that the development of cDC2 in the intestine as well as CD11b
+
 DCs in the spleen from 

pre-DCs was dependent on RA, as shown in vitamin A deficient (VAD) mice
119

. Although the 

relation of the pre-µDCs to pre-DCs is still unclear, RA seems to play a specific but essential role 

for development of intestinal cDCs. 

Transcriptional control of cDC subsets 

The study of mice lacking different transcription factors has shown the importance of such 

transcription factors in the development of distinct cDC subsets. For example, cDC1 require IFN 

regulatory factor 8 (IRF8), BATF3, nuclear factor Interleukin 3 regulated (NFIL3) and inhibitor of 

DNA binding 2 (ID2) transcription factors for their development and are thus developmentally 

linked to lymph node-resident CD8α
+
 DCs

120
. In contrast, cDC2 require the transcription factor 
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IRF4 (Figure 10)
121

. Interestingly, other transcription factors such as neurogenic locus notch 

homolog protein 2 (Notch2), recombination signal binding protein for immunoglobulin kappa J 

(Rbp-J) and kruppel-like factor 4 (Klf4) are required for the development of a fraction of IRF4
+
 

cells, indicating that cDC2 comprises a heterogeneous population. The requirements for the CD103
-

cDC2 subset development are, however, less clear. The CD103
-
 cDC2 subset are bona-fide DCs 

because they express DC-specific markers such as CD26 and messenger ribonucleic acid (mRNA) 

of the transcription factor zinc finger transcription factor zDC (Zbtb46), and lack macrophage 

markers such as CD64 and F4/80
112

. In addition, they migrate to mLNs and are able to drive Th17 

responses
83

. A recent study has shown that Zinc Finger E-Box Binding Homeobox 2 (Zeb2) is 

highly expressed by CD103
- 
cDC2 and that their development is affected by Zeb2 absence

122
. These 

findings suggest that further studies of specific transcription factors are required for this subset of 

intestinal cDCs. 

 

Although specific for cDC subset development, most of these transcription factors can affect other 

cell types. For example, IRF8 is known to affect functionality of pDCs and its absence leads to 

additional defects in monocyte and B-cell lineages
123,124

. Recent studies have proposed new 

transcription factors required for the development of different cDC subsets
116

. For example, the 

transcription factors B-cell lymphoma 6 (Bcl-6) and B lymphocyte-induced maturation protein-1 

(Blimp-1), associated with B and T cell differentiation, have been suggested to play a role in 

development of cDC1 and cDC2, respectively
116

. As these transcription factors are essential for 

other cell types, such as Bcl-6 for Tfh cells, Cre-lox mouse systems represent valuable tools and 

will contribute to further characterize the exact transcription factor requirements in specific cDC 

subsets. 

Growth factors required for cDC development 

DC development is also dependent on soluble mediators. As other DCs, intestinal DCs depend on 

the growth factor Flt3L for their development, demonstrated by drastically lowered levels of 

intestinal cDC1 and cDC2 in Flt3-deficient mice
125

. Accordingly, exogenous administration of 

Flt3L increases numbers of cDC1 and cDC2, with greater impact on cDC1 numbers
83,121

. In 

addition, colony stimulating factor 2 (CSF-2) is also involved in cDC homeostasis
126,127

. Deficient 

mice in either CSF-2 or CSF-2 receptor (CSF2R) showed a reduction of cDC2, while CD103
- 
cDC2 

were unaffected
125,126

. Finally, a recent study has shown that cDC2-intrinsic TGF-β signaling is 

required for the development of this subset in the intestine
128

. Indeed, mice deficient in TGF-β 

receptor (TGFβRII) displayed reduced levels of intestinal cDC2, reflecting a defective 

differentiation from CD103
- 
cDC2 intermediates, rather than a loss of CD103 expression

128
. 

Functionality of DCs 

Antigen uptake 
Several mechanisms have been proposed as to how cDCs acquire different luminal antigens. 

However, whether the different mechanisms activate different adaptive immune responses is still 

unknown. In the PPs, M cells can translocate Ag to the underlying DCs at the SED. Subsequently, 
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these DCs migrate to the IFR where they prime Ag-specific T cells (Figure 11A)
129

. In addition, 

populations of monocyte-derived CX3CR1
+
 cells that express lysozyme are able to extend dendrites 

through M cell pores and capture and kill Salmonella 
130,131

. 

 

In the LP, CX3CR1
+
 macrophages extend transepithelial dendrites (TEDs) through the expression 

of tight junction molecules to capture luminal Ags (Figure 11B)
132,133

. Additionally, a proportion of 

activated CD103
+
 DCs is recruited to the epithelium and directly captures luminal Ag by TEDs 

(Figure 11C)
40,134

. However, CD103
+
 DCs have a poorer phagocytic capacity compared to 

macrophages. Hence, cDC2 have shown to get soluble Ag from macrophages by trogocytosis, 

which is the passage of soluble Ag together with membrane from macrophages by establishing gap 

junctions between cDC2 and macrophages (Figure 11D)
135

. Of note, CX3CR1-deficient mice, 

which lack TEDs, showed normal T-cell priming in the mLNs in response to orally administrated 

soluble Ag, indicating that CX3CR1-dependent Ag uptake is dispensable
40

. In addition, goblet cells 

have been shown to transfer soluble Ag to DCs by goblet cell passages (GAP) (Figure 11E)
136

. 

 

 

Figure 11. Mechanisms of Ag uptake in the intestine. In GALT, M cells can translocate Ag or live bacteria from the 

lumen to underlying DCs (A). In the LP, both macrophages (B) and DCs (C) are able to extend TED and capture Ag 

directly from the lumen. Ag transfer has also been seen from macrophages (D) and goblet cells (E) to DCs via gap 

junctions and GAP, respectively.  

DCs can internalize luminal Ag by phagocytosis, macropinocytosis and receptor-mediated 

endocytosis
137

. Phagocytosis allows for engulfment of pathogenic bacteria, apoptotic or necrotic 

cells into a phagosome
138

. Receptors such as CD36 and αvβ3 are involved in mediating the 

phagocytosis of apoptotic bodies
139–141

. In contrast, macropinocytosis is used by cDCs to capture 

Ags from the extracellular fluid
142,143

. Finally, receptor mediated-endocytosis is mediated by PRRs, 

such as C-type lectin receptors (CLRs), or Fc receptors (FcR), which internalize immune 

complexes
142,144

.  

Antigen processing and presentation in the intestine 
Upon internalization, DCs can process Ag in several ways depending on the nature of the Ag. 

Ultimately, the Ag can be presented in an MHC-I or MHC-II context. Most soluble and particulate 

Ags are targeted to MHC class II compartments for presentation to CD4
+
 naïve T cells by cDCs. In 

contrast, MHC-I is generally used in any cell type to present endogenous proteins, which marks 
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infected cells to be killed by cytotoxicity. In addition to these classical pathways of processing and 

presenting Ag, DCs have an alternative pathway that allows them to present exogenous peptides in 

an MHC-I context. This process, named cross-presentation, enables DCs to instruct naïve CD8
+
 T 

cells to become CTL to kill virally infected or cancer cells even if the DC is not infected
145

. Cross-

presentation is a feature of cDC1 and represents a valuable tool to prime naïve T cells with desired 

Ag
146

, a feature of high interest for vaccine development. 

Conditioning of intestinal DCs 

Intestinal cDCs differ from non-intestinal cDCs in their functionality, and this might be due to the 

unique microenvironment they are exposed to. Accordingly, metabolites derived from commensal 

microbiota, IECs and stromal cells are known to directly condition DCs. For example, SCFA 

including butyrate and acetate are metabolized by commensals from fiber-rich diets and have shown 

to educate DCs. While both butyrate and acetate induce RA-producing DCs which in turn induce 

IL-10-secreting Tregs, only acetate induces production of IgA
147,148

. However, the mechanisms of 

how these different SCFA act on DCs are still unknown. Butyrate also induces RA production on 

IECs, which will in turn induce tolerogenic DCs
149

. Furthermore, segmented filamentous bacteria 

(SFB) are commensal microbes that attach to the IECs, inducing their production of serum amyloid 

A (SAA)
150

. Subsequently, SAA induces DCs to produce IL-6 and IL-23
150

. IECs also produce 

TGF-β and TSLP, inducing a tolerogenic phenotype on DCs. In addition, stromal cells can produce 

TGF-β, RA, and PGE2, and stromal cell-derived TGF-β is important for imprinting gut-homing 

receptors on T cells in the mLNs
85,151

. Collectively, these findings demonstrate an intricate interplay 

between microbiota, IECs and DCs. 
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1.4 Pathogen sensing and signaling 

PRRs are germ-line encoded receptors of the innate immune system that recognize constitutive and 

conserved products of microbial origin, called PAMPs
4
. These PAMPS are present in viruses, 

bacteria, fungi and protozoa and range from lipoproteins to carbohydrates, lipopolysaccharides and 

nucleic acids. In addition, PRRs recognize DAMPs from the host, which are usually released by 

dying or dead cells. Of note, both pathogenic and non-pathogenic microbes produce PAMPs, hence 

PRRs are not able to distinguish between pathogens and commensal bacteria. Other mechanisms 

such as compartmentalization as well as anti-inflammatory cytokines play a role in defining these 

differences
152

. 

 

PRRs are predominantly expressed in innate immune cells including macrophages and DCs, but 

non-immune cells such as endothelial cells and fibroblasts can also express PRRs and contribute to 

innate immunity
153,154

. Activation of PRRs induces signals that can in turn activate the adaptive 

immune system. This occurs through triggering maturation of DCs that will generate the appropriate 

immune response to the Ag acquired in the periphery
155

.  

Classes of PRRs 

Most of the PRRs are classified into five different classes based on protein domain homology. The 

classes consist of TLRs, CLRs, retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), 

nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and absent in melanoma 

2(AIM2)-like receptors (ALRs). In addition, there is the recently described cytosolic DNA sensor 

cGAS-STING, although it does not share protein homology with any of the other PRRs families
156

. 

Herein, I describe briefly the different PRR families, focusing on nucleic acid sensing and 

particularly on TLRs as this is the main focus of this thesis.  

RLRs 
RLRs are cytosolic sensors that recognize intracellular RNA. There are three main members 

identified: RIG-I, Melanoma Differentiation-Associated protein 5 (MDA5) and Laboratory of 

Genetics and Physiology 2 (LGP2). The structure of RIG-I and MDA5 is characterized by a N-

terminal two tandem caspase recruitment domain (2CARD) responsible for signal transduction, a 

DExH-box helicase domain and a C-terminal repressor domain
157

. The third member, LGP2, lacks 

the 2CARD domain and thus the signaling activity, but is able to regulate RIG-I and MDA5 by 

binding to RNA. Although both RIG-I and MDA5 can recognize some viruses simultaneously
158

, 

they generally recognize different double-stranded RNA (dsRNA). While RIG-I recognizes mainly 

5’ppp-dsRNA, which is a short dsRNA generated during viral replication, MDA5 recognizes long 

dsRNA
158

. In steady state, the CARD region is subjected to auto-inhibition. Upon ligand binding, a 

conformational change releases CARD, which will lead to the formation of a CARD tetramer and 

filament formation along the dsRNA. The tetramer recruits MAVS present at the membrane of 

mitochondria, leading to formation of prion-like structure signaling complex
159

. Downstream 

adaptor molecules and kinases will ultimately induce the expression of IFNs and pro-inflammatory 
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cytokines through activation of IRF3 and nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-κB), respectively. 

NLRs 
NLRs are a family of cytosolic receptors that recognize mainly bacterial PAMPs, but also viral-

derived PAMPs and endogenous DAMPs. Although there are 22 members in humans and 34 in 

mice, NOD1 an NOD2 are the prototypical members of the NLR family
156

. NLRs consist of C-

terminal ligand-binding leucine-rich repeats (LRR), a central NACHT domain, and a single (NOD1) 

or a tandem (NOD2) N-terminal CARD domain. All NLRs induce inflammasome formation upon 

activation, except for NOD1 and NOD2, which induce pro-inflammatory cytokine expression
160

. 

The inflammasome is a protein complex formation that, upon activation by pathogens, leads to 

caspase-1 activation, which in turn induces the proteolytic processing of pro-IL-1β and pro-IL-18 

into their active forms
161

. Several NLRs that activate inflammasomes recognize a broad and distinct 

range of PAMPs including lipopolysaccharide (LPS), bacterial and viral RNA, ATP and uric 

acid
161,162

. NOD1 and NOD2 signaling, in contrast, occurs in close association with endosomal 

membranes. Upon activation, NOD1 and NOD2 signal through RIP2 to activate NF-κB, inducing 

the expression of pro-inflammatory cytokines
160

. 

CLRs 
CLRs constitute a heterogeneous group of soluble and transmembrane receptors that generally 

recognize carbohydrates from bacteria, viruses and fungi
163

. Based on their structure, CLRs are 

subdivided into 17 different groups, but dectin-1 and dectin-2 are the best characterized CLRs
156

. 

Dectin-1 and dectin-2 recognize β-glucan and α-mannose, which are components of fungal cell 

walls and hyphae, respectively. A study showed that activation of DCs through dectin-1 and dectin-

2 confers protective immunity against Candida albicans
164

. Dectin-1 also recognizes mycobacterial 

species, sIgA and mucins
165,166

. Upon ligand binding, Dectin-1 promotes phagocytosis and the 

initiation of signal transduction that leads ultimately to the induction of pro-inflammatory cytokines 

via NF-κB
138

. Other CLRs include MINCLE, which is expressed by macrophages and is responsible 

for detection of necrotic cells; and Clec9A, expressed by CD8α
+
DCs and responsible for cross-

presentation of necrotic cells
167,168

. 

ALRs and other DNA sensors 
ALRs form a family of cytosolic receptors that sense intracellular DNA. Upon DNA binding, the 

first characterized ALR AIM2 interacts with adaptor apoptosis-associated speck-

like protein containing a CARD (ASC) and in turn induces inflammasome activation
156

. The 

inflammasome helps caspase-1 to cleave pro-IL-1β and pro-IL-18 into their mature forms, which 

are then secreted by unknown mechanisms. Inflammasome can also lead to pyroptotic cell death
169

. 

 

Another member of ALRs is IFI16. IFI16 recognizes several relevant DNA viruses such as herpes 

simplex virus (HSV) and human immunodeficiency virus (HIV)
170,171

. Although few studies have 

shown that IFI16 also localizes to nucleus depending on the cell type, signaling ultimately occurs in 

the cytosol via inflammasome or STING activation
170,172,173

. However, little is known on how this 

receptor can differentiate between self and non-self DNA. 
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The cytosolic DNA sensors Cyclic-GMP-AMP (cGAMP) synthase (cGAS) and stimulator of 

interferon genes (STING) are the most recently described PRRs. Upon DNA binding, cGAS 

catalyzes the production of cGAMP from adenosine tri-phosphate (ATP) and guanosine tri-

phosphate (GTP). Subsequently, cGAMP binds and activates STING, inducing type I IFN 

production. STING is a membrane protein of the endoplasmic reticulum (ER) and partially localizes 

to mitochondria
174

. Activation by cytosolic DNA leads to STING dimerization and subsequent 

translocation to perinuclear region. There, STING recruits TBK1, which phosphorylates STING and 

IRF3, resulting ultimately in type I IFN production
174

. Of note, STING can also function as direct 

DNA sensor in the cytosol. Additionally, both cGAS and STING have been shown to be important 

for protection against RNA viruses in a different mechanism from their DNA virus sensing role
174

. 

Toll-like receptors 

TLRs were the first PRRs identified and are the best characterized family of PRRs. The TLR family 

comprises 10 members in humans (TLR1-TLR10) and 12 members in mice (TLR1-TLR9, TLR11-

13)(Table 1). The localization of TLRs differs within the cell: TLRs present at the cell surface 

generally recognize microbial components, whereas intracellular TLRs present in endosomes 

recognize nucleic acids (Table 1). TLRs are type I transmembrane receptors, characterized by an 

ectodomain with LRR responsible for ligand recognition, a transmembrane domain, and a cytosolic 

Toll/IL-1 receptor (TIR) domain
175

. Ligand binding induces TLRs to homo- or heterodimerize, 

which in turn recruits adaptor molecules via TIR domains, inducing signal transduction. Some 

TLRs, however, such as TLR4, require co-receptors for downstream signaling
175

. 
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Table 1. List of different TLRs in mice
163,176

. 

TLR Ligand  Origin of the ligand Location Function Dimerization 

TLR1 Triacyl lipoproteins  Bacteria Cell surface Activates NFκB through TIRAP, 

MyD88, IRAKs, TRAF6 

Heterodimerizes with TLR2 

TLR2 Lipoproteins, LTA, 

PGN, mannans 

Bacteria, viruses, 

parasites, fungi, self 

Cell surface Activates NFκB through TIRAP, 

MyD88, IRAKs, TRAF6 

Heterodimerizes with TLR1 or 

6 or CD36, homodimer in 

endosomes 

TLR3 dsRNA Virus Cell surface Activates NFκB through TRIF-TAK1 

and type I IFN through TRIF-TRAF3 

Homodimer in endosomes 

TLR4 LPS Bacteria, viruses, self Cell surface, 

endosome 

Activates NFκB through TIRAP, 

MyD88, IRAKs, and TRAF6, and 

induces type I IFN through TRAM-

TRIF-IRF3 

Homodimer 

TLR5 Flagellin Bacteria Cell surface Activates NFκB through MyD88, 

IRAKs, TRAF6 

Homodimer 

TLR6 Diacyl lipoproteins, 

zymosan, β-glucan 

Bacteria, viruses, fungi Cell surface Activates NFκB through TIRAP, 

MyD88, IRAKs, TRAF6 

Heterodimerizes with TLR2 

TLR7 

(human 

TLR8) 

ssRNA Virus, bacteria, self  Endosome activates NFκB through MyD88, 

TRAF6, induces type I IFN via 

MyD88 

Homodimer in endosomes 

TLR9 CpG DNA Bacteria, viruses, fungi, 

self 

Endosome Activates NFκB through MyD88, 

TRAF6, induces type I IFN via 

MyD88 

Homodimer in endosomes 

TLR10 Unknown Unknown Endosome  -  - 

TLR11 Profilin-like 

molecule 

Protozoa Cell surface  -  - 

TLR12   Cell surface  - Heterodimerizes with TLR11
177

 

TLR13 rRNA
178

 Bacteria Cell surface  - Heterodimerizes with TLR2
179
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Signaling pathways of TLRs 

Upon ligand binding, TLRs recruit a set of adaptor molecules to drive the expression of IFNs and 

pro-inflammatory cytokines. Based on the adaptor molecule recruited, there are two distinct 

signaling pathways: MyD88-dependent and TIR-domain-containing adapter-inducing interferon-β 

(TRIF)-dependent pathways. 

 

MyD88-dependent pathway: except for TLR3, all TLRs require the adaptor molecule MyD88 for 

downstream signaling. However, some differences exist in the requirement of MyD88 depending on 

the TLRs. For TLRs present at the cell surface, such as TLR2, TLR4 or TLR5, ligand binding leads 

to MyD88 recruitment via TIR domains
180

. Of note, TLR4 requires an additional adaptor, TIRAP, 

for signal transduction
175

. MyD88 recruits IRAK kinases through its death domain, forming the so-

called myddosome complex. Subsequently, activation of IRAK kinases leads to recruitment of the 

E3 ubiquitin ligase TRAF6, which interacts with the TAK1/TAB complex. TAK1 then activates 

two different pathways: the IKK complex-NF-κB pathway and the MAPK pathway. In the IKK 

pathway, TAK1 binds and activates the three-IKK complex via phosphorylation of IKKβ. The 

activated IKK complex phosphorylates the inhibitor IkBα, releasing NF-κB. NF-κB is then 

translocated to the nucleus and induces expression of pro-inflammatory cytokines, such as IL-6, 

TNF-α and IL-1β (Figure 12). MAPK kinases are also activated by TAK1, which in turn mediates 

activation of AP-1 transcription factors to regulate inflammatory responses
175,180

. 

 

Alternatively, MyD88 activation through intracellular TLRs such as TLR7 and TLR9 leads to 

production of type I IFNs. While the myddosome induces NF-κB-dependent pro-inflammatory 

cytokine production, a complex formed by the myddosome together with TRAF3, IKKα, OPNi, and 

Dock2 leads to downstream activation of transcription factor IRF7, which then translocates to the 

nucleus and induces type I IFN production (Figure 12). Of note, TLR9 signaling occurs in two 

different endosomal compartments: first in early endosomes where it triggers NF-κB activation, and 

then in lysosome-related organelles where it induces IRF7 activation
180,181

. 

 

TRIF-dependent pathway: this pathway is only used by TLR4 and TLR3. While TLR4 requires 

the co-adaptor TRAM for TRIF recruitment, TLR3 directly recruits TRIF
182

. Generally, TLR-ligand 

binding recruits TRIF, which in turn interacts with both TRAF6 and TRAF3 (Figure 12). TRAF6 

recruits the kinase RIP-1, which activates the TBK1 complex, leading to activation of both NF-κB 

and MAPK kinases and production of pro-inflammatory cytokines. In parallel, TRAF3 recruits the 

IKK kinases TBK1, IKKi and IKKε, which phosphorylate IRF3. Activated IRF3 forms homodimers 

that translocate into the nucleus, inducing type I IFN expression
180

.  
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Figure 12. MyD88 and TRIF-dependent TLR signaling. Cell surface TLRs such as TLR5 and TLR4 signal through 

the adaptor molecule MyD88, leading to activation of IRAKs and TRAF6, inducing ultimately expression of pro-

inflammatory cytokines. Activation of endosomal TLRs such as TLR7, TLR9 and TLR3 also lead to production of type 

I IFN in a process dependent of TRAF3. Of note, TLR4 can also induce the expression of type I IFN by recruiting 

TRAF3 in the endosome. TLR4 requires TIRAP and TRAM adaptors to bind to MyD88 and TRIF, respectively. Figure 

is simplified and shows the main distinct features of the signaling pathways. 

PRRs in the intestinal immune system 

TLRs are generally the first PRRs to recognize pathogens in the intestine. They play an important 

role in both the course and the outcome of an infection. Despite the crucial role of TLRs in 

pathogen recognition, they can also have detrimental effects by causing inflammation, leading to 

disruption of intestinal homeostasis.  

 

IECs express several PRRs that enable the recognition of microbes
183,184

. However, IECs need to 

distinguish between commensals and pathogens. Accordingly, the polarized nature of the IECs 

allows for differential expression of TLRs, leading to a different response depending on the 

anatomical location. For example, TLR9 ligands sensed at the basolateral membrane induce 

activation of NF-κB, whereas apical exposure stabilized its inhibition through IκB
185

. In addition, 

microbial sensing of Paneth cells via intrinsic expression of MyD88 and NOD2 induces the 
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expression of AMP such as REGIIIγ and defensins, respectively
13,14,186

. MyD88 signaling via NF-

κB is also crucial for pIgR expression on IECs, enabling the translocation of sIgA to the 

lumen
103,187

. 

 

PRRs also activate cellular pathways that lead to the elimination of pathogens. For example, 

NLRP3 and NLRC4–mediated IL-18 production in macrophages is important for C. rodentium 

infection clearance, as mice deficient for both PRRs display higher intestinal inflammation upon 

infection
188

. In addition, NLRP6 is involved in keeping the balance of commensal microbes by the 

inflammasome-dependent production of IL-18, AMP production and mucus secretion by goblet 

cells
189

. Finally, variants of NOD2 are known to be associated with Crohn’s disease, highlighting 

the importance of PPRs in maintaining intestinal homeostasis
190

.  

TLRs and adaptive immune responses: role for DCs 

TLRs are key components of the innate immune system that, upon activation, trigger multiple pro-

inflammatory steps that lead ultimately to the elimination of the pathogen. In addition, TLRs are 

responsible for activating DCs, which activate critical signals involved in the initiation of adaptive 

immune responses
191

. Accordingly, the instruction of adaptive immunity occurs via TLR triggering 

in DCs, which are central at initiating adaptive immune responses. Upon TLR stimulation, 

peripheral DCs mature and migrate to local draining lymph nodes, where they present the processed 

Ag to naïve T cells in the context of MHC molecules. TLR activation is responsible for all the 

maturational changes of the DCs, including the upregulation of CCR7, which imprints their 

migratory capacity to the lymph nodes
192

. 

TLRs in DCs  
Several studies have shown that DC subsets have different TLR expression patterns. In mice, 

Edwards et al showed that all splenic DC subsets expressed most of the TLRs to similar levels, but 

TLR3 is preferentially expressed in CD8α
+
 while TLR5 and TLR7 are absent in the same subset

193
. 

Luber et al confirmed the specific expression of TLR7 by CD4
+
 DCs, and TLR3 for CD8α

+
 DCs

194
. 

Although less is known in the intestinal context, several studies have shown that the picture might 

not differ from other organs
195

. For example, TLR5 is expressed by cDC2, while cDC1 highly 

express TLR3
116,195,196

. By contrast, pDCs express TLR7 and TLR9
193

. Accordingly, the differential 

expression of TLRs by distinct DC subsets is thought to influence the adaptive immune responses 

generated by DC subsets. In line with this, cDC2 are required for the induction of adaptive immune 

responses against soluble flagellin, a ligand for TLR5
197

. In addition, the specific expression of 

TLR3 by cDC1 has been shown to promote cross-presentation, a unique ability of this subset
198

. 

TLR3 and intestinal immunity 
TLR3 recognizes dsRNA, which is generally found as intermediate of viral replication during viral 

infections. TLR3 is specifically and highly expressed in cDC1 compared to other DC subsets
116,195

. 

Engagement of TLR3 often correlates with cross-presentation
198,199

. Indeed, Schulz et al showed 

that splenic CD8α
+
 DCs were activated by dsRNA present in virally infected cells and not from 

uninfected cells, and that TLR3 activation was required to mount a CTL response
198

. In addition, 
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Jelinek et al found that TLR3 was essential for DC activation after dsRNA stimulation and that 

dsRNA served as adjuvant for the generation of Ag-specific CTL and protection against challenge 

with influenza virus
200

. Therefore, targeting TLR3 on cDC1 may serve as a potential tool to develop 

protection against viral infections, among others.  

Cytokines 

Engagement of TLRs by the respective ligands generally leads to downstream signaling, 

culminating with the expression of soluble mediators. These mediators, including pro-inflammatory 

cytokines, chemokines and IFNs can lead to further auto-activation (autocrine) and the activation of 

neighboring cells (paracrine). This activation is mediated by the expression of the respective 

receptors for these mediators in the target cells. Here, I describe three of these mediators that are 

relevant for my project. 

Type I IFN 
Type I IFNs consist of several members, including 13 subtypes of IFN-α and one single IFN-β and 

are mainly produced in response to viral and bacterial infections. All type I IFNs signal through the 

same heterodimeric IFNα/β receptor composed of the IFNAR1 and IFNAR2 subunits
201

. Upon type 

I IFN binding, IFNAR triggers the JAK-STAT signaling axis, leading to expression of type I IFN 

stimulated genes (ISGs). Although virtually all cells can produce type I IFNs upon infection, the 

cellular source varies depending on the type of virus
202

. Once expressed, type I IFNs can act in an 

autocrine as well as paracrine manner, which induces a second wave of ISG expression of antiviral 

factors, such as PKR and 2´-5´OAS, involved in blocking viral replication
163

. Type I IFNs have 

been shown to play important roles in CD8α
+
 DC activation upon TLR3 engagement

199
. In fact, one 

study suggested that autocrine type I IFN signaling rather than direct TLR3 signaling accounted for 

activation of DCs, highlighting the importance of type I IFN in DC functionality
203

. 

 

In the intestine, both macrophages and DCs are responsible for constitutive production of type I 

IFN, which is thought to be dependent on microbial signals, as shown by germ-free mice whose 

type I IFN levels increase upon exposure to normal specific-pathogen-free (SPF) flora
204

. 

Interestingly, microbial dsRNA sensing through TLR3 is thought to be involved in the constitutive 

production of IFN-β
205

. In steady state, type I IFNs produced by stromal cells in GALT have shown 

to promote production of APRIL and BAFF by pDCs, leading thus to TI-IgA production
44

. 

Furthermore, type I IFNs play crucial roles in response to viral infections, such as rotavirus, as well 

as against bacterial infections, such as Listeria and Salmonella
206

. Type I IFNs have been suggested 

to maintain intestinal homeostasis during acute-DSS colitis
207,208

. Particularly, poly(I:C) treatment, 

among other adjuvants, ameliorated DSS colitis in a TLR3-dependent, type I IFN response
209,210

. In 

addition to acute colitis, mouse models of chronic colitis induced by adoptive naive T cell transfer 

into RAG-deficient hosts have shown similar protective roles of type I IFNs
211–213

. Collectively, 

these findings suggest a role for type I IFN not only during infections but also during immune 

homeostasis in the intestine. 
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Type III IFNs 
Type III IFNs, or IFN-λ or IL-28 and IL-29, consists of up to four members in humans and two 

functional orthologues in mice (IFN-λ2 and IFN-λ3). Similar to type I IFNs, IFN-λ is also induced 

upon viral infections, which are generally recognized by cytosolic receptors signaling through 

MAVS. However, its induction is favored when signaling through MAVS occurs in peroxisomes, as 

opposed to mitochondria for type I IFNs
214

. Interestingly, splenic CD8α
+
 DCs and pDCs have been 

shown to produce IFN-λ in response to poly(I:C) in a TLR3 and IFNAR-dependent manner
215

. In 

the intestine, poly(I:C) is thought to induce additional IFN-λ production by other immune cells, 

although the exact cellular source remains unknown
216

. 

 

This family of IFNs signals through IFN-λR, a unique heterodimeric receptor consisting of IFN-

λR1 and IL-10R2, the latter shared with other IL-10 family cytokines
217

. Despite engaging different 

receptors, IFN-λ signaling events overlap with those of type I IFNs. Accordingly, IFN-λ also signals 

through JAK-STAT, leading to activation of STAT1 and STAT2 and expression of ISG. The 

difference between type I and III interferons is thought to rely on the compartmentalization of their 

response
218

. Unlike IFNAR, which is expressed broadly in most of the cells, IFN-λR expression is 

mainly restricted to IECs, although other cells such as NK cells and pDCs have been reported to 

express it as well
219–221

. Hence, IFN-λ is thought to play a role in limiting replication of virus in 

IECs whereas type I IFNs are thought to be involved in avoiding systemic spread of the virus
222

. 

Therefore, IFN-λ might provide a localized antiviral protection at barrier sites such as the intestinal 

epithelium without activating a systemic pro-inflammatory immune response. 

TNF-α  
TNF-α belongs to the TNF superfamily, which consists of 19 ligands and 29 receptors

223
. The TNF-

α protein is generally produced as transmembrane-bound protein (mTNF-α), whose cleavage by a 

TNF-α-converting enzyme (TACE) results in the release of the soluble form (sTNF-α). Both 

mTNF-α and sTNF-α are bioactive and can signal through the two receptors TNF receptor 1 and 2 

(TNFR1 and 2)
224

. However, while TNFR1 is ubiquitously expressed on most cell types of the body 

and preferentially binds sTNF-α; TNFR2 expression is restricted to hematopoietic cells, endothelial 

cells and neurons and binds mainly to mTNF-α
224,225

. 

 

Signaling via TNFR1 is involved in the regulation of cell survival. Upon sTNF-α binding, TNFR1 

recruits several proteins, leading to a subsequent signaling cascade that culminates in the activation 

of NFκB and expression of antiapoptotic functions, besides autoregulation of TNF-α in a positive 

feedback loop
226

. Additionally, depending on the cellular context, TNFR1 signaling can also induce 

cell death via apoptosis or necroptosis. 

 

In the intestine, a tight regulation of TNF-α expression is crucial for maintaining intestinal 

homeostasis. In addition to monocyte-derived cells, which seem to be the main producers, TNF-α is 

also produced constitutively by Paneth cells and it is thought to be involved in the tight regulation 

of IECs shedding into the lumen during intestinal epithelium renewal
190,227

. Increased levels of 

TNF-α have shown to induce increased epithelial shedding, altering thus the barrier integrity due to 
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increased apoptosis
228–230

. Moreover, TNFR2 signaling in IECs has been shown to drive wound 

healing during intestinal inflammation by activating the epithelial Wnt/β-catenin pathway, which is 

very important for maintaining the intestinal crypt-villus architecture
231,232

.  

 

During intestinal infection with bacteria such as Clostridium difficile, TNF-α levels are generally 

increased compared to healthy controls
233,234

. Interestingly, TNF-α driven inflammation is fully 

dependent on microbiota, since inflammation was completely absent in germ-free mice that 

overproduce TNF-α
235

. Accordingly, LPS from microbiota induces immune cells to produce TNF-α, 

which will act via TNFR1 on IECs and induce their necroptosis and shedding into the lumen. 

Contrary, during viral infections such as rotavirus, TNF-α on IECs seems to reduce the total viral 

RNA levels
236

. Collectively, TNF-α signaling plays a crucial role in induction of necroptotic cell 

death during bacterial infection whereas viral dsRNA induces cell death in a TNF-independent 

manner, as shown in Tnfr1 knockout (KO) mice
236

. 

 

Mouse models overexpressing TNF-α develop intestinal inflammation resembling human IBD. 

Indeed, anti-TNF-α is the gold standard treatment in IBD patients
224

. However, this treatment only 

works for a specific subgroup of patients, indicating that several other mechanisms are involved in 

the development of the disease. 
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1.5 Dendritic cells and their potential for mucosal vaccination 

Vaccination is one of the most successful medical interventions in history, leading to significantly 

reduced mortality and morbidity across the globe and even to the eradication of the small pox virus. 

However, infectious diarrhea is still the leading cause of death among children under the age of 5
237

. 

In developing countries, implementation of rotavirus vaccination as well as the improvement in 

sanitation strategies, safe water and reduction in childhood malnutrition has helped decrease 

diarrhea-associated mortality
238

. However, there are still financial, logistic and biological 

challenges. Biologically, the low efficacy of the two approved vaccines in the developing world 

might be due to the greater diversity of circulating rotavirus serotypes
239

. In addition, children might 

suffer from micronutrient malnutrition, HIV/AIDS or are co-infected with other 

enteropathogens
240,241

, of which there is still no vaccination against. Accordingly, there is a need for 

understanding the mechanisms of efficient vaccination to develop new and better vaccines that can 

overcome most of these challenges. 

 

Vaccine-induced T cell immunity is required for effective protection against intracellular pathogens 

such as HIV, tuberculosis and also against cancer. However, most of the currently available 

vaccines confer protection by the induction of antigen-specific, long-lived antibodies. DCs are key 

players in linking innate and adaptive immune responses. Activation of DCs through PRRs leads to 

their interaction with both B and T cells, thus shaping both the humoral and cellular immune 

responses
242

. Therefore, activation of DCs represents a potential strategy in vaccines designed to 

induce cellular immunity
243

. 

Activation of DCs 

DCs are generally immature during homeostatic conditions, characterized by high expression of 

intracellular MHC-II in late endosome-lysosomal compartments, low expression of costimulatory 

molecules and low expression of chemokine receptors
137

. Immature DCs are highly phagocytic and 

are constantly sampling foreign and self-Ag. Upon Ag encounter, Ag-bearing DCs decrease their 

phagocytic capacity and increase their motility. Subsequently, DC activation leads to upregulation 

of costimulatory molecules, MHC-molecules and chemokine receptors such as CCR7, which drives 

their migration to the draining lymph nodes, allowing DCs to interact with T cells and initiate the 

generation of immune T cell responses
242,244

.  

 

Upon activation, DCs must provide three signals to induce proper T cell adaptive immune 

responses. Signal 1 is provided by the increased expression of MHC molecules presenting peptides 

to the naïve T cells. Signal 2 is provided by a variety of costimulatory molecules (e.g. CD86 and 

CD80), which engage CD28 and others on T cells and transmit signals for T-cell proliferation and 

survival. Lastly, signal 3 consists of mediators such as pro-inflammatory cytokines that act on T 

cells, promoting their differentiation into effector T cells. Importantly, the combination of all three 

signals defines the tailored T cell effector response
245

. 
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Cis vs trans-activation 
Although DC activation is generally thought to be induced by direct TLR engagement, soluble 

mediators such as TNF-α and type I IFNs have been shown to induce DC activation, characterized 

by up-regulation of costimulatory molecules and increased expression of MHC molecules
246–249

. 

Accordingly, activation of DCs by direct TLR engagement is known as cis-activation, whereas 

maturation of DCs by pro-inflammatory cytokines is known as trans-activation
245

. The relevance of 

this difference is thought to rely on the capacity of the cis vs trans-activated DCs at inducing 

adaptive immune responses. Indeed, previous studies have shown that only cis-activated DCs 

provide all signals required for priming effector T cell responses
250–252

. In contrast, trans-activated 

DCs have shown to only provide with signal 1 and 2, which generally leads to clonal expansion of 

non-polarized T cells
253

. 

 

In line with this, trans-activated DCs seem to induce expansion of Tregs and are, in fact, superior to 

cis-activated DCs
254,255

. Accordingly, induction of Tregs could control the intensity of the immune 

response during infection, avoiding excessive inflammation. However, this could also be 

detrimental during vaccination strategies, due to suppression of immune responses
255

. Another 

hypothesis is that trans-activated DCs presenting self-Ags could prevent generation of self-reactive 

effector T cells during infection. Given that trans-activated DCs are likely to outnumber cis-

activated DCs during infection, self-reactive non-tolerant T cells that had escaped central or 

peripheral tolerance would thus more likely encounter its cognate Ag on trans-activated DCs rather 

than on cis-activated DC
256

. Collectively, these findings suggest that cis and trans-activated DCs 

play distinct roles during infection and that this needs to be considered when designing DC-targeted 

vaccines. 

 

Adjuvants are defined as substances used in combination with a specific Ag that produced a more 

robust immune response than the Ag alone
257

. In line with this, some vaccines contain adjuvants 

that enhance their induction of protective immunity. Several distinct compounds have been tested as 

adjuvants, including mineral salts, microbial products and microparticles. In the intestine, cholera 

toxin (CT) has shown to be a potent mucosal adjuvant, inducing potent mucosal memory
258

. In 

addition, R848 and poly(I:C) are synthetic ssRNA and dsRNA, respectively, and have been used to 

study the mechanisms involved in viral infections. Surprisingly, the mechanisms of action of such 

adjuvants are still not fully understood. Accordingly, more research is required to understand the 

mechanisms of action of adjuvants, leading to development of optimal mucosal vaccines
257,259

. 

DC migration 

Migration from peripheral tissues to lymphoid organs is a key aspect of DCs. Migration of DCs into 

lymphatics is dependent on CCR7, which interacts with its ligands CCL19 and CCL21 found on 

LEC. Thus, DCs migrate by the CCR7-CCL21 axis in a process called haptotaxis
64,260

.  

 

The continuous, steady-state migration of DCs from the intestine to the mLNs can significantly 

increase upon TLR stimulation. Yrlid et al showed that upon R848, a ligand for TLR7, migration of 

all DC subsets was significantly increased in mLNs
45

. This indicates that although DCs seem to be 
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hyporesponsive to TLR4 ligands, intestinal DCs are still able to respond to other TLR ligands, and 

these responses may lead to different migratory patterns for different intestinal cDC subsets
195

. 

Indeed, Flores-Langarica and co-workers showed that upon flagellin stimulation, which is a ligand 

for TLR5, numbers of cDC2 but not cDC1 increased in the mLNs, and this increased migration was 

responsible for the antibody response
261

. These findings suggest that the dynamics of intestinal DC 

migration change after immune stimulation, and that this can occur in a DC subset specific manner.  

Resident vs migratory 
DCs either seed the mLNs as precursors from the blood or as peripherally matured DCs from the 

afferent lymph. Thus, it is important to distinguish these different DCs. The main approach to 

distinguish between resident and migratory DCs is the level of expression of MHC-II and CD11c. 

Accordingly, LN-resident DCs are CD11c
hi

MHC
int

 whereas migratory DCs are CD11c
int

MHC
hi 262

. 

However, DC activation in response to inflammatory stimuli such as TLR ligands leads to a merge 

of resident and migratory DCs on the basis of these markers, hampering their faithful 

discrimination. Of note, LN-resident cDC1 uniquely express CD8α and thus can be distinguished 

from migratory cDC1 on the basis of CD8α expression
263,264

. However, there is no equivalent 

marker to distinguish LN-resident cDC2 from migratory cDC2.  

 

In addition, previous studies with CCR7-deficient mice led to identification of CD103 as a surface 

marker for migratory DCs
81,265

. In agreement with these findings, Cerovic et al showed that 75 to 

85% of CD11c
+
MHC-II

+
 cells present in intestinal-derived lymph were CD103

+ 83
. Although LN-

resident DCs might express low levels of CD103, high expression of CD103 is a good marker for 

identifying migratory DCs. 

 

Several studies showed that CX3CR1
+ 

macrophages were absent in intestinal-derived lymph
40,83

. 

Indeed, macrophages display a very poor migratory capacity and lack CCR7 expression. Of note, 

the population of CX3CR1
+
 cells migrating in the lymph found by Diehl et al are probably CD103

-
 

cDC2 that express intermediate levels of CX3CR1
83,266

. However, under certain inflammatory 

conditions, monocytes can give rise to CX3CR1
int

 cells with the capacity to migrate to the 

mLNs
28,41,267

. 

Role of DCs in T cell responses in vivo 

Migratory cDCs play crucial roles in the initiation of adaptive immune responses due to their 

unique ability to prime naïve T cells in mLNs. In the intestine, different subsets of cDCs have been 

linked to prime different adaptive T cell responses. This is probably due to a combination of 

intrinsic properties of the different DC subsets together with the expression of a large repertoire of 

PRRs that partially differs between different DC subsets, allowing for tailoring a specific immune 

response to the Ag acquired
196,261,268

.  

CD8+ cytotoxic T cells 
The ability to cross-prime CD8

+
 T cells is conferred to cDC1. Consistent with their developmental 

relationship to LN-resident CD8α
+
 cross-presenting DCs, cDC1 isolated from afferent lymph 
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appear to be superior at cross-presenting Ag to CD8
+
 T cells in vitro

83
. Furthermore, in vivo studies 

have shown that cDC1 play a unique, dominant role at presenting intestinal epithelium cell-derived 

antigens to CD8
+
 T cells both in steady state

269
 and during rotavirus infection

270
. This might explain 

the reduction in CD8
+
 T cell numbers seen by Luda et al and Ohta et al, suggesting that reduction of 

cDC1 numbers is the cause of reduction of CD8
+ 

T cells
271,272

. This is further confirmed by the fact 

that cDC1 are the main source of RA, and absence of RA results in reduced induction of gut-

homing receptors such as CCR9 and α4β7 and in turn, reduction of CD8
+
 T cells in the SI

271
. 

CD4+ effector and regulatory T cells 

Th1 induction 
Th1 cells are constitutively present in the steady state intestine and are required to help in clearance 

of intracellular pathogens and viruses. Fujimoto et al showed that both cDC1 and cDC2 can drive 

Th1 differentiation in vitro
273

. By contrast, Luda et al showed that cDC1 were required for 

generation and survival of Th1 cells in steady state
271

. In addition, mice lacking cDC1 failed to 

mount Th1 cell responses to Trichuris muris infection
271

. These findings were further confirmed by 

Ohta et al, who showed that CD4
+
 T cells from XCR1-DTA mice displayed reduced IFN-γ mRNA 

levels
272

. Although not yet known, the role for cDC1 in driving Th1 responses might be due to their 

higher capability of producing IL-12
274

. 

Th2 induction 
Th2 cells are virtually absent in the steady state intestine. The generation of Th2 responses is thus 

actively induced by parasitic infections or allergic stimuli. A recent study by Mayer et al showed 

that upon infection with Trichuris muris and Schistosoma mansoni eggs, mice lacking IRF4-

dependent DCs, which have reduced numbers of both cDC2 and CD103
- 

cDC2 subsets, did not 

develop Th2 responses
275

. Interestingly, they found that while cDC2 were responsible for induction 

of Th2 towards Schistosoma mansoni eggs in the SI, this role was fulfilled by the CD103
- 
cDC2 

subset when the eggs were delivered directly to the colon
275

. Impaired survival and lack of 

migration of DCs seemed to be the reason for deficient Th2 responses in these mice
275

. CD11b
+
 

migratory DCs are likely involved in priming Th2 responses to different parasites and distinct 

subsets fulfil the same role at different anatomical compartments. Additionally, Tussiwand et al 

showed that Klf4 expression in IRF4-dependent DCs was required for Th2 responses to several 

stimuli, but did not affect Th1 nor Th17 responses in vivo
276

. Collectively, these findings 

demonstrate a functional specialization of cDC2 and CD103
-
cDC2 subsets at driving intestinal Th2 

responses. 

Th17 induction 
Th17 cells are the most abundant effector Th cells present in the intestine at steady state. Mice 

specifically lacking IRF4 in all CD11c-expressing cells, which have reduced numbers of cDC2, 

showed impairment in driving intestinal Th17 cells, suggesting that intestinal cDC2 have a major 

role in intestinal Th17 differentiation in vivo
121

. However, MHC-II-deficient cDC2, which lack the 

ability to engage T cells via their TCR, showed normal numbers of Th17 cells, indicating that 

cognate Ag presentation is dispensable for Th17 polarization
277

. Instead, the polarization appears to 
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be linked to the capacity of cDC2 to produce IL-6
121,278

. Of note, these mice still have Th17 cells, 

indicating that other subsets additionally contribute to Th17 generation
112,121

. Indeed, Panea et al 

showed that macrophages are in part responsible for driving Th17 responses to SFB
279

. 

Tregs and oral tolerance 
Induced regulatory T (iTreg) cells are abundant in the intestinal mucosa and play an important role 

in maintaining intestinal homeostasis. Induction of iTreg cells requires CCR7, mLNs and FoxP3, 

indicating that intestinal migratory DCs play a crucial role in inducing tolerance to Ag
33,280–282

. In 

vitro studies have shown a synergistic role for RA and TGF-β in inducing iTregs by CD103
+
 

DCs
281,282

. Similarly, CD103
+
 DCs are responsible for differentiation of naïve T cells into Tregs by 

mechanisms involving RA and TGF-β in vivo. IRF8-dependent migratory cDC1 express high levels 

of RALDH2, the enzyme required for metabolizing retinal into RA. Of note, RA is also involved in 

imprinting gut-homing receptors, and migration of newly induced iTregs is also required for oral 

tolerance. In addition, cDC1 are unique in their expression of αvβ8, the integrin that activates latent 

TGF-β
283

. Therefore, cDC1 appear to be the main subset responsible for iTreg induction. 

Interestingly however, depletion of these cells had no effect on the induction of oral tolerance, 

indicating that there must be redundancy in the contribution of distinct DC subsets
271,272,284,285

.  

Role of DCs in B cell responses in vivo 

The vast majority of intestinal B cells are IgA-secreting plasma cells. Early in vitro studies of co-

culture systems with B cells, T cells and DCs demonstrated the role of DCs in IgA induction
286,287

. 

Ag-carrying DCs have shown to induce IgA CSR by both TD- and TI-pathways 
68,288

. TD-IgA 

induction is largely performed in the GC of the PPs. In line with this, PPs CD11b
+
 cDC2 at the SED 

acquire microbial-derived Ag and migrate into IFR, where they prime T cells. Subsequently, primed 

T cells provide the help to B cells to induce IgA. This TD-IgA by CD11b
+
 cDC2 is driven by the 

higher expression of IL-6 by this DC subset, compare to the rest
70

. Interestingly, a recent study 

showed that cDC2 but not cDC1 were required for induction of IgA in the mLNs in response to 

soluble flagellin
261

. Lack of migratory cDC2 in mLNs was the reason for the absence of IgA-

producing plasma cells in the SI, mLNs and BM. Of note, RA is required for the imprinting the gut-

homing phenotype of IgA
+
 B cells, which derives mainly from DCs and stromal cells in the 

mLNs
82,84,85

.  

 

In contrast, TI-IgA generation by DCs occurs through DC-derived active TGF-β as well as APRIL 

and BAFF, driving CSR to IgA
+
 B cells

75
. This IgA contributes to the homeostatic, low affinity 

IgA, since it does not undergo somatic recombination. However, TI-IgA is still important in 

maintaining the commensal bacterial homeostasis
289

. In addition, GALT-generated TNF and iNOS-

producing DCs (Tip-DCs), which express iNOS (and in turn produce NO) induce TD-IgA by 

induction of TGF-β receptor on B cells via NO
290

. In addition, Tip-DCs can also induce TI-IgA via 

stimulating DC production of BAFF and APRIL. Interestingly, NO induces DC expression of 

CCR7, leading to their migration to the mLNs
291

. However, Tip-DCs seem to derive from 

inflammatory monocytes, because they are absent in CCR2-deficient mice
292

. 
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DCs as potential candidates for mucosal vaccination 

The oral polio vaccine was the first mucosal immunization introduced in 1950s by Sabin. Despite 

the benefits of mucosal vaccination being needle-free and conferring more efficient protective 

immunity than systemic immunizations, only few mucosal vaccines are commercially available.  

 

This is due to unique features of mucosal tissues that make vaccine delivery particularly 

challenging. First, vaccines get diluted in the mucosal secretions, trapped in the mucus gel or are 

attacked by proteases and nucleases. In line with this, relatively high doses are required and it is 

very difficult to determine exactly the dose that crosses the mucosa. Additionally, the intestine 

generally induces tolerance to most Ags. Therefore, the induction of an effective mucosal immune 

response requires a potent Ag that is able to break tolerance. Accordingly, the use of several 

PAMPs together might be more successful at mimicking the danger signals from viruses, inducing 

thus a potent mucosal immunity
293

. 

 

Optimal protection of mucosal surfaces is achieved by induction of sIgA, which is poorly induced 

by conventional injected vaccines
294

. IgA induction mainly takes place in GALT, where DCs in the 

SED capture Ag and present it to T cells, leading in turn to TD-IgA production. Additionally, mLNs 

have shown to play important roles for the generation of memory IgA
+
 B cells, and reduction of 

migratory DCs in the mLNs have shown to reduce the amount of IgA produced in response to 

soluble flagellin
261

. Thus, migratory DCs in the mLNs might also be important sites for IgA-

induction. Finally, compartmentalization in the gut is achieved by imprinting gut-homing receptors 

that allow B and T cells to return to the mucosa. The imprinting of gut homing receptors is 

mediated by DCs and is dependent on RA.  

 

Collectively, given that DCs play crucial roles in both TD and TI-IgA generation in the gut and that 

they are uniquely capable of inducing potent T cell responses from a naïve responder pool, they are 

formidable candidates as mucosal vaccine targets. 
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2. Hypothesis, aim and presented work 

We hypothesize that in addition to their distinct functionality, different intestinal DC subsets require 

distinct mediators to become activated and migrate in response to different TLR ligands. 

 

The overall aim of my thesis is to assess the molecular requirements for activation and migration of 

intestinal mouse cDC1 and cDC2 subsets to the mLNs in response to poly(I:C).  

 

Experiments included preparations of both mLNs and SI to assess DC migration. Indeed, an 

increase in DC numbers in the mLNs correlated with a decrease of DCs in the SI. The focus of this 

thesis is on migratory DCs and thus all data presented herein show DC numbers from mLNs. 

 

Due to the difficulty of separating resident vs migratory DCs in the mLNs after poly(I:C) injection, 

both resident and migratory DCs were considered for analysis. 

 

Manuscript included in the thesis: 

 

Migration of intestinal dendritic cell subsets upon intrinsic and extrinsic TLR3 stimulation 

 

Agnès Garcias López, Vasileios Bekiaris, Katarzyna Müller Luda, Julia Hütter, Konjit Getachew 

Muleta, Joy Nakawesi, Isabel Ulmert, Knut Kotarsky, Bernard Malissen, Meredith O’Keeffe, 

Bernhard Holzmann, William Agace and Katharina Lahl 

 

BioRxiv, doi: https://doi.org/10.1101/785675 

 

The thesis also contains complementary results developed in parallel to the results presented in the 

manuscript. 
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3. Manuscript 
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Abstract 

Initiation of adaptive immunity to particulate antigens in lymph nodes largely depends on their 

presentation by migratory dendritic cells (DCs). DC subsets differ in their capacity to induce specific types of 

immunity, allowing subset-specific DC-targeting to influence vaccination and therapy outcomes. Faithful 

drug design however requires exact understanding of subset-specific versus global activation mechanisms. 

cDC1, the subset of DCs that excel in supporting immunity towards viruses, intracellular bacteria and 

tumors, express uniquely high levels of the pattern recognition receptor TLR3. Using various genetic 

models, we show here that both the cDC1 and cDC2 subsets of cDCs are activated and migrate equally well 

in response to TLR3 stimulation in a cell extrinsic and TNF dependent manner, but that cDC1 show a 

unique requirement for type I interferon signaling. Our findings reveal common and differing pathways 

regulating DC subset migration, offering important insights for the design of DC-based vaccination and 

therapy approaches. 
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Introduction 

Dendritic cells (DCs) are the major antigen-presenting cells in the body, which, upon migration to secondary 

lymphoid organs, initiate and shape naïve T cell responses to peripherally acquired antigen. DCs are divided 

into two major subsets referred to as cDC1 and cDC2 (Guilliams et al., 2014). In the intestine, migratory 

cDC1 are defined as XCR1+CD103+CD11b-, while cDC2 can be divided into a major XCR1-CD103+CD11b+ and a 

minor XCR1-CD103-CD11b+ subset. Although both subsets present mucosa-derived antigen in the draining 

lymph nodes (LNs), cDC1 and cDC2 differ in their capacity to induce specific immune responses (Eisenbarth, 

2018). While cDC1 are generally implicated in viral defense and cross presentation of exogenous antigens 

to MHCI-restricted CD8+ T cells and MHCII-restricted CD4+ TH1 cells (Hildner et al., 2008), cDC2 are highly 

effective at inducing TH17 and TH2 responses (Persson et al., 2013; Schlitzer et al., 2013; Williams et al., 

2013). Specific targeting of DC subsets is thus of high relevance for DC-based strategies for vaccination and 

therapeutic approaches against different types of antigen.  

Antigen-targeting to specific DC subsets using antibody-mediated delivery to differentially expressed 

surface receptors can indeed shape the resulting type of immunity (Dudziak et al., 2007). One family of 

molecules expressed differentially by DC subsets is toll-like receptors (TLRs)(Denning et al., 2011; Edwards 

et al., 2003), suggesting that differential engagement of DC subsets could also be achieved by using 

adjuvants specifically activating one subset but not the other. In support of this idea, the induction of fully 

functional cytotoxic CD8+ T lymphocytes depends on simultaneous uptake of antigen together with cell-

intrinsic stimulation of pattern recognition receptors expressed by the presenting DC (cis-activation)(Desch 

et al., 2014). TLR3 is an endosomal receptor that recognizes double-stranded RNA (dsRNA), a molecular 

pattern associated with viral infections (Alexopoulou et al., 2001; Matsumoto et al., 2002). As several 

studies have demonstrated that TLR3 is preferentially expressed in cDC1 (Davey et al., 2010; Edwards et al., 

2003; Jelinek et al., 2011; Luber et al., 2010) and promotes cross-presentation of antigen with high 

efficiency (Mandraju et al., 2014; Rizzo et al., 2016; Schulz et al., 2005), targeting TLR3 is a promising 

strategy in cancer-immunotherapy and vaccination against viruses. A hallmark of DCs is to migrate to the 

draining LNs to present peripherally acquired antigen. In response to the TLR7-stimulating agent R848, 

plasmacytoid (pDC)-derived TNF drives cDC migration from the small intestinal lamina propria (SI LP) to 

the mesenteric LNs (mLNs), while type I interferon (IFN) regulates DC activation (Yrlid et al., 2006). Subset-

specific requirements were not assessed. Most TLR3 driven transcriptional changes in splenic DCs after 

stimulation with the double-stranded (ds)RNA mimic polyinosinic:polycytidylic acid (poly(I:C)) result from 

secondary effects through the type I IFN receptor on cDCs (Pantel et al., 2014). This suggests that migration 

in response to poly(I:C) may also depend on type I IFN signaling. Here we have analyzed in detail the major 

cellular and molecular players involved in the activation and migration of intestinal cDC subsets in response 

to poly(I:C) in vivo and provide novel insights regarding cis- and trans-regulation of these processes. 

 

Results and Discussion 

Poly(I:C)-induced intestinal DC migration depends on TLR3 signaling 

We first set out to analyze in detail the expression of TLR3 by immune cells of the spleen, mLNs and small 

intestine lamina propria (SI-LP) and confirmed that only cDC1 DCs expressed high amounts of TLR3 in all 
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organs (Fig. 1A). While macrophages also expressed low levels of TLR3, cDC2 were almost entirely negative 

and B and T cells showed no expression (Fig. 1A and Supplemental Fig. 1A). Importantly, stimulation with 

poly(I:C) did not change TLR3 expression across subsets (Fig. 1A). These results are consistent with in vitro 

data on the differential abilities of the cDC subsets to poly(I:C) stimulation (Jelinek et al., 2011) and 

therefore we hypothesized that poly(I:C) would drive migration of cDC1 preferentially in vivo. To test this, 

we quantified CD103+ cDC1 and cDC2 in the mLN after intraperitoneal injection of poly(I:C), based on the 

knowledge that CD103 expression by cDC in the mLN defines those which are derived from CCR7 

dependent migration from the intestinal mucosa (Hagerbrand et al., 2015; Johansson-Lindbom et al., 2005). 

Consistent with this idea, the numbers of both migratory cDC1 and cDC2 increased after administration of 

poly(I:C), peaking at 12 hours post-injection and returning to steady state levels after 24h (Fig. 1B). 

Interestingly, cDC2 migrated almost as efficiently as cDC1, with only a small disadvantage being seen at 

early time points.  

Although retinoic acid-inducible gene 1 (RIG-I)-like helicases that signal through mitochondrial antiviral-

signaling protein (MAVS) can also sense poly(I:C) (Jensen and Thomsen, 2012), DC migration of both 

subsets was completely abrogated in TLR3-deficient mice (Fig. 1C) and in mice deficient for the TLR3 

adapter TRIF (TIR-domain-containing adapter-inducing interferon-) (Supplemental Fig. 1B). As DC 

migration and activation, both crucial events for the induction of immunity, can be regulated independently 

(Jones et al., 2016; Yrlid et al., 2006), we also measured the expression of the costimulatory molecule CD86 

as a surrogate marker for DC activation. Again, activation of both DC subsets was also entirely depended on 

TLR3 and TRIF expression (Fig. 1D and Supplemental Fig. 1C), showing that poly(I:C) induces migration and 

activation of both cDC1 and cDC2 in a strictly TLR3-dependent manner. Our findings are in accordance with 

previously published data showing that in vitro activation with poly(I:C) is abrogated in bone-marrow (BM)-

derived DCs from TLR3-deficient mice (Jelinek et al., 2011). However as cDC2 themselves express virtually 

no TLR3, our data indicate that TLR3 stimulation can act in both cell-intrinsic and extrinsic manners on cDCs 

in vivo. 

Cell-intrinsic TLR3-sensing is dispensable for DC migration 

Non-hematopoietic cells express TLR3 and support immune cell survival, maturation and function. TLR3 

expression in intestinal epithelial cells is required for optimal clearance of rotavirus (Pott et al., 2012) and 

epithelial cells have previously been implicated in driving DC migration to the draining LNs during viral 

infection (Ye et al., 2019). To determine whether TLR3-dependent sensing in non-hematopoietic cells could 

induce intestinal DC migration in response to poly(I:C), we reconstituted irradiated wild-type mice with 

TLR3-deficient BM and treated the mice with poly(I:C). The results showed that while DCs migrated well in 

response to poly(I:C) in WT recipients of WT BM, there were no significant increases in mLN DC numbers in 

recipients of TLR3-deficient BM after administration (Fig. 2A). Thus TLR3-expression within the 

hematopoietic compartment is required to drive efficient DC migration in response to poly(I:C).  

As cDC1 uniformly expressed TLR3, we explored the role of this subset in sensing poly(I:C) for driving DC 

migration directly, by generating a mouse model that allows for cell-specific re-expression of TLR3 in a TLR3 

KO background. To this end, a floxed transcriptional termination cassette was inserted into the coding 

sequence of the TLR3 gene (TLR3OFF), abolishing TLR3 expression. Expression of TLR3 by cDC1s could then 

be restored in cDC1.TLR3ON mice in which the TLR3 stop codon was deleted using XCR1-driven cre 

recombinase (XCR1.cre (Janela et al., 2019)) (Fig. 2B and Supplemental Fig. 2A). Poly(I:C)-induced DC 
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migration and activation of both cDC1 and cDC2 occurred in cDC1.TLR3ON mice, but to a lesser extent 

compared to WT mice (Fig. 2C,D). As expected, DC migration was absent in TLR3OFF mice (Fig. 2C,D). These 

findings suggest that while cDC1-restricted TLR3 expression can drive poly(I:C) induced DC migration, other 

TLR3-expressing cells contribute to optimal DC migration in response to poly(I:C). Of note, careful analysis 

of XCR1-driven re-expression of TLR3 revealed that re-expression of TLR3 also occurred in ~20% of 

CD64+CD11b+XCR1- macrophages in the intestine, but not in spleen macrophages (Supplemental Fig. 2A). 

This phenomenon is not specific for the TLR3 locus, as XCR1.cre could also drive YFP expression by some 

intestinal macrophages when crossed to ROSA-STOP-YFP (data not shown). We therefore examined 

whether off-target re-expression of TLR3 by intestinal macrophages might account for the restored DC 

migration in cDC1.TLR3ON mice. However, migration of both cDC1 and cDC2 was entirely normal after 

administration of poly(I:C) to CCR2-deficient mice that lack most intestinal macrophages (Bain et al 2014) 

(Supplemental Fig. 2B). Finally, we could not detect any migration or activation of either DC subset if TLR3 

expression was restricted to intestinal epithelial cells of TLR3OFF mice using villin-cre (villin.TLR3ON, 

Supplemental Fig. 2C). Together, these data suggest that cDC1-specific TLR3 expression can drive DC 

migration in response to poly(I:C), although a contributory role for a residual population of CCR2-

independent, TLR3 expressing intestinal macrophages in cDC1.TLR3ON mice is likely.  

The fact that expression of TLR3 restricted to XCR1-expressing cDC1 can drive the migration and activation 

of cDC2 indicates a cell extrinsic effect of poly(I:C) on this subset. To confirm this, we generated mixed-BM 

chimeras in which WT recipients on a CD45.1/.2 congenic background were reconstituted with a 50:50 mix 

of CD45.1+ WT and CD45.2+ TLR3-deficient BM. Under these conditions, administration of poly(I:C) induced 

the activation and migration of TLR3-deficient cDC1 and cDC2 to the same extent as their WT counterparts 

in the same hosts (Fig. 2E,F), indicating that both cDC1 and cDC2 can respond to TLR3 stimulation in a cell 

extrinsic manner. This is presumably driven by the TLR3-competent bone marrow derived cells of WT origin 

present in the mixed chimeras. Interestingly, cDC1 themselves do not appear to play an essential role in this 

process, as complete deficiency of cDC1 DCs in BATF3KO mice (Edelson et al., 2010) did not abrogate the 

activation and migration of cDC2 in response to poly(I:C), showing that hematopoietic cells other than cDC1 

can also contribute (Figure 2G,H). Macrophages are a potential candidate for this role, as they express and 

respond to TLR3-stimulation (Zhou et al., 2010) and we attempted to explore their involvement by 

generating macrophage-specific TLR3ON mice using LysM.cre (McCubbrey et al., 2017) to delete the TLR3 

stop codon in TLR3OFF mice. However this approach was unsuccessful, as TLR3 was re-expressed by ~50% of 

cDC1 of LysM.TLR3ON mice and thus the role of macrophages in responding to TLR3 in vivo requires further 

investigation (Supplemental Fig. 2D).  

Taken together, these results show that the hematopoietic compartment is responsible for TLR3-

dependent migration and activation of DCs, but that these processes can occur in a cell-extrinsic manner, 

with cDC1-derived signals not being essential, despite the high levels of TLR3 expression by these cells. 

DC migration in response to poly(I:C) is independent of MyD88, but requires TNF receptor signaling  

The cell-extrinsic effect of TLR3 on DC migration in response to poly(I:C) suggests that inflammatory 

mediators produced following TLR3 signaling on TLR3+ target cells might play a key role in this process. We 

therefore measured the expression of cytokines that have been implicated in DC activation and migration 

by qPCR analysis of whole SI tissue samples at different times after administration of poly(I:C). This showed 



56 

 

increased levels of mRNA for TNF-, IL-1 IFN-, and IFN- after 2 and 4 hours after poly(I:C) injection 

(Figure 3A). 

Steady state migration of intestinal DCs depends on MyD88 signaling through NFB (Baratin et al., 2015; 

Hagerbrand et al., 2015) and although TLR3 signaling itself does not require MyD88, the IL1 receptor signals 

through MyD88 (Dinarello, 2009). However, the activation and migration of both cDC1 and cDC2 occurred 

normally in poly(I:C) treated MyD88KO mice (Figure 3B, C). Although TNF receptor 1 (TNFR1) signaling is not 

important for intestinal DC migration in the steady state, it is required for DCs to migrate in response to 

R848 (Hagerbrand et al., 2015). TNFR1 signaling is important for the induction of the CD8 T cell response 

towards mouse hepatitis virus, and expression on DCs alone is sufficient to confer protection (Ding et al., 

2011). As we found TNF to be upregulated in the intestine after injection with poly(I:C), we examined its 

role in poly(I:C) induced DC migration. Indeed, there were no significant increases in migration of either 

cDC1 or cDC2 in response to poly(I:C) in either TNFR1KO mice or mice treated in vivo with a blocking anti-

TNFR1 antibody, while there was minimal DC activation in poly(I:C) treated TNFR1KO mice (Figures 3D-F). 

These results are consistent with previous studies on skin DCs (Suto et al., 2014) and show that TNFR1 

signaling is a crucial secondary signal that mediates the extrinsic response of DCs to TLR3-sensing in vivo.  

DC subsets differ in type I IFN signaling requirements for migration and activation in response to poly(I:C) 

In addition to elevated expression of TNF- and IL-1, type I IFNs were significantly upregulated in the 

intestine after poly(I:C) injection (Figure 3A). Previous studies have shown a prominent role for type I IFN in 

the activation and maturation of splenic DCs in response to poly (I:C), acting via the type I IFN receptor on 

DCs (Pantel et al., 2014). Conversely, the TNF dependent migration of intestinal DCs in response to R848 

does not require type 1 IFNR signaling (Yrlid et al., 2006) and we therefore tested directly the role of type I 

IFN in the activation and migration of intestinal DCs in response to poly(I:C). 

Type I IFN receptor-deficient mice (IFNARKO) showed defective migration of both cDC1 and cDC2 in 

response to poly(I:C) (Figure 4A) and similar results were found in mice lacking IFNAR in all CD11c-

expressing cells, although cDC2 were partially resistant to the effects of deletion of IFNAR in these mice 

(Figure 4B). The activation of both DC subsets as assessed by CD86 expression was also greatly diminished 

in CD11c.IFNARKO mice (Figure 4C). Conversely, while cDC1-specific deletion of the IFNAR in XCR1.IFNAR1KO 

mice abrogated the poly(I:C) induced migration and activation of cDC1, this had no effect on either 

parameter in cDC2 (Figures 4B, C). Deletion of IFNAR in cDC2 in huCD207.IFNAR1KO mice had no effect on 

the migration or activation of either DC subset, apart from a small decrease in CD86 upregulation by cDC2 

(Figures 4B, C), consistent with previous findings that type I IFN may be more important for activation than 

migration (Yrlid et al., 2006). These data suggest that type I IFN has few if any direct effects on cDC2 

migration in response to poly(I:C).  

Mixed BM chimeras using a 50:50 combination of WT and XCR1.IFNAR1KO BM showed that the requirement 

for type I IFN signaling in cDC1 migration was cell intrinsic, contrasting with what we had observed for 

TLR3-signaling. Poly(I:C) induced migration of cDC2 remained intact in these chimeras (Figure 4D). A similar 

defect in cDC1 migration was seen in XCR1.IFNAR1KO mice treated orally with R848, the ligand for TLR7 

expressed mostly by cDC2, indicating a need for type I IFN signaling in cDC1 regardless of whether 

stimulation occurred in a direct or indirect manner (Figure 4E). cDC2 migration was also induced by R848 in 

huCD207.IFNAR1KO mice lacking type I IFN signaling specifically on cDC2, although this was somewhat 
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reduced in comparison with that in WT mice (Fig. 4F). Thus, type I IFN signaling plays a global role in the 

migration of cDC1 in response to TLR stimulation, but has little or any effect on cDC2 migration in response 

to either TLR3 or TLR7 stimulation.   

As well as type I IFN, poly(I:C) also induces cDC1 to express IFN-in a manner that requires IFNAR on DCs 

(Lauterbach et al., 2010). IFN- is a type III IFN that drives thymic stromal lymphopoietin expression by M 

cells in response to nasal vaccination with an influenza vaccine, which in turn drives cDC1 migration from 

the respiratory tract to the mediastinal lymph nodes (Ye et al., 2019). We therefore tested whether IFN-

was required for the poly(I:C) induced migration of DCs, using mice deficient for IL28R, the receptor for 

IFN-. However the activation and migration of both cDC1 and cDC2 in response to poly(I:C) were normal in 

these animals (Figure 4G,H). 

Our data reveal a previously unappreciated differential role for type I IFN in cDC migration from the 

intestine to the mLNs. While IFNAR signaling drives maturation of both major subsets of migratory DCs, 

only cDC1 critically depend on direct type I IFN signals for migration in response to poly(I:C). Thus, the 

mechanisms inducing DC migration may be subset specific. Although the migration and upregulation of 

CD86 in both cDC1 and cDC2 were entirely TLR3-dependent, this occurred in a cell-extrinsic manner and the 

cells responding directly to TLR3 remain to be identified. Consistent with previous reports in other models 

((Longhi et al., 2009; Pantel et al., 2014; Yrlid et al., 2006); we found that TNF and type I IFN signaling 

played important roles as secondary mediators in TLR3-mediated intestinal DC migration. Interestingly, the 

ability of DCs to induce proliferation by naïve CD4+ T cells also does not require cell intrinsic expression of 

pattern recognition receptors by DCs, whereas the functional polarization of T cells depends on direct 

sensing of the pathogen-associated molecular pattern by the presenting DC (Desch et al., 2014; Spörri and 

Reis e Sousa, 2005). Our data showing that the migration and upregulation of costimulatory molecules by 

DCs in response to TLR stimuli in vivo can result from trans-activation of DCs therefore suggest that 

differences in migration capacities may not be linked to the polarization of T cell responses. However it is 

important to note that not all TLR ligands can induce migration in trans, as signaling through TLR5, that is 

only expressed on cDC2, does not induce cDC1 migration in vivo (Flores-Langarica et al., 2017). Taken 

together, these findings indicate that TLR based adjuvants and targeting need to be examined individually 

for their impact on specific DC subsets if their effects on the immune system are to be understood in depth. 

Future research aiming at better understanding the role of potently migrating and activating trans-

activated DC subsets, as well as the signals responsible, will be critical for the design of selective immune 

interventions in vaccination and therapy.  
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Experimental procedures 

Mice 

All animal animals were house under specific pathogen-free conditions at the Danish Technical University 

(Denmark), Lund University (Sweden) or Monash University (Australia). The experiments were performed 

under the appropriate national licenses and guidelines for animal care. Both male and female mice were 

used between 8 and 16 weeks of age as no obvious age differences were detected. CD11c.cre mice (B6.Cg-

Tg(Itgax-cre)1-1Reiz/J (Caton et al., 2007)) allow floxed gene deletion in CD11c-expressing cells, 

huCD207.cre mice drive floxed gene deletion in Langerhans cells and intestinal cDC2 (Welty et al., 2013), 

XCR1.cre mice permit to specifically delete floxed genes in cDC1 (Janela et al., 2019), villin.cre (B6.Cg-Tg(Vil-

cre)997Gum/J) mice excise floxed genes in intestinal epithelial cells (Madison et al., 2002) and Rosa26-

STOP-YFP mice allow tracking of cre specificity (B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/J). We used “switch-on” 

mutants carrying a floxed stop cassette in the endogenous locus prior to the gene of interest, allowing for 

re-expression of the targeted gene in the presence of cre for MyD88 (Gais et al., 2012), TLR3 and TRIF 

(unpublished, manuscript in preparation) (both generated at TU Munich, Germany). IFNAR floxed mice 

were obtained from U. Kalinke (Kamphuis et al., 2006). BATF3KO (B6.129S(C)-Batf3tm1Kmm/J) were maintained 

at DTU, TNFR1KO (crossed out from TNFR1/2KO (Peschon et al., 1998)), IFNARKO (Cucak et al., 2009) and 

CCR2KO (B6.129S4-Ccr2tm1Ifc/J) at Lund University and IL28RAKO (Ank et al., 2008) (kindly provided by Sean 

Doyle, Zymogenetics/BMS) at Monash University. All mice were on the C57Bl/6J background (B6.SJL-

PtprcaPepcb/BoyJ for CD45.1 bone marrow donors) and littermates were used as controls.  

In vivo treatments 

Mice were injected with PBS or 100g pIC (Sigma-Aldrich) in PBS intraperitoneally (i.p.) and mLNs and small 

intestinal lamina propria (SI LP) were collected 12-14 h later if not indicated otherwise. For TLR7 

stimulation, 20g of R848 (Invivogen) in PBS was given orally. TNF (XT3.11, BioXcell) was blocked with 

0.5mg on day -1 and 0.5mg at the time of stimulation.  

Cell isolation 

Isolation of mLN and splenic DCs was performed by digesting the tissue with collagenase IV (0.5 mg/mL, 

Sigma-Aldrich) and DNase I (12.5 µg/mL) diluted in R10 media (RPMI 1640 + 10% FCS) for 40 min at room 

temperature. Remaining tissue was mashed and filtered through 70 µm cell strainer with R10. For spleens, 

red blood cells (RBC) were lysed using RBC lysing buffer, containing ammonium chloride, potassium 

bicarbonate, EDTA and MiliQ water. The SI-LP cell isolation was performed as described previously(Luda et 

al., 2016). 
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Flow cytometer 

Ca/Mg-containing PBS with 2% FCS was used as buffer during the entire staining procedure. Non-specific 

binding was blocked with rat anti-mouse CD16/CD32 Fc block (2.4G2, BD Biosciences) for 20 minutes at 4°C. 

Dead cells identified as propidium iodide+ (Sigma Aldrich) or by Aqua LIVE/DEAD Fixable Dead Cell Staining 

Kit (Life Technologies) and cell aggregates (identified on FSC-A versus FSC-H scatterplots) were excluded 

from analyses. DCs were identified by using the following antibodies: α-CD3 (145-2C11), α-CD19 (eBio1D3), 

α-NK1.1 (PK136), α-B220 (RA3-6B2), α-CD64 (X54-5/7.1), α-CD103 (M290), α-CD11b (M1/70), α-CD11c 

(HL3), α-CD8a (53-6.7), α-CD86 (GL1), α-MHC-II I (IA/I-E) (M5/114.15.2), α-CD45.1 (A20), α-CD45.2 (104), α-

IFNAR (MAR1-5A3), -XCR1 (ZET), α-SiglecH (551), and α-TLR3 (11F8). Intracellular staining was performed 

using the FoxP3 Fixation/Permeabilization Kit (eBioscience) according to the manufacturer’s instructions. 

Data was acquired on a FACS Aria II or LSRII (BD Biosciences) and analyzed using FlowJo software (Tree 

Star). 

Adoptive Transfers 

Bone marrow (BM) chimeras were generated by intravenous injection of BM (5 x 106) cells into irradiated (9 

Gy) recipients. Analysis of BM chimeras was performed 6-8 weeks after cell transfer. In all mixed BM 

chimeras, WT cells were identified by CD45.1 expression. 

Real-Time PCR 

Total RNA was isolated from small intestine (SI) using the RNeasy kit (QIAGEN). cDNA was generated using 

iScript™ cDNA Synthesis Kit (Bio-Rad). Quantitative PCR was performed on a CFX96™ Real-Time PCR 

Detection System (Bio-Rad), using SsoFast™EvaGreen® Supermix (Bio-Rad). The expression of all genes was 

normalized to the mean of beta-actin, Reep5 and GAPDH. Primer sequences are specified in Suppl. Table 1. 

Undetectable values were calculated based on the highest possible Cq +1 (=41cyles). 

Statistical Analysis 

Statistics were performed using two-way ANOVA considering treatment and experiment as factors for the 

analysis. Wherever indicated in the figure legends, Mann-Whitney U test was applied to compare two 

groups (e.g.: different treatments (n=2) within the same genotype), and Kruskal-Wallis test was applied to 

compare more than 2 groups (e.g.: different genotypes (n=3) within the same treatment). Statistical 

significance was estimated by using R Studio. 

R Scripts:  

- Two-way ANOVA: aov(value ~ genotype + day, data = Data) 

o Post-Hoc test Tukey: TukeyHSD(Data_anova2, which="genotype") 

- Mann-Whitney U test: wilcox.test(value ~ genotype, data = Data, exact = FALSE) 

Genotype accounts for analysis between different genotypes within the same treatment. Using treatment 

instead of genotype allows for analysis between different treatments within a genotype. Data refers to the 

data to be analyzed. 
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Figure Legends 

Fig.1: TLR3 expression by mononuclear phagocytes and migration of cDCs in response to poly(I:C). 

A. Left: representative flow cytometry plots of spleen, mLN and SI-LP DC subsets and macrophages in 

C57BL/6 mice. All populations were gated on live, lineage (CD3, CD19, NK1.1) negative, single cells. 

DC in spleen and mLN were further pre-gated as CD11c+MHCII+ cells and in SI-LP as 

CD11c+MHCII+CD64- cells. Macrophages in spleen were further pre-gated as CD11cint and CD11b+ or 

CD11b-, while macrophages in SI-LP were further gated as CD11c+CD64+ cells. Histograms: 

Intracellular TLR3 staining of the indicated DC and macrophage populations 12 hours after i.p 

injection of PBS or 100µg poly(I:C) into wild type mice and by bulk DC in resting TLR3OFF mice (KO). 

Right: Quantification of TLR3 expression by DC subsets and macrophages in C57BL/6 mice 12h after 

i.p. injection of PBS or poly(I:C). Data shown are means ± 1 sem pooled from two independent 

experiments with 3 mice per group.  

B. Kinetics of intestinal cDC1 and cDC2 migration after i.p. injection of 100µg poly(I:C). Data shown are 

mean numbers of cells ± 1 sem pooled from two to four independent experiments with 2-3 mice 

per group. Differences between cDC1 and cDC2 are not significant. 

C. Total numbers of cDC1 and cDC2 in the mLNs of WT and TLR3OFF mice 12h after i.p. injection of PBS 

or 100µg poly(I:C). Data shown are mean numbers of cells ± 1 sem pooled from three independent 

experiments with 3 mice per group. Two-way ANOVA, *p<0.05. 

D. Activation of cDC subsets in mLNs of WT and TLR3OFF mice by poly(I:C). Results shown are fold 

change in CD86 expression 12h after injection of 100µg poly(I:C) as assessed by MFI normalized to 

FMO and relative to expression by DCs in untreated WT. Data shown are means ± 1 sem pooled 
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from three independent experiments with 3 mice per group. Two-way ANOVA, *p<0.05, 

***p<0.0005. 

 

Fig. 2: Cellular requirements for TLR3 mediated DC migration in response to poly(I:C)   

A. Total numbers of cDC1 and cDC2 in the mLNs of WT recipients reconstituted for 8 weeks with 

either WT or TLR3OFF BM 12h after i.p. injection of PBS or 100µg poly(I:C). Data shown are mean 

numbers of cells ± 1 sem from one experiment with 5-8 mice per group. Mann Whitney U 

test,*p<0.05, **p<0.005. 

B. Schematic diagram of generation of cell specific TLR3ON mice in which TLR3OFF was created using a 

floxed STOP codon and TLR3 then re-expressed using cell specific cre promoters to delete the STOP 

codon. 

C. Total numbers of cDC1 and cDC2 in the mLNs of WT, TLR3OFF and XCR1.TLR3ON mice 12h after i.p. 

injection of PBS or 100µg poly(I:C). Data shown are mean numbers of cells ± 1 sem pooled from 

three independent experiments with 3-4 mice per group. Two-way ANOVA, *p<0.05, **p<0.005, 

***p<0.0005. Open circles were used to mark those poly(I:C) injected mice  that also did not show 

upregulation of CD86 (panel D); these were not excluded from statistics.  

D. Activation of cDC subsets in mLNs of WT, TLR3OFF and XCR1.TLR3ON mice by poly(I:C). Results shown 

are fold change in CD86 expression 12h after i.p. injection of 100µg poly(I:C) as assessed by MFI 

normalized to FMO and relative to expression by DCs in untreated WT. Data shown are means ± 1 

sem pooled from three independent experiments with 3-4 mice per group. Two-way ANOVA, 

*p<0.05, **p<0.005, ***p<0.0005. 

E. Fold change of total number of cDC1 and cDC2 in the mLNs 12h after i.p. injection of 100µg 

poly(I:C) versus PBS derived from the indicated BM in 50:50 WT:TLR3OFF mixed BM chimeras. Data 

shown are means ± 1 sem pooled from two independent experiments with 7 mice per group. Two-

way ANOVA, not significant.  

F. Activation of cDC subsets in mLNs of 50:50 WT:TLR3OFF mixed BM chimeras by poly(I:C). Results 

shown are fold change in CD86 expression 12h after i.p. injection of 100µg poly(I:C) versus PBS and 

relative to expression by DCs in untreated WT. Data shown are means ± 1 sem pooled from two 

independent experiments with 3-7 mice per group. Two-way ANOVA, not significant 

G. Total number of cDC1 and cDC2 cells in BATF3KO mice 12 after i.p. injection of PBS or 100 µg 

poly(I:C). Data shown are mean numbers of cells ± 1 sem pooled from two representative 

experiment out of 3 with 2-4 mice per group. Two-way ANOVA, *p<0.05, **p<0.005, ***p<0.0005. 

H. Activation of cDC2 subset in mLNs of BATF3KO mice by poly(I:C). Results are shown as mean 

fluorescent intensity of CD86 12h after i.p. injection of PBS or 100µg poly(I:C) in WT and BATF3KO 

mice. Two-way ANOVA, *p<0.05, **p<0.005, ***p<0.0005.  

 

Fig.3: Role of cytokines and MyD88 in response of DC to poly(I:C) 

A. Expression of cytokine mRNA in total SI LP of WT C57BL/6 mice at indicated times after i.p. injection 

of 100µg poly (I:C). Each point represents mean of qPCR triplicates for every gene as assessed by 
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RT-qPCR and measured relative to mean of three housekeeping genes (Reep5, -actin, GAPDH). 

Data shown are means ± 1 sem pooled from three independent experiments with 2-4 mice per 

group. Two-way ANOVA, *p<0.05. 

B. Total number of cDC1 and cDC2 in the mLNs of WT and MyD88OFF 12h after i.p. injection of PBS or 

100µg poly(I:C). Data shown are mean numbers of cells ± 1 sem pooled from four independent 

experiments with 3-4 mice per group (only two including WT). Two-way ANOVA, *p<0.05, 

***p<0.0005. Open circles were used to mark those poly(I:C) injected mice that also did not show 

upregulation of CD86 (panel C); these were not excluded from statistics. 

C. Activation of cDC subsets in mLNs of WT and MyD88OFF mice by poly(I:C). Results shown are delta 

MFI of CD86 expression 12h after i.p. injection of PBS or 100µg poly(I:C) over the mean of all 

untreated WT CD86 MFI values. Data shown are means ± 1 sem pooled from two independent 

experiments with 3-4 mice per group. Two-way ANOVA, *p<0.05, **p<0.005, ***p<0.0005. 

D. Total number of cDC1 and cDC2 in the mLNs of TNFR1KO mice 12h after i.p. injection of PBS or 

100µg poly(I:C). Data shown are mean numbers of cells ± 1 sem pooled from three independent 

experiments with 1-3 mice per group. Two-way ANOVA, not significant. 

E. Activation of cDC subsets in mLNs of WT and TNFR1KO mice by poly(I:C). Results shown are fold 

change in CD86 expression 12h after injection of 100µg poly(I:C) as assessed by MFI normalized to 

FMO and relative to expression by DCs in untreated WT. Data shown are means ± 1 sem pooled 

from three independent experiments with 1-3 mice per group. Two-way ANOVA, *p<0.05, 

**p<0.005.  

F. Total number of cDC1 and cDC2 in the mLNs of C57BL/6 mice pre-treated with TNF- antibody-

blocking and 12h after i.p. injection of 100µg poly(I:C). Control mice were treated with the isotype 

antibody (IgG). Data shown are mean numbers of cells ± 1 sem pooled from three independent 

experiments with 2-4 mice per group. Two-way ANOVA, **p<0.005, ***p<0.0005 

 

Fig.4: Type I IFN signaling in migration and activation of DC subsets 

A. Total number of cDC1 and cDC2 cells in the mLNs of WT and IFNARKO mice 12h after i.p. 

injections of PBS or 100µg poly(I:C). Data shown are mean numbers of cells ± 1 sem pooled 

from four independent experiments with 3-5 mice per group. Two-way ANOVA, **p<0.005, 

***p<0.0005. 

B. Total number of cDC1 (top) and cDC2 (bottom) cells in the mLNs of WT, CD11c.IFNARKOKO, 

XCR1.IFNARKO and huCD207.IFNARKO mice 12h after i.p. injection of PBS or 100µg poly(I:C). Data 

shown are mean numbers of cells ± 1 sem pooled from five independent experiments with 2-3 

mice per group for WT vs CD11c.IFNARKO; five independent experiments with 3-5 mice per 

group for XCR1.IFNARKO, and three independent experiments 3-5 mice per group for 

huCD207.IFNARKO. Two-way ANOVA within littermates, *p<0.05, **p<0.005, ***p<0.0005. 

C. Activation of cDC1 (top) and cDC2 (bottom) in the mLNs of WT, CD11c.IFNARKO, XCR1.IFNARKO 

and huCD207.IFNARKO mice by poly(I:C). Results shown are fold change in CD86 expression 12h 

after i.p. injection of 100µg poly(I:C) as assessed by MFI normalized to FMO and relative to 

expression by DCs in untreated WT. Data shown are means ± 1 sem  pooled from three out of 

five independent experiments with 2-3 mice per group for WT vs CD11c.IFNARKO; four out of 

five independent experiments with 3-5 mice per group for XCR1.IFNARKO, and three 
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independent experiments 3-5 mice per group for huCD207.IFNARKO. Two-way ANOVA within 

littermates, *p<0.05, ***p<0.0005. 

D. Fold change of total number of cDC1 and cDC2 in the mLNs 12h after i.p. injection of 100µg 

poly(I:C) versus PBS derived from the indicated BM in 50:50 WT:XCR1.IFNARKO mixed BM 

chimeras. Data shown are means ± 1 sem pooled from two independent experiments with 3-9 

mice per group. Two-way ANOVA, *p<0.05. 

E. Total number of cDC1 and cDC2 in the mLNs of XCR1.IFNARKO mice 12h after oral gavage of PBS 

or 20µg R848. Data shown are mean numbers of cells ± 1 sem pooled from two independent 

experiments with 3-5 mice per group. Two-way ANOVA, *p<0.05. 

F. Total number of cDC1 and cDC2 in the mLNs of huCD207.IFNARKO mice 12h after oral gavage of 

PBS or 20µg R848. Data shown are mean numbers of cells ± 1 sem pooled from two 

independent experiments with 3-5 mice per group. Two-way ANOVA, *p<0.05, **p<0.005, 

***p<0.0005. 

G. Total number of cDC1 and cDC2 in the mLNs of IL28RKO mice 12h after i.p. injection of PBS or 

100µg poly(I:C). Data shown are mean numbers of cells ± 1 sem pooled from three 

independent experiments with 3 mice per group. Two-way ANOVA, **p<0.005. 

H. Activation of cDC1 and cDC2 in the mLNs of IL28RKO mice by poly(I:C). Results shown are delta 

MFI of CD86 expression 12h after i.p. injection of PBS or 100µg poly(I:C) over the mean of all 

untreated WT CD86 MFI values. Data shown are means ± 1 sem pooled from three 

independent experiments with 3 mice per group. Two-way ANOVA, ***p<0.0005. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 



71 

 

Supplementary Data 

Suppl.1: 

A. Intracellular TLR3 staining of B and T cells 12 hours after i.p injection of PBS or 100µg poly(I:C) into 

wild type mice and by B and T cells from resting TLR3OFF. 

B. Total numbers of cDC1 and cDC2 in the mLNs of WT and TRIFOFF mice 12h after i.p. injection of PBS 

or 100µg poly(I:C). Data shown are mean numbers of cells ± 1 sem of one experiment 

representative of three with 3 mice per group. Mann Whitney U test, not significant.  

C. Activation of cDC subsets in mLNs of WT and TRIFOFF mice by poly(I:C). Results shown are fold 

changes in CD86 expression 12h after injection of 100µg poly(I:C) as assessed by MFI normalized to 

FMO and relative to expression by DCs in untreated WT. Data shown are means ± 1 sem of one 

experiment representative of three with 3 mice per group. Mann Whitney U test, not significant. 

 

Suppl.2: 

A. Intracellular TLR3 staining of spleen and SI LP in the indicated DC and macrophage populations 

from WT, TLR3OFF and XCR1.TLR3ON mice. 

B. Total number of cDC1 and cDC2 in the mLNs of WT and CCR2KO mice 12h after i.p. injection of PBS 

or 100µg poly(I:C). Data shown are mean numbers of cells ± 1 sem from one experiment with 4 

mice per group. Mann Whitney test, *p<0.05. 

C. Total number of cDC1 and cDC2 in the mLNS of WT, TLR3OFF and Villin.TLR3ON mice 12h after i.p. 

injection of PBS or 100µg poly(I:C). Data shown are mean numbers of cells ± 1 sem pooled from 

four independent experiments with 3 mice per group. Two-way ANOVA, **p<0.005, ***p<0.0005. 

D. Intracellular TLR3 staining of spleen cDC1 from WT, TLR3OFF and LysM.TLR3ON mice. Data shows one 

representative mouse per genotype from two independent experiments with 3-4 mice per group.  

 

Table 1: Primer Sequences for RT-PCR 
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Supplemental Figure 1 
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Supplemental Figure 2 
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Table 1: Primer Sequences for RT-PCR 

  Forward primer (5'-3') Reverse primer (5'-3') 

IL-1β GACAGTGATGAGAATGACCTGTT TGGAAGGTCCACGGGAAAGACA 

TNF-α TGTCTACTGAACTTCGGGGTGA TCTTTGAGATCCATGCCGTTG 

IFN-α TGCAATGACCTCCATCAGCA TTCCTGGGTCAGAGGAGGTTC 

IFN-β CTGGAGCAGCTGAATGGAAAG CTCCGTCATCTCCATAGGGAT 

IFN-λ GTTCAAGTCTCTGTCCCCAAAA GTGGGAACTGCACCTCATGT 

Reep5 GCCATCGAGAGTCCCAACAA AGCATCTCAGCCCCATTAGC 

β-actin ccgggacctgacagacta GTTTCATGGATGCCACAGGAT 

GAPDH cctgcaccaccaactgctta TCATACTTGGCAGGTTTCTCCA 
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4. Complementary methodology 

4.1 Mouse models overview 

This thesis is based on studies using a series of different mouse models. In Table 2, I summarize the 

different mouse models, with their phenotype and the reason of their use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 

 

Table 2. Overview of mouse models used in this thesis. 

MODELS CRE PHENOTYPE AIM REFERENCES 

SWITCH-ON     

TLR3-LSL XCR1 Only cDC1 express TLR3 Role of TLR3 in cDC1 only 
295

,Manuscript 

Villin Only intestinal epithelial cells express TLR3 Role of TLR3 in IECs only 
296

, Manuscript 

TRIF-LSL CD11c Only CD11c-expressing cells, e.g. cDC, 

macrophages and pDCs, express TRIF 

Role of TRIF signaling in CD11c-expressing cells 
297

, Manuscript 

MyD88-LSL CD11c Only CD11c-expressing cells, e.g. cDC, 

macrophages and pDCs, express MyD88 

Role of MyD88 signaling in CD11c-expressing 

cells 

297,298
 

huCD207 Only Langerhan cells and intestinal cDC2 

express MyD88 

Role of intestinal cDC2 in intesitnal cDC 

migration 

277,298
 

CONSTITUTIVE KO      

IFNAR
KO

 - All cells lack type I IFN signaling Role of type I IFN signaling in intestinal cDC 

migration 

299
 

CCR2
KO

 - No recruitment of monocytes from blood to 

tissue 

Role of newly recruited intestinal monocytes in 

intestinal cDC migration 

300
 

BATF3
KO

 - Lack of cDC1 development Role of cDC1 in intestinal cDC migration 
301

 

TNFRI
KO

 - All cells lack TNF signaling Role of TNF signaling in intestinal cDC 

migration 

crossed out from 

TNFR1/2
KO

(
302

) 

IL28R
KO

 - All cells lack type III IFN signaling Role of type III IFN signaling in intestinal cDC 

migration 

303
 

CONDITIONAL KO     

IFNAR
fl/fl

 CD11c CD11c-expressing cells, e.g. cDC, macrophages 

and pDCs, lack type I IFN signaling 

Role of type I IFN signaling in CD11c-expressing 

cells in intestinal cDC migration 

297,304
 

 XCR1 cDC1 lack type I IFN signaling Role of cDC1-intrinsic type I IFN in intestinal 

cDC migration  

295,304
 

 huCD207 Langerhan cells and intestinal cDC2 lack type I 

IFN signaling 

Role of cDC2-intrinsic type I IFN in intestinal 

cDC migration  

277,304
 

INDUCIBLE KO     

BDCA2-DTR DT Depletion of pDCs Role of pDCs in intestinal cDC migration 
305
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4.2 Depletion of pDCs 

BDCA2-DTR (transgenic, tg) mice were injected with diphtheria toxin (DT, EMD Milipore) 

intraperitoneally (i.p.) at 200 ng/mouse per injection. pDCs were depleted on days -2 and -1 prior to 

poly(I:C) injection. Mice not injected with DT were administered PBS as control. Mice were used 

between 8-16 weeks of age. 

4.3 Treatment with different poly(I:C) formulations 

The synthetic dsRNA poly(I:C) was purchased from Sigma-Aldrich whereas High molecular weight 

(HMW) and Low molecular weight (LMW) poly(I:C)s were purchased from InvivoGen (San 

Diego, CA, USA). All poly(I:C)s were injected i.p. into C57BL/6 (wild type,WT) and TLR3
OFF

 

mice at 100µg/mouse, diluted in PBS. 

4.4 Statistical analysis 

Total cell numbers varied between experiments performed on different days. Regular statistical tests 

masked the effect observed between different treatments across experiments. Accordingly, 

wherever possible, we employed a two-way ANOVA, with both treatment and day of experiment 

considered as factors for the analysis. Some of the preliminary results consist of only one 

experiment. In this case, Mann-Whitney U test was applied to compare two groups (e.g.: different 

treatments (n=2) within the same genotype), and Kruskal-Wallis test was applied to compare more 

than 2 groups (e.g.: different genotypes (n=3) within the same treatment). Statistical significance 

was estimated by using R Studio. 

 

R Scripts:  

- Two-way ANOVA: aov(value ~ genotype + day, data = Data) 

o Post-Hoc test Tukey: TukeyHSD(Data_anova2, which="genotype") 

- Kruskal Wallis test: kruskal.test(value ~ genotype, data = Data) 

o Post-Hoc test Dunn: Library(FSA)
306

, dunnTest(value ~ genotype, data = Data, 

method="bh") 

- Mann-Whitney U test: wilcox.test(value ~ genotype, data = Data, exact = FALSE) 

Genotype accounts for analysis between different genotypes within the same treatment. Using 

treatment instead of genotype allows for analysis between different treatments within a genotype. 

Data refers to the data to be analyzed. 
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5. Complementary results 

This section contains a set of complementary results to the manuscript. Of note, the figures are 

numbered following the thesis’ figures. 

5.1 TLR3-mediated recognition of different poly(I:C) formulations 

Poly(I:C) is a synthetic dsRNA recognized mainly by endosomal TLR3
307

. However, other 

cytosolic PRRs such as MDA5 and RIG-I can also recognize dsRNA
308

. There are several poly(I:C) 

formulations that differ in their molecular size and some studies have shown that they induce 

different responses, depending on the cell type
309

. For example, different poly(I:C)s generate 

phenotypically mature DCs, but with different functional properties
310

. Particularly, one study 

showed that RIG-I and MDA5 selectively recognize short and long dsRNA, respectively
311

. 

However, little is known about the involvement of TLR3 in recognizing different dsRNA lengths. 

 

Given that DC migration in our model was dependent on TLR3, we performed preliminary studies 

to assess whether different formulations of poly(I:C) induce intestinal cDC migration similarly and 

whether all depend on TLR3 signaling. We tested three different commercially-available poly(I:C) 

formulations: poly(I:C) from Sigma-Aldrich (SA, undefined molecular weight); HMW poly(I:C) 

and LMW poly(I:C), the latter two from InvivoGen. Consistent with our previous findings 

(Manuscript, Figure 1C&D), SA poly(I:C)-induced cDC migration was fully dependent on TLR3 

for both DC subsets (Figure 13A). Similarly, cDC migration in response to LMW-poly(I:C) seemed 

to depend fully on TLR3. Interestingly however, HMW-poly(I:C) induced partial migration of both 

cDC1 and cDC2 DCs in the absence of TLR3, suggesting a TLR3-independent manner of HMW-

poly(I:C)-induced DC migration (Figure 13A). Additionally, all poly(I:C)s generated maturation of 

cDCs, assessed by expression of CD86 (Figure 13B). However, while SA and HMW poly(I:C)-

induced maturation was fully TLR3-dependent, HMW poly(I:C) induced CD86 expression on cDCs 

in a TLR3-independent manner (Figure 13B). Large data-spread within the HMW-poly(I:C) group 

in this one experiment prevents a definitive conclusion. These results are however in line with 

previous findings that different poly(I:C)s may use different pathways and thus elicit different 

responses.  
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Figure 13. Migration and activation of intestinal cDC1 and cDC2 in response to different poly(I:C) formulations. 

A) Total number of cDC1 and cDC2 in the mLNs of C57BL/6 and TLR3
OFF

 mice 12h after i.p. injection of PBS or 

100µg of given poly(I:C). Data shown are mean numbers of cells ± 1 SEM of one experiment with 3 mice per group; B) 

Activation of cDC1 and cDC2 subsets from A, expressed by mean fluorescent value (MFI) of CD86. Data shown are 

means ± 1 SEM from experiments in A. Mann-Whitney U test within the same genotype, different treatments, not 

significant; Kruskal-Wallis test within the same treatment, different genotypes, not significant. SEM: standard error 

mean. 

5.2 Macrophages in intestinal cDC migration 

As shown in our manuscript, cDCs in mice lacking TLR3 do not migrate in response to poly(I:C) 

(Manuscript Figure 1C). We further showed that expression within the cDC1 population was able to 

drive migration of both cDC1 and cDC2 subsets in response to poly(I:C) (Manuscript Figure 2C). 

However, we detected TLR3 expression in about 20% of intestinal but not spleen macrophages 

(Manuscript Sup. Figure 2A). Hence, we wanted to test whether TLR3 in macrophages was 

sufficient to drive intestinal cDC migration in response to poly(I:C). We used the newly developed 

switch on model that allows for re-expression of TLR3 only in LysM-expressing cells, e.g: 

macrophages (TLR3-LSL x LysM CRE, Figure 14A). Surprisingly, numbers of both cDC1 and 

cDC2 increased in mLNs of LysM.TLR3
ON

 mice after poly (I:C) injection (Figure 14B), suggesting 

that poly(I:C) sensed by macrophages alone is enough to drive intestinal cDC migration. Activation 

of cDCs assessed by CD86 expression showed that both cDC1 and cDC1 became activated in 

response to poly(I:C) (Figure 14C). However, further characterization of the model showed that 

approximately 50% of cDC1 in the spleen also re-expressed TLR3 (Manuscript Sup. Figure 2D). In 

line with our results showing that TLR3 on cDC1 is able to drive DC migration (Manuscript Figure 
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2C), the re-expression of TLR3 in cDC1 in this model may account for the entire phenotype, with 

macrophages playing little or no role. A definitive assessment of the role of macrophages in 

poly(I:C)-induced cDC migration thus requires new models allowing for complete macrophage 

depletion, a model unfortunately not currently available. 

 

 

Figure 14. Role of TLR3-expressing macrophages in migration and activation of intestinal cDC1 and cDC2 in 

response to poly(I:C). A) Graphical representation of the new TLR3-LSLxLysM CRE mouse model generated by 

crossing TLR3
OFF

 mice, which contain a floxed STOP codon in front of the transcriptional start site of the TLR3 gene, 

with mice expressing recombinase CRE under the LysM promoter, known to target macrophages; B) Total number of 

cDC1 and cDC2 in the mLNs of WT, TLR3
OFF

 and LysM.TLR3
ON

 mice 12h after i.p. injection of PBS or 100µg 

poly(I:C). Data shown are mean numbers of cells ± 1 SEM pooled from two independent experiments with 3-4 mice per 

group; C) Activation of cDC1 and cDC2 subsets from A, expressed by ΔMFI of CD86 expression over the mean of all 



81 

 

untreated WT CD86 MFI values. Data shown are means ± 1 SEM from experiments in B. Two-way ANOVA test, 

*p<0.05, **p<0.005, ***p<0.0005. 

5.3 Type I IFN signaling for migration in response to poly(I:C) 

Type I IFN signaling is essential for many cell functions and they were upregulated 2h after 

poly(I:C) injection (Manuscript Figure 3A). We found that type I IFN was required for migration of 

both cDC1 and cDC2 in response to poly(I:C) (Manuscript Figure 4A). However, DCs lacking type 

I IFN signaling completely may have unknown developmental defects, as previously shown to be 

de case for pDCs
312

. Accordingly, we acutely blocked IFNAR signaling in WT mice by injection of 

the blocking antibody MAR1
313

 prior to poly(I:C) injection. In agreement with our findings with 

specific IFNAR
KO

 (Manuscript Figure 4B&C), blocking type I IFN affected cDC1 migration in 

response to poly(I:C), while having little effect on cDC2 migration (Figure 15). These findings 

confirm our results using subset-specific IFNAR
KO

 mice, suggesting a specific role for type I IFN 

for cDC1 and not cDC2 migration in response to poly(I:C).  

 

 

Figure 15. Role of type I IFN signaling in intestinal cDC1 and cDC2 migration in response to poly(I:C). Total 

number of cDC1 and cDC2 in the mLNs of C57BL/6 mice pre-treated with IFNAR antibody-blocking and 12h after i.p. 

injection of 100µg poly(I:C). Control mice were treated with the isotype antibody (IgG). Data shown are mean numbers 

of cells ± 1 SEM pooled from three independent experiments with 2-4 mice per group. Two-way ANOVA test, 

***p<0.0005.  

5.4 Role of pDCs in intestinal cDC migration 

pDCs are a class of DCs that produce large amounts of type I and III IFNs against viral 

infections
314

. Accordingly, they are considered professional IFN-producing cells. We found that 

cDC1 but not cDC2 depended on type I IFN signaling for migration in response to poly(I:C) 

(Manuscript Figure 4B&C). In addition, pDCs are essential for inducing intestinal cDC migration to 

the mLNs in response to R848 by production of TNF-α and type I IFN
45

. Consequently, we wanted 

to assess whether pDCs are a main source of type I IFN and play a crucial role in intestinal cDC 

migration in response to poly(I:C). While pDCs do not express TLR3, they could still act as 

important secondary signal amplifiers. We used the BDCA2-DTR model, in which injection of DT 

leads to pDC depletion
305

. As previous DTR mouse models showed lower LN size and cellularity, 

we used tg mice as controls
315

. pDCs were gated as CD11c
int

B220
+
SiglecH

+
 and cDC were gated on 

CD11c
+
MHC-II

+
 and further characterized by expression of CD103 and CD11b (Figure 16A). 

Injection of DT twice prior to poly(I:C) injection lead to efficient depletion of pDCs (Figure 16B). 
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In the absence of pDCs, poly(I:C) increased migration of both cDC1 and cDC2 as efficient as in 

untreated mice (Figure 16C). Additionally, maturation of DCs was also not affected by the absence 

of pDCs (Figure 16D). These findings suggest that pDCs do not play an essential role in intestinal 

cDC migration. 

 

 

Figure 16. Role of pDCs in intestinal cDC1 and cDC2 migration in response to poly(I:C). A) Representative flow 

cytometry plots of mLN cDCs and pDCs in BDCA2-DTR mice. Cells are pre-gated on live, Lin (CD3, CD19, NK1.1, 

CD64)
-
, cDCs are gated as CD11c

hi
MHC

hi
 and further subdivided into four different subsets based on CD103 and 

CD11b expression; pDCs are further gated as CD11c
int

B220
+
SiglecH

+
; B) Representative flow cytometry plot of mLN 

pDCs; C) Total number of cDC1, cDC2 and pDCs in the mLNs of BDCA2-DTR mice 12h after i.p. injection of 
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poly(I:C) and/or DT. Mice that did not receive poly(I:C) nor DT were injected i.p. with PBS. Data shown are mean 

numbers of cells ± 1 SEM pooled from four independent experiments with 2-5 mice per group; D) Activation of cDC1 

and cDC2 subsets expressed by ΔMFI of CD86 expression over the mean of all untreated WT CD86 MFI values. Data 

shown are means ± 1 SEM from three out of four experiments in C. Two-way ANOVA test, *p<0.05, **p<0.005, 

***p<0.0005. 

5.5 MyD88 signaling in intestinal cDC migration 

Steady state migration of intestinal DCs depends on MyD88 signaling
316,317

. In our manuscript, we 

showed that poly(I:C) injection induced the expression of several cytokines 2h post injection, 

including IL-1β (Manuscript Figure 3A). IL-1β signals through IL-1R and MyD88
318

. 

Consequently, we next wanted to assess whether migration and activation of either DC subset in 

response to poly(I:C) also depended on MyD88. Complete deficiency of MyD88 (MyD88
OFF

) did 

not affect DC migration or activation of either DC subset in response to poly(I:C) (Figure 17A). 

Interestingly however, re-expression of MyD88 in CD11c
+
 cells (CD11c.MyD88

ON
) showed a 

tendency towards increased migration of both cDC subsets in response to poly(I:C) compared to 

WT (Figure 17A). This increased DC migration might be a consequence of altered homeostasis due 

to absence of MyD88 in cells such as IECs
319

 or T cells
320

. Maturation of cDC seemed not to be 

affected by lack of MyD88 (Figure 17B), although results are inconclusive due to large data spread. 

In contrast, R848 induced migration of both cDC1 and cDC2 to similar levels in WT mice, and was 

abrogated in absence of MyD88 (Figure 17C). Interestingly, MyD88 signaling only in CD11c
+
 cells 

was sufficient to restore cDC migration in response to R848 to levels compared to treated WT 

(Figure 17C).  Collectively, these data indicate that poly(I:C), as opposed to R848, induces 

migration of cDC1 and cDC2 in a MyD88-independent manner, suggesting that any soluble 

mediators driving DC migration in a TLR3-extrinsic manner are also MyD88-independent. 

 

Dendritic cells can be directly (cis) or indirectly (trans) activated by cell-intrinsic PAMP 

recognition or pro-inflammatory cytokines, respectively
245

. Both activation pathways lead to 

maturation of DCs characterized by higher expression of MHC-II and costimulatory molecules such 

as CD80 and CD86, among others. We found that poly(I:C) can drive TLR3-dependent DC 

migration and activation cell-extrinsically, meaning that direct recognition was dispensable for the 

migrating cell. We next wanted to investigate whether migration of trans-activated DCs was a 

unique phenomenon triggered in response to TLR3-TRIF activation. Accordingly, we switched the 

system and expressed MyD88 specifically in cDC2, and investigated cDC1 and cDC2 migration 

and activation triggered by R848. We used R848, which is a synthetic ssRNA that signals through 

TLR7, because cDC2 were previously shown to be capable of sensing R848 through TLR7
321

. 

Interestingly, MyD88 signaling restricted to cDC2 led to only partially increased migration and 

activation of cDC1 and cDC2 compared to untreated mice (Figure 17E&F), confirming a previous 

study showing a major role for pDCs at driving DC migration in response to R848. These data 

indicate that intestinal cDC2 might not be the main responders to R848, but are able to respond 

partially in a cell-intrinsic manner. Of note, this is preliminary data and further experiments need to 

be performed in order to confirm such results. 
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Together with the results on XCR1.TLR3
ON

 mice in response to poly(I:C)(Manuscript Figure 2C), 

these findings suggest that while poly(I:C) and R848 can be sensed directly by cDC1 and cDC2, 

respectively, both adjuvants drive migration and activation of all subsets. However, cDC1 and 

cDC2 differ in their requirements for type I IFN for migration in response to poly(I:C) and R848. 

These differences might be due to cell-intrinsic properties of the specific subsets rather than nature 

of TLR ligands, since cDC1 seem to require type I IFN independent of the nature of the TLR 

ligand. 

 

 

Figure 17. Role of MyD88 signaling in intestinal cDC1 and cDC2 migration in response to poly(I:C) and R848. 

A) Total number of cDC1 and cDC2 in the mLNs of WT, MyD88
OFF

 and CD11c.MyD88
ON

 mice 12h after i.p. injection 

of PBS or 100µg poly(I:C). Data shown are mean numbers of cells ± 1 SEM pooled from four independent experiments 

with 3-5 mice per group. Open circles refer to poly(I:C) injected mice that did not show upregulation of CD86 (in B) 

these were not excluded from statistics; B) Activation of cDC1 and cDC2 subsets expressed by ΔMFI of CD86 

expression over the mean of all untreated WT CD86 MFI values. Data shown are means ± 1 SEM from two out of four 

experiments in A; C) Total number of cDC1 and cDC2 in the mLNs of WT, MyD88
OFF

 and CD11c.MyD88
ON

 mice 12h 

after oral gavage of PBS or 20µg R848. Data shown are mean numbers of cells ± 1 SEM from one experiment with 3 

mice per group; D) Activation of cDC1 and cDC2 subsets expressed by ΔMFI of CD86 expression over the mean of all 

untreated WT CD86 MFI values. Data shown are means ± 1 SEM from experiment in A. E) Total number of cDC1 and 

cDC2 in the mLNs of WT, MyD88
OFF

 and huCD207.MyD88
ON

 mice 12h after oral gavage of PBS or 20µg R848. Data 

shown are mean numbers of cells ± 1 SEM from one experiment with 2-4 mice per group; F) Activation of cDC1 and 

cDC2 subsets expressed by ΔMFI of CD86 expression over the mean of all untreated WT CD86 MFI values. Data 
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shown are means ± 1 SEM from experiment in E. Two-way ANOVA test in A) and B), *p<0.05, **p<0.005, 

***p<0.0005. Mann-Whitney U test within the same treatment, not significant; Kruskal-Wallis test for the same 

genotypes but different treatments,*p<0.05. 

5.6 Cell-extrinsic requirement of TLR3 

In our manuscript, we show that poly(I:C)-induced DC migration depends on TLR3 in 

hematopoietic cells. This can occur in a cell-extrinsic manner, as shown by migration of TLR3
OFF

 

DCs in mixed BM chimeras (Manuscript Figure 2E&F). Mixed BM chimeras contain cDC1 derived 

from WT mice that could account for poly(I:C) sensing, driving the migration of the TLR3
OFF

 DC 

counterparts. This hypothesis is strengthened by our results in TLR3.XCR1
ON

 mice, where DC 

migration of both cDC1 and cDC2 is comparable to WT in response to poly(I:C)(Manuscript Figure 

2C). Accordingly, we wanted to assess whether the TLR3 requirement for cDC migration in 

response to poly(I:C) was specific to its expression on cDC1. Due to the lack of mouse models and 

the difficulty of generating one that met our needs, we set up mixed BM chimeras with 50:50 

BATF3
KO

 and TLR3
OFF

 BM into WT hosts (Figure 18A). Since the BATF3
KO

 BM cannot give rise 

to cDC1
301

, these mice have only half the amount of cDC1 compared to the rest of cells, and those 

are exclusively derived from TLR3
OFF

 BM. In this way, the cDC1 present in the system will not 

express TLR3, allowing thus to study cDC1 migration in response to poly(I:C) when all cDC1 lack 

TLR3. We used BATF3
HET

 BM as control groups (Figure 18A). 

 

Flow cytometry analysis of the injected BM confirmed that proportions of injected BM from the 

different donors were very similar (Figure 18B). Reconstitution analysis after 8 weeks showed that 

cDC subsets were equally reconstituted from both BM in the mLNs from control mice (Figure 

18C). In contrast, 70 to 80% of cDC2 and the minor population of CD103
-
 cDC2 in the double KO 

(d-KO) mice derived from BATF3
KO

 BM (Figure 18C). These results could suggest that TLR3
OFF

-

derived cells are competitively at a disadvantage over BATF3
KO

. Another, more likely explanation 

is that BATF3
KO

 BM gives rise to more of the other DC subsets because precursors cannot develop 

into classical cDC1. This last explanation is in line with our findings in BATF3
KO

 mice (Manuscript 

Figure 2G), where there is an overall increase in cDC2 numbers. 

 

Figure 10D shows that in response to poly(I:C), cell numbers in mLNs of control mice were 

increased for both BATF3
HET

 and TLR3
OFF

, confirming our previous findings (Manuscript Figure 

2G&H). Further, cDC1 and cDC2 numbers of d-KO mLNs were increased in response to poly(I:C) 

compared to steady state (Figure 18D). Although these preliminary results need to be confirmed 

with further experiments, these findings suggest that cDC1 can also migrate in response to poly(I:C) 

in the absence of TLR3 on all DCs available in the system. 
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Figure 18. Role of cell-extrinsic TLR3 in intestinal cDC1 and cDC2 migration in response to poly(I:C). A) 
Experimental design; d-KO: double knock out; i.v.: intravenously, i.p. intraperitoneally; B) Representative flow 

cytometry plots of BM cells from donors. Cells are pre-gated on Live cells; C) Left: representative flow cytometry plot 

of mLN cDC subsets. Right: percentage of mLN cDC subsets in control and d-KO derived from BATF3
KO

 (circle) and 

TLR3
OFF

 (square) mice. Black represents PBS-treated and grey represents poly(I:C)-treated mice; D) Total number of 

cDC1 and cDC2 in the mLNs of control and d-KO mice 12h after i.p. injection of PBS or 100µg poly(I:C). Data shown 

are mean numbers of cells ± 1 SEM from one experiment with 1-3 mice per group. SEM: standard error mean. 
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6. Discussion 

Intestinal DCs play a crucial role in the induction of adaptive immune responses to either maintain 

tolerance to commensals and food proteins or to develop protective immunity against pathogens. A 

key aspect of DCs in priming T cell responses is their effective migration from the intestine to the 

mLNs. However, while migration of intestinal DCs is likely to be influenced by microbial stimuli 

via TLRs and/or inflammatory cytokines, the exact mechanisms of how different DC subsets 

migrate to different stimuli remains poorly understood. In the intestine, different DC subsets differ 

in their expression of PRR. For example, intestinal cDC2 express high levels of TLR5, whereas 

cDC1 express TLR3
196,273

. This difference in expression is likely to be physiologically relevant. For 

example, systemic immunization with soluble flagellin induces increased migration of cDC2 but not 

cDC1 from the intestine to the mLNs. In addition, cDC2 but not cDC1 are responsible to drive 

antibody responses to flagellin
197

. In line with this, we speculated that different TLR ligands might 

induce different DC subset migration patterns. In this thesis, I study the molecular requirements for 

intestinal DC migration to the mLNs in response to poly(I:C) and dissect the migratory differences 

between the two main DC subsets, cDC1 and cDC2. 

6.1 Poly(I:C) as a model for intestinal viral infection 

Diarrhea caused by enteric viral infection remains the leading cause of death among children under 

5 years of age
237

. Although vaccination against rotavirus as well as implementation of sanitation 

actions have helped reducing the cases of hospitalized children, better understanding of the immune 

mechanisms against viruses are needed to improve and broaden vaccination strategies. 

 

Poly(I:C) is a synthetic analogue of dsRNA that mimics dsRNA viruses such as reoviruses as well 

as intermediates of viral replication of ssRNA and some DNA viruses
6,322,323

. Intraperitoneal 

injection of poly(I:C) induces small intestinal damage in a mechanism dependent on TLR3 in 

IECs
324

. Enteric viral infections such as rotavirus are characterized by shortening of the villi, loss of 

small intestinal villus cells and concomitant diarrhea, and systemic dsRNA is found in mice and 

humans infected with rotavirus
325,326

. Collectively, peritoneal injection of poly(I:C) comprises a 

good model for studying enteric viral infection. 

 

The enteropathy caused by poly(I:C) has also been used to study other diseases such as celiac 

disease
16,327

. This is because recent studies have suggested that early life infections with reoviruses 

lead to break of oral tolerance by DCs, leading to development of celiac disease
328

. This is thought 

to be dependent on the direct effect of type I IFN on DCs, leading to activation of food protein-

specific Th1 responses by DC production of IL-12 and expression of IRF-1
328,329

. In addition, a 

longitudinal study found a correlation between celiac disease and rotavirus infection, and a recent 

population cohort study suggests an association of rotavirus vaccination with decrease of celiac 

disease prevalence
330,331

. Given that poly(I:C) mimics reoviruses infections and induces a strong 

type I IFN response that affects DCs directly, poly(I:C) injection represents a relevant model to 

study the role of DCs in the development of celiac disease after viral infections.  
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Additionally, rotavirus infection has been associated with type I diabetes incidence, as rotavirus 

displays molecular mimicry with T cell epitopes in pancreatic β-cell autoantigens
332

. Although still 

not clear in the human context, several studies performed with animal models have shown that 

heterologous rotavirus induces pancreas pathology
333

. Of note, a study using weanling mice showed 

that pancreatic apoptosis was TLR3-dependent after rotavirus infection
334

. Moreover, previous 

hypothesis suggesting a role for rotavirus vaccination in decreasing type 1 diabetes incidence have 

been confirmed by two recent studies
335,336

. Although a recent Finnish population-based cohort 

study also showed a negative correlation between rotavirus vaccination and type I diabetes or celiac 

disease incidence, the study was performed in a too small cohort with a too short period of follow-

up in order to draw firm conclusions
331

. 

 

Collectively, these recent findings suggest an important role of dsRNA viruses in the development 

of autoimmune diseases. Accordingly, poly(I:C) injection represents a useful model to better 

understand the mechanism of pathology exert by dsRNA viruses in the intestine.  

6.2 TLR3 sensing of poly(I:C)s with different molecular weight 

Poly(I:C) is a dsRNA-like complex of synthetic polymers, and different formulations vary in the 

distribution of strand lengths, affecting their biological functions
309,310,337

. However, very little is 

known on the receptor requirement for sensing these different poly(I:C)s. Kato et al have shown 

that poly(I:C), generally recognized by MDA5, was converted into a RIG-I ligand after shortening 

of the dsRNA by enzymes
311

. Another study has shown that different dsRNA lengths induce distinct 

immune functions in a cell-dependent manner
309

. For example, short poly(I:C) induced greater 

amounts of TNF-α and IFN-β in myeloid cells, while long poly(I:C) did so in fibroblasts
309

. 

Additionally, only one study has shown how different poly(I:C)s exert distinct maturation profiles 

in DCs and has suggested that these differences might be due to alternative, TLR3-independent 

ways of sensing dsRNA
310

. However, very little is known about the involvement of TLR3 in 

sensing different dsRNA lengths. 

 

Our preliminary studies assessing the effect of different poly(I:C) formulations showed that all three 

poly(I:C)s induced increased DC migration to mLNs. However, unlike the rest, HMW poly(I:C) 

showed a minor dependency on TLR3 as shown in TLR3-deficient mice. Zhou et al showed that 

HMW poly(I:C) exhibited the highest efficiency in activating TLR3 signaling, measured by the 

resulting type I IFN response. Moreover, HMW induced the expression of TLR3, MDA5 and RIG-

I
337

. Accordingly, our results indicate that HMW poly(I:C) might induce intestinal DC migration by 

inducing the expression of RIG-I and MDA5, which could then be responsible for the TLR3-

independent migration observed in response to HMW poly(I:C). Nevertheless, most studies 

performed are based on in vitro experiments, and the definition of short and long dsRNA varies. In 

addition, previous studies suggest that poly(I:C) from the same supplier but different batches 

generated firmly contrasting innate immune responses
309

. In our studies, we observed a great 

variability between experiments, and differences in poly(I:C) batches might have influenced DC 

migration. SA poly(I:C) showed the highest efficiency in inducing maturation of DC in a previous 
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study
310

, and this is the poly(I:C) we have used for all experiments. These observations indicate the 

necessity of understanding the exact mechanisms driving activation of immune responses in 

response to different dsRNA lengths for the design of better, more specific adjuvants.  

6.3 DC migration in response to poly(I:C) 

By using a range of different mouse models, we found that the accumulation of different DC 

subsets in the mLNs was differentially regulated by TNF-α and type I IFNs in response to poly(I:C). 

Similar to the scenario using R848
45

, poly(I:C)-induced migration of both DC subsets depended on 

TNF-α. Interestingly, one study showed that TNF-α is abrogated in TLR3-deficient mice after 

poly(I:C) injection, indicating that TNF-α may be produced by the cell directly sensing poly(I:C) 

through TLR3
338

. This might explain why DC migration is disturbed in TLR3-deficient mice. In 

steady state, migration of intestinal DCs is independent of TNF-α
339

. It seems thus that TNF-α 

might be a common regulator for intestinal DC migration in response to different TLR ligands. 

 

In contrast to TNF-α, systemic type I IFN induction by poly(I:C) is fully dependent on MDA5 and 

is mainly produced by non-hematopoietic cells, although splenic DCs also contribute to type I IFN 

production in a TLR3-dependent manner
340,341

. However, despite normal levels of systemic type I 

IFN in TLR3-deficient mice after poly(I:C) stimulation, both the systemic type I IFN response 

together with a local production by DCs are required for the adjuvant effect of poly(I:C)
340

. 

Collectively, these results suggest that the cellular source of type I IFN and TNF-α might be a cell 

directly sensing poly(I:C) in a TLR3-dependent manner. In addition to cDC1, macrophages could 

be potential candidates as they can express TLR3. Preliminary data from sorted intestinal cells 

indicate that macrophages may indeed be the main type I IFN producers (data not shown). Further 

studies are required to elucidate whether macrophages are also the main TNF-α producers.  

 

Interestingly, while TNF-α was essential for the migration of both cDC1 and cDC2, type I IFN 

signaling was only required for cDC1 to migrate, being dispensable for cDC2. Given that cDC1 

start to migrate earlier (6h) than cDC2 (8h) in response to poly(I:C), direct poly(I:C)-sensing via 

cDC1 could induce a type I IFN response that would act in an autocrine manner, speeding up their 

migration via direct activation. Along these lines, cDC2 migration might be delayed overall due to 

the dependency on secondary signals. 

6.3 pDCs in intestinal DC migration 

pDCs are the main type I IFN producing cells upon viral infection. Yrlid et al showed that pDCs 

produce TNF-α and type I IFNs upon oral R848 administration, which are essential for intestinal 

DC migration and activation, respectively
45

. However, we found that pDCs are dispensable for 

cDC1 and cDC2 migration in response to poly(I:C). pDCs express the endosomal receptors TLR7 

and TLR9, but not TLR3, suggesting a minimal involvement of pDCs in the TLR3-dependent 

poly(I:C)-induced DC migration. 
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Interestingly, poly(I:C) injection ameliorated intestinal inflammation due to IFN-β production by 

pDCs in a DSS-induced colitis model
210

. Moreover, such production by pDCs was TLR3 and TLR7 

dependent. However, DDS-induced colitis is a complex scenario, and disruption of the barrier 

integrity might lead to translocation of viruses present in the healthy intestine that might directly 

activate pDCs. Of note, pDCs express MDA5 and RIG-I, sensors also able to sense poly(I:C)
194

. 

Collectively, while pDCs do not play a role in poly(I:C)-induced DC migration, they might be 

involved in type I IFN responses in more complex scenarios such as during intestinal inflammation 

or enteric viral infections.  

6.4 MyD88 signaling in poly(I:C)-induced DC migration 

Poly(I:C) sensed via TLR3 induces the expression of type I IFN and pro-inflammatory cytokines, 

such as TNF-α, IL-6 and IL-1β
307

. Indeed, IL-1β was increased in the small intestine after 2h of 

poly(I:C) injection. IL-1β signals through IL-1R, which signals via the molecular adaptor MyD88. 

We show however that neither cDC1 nor cDC2 require MyD88 signaling to migrate in steady state 

or in response to poly(I:C). The finding that MyD88 is dispensable for steady state migration of 

intestinal DCs is in contrast with a previously published observation of 50–60% reduction in 

CD103
+
 DC migration in the absence of MyD88

339
. Of note, steady state conditions vary 

extensively between different animal facilities, influenced by microbiota, enteric viruses as well as 

dietary conditions. All these factors might account for the differences we see in steady state DC 

migration in the absence of MyD88. 

 

Pang et al showed that signaling via IL-1R was particularly important for lung cDC1 to migrate to 

mediastinal lymph nodes after Influenza A infection
342

. Moreover, IL1R and MyD88 signaling in 

DCs was sufficient to drive their activation and migration to the lymph node
342

. However, the in 

vivo scenario during infection with a live pathogen varies substantially compared to immunization 

with a TLR ligand. In line with this, while classical immunization by injection of a model Ag 

together with an adjuvant has shown a requirement for direct PAMP recognition by DCs via TLRs; 

live pathogens can evade the direct mechanisms of recognition in DCs, rendering them unable to 

prime T cells
343

. 

The increased expression of IL-1β seen at transcriptional level does not necessarily correlate with 

its activation. TLR ligands have been shown to activate macrophages, leading to a metabolic 

reprogramming characterized by accumulation of succinate
344

. The increased concentration of 

succinate leads to HIF1α activation, which can directly binds to the gene promoter of IL-1β, 

inducing its expression
345

. Accordingly, the slight increase in IL-1β levels might be due to a direct 

activation of macrophages by poly(I:C). 

 

Interestingly, MyD88 re-expression on DCs allowed for even increased DC migration compared to 

WT in response to poly(I:C). This increased cellularity might be a consequence of altered 

homeostasis in the absence of MyD88 signaling in other cells, such as IECs. MyD88 signaling is 

known to induce the expression of AMPs such as REGIIIγ
186

. Consequently, lack of MyD88 

signaling in IECs might lead to reduced AMP production and a subsequent increase of bacterial 
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colonization of the epithelial surface, leading to an increased DC migration and higher adaptive 

immune responses to the microbiota. 

6.5 Type I IFN in the regulation of maturation and migration of cDC1 

As a mimic of viral infection, poly(I:C) is known to induce great amounts of type I IFNs. Effective 

migration of DCs to lymph nodes is a key aspect controlled by type I IFN signaling
260

. Webb et al 

recently demonstrated a role of type I IFN signaling in inducing migration of lung DCs in response 

to a pathogen-associated Ag
346

. However, previous studies have shown a specific role of type I IFN 

in maturation and not migration of DCs in response to TLR ligands and during viral infections
45,347

. 

Of note, type I IFN is involved in many immunological processes besides cell migration, and the 

use of mouse models completely lacking IFNAR does not address which specific DC subset 

requires type I IFN signaling
348

. Here, we used specific deletion of IFNAR in either cDC1 or cDC2 

to study the cell intrinsic requirement of type I IFN, as well as a blocking anti-IFNAR antibody to 

exclude any type I IFN-driven homeostatic effects. We observed a previously unrecognized role for 

type I IFN signaling on cDC1 but not cDC2 migration in response to poly(I:C). Surprisingly, this 

requirement was the same for mice stimulated with R848, in contrast to what has been described 

previously when assessing bulk DCs
45

.  

 

Type I IFN is known to play a key role in DC activation and induction of adaptive immune 

responses in vivo
246,347,349

. In line with these studies, Pantel et al showed that cell-intrinsic type I 

IFN signaling rather than TLR3 signaling was required for splenic DC maturation in response to 

poly(I:C)
203

. However, no distinction of the DC subsets was performed. Here, we found that 

maturation of cDC1, but not cDC2, was significantly affected by the lack of intrinsic type I IFN 

signaling after poly(I:C) stimulation. These data suggest a unique role of intrinsic type I IFN 

signaling to induce both maturation and migration of cDC1 in response to poly(I:C) and R848. 

Further studies with other TLR ligands will help unravel whether this is a common feature for cDC1 

in response to TLR signaling. 

 

TLR ligands have been shown to regulate DC activation by inducing changes in their glycolytic 

metabolism. Accordingly, metabolic conversion to aerobic glycolysis is essential for DC maturation 

and function, as inhibition of glycolysis leads to immature DCs
350,351

. In line with this, Pantel et al 

showed that type I IFN was responsible for upregulation of all pathways associated with DC 

immunogenicity, particularly the metabolic switch from oxidative phosphorylation to glycolysis. 

Additionally, type I IFN signaling upregulated the expression of Hif1α, which might play a role in 

DC survival by suppressing production of ROS species as well as maintaining intracellular ATP 

levels.  

 

DC maturation and migration are very intimately related processes. In contrast to previous 

studies
45,347

, we found that type I IFN is required for both migration and activation of cDC1, 

strongly suggesting a tight correlation between maturation and migration. Interestingly, Guak et al 

showed that an early switch to glycolysis in DCs in response to TLR agonists was responsible for 
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CCR7 oligomerization and thus migration to the lymph nodes
352

. Blocking of glycolysis resulted in 

a defect of DC migration and motility
352

. Accordingly, cDC1 might uniquely depend on type I IFN 

signaling to switch to glycolysis in response to poly(I:C), and the absence of type I IFN signaling 

may lead to a lack of CCR7 oligomerization and thus no migration. If this scenario is true, other 

signals must drive the metabolic change and consequently the CCR7 oligomerization in cDC2 in 

response to poly(I:C). Metabolic analysis of sorted intestinal DC subsets from subset-specific 

IFNAR
KO

 mice after poly(I:C) stimulation will reveal whether other signals than type I IFN 

produced in response to poly(I:C) are able to induce a metabolic switch in cDC2. 

6.6 TLR3 expression across cell types 

TLR3 is broadly expressed not only by hematopoietic immune cells but also by non-hematopoietic 

cells, such as epithelial cells at mucosal surfaces, mast cells in the peritoneal cavity, or lymphatic 

endothelial cells
5,10,353

. Recent studies have shown that ILCs also express TLR3 and may in fact be 

responsible for the small intestinal damage caused by poly(I:C)
16

. Hence, our finding that TLR3-

deficient mice have a defect in DC migration might be due to the overall deletion of TLR3 in a set 

of cells rather than a single cell type. 

 

Indeed, mixed BM chimeras in which cDC1 did not express TLR3 showed that DC migration 

occurred normally in response to poly(I:C) compared to control mice. We speculate that 

macrophages might be potential candidates to directly sense poly(I:C) through TLR3. 

Unfortunately, we have been unable to test this hypothesis due to the lack of a proper mouse model. 

Yet, the intestinal damage caused by poly(I:C) will lead to recruitment of Ly6C
hi

 monocytes in 

large numbers. The CX3CR1
int

 macrophages can produce large amounts of TNF-α and IL-6, among 

other pro-inflammatory cytokines, potentially inducing DC migration. However, our results in 

CCR2-deficient mice show no difference in DC cellularity in response to poly(I:C) compared to 

WT, indicating that newly recruited monocytes are not required for DC migration in the context of 

an otherwise WT background. 

 

In addition, ILCs in the intestinal LP have shown to respond rapidly to poly(I:C) by producing 

TNF-α
16

. Hence, TNF-α produced by ILCs could be responsible for driving migration of DCs in 

response to poly(I:C). Of note, this study did not distinguish between different groups of ILCs
16

. 

Sorting of different groups of ILCs present in the intestine after poly(I:C) injection may help to 

identify whether ILCs are the main producers of TNF-α and identify the specific group responsible. 

 

Of note, several studies have shown that murine mast cells, whether bone marrow-derived or 

isolated in vivo, express TLR3 both at the membrane and intracellularly
353

. However, as mast cells 

were shown to primarily produces chemokines like RANTES, MIP-1α and MIP-1β in response to 

poly(I:C) injection (all involved in T cell recruitment rather than DC migration
353

), they are unlikely 

to drive our observed phenotype. 
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6.7 Cis vs trans-activation of DCs in response to poly(I:C) 

DC activation or maturation is here defined as a phenotypical feature characterized by the increased 

expression of the costimulatory molecule CD86. However, maturation does not equal 

immunogenicity, the latter referring to the capacity of DCs to prime full T cell differentiation, 

requiring proper positioning and suitable cytokine expression profiles in addition to co-stimulation. 

Accordingly, while activation of DCs can be achieved by both direct and indirect signals, in vivo 

immunogenic DCs can be obtained only by direct cell-intrinsic activation of TLR ligands
354

. In our 

research, we have not addressed the question of whether migrating DC subsets activated directly or 

indirectly differ in their functional capacity. Future functional studies addressing the capability of 

cis vs trans-activated DC subsets to induce optimal adaptive immune responses could lead to new 

insights into whether different molecular requirements for different DC subsets translate into 

subset-specific effector immune responses. 
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7. Conclusion 

In this thesis, I have used poly(I:C) as a mimic of viral dsRNA to study the molecular requirements 

for migration and activation of intestinal cDC1 and cDC2 to the mLNs. 

 

Herein, I have shown that poly(I:C) is a potent adjuvant that triggers increased intestinal DC 

migration compared to steady state. Migration in response to poly(I:C) depended entirely on TLR3 

signaling. Surprisingly, cDC1 and cDC2 migrated equally in response to poly(I:C) despite the 

prominent expression of TLR3 only in cDC1. 

 

Poly(I:C) induced the early expression of several cytokines, including TNF-α and type I IFNs. 

Indeed, we saw that migration of both cDC1 and cDC2 was dependent on TNF-α. In addition, we 

have identified a previously unknown role for intrinsic type I IFN signaling in inducing migration 

and activation of cDC1 but not cDC2 in response to poly(I:C). Similar results were obtained when 

using R848, suggesting type I IFN as a specific signal for cDC1 migration and activation in 

response to R848 and poly(I:C). Whether or not specific signals exist that drive cDC2 migration 

remains unknown. 

 

Our experiments show that TLR3 in cDC1 is sufficient to drive DC migration. However, 

preliminary studies suggest that cells other than DCs expressing TLR3 can also drive DC migration 

in a cell-extrinsic manner. In contrast to published data on R848-induced migration, pDCs are not 

required for poly(I:C)-induced DC migration, as depletion of this cell type did not affect normal 

migration and activation of intestinal DCs. Preliminary studies point to macrophages as the 

potential cell source of type I IFN. However, whether they are also the main source of TNF-α is still 

unknown. Unfortunately, the lack of a suitable mouse model to dissect whether macrophages at all 

contribute to DC migration in response to poly(I:C) leaves this question still unanswered.  

 

Finally, we show that cis- and trans-activated DCs seem to migrate with similar efficiency. Previous 

studies have shown that immune responses primed by cis-activated DCs differ from those of trans-

activated DCs. Unfortunately, a very complex experimental set up would be needed to address this: 

a readout for a uniquely cDC2-induced immune reaction in response to poly(I:C). We are not aware 

of a system to model such a scenario. Alternatively, we could set up mixed BM chimeras from 

TLR3OFF and WT donors, sort the in vivo activated DC subsets according to donor origin and test 

their ability to cross-prime in vitro. Future research of this kind will clarify whether our observed 

differences on DC subset migration translate into different immune responses. 
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8. Future perspectives 

Data shown in this thesis elucidate that distinct intestinal DC subsets differ in the specific mediators 

required for migration to the mLNs in response to poly(I:C). While type I IFN was shown to play an 

important, specific role in poly(I:C)-induced cDC1 migration and activation, specific signals for 

cDC2 are still unknown. Although we found that TNF-α was required for both cDC1 and cDC2 

migration, the use of full TNFRI
KO

 mice did not allow for studying the TNF-α requirement for a 

specific subset. ThereTherThe use of mouse models specifically targeting a given DC subset will 

lead to a better understanding of the DC-specific signals required for their migration. Additionally, 

the use of other adjuvants such as flagellin, known to target cDC2 specifically, could be tested using 

such models to dissect the signals required for cDC2 migration and activation. Of note, TLR7 

expression in intestinal cDC2 requires further study, as the situation in lung cDC2 highly 

responding to R848 might not be the same for intestinal cDC2. 

 

An interesting question that remains still unanswered is the cellular source of type I IFN and TNF-

α. Preliminary studies performed on sorted cell populations 3-4h after poly(I:C) injection suggest 

macrophages as main source of type I IFN. Several repeats of such experiments, sorting specific 

cell populations, will give new insights on the cellular source(s) of type I IFN and TNF-α.  

 

DC migration is a key aspect for mounting adaptive immune responses. Despite our observation on 

similar migration capabilities of both cis and trans-activated DCs, previous studies have shown that 

differentially activated DC induce distinct immune responses. In line with this, functional studies 

assessing the immunogenicity of differently activated DCs subsets will lead to a better 

understanding of migration vs immunogenicity. Experiments such as in vitro mixed-leukocyte 

reaction (MLR) with sorted intestinal DC subsets activated in cis and trans, as well as in vivo T cell 

transfers will help answer these questions.  

 

The relevance of DC activation relies on their medical application. Cis-activated DCs are uniquely 

capable of priming optimal immune responses. Particularly, cDC1 can, due to their unique ability to 

cross-present Ag, induce potent cellular immunity towards tumors. Importantly, DC subset specific 

TLR3 expression is conserved across mouse and man
116

. The approach of ex vivo antigen-loaded 

DC-based vaccines has already been shown safely and effectively induce tumor-specific CD4
+
 T 

cells and CTLs. However, such a method is expensive, labor-intensive and operation process-

complex. Accordingly, the next generation of DC-based vaccines will involve direct in vivo 

targeting of DCs to generate effective immunity. Better understanding of the requirements and 

consequences in response to defined vaccines is crucial to faithfully predict immune-regulatory 

versus immunogenic outcomes upon intervention. 
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