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Permanent Magnet Thrust Bearings for
Flywheel Energy Storage Systems –
Analytical, Numerical, and Experimental
Comparisons

Nikolaj A. Dagnaes-Hansen1 and Ilmar F. Santos1

Abstract

A new type of flywheel energy storage system uses a magnetic suspension where the axial load is provided solely

by permanent magnets whereas active magnetic bearings are only used for radial stabilisation. This means that the

permanent magnet bearing must provide all the axial damping. Furthermore, it must have as low a negative radial

stiffness as possible to reduce the workload on the radial active magnetic bearings. Many different mathematical models

for determining force, stiffness, and damping of permanent magnet bearings are available in the literature. This work will

further develop the most applicable analytical and numerical methods in order to make them directly implementable for

designing permanent magnet thrust bearings for flywheel energy storage systems. The outcome is a fast and efficient

method for determining force, stiffness and damping when the bearing setup contains magnetic materials with relative

permeability higher than one as well as when it does not. The developed method is validated against numerical and

experimental results with good agreement.
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Introduction

Permanent magnet bearings (PMBs) provide poor damping
and are unable to grant stable levitation on their own1. For
commercial flywheel energy storage systems (FESS), they
are thus often used in combination with active magnetic
bearings (AMBs). This is the case in systems by e.g. Beacon
Power2 and Calnetix3 or the combined storage and attitude
control systems (IPACS) developed by NASA4 5. Here, the
flywheel is levitated by AMBs in five axes, while the PMBs
are supplementing the AMBs by providing bias flux and
additional lift force thus reducing the power consumption in
the AMBs. However, the complexity and high cost of AMBs
encourage reduction of the number of AMBs in the system
and instead place a bigger role on the PMBs. This has led to
a new type of FESS design where AMBs are only used in a
radial direction whereas the axial lift is provided solely by
PMBs. This simplified suspension is found in e.g. a FESS
prototype at Uppsala University6, another prototype by Toh
and Chen7, the patented design by the company WattsUp
Power8 9, and the patented design by the company Temporal
Power10. This type of design does however pose certain

challenges: First, in the absence of an axial active magnetic
bearing, damping of axial vibrations is less straightforward
because the permanent magnet bearing provides low to no
damping. Second, if the permanent magnet thrust bearing
is to carry the whole weight of the rotor and thus provide a
positive stiffness in the axial direction, it will consequently
provide a negative radial stiffness. This means that the
radial AMBs must compensate the radial destabilising force
coming from the PMB. Thus, it is of interest to reduce the
negative radial stiffness coming from the PMB as much as
possible. In summary, the main challenges of only using
permanent magnets for axial levitation are to 1) ensure
sufficient axial damping and 2) reduce radial negative
stiffness coming from the PMB.
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One of the first to look into the design of modern repulsion
type PMBs is Yonnet11 12. Analytical maximization of
stiffness to volume ratio has been dealt with by Marth
et al.13 14 for designs with negligible curvature – that is,
they approximate circular magnets as long straight magnets
making the problem planar instead of three-dimensional.
A numerical investigation of the maximal radial stiffness,
taking into account the curvature, is carried out by Moser
et al.15 and by Lang and Lembke16 for the axisymmetric
case and Bekinal and Jan17 in a general 3-dimensional case.
An analytical minimization of the volume for a given load is
dealt with by Beneden et al.18 19 for thrust bearings with and
without back-iron; conic permanent magnet bearings have
also been studied20.

In regards to damping, the modelling of electrodynamic
bearings has intensively been studied at the Polytechnical
University in Torino21 22 23. Other important contributions to
the study of eddy-current damping for magnetic bearings
are made by Filatov and Maslen24 where a pure passive
magnetic bearing is used to stabilise a flywheel and the work
by Sandtner and Bleuler25 26 dealing with electrodynamic
thrust bearings.

Experimental investigations of the performance and
damping of PMBs have been carried out by NASA27 28.
They combine radial PMBs with an axial jewel bearing.
An experimental investigation of a hybrid PMB-foil-bearing
spinning up to 40 kRPM is carried out by Bekinal et
al.29. A 500 Wh FESS with radial PMBs and axial AMBs
is experimentally investigated by Fremerey and Kolk30.
A 1-DOF PMB with integrated electrodynamic dampers
is experimentally investigated by Lembke31. The method
developed by Hahn et al.32 provides a fast and efficient
way to evaluate eddy-current damping for vibrating magnets.
Their method is however only valid for cases where self-
inductance can be neglected. They show that their method is
in agreement with experimental results for magnets that can
be approximated as dipoles. While axial damping is needed
for safe operation of the flywheel, it is undesired to have any
damping in the peripheral direction – that is, any drag on the
spinning flywheel from the PMBs. Therefore, eddy-current
losses in the peripheral direction have been investigated by
Hedlund et al.33.

As mentioned above, a PMB with positive axial stiffness
will unavoidably have a negative radial stiffness which will
affect the radial stability. A way to mitigate this, without
using AMBs, is by utilising gyroscopic effects as in the
case of the Levitron34 35. The stability of the Levitron is
explained using a linear rotor-dynamic model by Gasch36

where the PMB axial and radial stiffness are numerically

found. An experimental validation of the mathematical
models describing the Levitron is carried out by Fujii37 and
Simon et al.38.

Original Contribution As seen from the above section,
the literature concerning PMB stiffness and damping is
rich on well-established mathematical models as well as
experimental validation methods. This work applies the
established methods on the problem described above: how
to design a permanent magnet thrust bearing ideal for
FESS application, where it is crucial that axial damping
is high and negative radial stiffness is close to zero. To
ensure applicability of the methods, experimental validations
of both force and damping calculations are carried out.
Furthermore, in order to solve the problem at hand, some
short-comings of the established methods were found.
Therefore, the following are the novel contributions coming
from this work:

• The common way to evaluate the stiffness of PMBs
is to numerically find the change in the magnetic
force for a small perturbation. This is a problematic
approach for PMBs designed for FESS application.
Here, PMB dimensions will typically be much larger
than the perturbation. Therefore, the mesh in a
3-dimensional numerical solution will not be fine
enough for an accurate stiffness estimation. Therefore,
previous authors have sought other approaches,
namely analytical and 2-dimensional solutions. In the
numerical analysis carried out by Lang and Lembke16

they present a clever, computationally less resourceful
method to evaluate both axial force and stiffness as
well as radial stiffness by solving a 2-dimensional
axisymmetric problem. However, they confine their
investigation to cases where all materials in the system
have relative permeability close to one. This is not
likely the case in a real application where materials
such as magnetic steel are present. Therefore, this
work will investigate – analytically, numerically, as
well as experimentally – the applicability of the
method in cases where magnetic steel is present in the
bearing configurations.

• The concept of stiffness can only be used if the forces
are close to linear within the space that the flywheel
rotor can move around in. Again, it is difficult to
assess the linearity of the force using a 3-dimensional
numerical method due to resolution problems in
the mesh. Therefore, to accurately determine the
radial forces even though the radial displacements
are small compared to the bearing dimensions, an
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analytical method for obtaining the magnetic field will
be presented. From this model, the bearing forces
and stiffness are found. The results can be used to
determine if the force is approximately linear and thus
if it is actually a valid approximation to use the concept
of stiffnesses. Furthermore, the analytical method will
be experimentally validated.
• In regards to eddy-current, the method by Hahn et

al.32 will be compared with experimental results for
cases where the magnets cannot be approximated with
dipoles. This has, to the best knowledge of the authors,
not been done before. Furthermore, as mentioned
before, the method is only valid if self-inductance is
neglected. This work shows how to numerically assess
if this assumption is valid in the current case.

Approach An analytical method for obtaining the
magnetic field from which the bearing forces and stiffness
are found is presented in Sec. . The analytical results are
compared with experimental and numerical results. In Sec. ,
the overall axial dynamics are assessed with the purpose of
damping axial vibrations as much as possible. It is found that
eddy-current damping is the most effective way to reduce
vibrations. Therefore, a method to determine the eddy-
current forces is presented in Sec. . Results obtained using
the method are compared to experimental and numerical
results.

Magnetic Fields and Forces

Theoretical Magnetic Field

The magnets will be modelled by approximating the
permanent magnets with thin sheets of current flowing on
the surfaces of the magnets. For example, two solid cylinder
magnets with magnetizations M pointing upwards will be
modelled as seen in Fig. 1a. More complex configurations
of circular magnets, such as the one in Fig. 1b, will consist
of multiple cylindrical and annular surface currents. The
magnetic field coming from the configuration will then
be found by superpositioning the contribution from each
current sheet. Analytical expressions for the magnetic field
of current sheets have been available at least since the
time of Maxwell39. For cylindrical and annular current
sheets, solutions are derived by e.g. Snow40. For cylindrical
current sheets, expressions are also made available by
Kolbenheyer41 and further developed to the case of multiple
sheets by Varga and Beyer42. For the general case of a conic
cylinder, expressions are derived by L. K. Urankar43. His
expressions simplify nicely in the special cases of a cylinder

r

z

rs rr

zsu

zso

zru

zro
Mr

Ms

Rotor magnet

Stator magnet

φ

(a)

rs3
rs2

r
Ms1

Ms2

φ

rs1

Ms1
Ms1

Ms2

(b)

Figure 1. (a): Two disk-magnets modelled as thin cylinder
sheets with magnetization Ms = (0, 0,Ms)

T and
Mr = (0, 0,Mr)

T . (b): Stator consisting of two ring magnets
with magnetizations Ms1 = (0, 0,Ms1)

T and
Ms2 = (−Ms2, 0, 0)

T . Moment vectors are given in Cartesian
coordinates and all moments result in currents Mr, Ms flowing
in a circumferential direction

and an annulus and will be used here. The magnetic potential
Aφ and field density B = (Br, 0, Bz) for a cylindrical sheet
of radius r′ and height z′1 − z′0 are given by:
Cylinder:

Aφ = 2Ms

(
γ1
2r

[
γ21 + 2r′2 + 2r2

a1
K(k21)− a1E(k21)

− (r′ − r)2
a1

Π(n23, k
2
1)

]
− γ0

2r

[
γ20 + 2r′2 + 2r2

a0
K(k20)

−a0E(k20)− (r′ − r)2
a0

Π(n23, k
2
0)

])
× 10−7

(1)

Br(r, z) = 2Ms

(a1
2r

[
(1 + k′21 )K(k21)− 2E(k21)

]
−a0

2r

[
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])
× 10−7 (2)

Bz(r, z) = 2Ms

(
γ1
a1

[
K(k21) +

r′ − r
r′ + r

Π(n23, k
2
1)

]
−γ0
a0

[
K(k20) +

r′ − r
r′ + r

Π(n23, k
2
0)

])
× 10−7, (3)
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whereE,K, and Π are the complete elliptic integrals of first,
second, and third kind defined by eqs. (8) - (10), while:

γ = z′ − z a2 = γ2 + (r′ + r)2 k2 = 4rr′/a

k′2 = 1− k2 n23 = 4rr′/(r′ + r)2. (4)

For an annular sheet with inner and outer radius r′0 and r′1
located at height z′, we have:
Annulus:

Br(r, z) = 2× 10−7Ms

×
(

γ

a1r

[
2r′1K(k21)−

2∑
p=1

(−1)pc1
r′1 ± c1
r ∓ c1

Π(n2p,1, k
2
1)

]

− γ

a0r

[
2r′0K(k20)−

2∑
p=1

(−1)pc0
r′0 ± c0
r ∓ c0

Π(n2p,0, k
2
0)

])
,

(5)

Bz(r, z) = 2× 10−7Ms

([
2g1 − 2

r′1
a1
K(k21)

]
−
[
2g0 − 2

r′0
a0
K(k20)

])
, (6)

where the upper sign corresponds to p = 1 and the lower to
p = 2 and

c2 = γ2 + r2 n2p =
2r

r ∓ c

g =

∫ π
2

0

sinh−1
( −|γ|√

r′2 + r2 − 2rr′ cosα

)
dα, (7)

where the integral g is numerically solved. The elliptic
integrals are defined as

K(k2) =

∫ 1

0

[(1− t2)(1− k2t2)]−
1
2 dt (8)

E(k2) =

∫ 1

0

(1− t2)−
1
2 (1−m2t2)

1
2 dt (9)

Π(n2, k2) =

∫ π
2

0

dθ

(1− n2 sin2 θ)
√

1− k2 sin2 θ
(10)

In fig. 2, the eqs. (2), (3), (5), and (6) are used to calculate
the field of some basic configurations. Fig. 2a shows the
magnetic field density of a cylinder sheet. Fig. 2b shows
the magnetic field density of an annular sheet. In Fig. 2c,
multiple annular and cylinder sheets are combined to form
a Halbach array. Here it is seen how the magnetic field
is augmented above the magnet and cancelled below as
expected.

Theoretical Magnetic Force

Having found the magnetic field from the stator part of the
PMB, the forces on the rotor F = (Fx, Fy, Fz) can now be
obtained for a rotor placed in any position. This is done using
the Lorentz Force Law which is integrated numerically over
the rotor sheet area As:

F =

∫
M×BdAs. (11)

When the stator and rotor are coaxially aligned, the rotor is at
equilibrium and some elegant analytical solutions are made
available by Lang44 for a cylindrical sheet:

Fz = 2πrrMr [Aφ(rr, zro)−Aφ(rr, zru)] , (12)

kz = 2πrrMr [Br(rr, zro)−Br(rr, zru)] , (13)

kr = −1

2
kz (14)

where kz is the axial stiffness and kr = kx = ky is the
radial stiffness and Mr is current per surface area in a
circumferential direction. Eq. (14) is not only valid for
cylindrical sheets but for all magnets placed in a static
field where no free currents are present. In the literature,
it is commonly stated that Earnshaw’s theorem leads to
kr ≤ − 1

2kz . To avoid discussion, a derivation of the more
specific kr = − 1

2kz is given in the appendix. The relation
is important because it shows that we cannot increase kz
without also increasing −kr. Also, it means that we can find
both kz and kr by solving an axisymmetric problem which is
significantly less demanding than the straight-forward way
of determining kr: by looking at the radial force for a 3-
dimensional problem with a radially displaced rotor.

Experimental Magnetic Force

One of the assumptions of the above expressions is that
all materials have a relative permeability of 1. This can be
difficult to obey in practice, and therefore it is of interest to
assess the size of the error between theory and practice in
the presence of materials with high permeability. The test
setup in Fig. 3 is used to obtain experimental results for
comparison with the theoretical axial and radial magnetic
forces. Three different bearing configurations, all including
steel with high permeability, have been tested. Each of their
respective cross sections can be seen in Fig. 4. Bearing
configuration type 1 consist of arrays of 3 mm cube magnets
whereas bearing type 2 and type 3 both consist of ring
magnets. The rotor is rotating with 95 RPM and the force is
obtained as a mean of measurements for one whole rotation.
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Figure 2. Magnetic field density B from: (a) cylindrical sheet, (b) annular sheet, and (c) a Halbach array composed of sheets. All
currents have magnitude Ms = 955 kA/m.

The measurements have been carried out at different z and
y-positions of the rotor.

The results for the three different configurations can be
seen in Fig. 5, 6, and 7. For the theoretical results, the axial
force Fz has been found analytically using Eq. 12 whereas
the radial force Fr has been found numerically using Eq. 11
based on an analytically obtained B from eq. (2) and (3).
Thus the method for finding the radial force will be referred
to as semi-analytical. Numerical values for all parameters
can be found in the appendix. For Fz , the results obtained
using the program FEMM45 are included. It can be seen
that the analytical results and the FEMM results are identical
when the steel is not included in the FEMM calculations.
It can also be seen that there is a significant difference in Fz
when the steel is accounted for. The bearings are designed for
a load between 20 and 40 N. In this interval, the maximum
relative error e =

Fz,FEMM−Fz,Exp
Fz,Exp

between theoretical and
experimental results, when the steel is not accounted for,
is 22 %, 28 %, and 22 % for bearing type 1, 2, and 3

respectively. When the steel is accounted for, the error is
reduced to 6 %, 7 %, and 8 % respectively.

A rough comparison of the computation times for
evaluating Fz is shown in Tab. 1. The computations are
carried out in MatLab interfacing with FEMM using
OctaveFEMM45. The calculations are carried out on a
standard laptop with an i7 2.60 GHz processor. The table
shows that the analytical method is almost ten times faster
than FEMM when no steel is accounted for. For bearing type
1 however, the computation time is only around three times
faster. This configuration consists of more current sheets and
thus a higher workload for the analytical method. Hence,
as the configuration becomes more complex, the difference
in computation times is decreasing. If steel is accounted
for in FEMM, the computation times are approximately
doubled. However for all cases, the computation times are
low which proves the applicability of both methods. If one
is to carry out many computations, for example in the case
of an optimization procedure, the lower computation time of
the analytical method may be of significant advantage.



6
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1
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5

Figure 3. (a): Measurement of PMB forces. 1 : Rotor Part of PMB. 2 : Stator Part of PMB 3 : Force transducer, HBM S2M. 4 : Data
acquisition, NI 9215. 5 : Amplifier, HBM AE301. (b): Stator part of bearing type 1. (c): Stator part of bearing type 2.

Without steel With steel Without steel With steel Without steel With steel

(a) Type 1 (b) Type 2 (c) Type 3

Figure 4. Cross-section of PMB in experimental set-up. The direction of the magnetization is shown as arrows. The contours show
the magnetic field. The steel part of the stator is filled with color. It has relative permeability µr = 410. It is seen how the steel is
concentrating the flux around the magnets while the flux is more spread out when no steel is present.

Mean St.dev. Max. rel. error
Type 1, analytical calc. 0.17 s 0.02 s 22 %
Type 2, analytical calc. 0.07 s 0.01 s 28 %
Type 3, analytical calc. 0.06 s 0.008 s 22 %
Type 1, FEMM no steel 0.58 s 0.02 s 22 %
Type 2, FEMM no steel 0.66 s 0.04 s 28 %
Type 3, FEMM no steel 0.55 s 0.03 s 22 %
Type 1, FEMM w/ steel 1.34 s 0.05 s 6 %
Type 1, FEMM w/ steel 1.47 s 0.08 s 7 %
Type 1, FEMM w/ steel 1.19 s 0.04 s 8 %

Table 1. Comparison of the time it takes to evaluate Fz in one
point. The results show the mean and standard deviation for the
computation times for the results plotted in Fig. 5a, 6a, and 7a
respectively. The maximum relative error wrt. experimental
results is given in the table as well.

It is important to note that the presence of steel only
results in a bearing with a larger load capacity. This means
that one should not fear over-estimating the load carrying
capacity of the bearing by not accounting for the steel.
One way to compensate for the under-estimation made by
the analytical expressions, is to make the magnetization
slightly larger than in reality. According to the data sheet
of the magnets used for the experiments, the magnetization
can vary between 860-955 kA/m. It was found that if the
magnetization was increased to 955 kA/m, which is the upper

limit of the actual magnetization, the analytical equations
are in good agreement with the experimental results. This
can be seen for the radial force in Fig. 5b, 6b, and 7b.
Here it is demonstrated how the semi-analytical method
is useful for determining radial forces. This shows how
the radial magnetic force in a 3-dimensional case can be
calculated in a fast and efficient way – especially if no
steel is present because the method can be applied without
any adjustment. Even when steel is present and one needs
to artificially adjust the magnetization from 883.31 kA/m
to 955 kA/m, the semi-analytical method is still a useful
tool because it has a low computational time and can yield
accurate results even for small relative displacements. This
is more cumbersome to achieve with a numerical solver
in a 3-dimensional case because of the large dimensions
of the bearing compared to the smaller dimensions of the
rotor displacements which demands agreater effort in proper
meshing. This is demonstrated using a tutorial example from
the commercial software COMSOL46. The example is made
by COMSOL specifically for demonstrating how to calculate
radial stiffness and force for a radial PMB, thus it is assumed
that the example is set up optimally for performing this
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Figure 5. Comparison of experimentally and numerically
obtained forces in bearing type 1. (a): Axial force.
magnetization for analytical calculations is 883.31 kA/m. (b):
Radial force. magnetization for semi-analytical calculations is
adjusted to 955 kA/m.

task. A cross-section of the bearing used in the example
can be seen in Fig. 8 along with the simulated magnetic
flux density. The radial force is calculated in COMSOL and
compared with the radial force calculated using the semi-
analytical method in Fig. 9. For large rotor displacements,
Fig. 9a, the COMSOL results are seen to have approximately
converged when using the normal mesh. The converged
results are in agreement with the semi-analytical results. The
computation time for the force evaluation in a single point
is on average 7 s for the semi-analytical method and 48
s when using COMSOL and the normal sized mesh. For
small rotor displacements, Fig. 9b, the COMSOL results
are seen to have difficulties converging unless an extra fine
volumetric and surface mesh is used. Only for the extra fine
mesh are the results in agreement with the semi-analytical
results. The example serves to indicate two benefits from the
semi-analytical method: 1) it is straight-forward to obtain
accurate results for small radial displacements, and 2) the
computation time is low.
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Figure 6. Comparison of experimentally and numerically
obtained forces in bearing type 2. (a): Axial force.
magnetization for analytical calculations is 883.31 kA/m. (b):
Radial force. magnetization for semi-analytical calculations is
adjusted to 955 kA/m.

The results from Fig. 5, 6, and 7 also provide insight into
the linearity of the forces. If the forces are non-linear even
for small displacements, the stiffness coefficients become
inaccurate. In the radial direction, the free movement of
the flywheel is limited by backup-bearings with a clearance
typically around 100 - 300 µm. From the figures, it is seen
that the radial force is approximately linear at least up to 0.5
mm. Therefore, it can be concluded that the radial stiffness
coefficient is applicable.

Axial rotor vibrations

To damp axial vibrations, two possible dampers are
suggested as seen in Fig. 10: a visco-elastic damper 12 and an
eddy-current damper (ECD) 9 10 . The visco-elastic damper
cannot work directly between rotor and stator and is thus
placed between stator and housing. A mechanical model of
the axial dynamics can be seen in Fig. 10b. The objective
of the axial suspension is to make sure that the rotor and
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Figure 7. Comparison of experimentally and numerically
obtained forces in bearing type 3. (a): Axial force.
magnetization for analytical calculations is 883.31 kA/m. (b):
Radial force. magnetization for semi-analytical calculations is
adjusted to 955 kA/m.

Figure 8. A slightly modified COMSOL example of a radial
PMB downloaded from the internet 46. The modifications consist
of removing the rotor middle magnet which had a magnetization
pointing radially outwards and the stator middle magnet which
had a magnetization pointing radially inwards. This has been
done to better obtain numerical convergence. Furthermore, all
fillets applied on the magnet edges have been removed for
easier comparison with the analytical method. Finally, the
magnetization of the magnets has been modified to consist of a
magnetization of 955 kA/m.
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Figure 9. Radial force of the example shown in Fig. 8. Other
than the modifications described in Fig. 8, the general
tetrahedral mesh size has been changed according to the figure
legend. For the semi-analytical method, the Lorentz force law
has been evaluated numerically using nz = 8 points axially for
each current sheet and nφ = 10 points circumferentially. (a):
Large radial displacement. (b): Small radial displacement. The
graph called ’Comsol extra fine mesh 2’ has, in addition to the
extra fine mesh, a triangular mesh on the rotor surface which is
refined from a maximum size of 1.5 mm to a maximum size of
0.5 mm.

stator do not touch when subject to outer perturbations. We
assume that the outer perturbations consist of the housing
vibrating sinusoidally with amplitude zh and frequency Ωh.
If we first fix the stator to the housing such that only the rotor
is moving, we obtain, using Newton’s equation, the following
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Figure 10. (a): Cross-section of PMB in experimental set-up.
8 : Rotor. 9 : Tube with high electrical conductivity. 10 : Rotor

magnet for combined PMB and ECD. 11 : Stator part of PMB.
12 : Visco-elastic damper. 13 : Housing. (b): Mechanical
2-degrees-of-freedom model for axial vibrations. The stator part
of the PMB is modelled as a particle with mass ms and the rotor
has mass mr.

relation

z

zh
=

√
1 + (2ζr)2

(1− r2)2 + (2ζr)2

(no movement of stator: 1-DOF system), (15)

where r = Ωh/
√
kz/mr, ζ = cz/(2mrωn), and ωn =√

kz/mr.

The maximum value of Eq. (15) for Ωh varied around the
resonance frequency is plotted as a function of kz and cz in
Fig. 11a. It can be seen that an increase in PMB stiffness
kz increases the vibration amplitude. This is interesting in
view of the relation between axial and radial PMB stiffness,
kr = − 1

2kz . It shows that if kz is low, we obtain both a
kr closer to zero and small vibrations of z which are both
desirable features. The stiffness does however not influence
the amplitude much compared to the eddy-current damping
cz which can be seen to most effectively decrease the
vibration amplitude. Thus, we need as high an eddy-current
damping cz as possible to reduce the vibrations of z.

If we include the movements of the stator, we get:

z

zh
=

∣∣∣∣ (kz,s + iΩhcz,s)mrΩ
2
h

P4Ω4
h + P3iΩ3

h + P2Ω2
h + P1iΩh + krks

∣∣∣∣
(incl. movement of stator: 2-DOF system), (16)

where P4 = mrms, P3 = −((cz + cz,s)mr + czms), P2 =

−((kr + ks)mr + crcs + krms), and P1 = (crks + cskr).
The maximum value of Eq. (16) for Ωh varied around the
two resonance frequencies is plotted as a function of kz,s
and cz,s in Fig. 11b. It can be seen clearly that increased
visco-elastic damping cz,s and stiffness kz,s will result in an
increased vibration. Thus, the suspension between stator and
housing should be designed with a low stiffness kz,s and as
little damping cz,s as possible.

In summary, the most effective way to isolate the
vibrations of z is by making a suspension with low kz,s cz,s,
and the only way to dampen the vibrations is by increasing
cz . This raises the question of how large the eddy-current
damping is actually able to get without making the damper
too large for practical application. This question will be
assessed in the following section.

Eddy-current Damping

In Fig. 10a, the stator tube surrounding the rotor
magnet functions to dissipate energy as eddy-currents. The
magnitude of the damping force FECD can be expressed as
a function of the field density found in Sec. . It is assumed
that all materials in the system have relative permeability
of 1, that the eddy-currents are only occurring in the stator
tube 9 , and that self-inductance caused by the induced eddy-
currents can be neglected. The current density is defined as
J, conductivity as σ, the electric field as E, and the volume
of the stator tube as V . Combining Ohm’s law

J = σE, (17)

Faraday’s law
E = ż ×B, (18)

and the Lorentz force law

FECD =

∫
J×BdV, (19)

the following expression for the z-component of the damping
force is obtained32:

FECD =

∫ r1

r0

∫ zu

zl

2πrσżB2
r (r, z)dzdr. (20)
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Figure 11. (a): Maximum value of z/zh for the 1-DOF system
in Eq. (15). (b): Maximum value of z/zh for the 2-DOF system in
Eq. (16). kz = 5 kN/m, cz = 50 N/(m/s).

Where r0 and r1 are the inner and outer diameter of the
tube, and zl and zu are the coordinates of the tube ends. The
damping coefficient is then readily found for small vibrations
as

cz =
FECD
ż

=

∫ r1

r0

∫ zu

zl

2πrσB2
r (r, z)dzdr. (21)

This expression can be used for most realistic axial damper
configurations for flywheels – also if the magnets are
placed as rings on the outside of the tube which would
be the obvious choice for most flywheel batteries which
commonly consist of hollow flywheel hubs. The double
integration is done numerically. For the results presented
in Fig. 14, the authors experienced a converged solution
when using 30-60 integration points in the z-direction and
2-5 integration points in the r-direction corresponding to
a calculation time of around 1 s. If the thickness of the
tube is small, the expression can be simplified further to
only involve integration in the z-direction. This has been
done by Hahn et al.32 with great success. They compare

their theoretical expression with experimental results with
good agreement. Their agreement between experiments and
theory show the usefulness of eq. (21). However, they only
look at disk magnets that can be approximated with dipoles.
Also, as described by Detoni et al.47, the self-inductance can
dramatically decrease the effect of the induced eddy-currents
– from enacting viscous damping at lower frequencies to
losing the damping effect at high frequencies and instead
work as a mechanical spring and thus contribute to the
axial stiffness. To ensure that the self-inductance is in
fact negligible, one can numerically solve the Maxwell’s
Equations. To ensure the validity of eq. (21) for other
cases than dipoles and to ensure that self-inductance is
negligible, an experimental investigation and a numerical
finite element (FE) analysis have been carried out. The test
setup is sketched in Fig. 12. A rotor is levitated between
two active magnetic bearings (AMBs) which are holding the
rotor in place radially whereas a permanent magnet bearing is
placed in the bottom to carry the axial load. An eddy-current
damper (ECD) consisting of a magnet on the rotor and a
tube on the stator/housing is present in the top. The magnet
used for eddy-current damping has radius re and height he.
The tube has inner radius r0 and outer radius r1. The tube
is not covering the magnet completely as seen in Fig. 12c.
The uncovered part of the magnet is denoted with length
zcover as seen in Fig. 12a. First, it is investigated how the
tube self-inductance is affecting the damping. This is done
using the results from an FE analysis conducted in COMSOL
seen in Fig. 13. The damping ratio ζ is plotted for varying
ż. As seen, the damping ratio decreases for high speeds as
expected. The damping ratio is decreased by 3 % at 5.5 m/s
for the long magnet and 7.8 m/s for the short one. For the
test setup, the natural frequency in the axial direction is 15.5
Hz and the maximum vibration is 1 mm which corresponds
to a maximum velocity of 0.017 m/s, much lower than
the speeds where the 3 % reduction occurs. It can thus be
concluded that the self-inductance is negligible. Therefore,
we will proceed to compare the damping ratio obtained from
eq. (21) with the damping ratio obtained using COMSOL (at
low speeds) and using experiments. This is done in Fig. 14.
As seen, the COMSOL results are in good agreement with
eq. (21). Also, the theoretical results are within the 95 %
confidence interval of the experimental results for all but
one point. There is a clear general trend of the theoretical
results yielding a higher damping ratio than the experimental
results. The maximum relative error between theoretical and
experimental results, e =

|ζtheo−mean(ζexp)|
mean(ζexp)

is on average 9
% with a maximum of 15 % for the case he = 2 cm and
zcover = 10 mm. The deviation is due to the magnetization
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Figure 12. 8 : Rotor. 9 : Copper tube. 10 : Rotor magnets for

ECD. 13 : Housing. 14 : Accelerometer, Brüel & Kjær 1366. (a):
Sketch. (b): Setup without tube. (c): Setup with tube.

Ms and the electric conductivity, σ which are subject to
uncertainties. The deviation is however acceptable and it can
be concluded that the method is useful for determining the
damping ratio in our case.

Conclusion

This article provides a practical method for designing
permanent magnet thrust bearings for flywheel energy
storage systems.

It was demonstrated how the load carrying capacity as
well as radial and axial stiffness can be found in a fast
and efficient way using analytical expressions. If the bearing
configuration includes materials with high permeability, then
the analytical method is underestimating the load carrying
capacity by 22 % – 28 % from conducted experiments. In
order to reduce the error, two approaches are presented. One
can either choose to include the magnetic materials in a
numerical solver such as FEMM which also provides a fast
and efficient way to find the force in the axisymmetric case.
This reduced the error to 6 % – 8 %. Another option is to
increase the magnetization from 883.31 kA/m to 955 kA/m
which is still within the tolerance of the magnetization given
by the supplier.

From the validated mathematical expressions, the radial
force is approximately linear and thus the concept of radial
stiffness can be used.

It has been shown that the axial vibrations are best
reduced by having a high eddy-current damping directly
between rotor and stator. A simple expression by Hahn et
al.32 for determining the eddy-current damping ratio has
been presented and validated for the current application.
The expression was found to be in good agreement with
experimental results with an average deviation of 9 %.

The method is thus useful for determining forces,
stiffnesses and axial damping ratio in a fast and efficient way
for most relevant configurations of permanent magnet thrust
bearings designed for FESS application.

Appendix

Earnshaw’s Theorem and Radial-to-axial
Stiffness Ratio

We consider the potential energy U of a constant magnetic
dipole moment µ = (Mx,My,Mz) in free space, only
affected by an external static magnetic field B,

U = −µ ·B = −MxBx −MyBy −MzBz (22)

with Laplacian

∇2U = −Mx
∂2Bx
∂x2

−My
∂2By
∂x2

−Mz
∂2Bz
∂x2

−Mx
∂2Bx
∂y2

−My
∂2By
∂y2

−Mz
∂2Bz
∂y2

−Mx
∂2Bx
∂z2

−My
∂2By
∂z2

−Mz
∂2Bz
∂z2

= −Mx∇2Bx −My∇2By −Mz∇2Bz. (23)
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Utilising the identity
∇2Bx

∇2By

∇2Bz

 = ∇2B = ∇(∇ ·B)−∇× (∇×B) (24)

and the fact that Gauss’s and Ampère’s law in the absence of
any free currents reduces to

∇ ·B = 0 ∇×B = 0, (25)

we conclude that
∇2U = 0 (26)

anywhere in free space – also at equilibrium – in accordance
with Earnshaw’s theorem1 (for an equilibrium to be stable,
the second derivative of the potential energy must be greater
than zero). The conclusion is readily extended to the general
case of a collection of dipole moments, as the potential
energy from each dipole is additive as long as it is assumed

that the magnetic dipole moments are not affecting each
other’s strength and direction.

Now looking at the dipole fully suspended, in equilibrium,
and considering the potential energy of the magnetic
spring forces which provide the suspension by means of
translational stiffnesses kx, ky , kz

U =
1

2
kxx

2 +
1

2
kyy

2 +
1

2
kzz

2, (27)

we obtain
∇2U = kx + ky + kz = 0, (28)

which for the axisymmetric case kx = ky = kr, becomes

kr = −1

2
kz (29)

Model Parameters

The model parameters used throughout the article can be
seen in Tab. 2– 3.
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Unit Type 1 Type 2 Type 3
z′1 − z′0 [mm] 3 6 5
r′ [mm] [20 23 26] [11.5 20] [8 13.4]
Ms [kA/m] 883− 955 883− 955 883− 955
µr steel - 410 410 410
nz 4 4 4
nφ 10 10 10

Table 2. Parameters used in Sec. . nz and nφ are the number
of discretization points used for the numerical integration of
Eq. 11.

Unit
mr [kg] 3
ms [kg] 0.1
Ωh [Hz] 0.01-1000
r0 [mm] 12.6
r1 [mm] 14
µ0 [H/m] 4π × 10−7

nz 100
nr 5
ωn [Hz] 15.5
σ [S/m] 5.88 ×107

re [mm] 9.5
he [mm] 10− 40
zcover [mm] 2 and 10
Ms [kA/m] 883.31

Table 3. Parameters used in Sec. and . nz and nr are the
number of discretization points used for the numerical
integration of Eq. 21. The value Ms = 883.31 kA/m is used
because it is one of the default magnetizations in FEMM and
also within the tolerance of the magnets used for the
experiments.
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