Differences in frontal network anatomy across primate species

Barrett, Rachel L.C.; Dawson, Matthew; Dyrby, Tim B.; Krug, Kristine; Ptito, Maurice; D’Arceuil, Helen; Croxson, Paula L.; Johnson, Philippa J.; Howells, Henrietta; Forkel, Stephanie J.

Published in:
Journal of neuroscience

Link to article, DOI:
10.1523/JNEUROSCI.1650-18.2019

Publication date:
2020

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Research Articles: Systems/Circuits

Differences in frontal network anatomy across primate species

https://doi.org/10.1523/JNEUROSCI.1650-18.2019

Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.1650-18.2019
Received: 27 June 2018
Revised: 14 November 2019
Accepted: 15 November 2019

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.
Differences in frontal network anatomy across primate species

Rachel L. C. Barretta,b, Matthew Dawsonb, Tim B. Dyrbyc,d, Kristine Kruge,f,g, Maurice Ptitoh,i, Helen D'Arceuilj, Paula L. Croxsonk, Philippa Johnsona,l, Henrietta Howellsb,m, Stephanie J. Forkela,b, Flavio Dell'Acquaa,b,1, and Marco Catania,b,1

aNatBrainLab, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK; bNatBrainLab, Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK; cDanish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, DK-2650, Denmark; dDepartment of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark; eDepartment of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK; fInstitute of Biology, Otto-von-Guericke-Universität Magdeburg, 39120, Germany; gLeibniz-Institute for Neurobiology, Magdeburg, 39118, Germany; hLaboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Copenhagen, DK-2200, Denmark; iÉcole d’Optométrie, Université de Montréal, Montréal, Québec, H3T 1P1, Canada; jAthinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, 02129, USA; kDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA; lCollege of Veterinary Medicine, Cornell University, Ithaca, New York, 14853, USA; mLaboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Research Hospital, IRCCS, Milan, 20129, Italy.

1 F.D'A. (Flavio Dell'Acqua) and M.C. (Marco Catani) contributed equally to this work.

Correspondence should be addressed to:
Marco Catani
Institute of Psychiatry, Psychology and Neuroscience
King's College London
16 De Crespigny Park
London, SE5 8AF, UK
Email: m.catani@iop.kcl.ac.uk

Number of pages 25
Number of figures: 7 figures, 6 tables
Number of words: Abstract 227 Significance Statement 115, Introduction 612, and Discussion 1500

Author contributions: M.C. and R.B. designed the experiment. T.D. and H.D'A. developed the \textit{ex vivo} imaging protocols. M.P. and T.D. supplied the \textit{ex vivo} datasets, K.K. and T.D. supplied the \textit{ex vivo} rhesus macaque datasets, and H. D'A. supplied the \textit{ex vivo} cynomolgus macaque datasets. P.C. supplied the \textit{in vivo} rhesus macaque datasets. F.D'A. developed acquisition protocols for the human datasets and developed the tractography-processing pipeline. H.H. and F.D'A collected the \textit{in vivo} human data. R.B. and F.D'A. processed the tractography data. R.B. and P.J. dissected the tractography data under M.C.'s guidance. R.B performed the voxel-based and tractography volume analyses and statistical analysis. M.C. and R.B. prepared the figures. M.C., R.B., M.D., H.H. and S.F. contributed to writing the manuscript, which was edited by all authors.

Conflict of Interest: The authors declare no competing financial interests.
Acknowledgements: We thank Lazar Fleysher, Rafael O'Halloran, Hauke Kolster, Christienne Damatac, Jamie Nagy, Ronald Primm, Pedro Hernandez and Ignacio Medel for help in acquiring the in vivo macaque datasets, and Leonardo Cerliani for assistance with cynomolgus macaque datasets. We are grateful to members of the NatBrainLab and Department of Forensics and Neurodevelopmental Sciences, King’s College London, for feedback and suggestions. This research was supported by the Wellcome Trust Investigator Award 103759/Z/14/Z to M.C. This paper represents independent research partly funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. The views expressed are those of the author and not necessarily those of the NHS, the NIHR or the Department of Health.
Abstract

The frontal lobe is central to distinctive aspects of human cognition and behavior. Some comparative studies link this to a larger frontal cortex and even larger frontal white matter in humans compared with other primates, yet others dispute these findings. The discrepancies between studies could be explained by limitations of the methods used to quantify volume differences across species, especially when applied to white matter connections. In this study, we used a novel tractography approach to demonstrate that frontal lobe networks, extending within and beyond the frontal lobes, occupy 66% of total brain white matter in humans and 48% in three monkey species, Chlorocebus aethiops, Macaca mulatta and Macaca fascicularis, all male. The simian-human differences in proportional frontal tract volume were significant for projection, commissural and both intra- and interlobar association tracts. Among the long association tracts the greatest difference was found for tracts involved in motor planning, auditory memory, top-down control of sensory information, and visuospatial attention, with no significant differences in frontal limbic tracts important for emotional processing. In addition we found that a non-frontal tract, the anterior commissure, had a smaller volume fraction in humans, suggesting that the disproportionally large volume of human frontal lobe connections is accompanied by a reduction in the proportion of some non-frontal connections. These findings support a hypothesis of an overall rearrangement of brain connections during human evolution.

Significance Statement

Tractography is a unique tool to map white matter connections in the brains of different species including humans. This study shows that humans have a greater proportion of frontal lobe connections compared with monkeys, when normalized by total brain white matter volume. In particular, tracts associated with language and higher cognitive functions are disproportionally larger in humans compared with monkeys, whereas other tracts associated with emotional processing were either the same or disproportionally smaller. This supports the hypothesis that the emergence of higher cognitive functions in humans is associated with increased extended frontal connectivity, allowing human brains more efficient cross-talk between frontal and other high order associative areas of the temporal, parietal and occipital lobe.
The frontal lobe is considered to play an important role in high level cognitive functions with differences across species (Passingham and Wise, 2012), and is relatively large in humans compared with other vertebrates (Fuster, 1988). When humans are compared with higher primates, however, the results are mixed, with some reporting no difference in the proportion of frontal (Semendeferi et al., 2002) or prefrontal (Schoenemann et al., 2005) cortical volume. This turned more attention to white matter in line with Zhang and Sejnowsky (2000), who proposed that longer white matter fibers are required by larger brains to guarantee efficient communication between distant cortical areas. Smaers et al. (2011; 2017) and Donahue et al. (2018) reported that the prefrontal cortex and white matter were disproportionally greater in humans than higher primates, yet others dispute these findings (Barton and Venditti, 2013; Gabi et al., 2016). This discrepancy in results could be explained by the lack of consensus on anatomical boundary delineation and the limitations of methods adopted (Sherwood and Smaers, 2013). Nonetheless there appears to be agreement in the literature that an expansion of distributed white matter networks, rather than cortical volume of the frontal lobe, may have had an important role in the evolution of human higher cognitive functions.

In this study we performed a comparative analysis of the white matter tracts of the frontal lobe using a novel approach based on diffusion tractography. Compared with structural magnetic resonance imaging (MRI) or tissue-sectioning methods that have previously been adopted to study the frontal lobe, tractography offers two main advantages. Firstly, tract volume can be approximated by calculating the space occupied by streamlines that follow the entire trajectory of white matter pathways. When applied to the frontal lobes, this allows us to analyze the large portion of frontal connections extending beyond the anatomical boundaries of the frontal lobe, which has not been taken into account with previous MRI approaches. Secondly, distinct tract groups and individual pathways can be virtually dissected and analyzed separately (Catani et al., 2002; Thiebaut de Schotten et al., 2012). Frontal lobe connections can be classified into three main tract groups that include projection fibers (linking the cortex with subcortical areas and the brain stem), commissural fibers (linking cortical areas between hemispheres) and association fibers (linking cortical areas within a single hemisphere). The latter can be further subdivided into...
intralobar (within the frontal lobe) and interlobar (between frontal and non-frontal regions) connections (Catani et al., 2012b). Considering that various tracts and groups of tracts play distinct roles in cognition and behavior, a differentiated tract analysis between species may reveal differences in networks underlying uniquely human abilities (Passingham and Wise, 2012).

Diffusion imaging tractography was acquired from 20 human participants in vivo, nine non-human primates ex vivo (five macaques, four vervets) and six macaques in vivo. Diffusion data were analyzed using spherical deconvolution, an advanced diffusion modeling technique, which we have previously applied to reconstruct crossing fibers and visualize tracts that are not visible with tensor-based approaches (Dell’Acqua et al., 2010; Thiebaut de Schotten et al., 2011; Catani et al., 2012a; Dell’Acqua and Tournier, 2019). Deterministic tractography was used to calculate the total volume of frontal lobe white matter, frontal association, commissural and projection tract groups including long and short-range connections and finally, individual frontal lobe tracts. Additionally, a non-frontal tract, the anterior commissure was included in the analysis to verify that there may exist tracts in the brain that are disproportionally smaller in humans than monkeys. For each brain, frontal tract volume measurements were divided by total hemispheric tract volume to obtain normalized values. MRI voxel-based measurements of frontal cortical and white matter volume were also obtained for comparison with previous studies.

Materials and Methods

Participants. Diffusion MRI data were analyzed from 20 human Homo sapiens participants in vivo (all male, mean age ± standard deviation = 27.9 ± 5.0 years) and three monkey species ex vivo: four vervets (Chlorocebus aethiops, all male, age = 4.1 ± 1.9 years), three rhesus macaques (Macaca mulatta, all male, mean age 11.2 ± 2.0 years) and two cynomolgus macaques (Macaca fascicularis, all male, mean age estimated ≥ 11 years). In addition, six rhesus macaque (all male, mean age 5.5 ± 0.4 years) datasets were acquired in vivo for a comparison between in vivo and ex vivo tractography results. The human data were acquired with informed consent under the Biomedical Research Centre Atlas Project, approved by the Joint Medical Ethical Committee of the Institute of Psychiatry, Psychology and Neuroscience, King’s College London.
The four vervet monkeys were obtained from the Behavioral Science Foundation, St. Kitts and were socially housed in enriched environments. The experimental protocol was reviewed and approved by the Institutional Review Board of the Behavioral Science Foundation acting under the auspices of the Canadian Council on Animal Care. The three rhesus macaque brains stem from a research program at the University of Oxford and all procedures were carried out in accordance with Home Office (UK) Regulations and European Union guidelines (EU directive 86/609/EEC; EU Directive 2010/63/EU) Act (1986). For details of tissue fixation, see Dyrby et al. (2011) and Large et al. (2016). The two cynomolgus macaque datasets were obtained from the Martinos Center for Biomedical Imaging. All housing, transport and experimental procedures were approved by the appropriate institutional animal care panels, described in de Crespigny et al. (2005) and the tissue was prepared as described in D’Arceuil et al. (2007).

The macaque in vivo datasets were obtained from the Icahn School of Medicine at Mount Sinai (ISMMS). The experimental procedures required for collecting this data were approved by the ISMMS Institutional Animal Care and Use Committee and conformed to the United States Public Health Service policy on Humane Care and Use of Laboratory Animals, the National Institutes of Health Guide for the Care and Use of Laboratory Animals and Association for Assessment and Accreditation of Laboratory Animal Care accreditation. They were socially housed as a group in an enriched environment. Scanning was carried out under light isoflurane anesthesia as described previously in Mars et al. (2011). Anesthesia was induced using ketamine (10 mg/kg intramuscularly) and maintained with isoflurane at a low concentration (0.9–1.7% expired; mean, 1.38%). Anesthesia was supplemented with meloxicam (0.2 mg/kg, intravenously, i.v.) and ranitidine (0.05 mg/kg, i.v.). Monkeys were intubated and ventilated throughout. Physiological parameters including capnography, inspired and expired isoflurane concentration, SPO2, core temperature, heart rate and blood pressure were monitored and kept constant to maintain normal physiological function.

Diffusion MRI Acquisition. The human data were acquired on a 3T GE Signa HDx TwinSpeed MRI scanner using an echo planar imaging pulse sequence as described in Dell’Acqua et al. (2013). The vervet and rhesus macaque data were acquired with a 4.7T Varian Inova scanner using the protocol described by Dyrby et al. (2011); the cynomolgus macaque data were acquired with a 4.7T Oxford magnet...
interfaced to a Bruker Biospec Avance console according to the parameters indicated by D’Arceuil et al. (2007). The in vivo rhesus macaque datasets were acquired with a Siemens Skyra 3T scanner with a custom-built 8-channel phased-array coil with a single loop local transmit coil (Windmiller-Kolster Scientific, Fresno, CA, USA). Spin echo pulse sequences were used to acquire the ex vivo monkey datasets, while the in vivo monkey datasets were acquired using an echo planar imaging sequence. The diffusion MRI acquisition parameters for all species are summarized in Table 1. The anatomical accuracy and reproducibility of post mortem diffusion MRI has previously been validated using axonal tracing (Dyrby et al., 2007; Jbabdi et al., 2013; Cerliani et al., 2016; Donahue et al., 2016).

Diffusion MRI and Tractography Processing. All steps from pre-processing to tractography tract dissections were performed in the native space of each individual brain. Data were inspected for artifacts visually and with the Explore DTI outlier profile tool. One volume in the cynomolgus macaque dataset was removed due to severe artefacts. The human diffusion data were corrected for head motion and eddy current distortions and registered to a non-diffusion-weighted reference image using ExploreDTI (www.exploredti.com). The ex vivo data did not undergo these corrections, as they were scanned using a spin echo sequence that is robust to eddy current and geometric distortions. For the in vivo macaque data, eight averages per brain were acquired, four with left-right phase-encoding direction and three with right-left, to facilitate correction for distortions along the phase encoding direction. After correction for susceptibility-induced off-resonance field effects using the tool Topup (Andersson et al., 2003) as implemented in FSL, datasets were registered and corrected for motion and eddy currents with FSL’s Eddy (Andersson and Sotiropoulos, 2016).

For all datasets, the fiber orientation distribution function was estimated with StarTrack (www.natbrainlab.co.uk) using the damped Richardson-Lucy algorithm for spherical deconvolution as described in Dell’Acqua et al. (2010). Deterministic tractography was performed in each brain using the Euler algorithm in StarTrack (Dell’Acqua et al., 2013). A whole brain approach was used, with one seed point per voxel, and one streamline generated for each peak of the fiber orientation distribution function above the set anisotropy threshold. As the ex vivo data had varying levels of noise and voxel sizes, spherical deconvolution and tractography parameters were determined experimentally for each group in order to
maximize the ability to resolve crossing fibers, and minimize spurious fiber directions (see Table 2 for
details). Anisotropic power maps (Dell'Acqua et al., 2014) were generated for anatomical reference, using
StarTrack. The dissections were performed by R.B., M.D. and P.J. under the supervision of an expert
anatomist (M.C.).

Tractography Analysis. The frontal white matter as a whole was dissected in TrackVis
(www.trackvis.org) using an inclusion region of interest of the frontal lobe, as defined in humans by the
standard MNI 152 nonlinear 6th generation MRI atlas segmentation (Collins et al., 1999) and in vervets and
macaques, by the INIA19 MRI atlas (Rohlfing et al., 2012) (Fig. 1). These cortical atlas regions were co-
registered to anisotropic power maps in the native space of each brain using Advanced Normalization Tools
(ANTS, picsl.upenn.edu/software/ants). This was done separately for each hemisphere. To isolate the
frontal association pathways, exclusion regions were drawn manually to remove any streamlines travelling
to the opposite hemisphere (i.e. commissural connections), subcortical nuclei, cerebellum or brainstem (i.e.
projections). Intra-frontal streamlines were defined similarly, but with the additional condition that both
ends of the streamlines be within the frontal lobe region of interest. The frontal projection pathways were
defined for each hemisphere using one inclusion region in the region of the basal ganglia and thalamus,
including the internal capsule, and a second inclusion region of the frontal cortex. Frontal commissural
pathways were defined to include all streamlines connecting the left and right frontal cortices and manually
removing any streamlines not belonging to the corpus callosum. The cerebellar white matter and the
volume of projection fibers below the level of the pons were excluded from the final volume analysis.

Manual dissections of individual frontal association tracts were performed. The tracts included in
our analysis were the cingulum, uncinate fasciculus, frontal aslant tract, three branches of the superior
longitudinal fasciculus, inferior fronto-occipital fasciculus and the long segment of the arcuate fasciculus.
In addition, the anterior commissure was dissected as a non-frontal control tract. Tracts were dissected
using manually drawn inclusion and exclusion regions of interest, as illustrated in Figure 2. Where multiple
inclusion regions are needed to define a tract, a logical ‘AND’ condition was used, so that only streamlines
passing through both regions were included in the result. The atlas by Catani and Thiebaut de Schotten
(2012) was used as an anatomical reference for human tracts, and Schmahmann and Pandya’s (2006)
axonal tracing atlas was used for the macaque and vervet datasets. For all dissections, large regions of interest extending into the white matter were used to ensure all relevant streamlines were captured and to avoid region-placement bias. The regions were then edited if necessary to remove irrelevant streamlines such as those identified as belonging to another tract, or with anatomically implausible trajectories such as looping. In tracts which are less well described, or less similar in the non-human species compared with humans, such as the frontal aslant tract and the arcuate fasciculus, atlas-defined rather than hand-drawn inclusion regions were used first to identify all streamlines projecting to the appropriate regions. The dissections were then refined using regions of interest in the white matter to capture only the streamlines from the given tract. Tractography volume measurements were obtained by calculating the total volume of voxels containing streamlines from the given tract. Normalized volumes were obtained by dividing the tract volume by the total volume occupied by hemispheric white matter streamlines, defined using a region of interest of the whole hemisphere, as shown in Figure 1.

Voxel-based Volume Analysis. Gray matter (excluding subcortical nuclei) and white matter (excluding cerebellar and white matter below the pons) tissue probability maps from the MNI (Fonov et al., 2009; 2011) and INIA19 (Rohlfing et al., 2012) templates were co-registered to anisotropic power maps in the native space of each brain, using ANTS (Avants et al., 2011). A minimum probability threshold of 0.1 was applied and a weighted volume (i.e. volume × tissue probability value) was calculated, to obtain measures of gray and white matter volume that are robust to small errors in registration. The frontal volumes were calculated similarly, by first applying a frontal lobe mask to the tissue probability maps. To obtain normalized volume measures in each brain, frontal volume fractions were calculated as follows: the frontal cortex volume was divided by the total cortical volume and the frontal white matter volume divided by the total white matter volume. Absolute volumes were measured in milliliters (ml) and volume fractions calculated as percentages (%).

Experimental Design and Statistical Analysis. For statistical analysis the data were divided into three groups, humans (in vivo, n = 20), vervets (ex vivo, n = 4) and macaques (ex vivo, n = 5). The sample sizes in this study were determined by the availability of high quality ex vivo data in monkey species. Our statistical analysis was carried out on normalized volume measurements averaged across the two
hemispheres in each brain individually. To identify if there were species group differences within the different volume measures (voxel-based frontal white and cortical gray matter, tractography-based frontal white matter, frontal association, projection, commissural, and intra-frontal tract groups, and individual tracts), a one-way Welch ANOVA (Welch, 1951) using an asymptotically distributed F-statistic was applied with IBM SPSS version 20. In the measures with significant species group differences (p < 0.05), a Games-Howell post hoc analysis was applied to determine the specific differences between species groups (Games and Howell, 1976). Additionally, we compared the group of in vivo macaques (n = 6) with the ex vivo macaque and in vivo human data using Welch’s F followed by Games-Howell post hoc tests, as above. The statistical tests used in this study were chosen for being robust to small group sizes and inhomogeneity of variance between groups (Games and Howell, 1976; Clinch and Keselman, 1982). Type I errors are controlled for by the Games-Howell post hoc analysis when carrying out multiple comparisons (Games and Howell, 1976). Results are reported as species group mean ± standard deviation. The data presented in this paper and the protocols and code used in the analysis will be available to readers upon request to the corresponding author.

Results

Figure 3 and Table 3 show the results for proportional and absolute volumes obtained with tractography and voxel-based MRI measurements of frontal cortical and white matter. The ANOVA of volume proportions indicated statistically significant differences among the three species groups for the frontal cortex (Welch’s F(2, 5.88) = 46.47; p < 0.001), the voxel-based frontal white matter (Welch’s F(2, 5.65) = 1415.65; p < 0.001) and the tractography-based frontal frontal white matter (Welch’s F(2, 5.60) = 84.03; p < 0.001). Games-Howell post hoc analysis showed that human brains had a higher frontal cortex volume fraction (32.69 ± 0.79%) compared with both vervets (28.89 ± 0.79%; p = 0.002) and macaques (29.12 ± 1.22%; p = 0.004). The differences for the voxel-based frontal white matter volume fraction were even greater between humans (40.80 ± 0.62%) and both vervets (23.33 ± 0.72%; p < 0.001) and macaques (23.19 ± 1.04%; p < 0.001). Finally, our novel method using tractography to analyze the volume of frontal
lobe networks extending throughout the brain also showed a higher volume fraction in humans (66.18 ± 2.56%) compared with vervets (48.16 ± 2.94%; p = 0.001) and macaques (47.98 ± 4.54%; p = 0.001). No statistically significant differences existed between monkey species in these three measures (Table 3).

These results confirm previous voxel-based findings (Schoenemann et al., 2005; Smaers et al., 2010) and indicate that our tractography measures are able to detect simian-human differences in tract volumes. The absolute frontal volume measurements were also significantly different between species, with humans greater than monkeys in all three measures. There were no statistically significant differences between monkey species in the absolute measurements of frontal gray matter volume (F(2, 9.713) = 1122.75, p < 0.001), voxel-based frontal white matter volume (F(2, 10.48) = 1329.29, p < 0.001) and tractography-based frontal white matter volume (F(2, 13.53) = 632.49, p < 0.001) (Table 3).

To examine the implication of humans having proportionally more frontal white matter than monkeys, we analyzed a non-frontal tract for comparison, the anterior commissure (Fig. 3, D; Table 3). The ANOVA of the volume fraction of the anterior commissure also indicated statistically significant differences among the groups (Welch’s F(2, 5.68) = 29.95; p = 0.001) but in this case humans had a smaller volume fraction (4.59 ± 1.15%) compared with both vervets (9.90 ± 1.30%; p = 0.004 post hoc) and macaques (7.86 ± 1.80%; p = 0.028 post hoc). The volume fraction of the anterior commissure was not statistically significant different between the two monkey groups (Table 3). This suggests that the disproportionately large volume of frontal lobe tracts is accompanied by a reduced volume fraction of some non-frontal tracts, such as the anterior commissure. The absolute volume of this tract was significantly different between species, F(2, 12.91) = 89.85, p < 0.001), and was larger in humans than the two monkey species (Table 3).

To understand whether the larger volume proportion of frontal white matter in humans compared with monkeys was attributable to a specific tract group or a general trend across all frontal lobe connections, volume measurements of the association, projection and commissural tract groups were obtained separately and compared across species (Fig 4, Table 4). Statistically significant differences among the three groups were observed in the proportional frontal volume of the association (Welch’s F(2, 5.54) = 22.06, p = 0.002), commissural (Welch’s F(2, 5.67) = 42.56, p < 0.001) and projection (Welch’s
F(2, 5.65) = 71.14, p < 0.001) tracts groups. Post hoc analysis shows that the frontal association tracts, which made up 36.69 ± 3.13% of the total white matter connection volume in humans, had a greater volume proportion compared with both vervets (25.92 ± 3.48%; p = 0.010) and macaques (23.15 ± 6.46%; p = 0.018). For the frontal commissural tracts, the volume fraction in humans (34.58 ± 3.30%) was higher than in vervets (27.85 ± 3.67%; p = 0.002) and macaques (26.19 ± 5.76%; p = 0.014). The projection tracts occupied 14.52 ± 1.44% of the total white matter volume in humans and only 4.80 ± 1.82% in vervets (p = 0.001) and 5.14 ± 2.25% in macaques (p = 0.001). In these three tract groups, no significant differences were found between the two monkey species. In addition, differences in proportional volume of the short intralobar association connections were detected (Welch’s F(2, 9.52) = 113.33, p < 0.001) with humans showing higher values (16.33 ± 1.77%) compared with vervets (9.50 ± 0.73%; p < 0.001) and macaques (7.79 ± 1.04%; p < 0.001). Again no differences were found between the two monkey species. These results suggest that differences between humans and monkeys in the volume of the frontal lobe pathways are attributable to a global change in both interlobar (i.e. association, commissural and projections) and intralobar frontal connectivity. Absolute volumes of the above tract groups were also analyzed, revealing significantly larger volumes in humans, and no significant differences between monkey species (association tracts F(2, 10.95) = 535.787, p < 0.001; commissural tracts F(2, 13.54) = 338.48, p < 0.001; projection tracts F(2, 13.51) = 667.20, p < 0.001; intra-frontal tracts F(2, 13.61) = 376.22, p < 0.001 (Fig.4, Table 4).

We then investigated differences between species in the main long association tracts, which included the cingulum, uncinate fasciculus, frontal aslant tract, superior longitudinal fasciculus, inferior fronto-occipital fasciculus and the long segment of the arcuate fasciculus, using tractography dissections (Fig. 5, Table 5). There were no significant differences between species in the cingulum, with volume fractions of 4.06 ± 0.62% in humans, and 3.21 ± 0.29% in vervets and 3.04 ± 0.23 in macaques (F(2, 5.55) = 3.00, p = 0.131), the uncinate fasciculus, with 2.56 ± 0.69% in humans, 2.38 ± 0.39% in vervets and, 1.97 ± 0.53% in macaques (F(2, 6.51) = 0.731, p = 0.517), or the frontal aslant tract, with 3.37 ± 1.00% in humans, 2.35 ± 0.86% in vervets and 2.47 ± 0.92% in macaques (F(2, 6.68) = 3.01, p = 0.117). Significant differences in proportional volume were observed for all three branches of the superior longitudinal fasciculus. In humans, branches I, II and III occupied 3.46 ± 0.93%, 3.66 ± 1.17% and 3.65 ± 1.08% of the total hemispheric white matter volume respectively, in vervets, 0.71 ± 0.36%, 1.12 ± 0.36% and 1.33 ±
0.06%, and in macaques, 1.22 ± 0.44%, 1.06 ± 0.55% and 1.54 ± 1.02% (branch I, Welch’s F(2, 9.71) =
54.13, p < 0.001; branch II, Welch’s F(2, 10.20) = 40.12, p < 0.001; branch III, Welch’s F(2, 9.04) = 27.78,
p < 0.001). The inferior fronto-occipital fasciculus had volume proportions of 9.59 ± 1.22% in humans,
3.80 ± 0.89% in vervets and 3.25 ± 0.94% in macaques (Welch’s F(2, 7.30) = 101.22, p < 0.001) and most
strikingly the arcuate fasciculus had a proportional volume of 8.96 ± 1.38% in humans, compared with 1.58
± 0.11% in vervets and 1.45 ± 0.13% in macaques (Welch’s F(2, 7.15) = 381.25, p < 0.001). For all tracts
bar the superior longitudinal fasciculus III, humans had significantly larger proportional volumes compared
with monkey species (p ≤ 0.001 post hoc; Table 5). The absolute volumes of all the above tracts were
significantly different (p < 0.001) between species (cingulum, F(2, 12.97) = 426.31; uncinate, F(2, 11.50) =
113.89; frontal aslant tract, F(2, 13.44) = 122.03; superior longitudinal fasciculus branch I, F(2, 12.80) =
110.79; branch II, F(2, 11.15) = 108.71; branch III ,F(2, 9.28) = 98.28; inferior fronto-occipital fasciculus,
F(2, 13.39) = 369.15; arcuate fasciculus, F(2, 12.83) = 214.42). The post hoc analysis shows that humans
have significantly greater volume in all tracts than monkeys, and no significant differences between vervets
and macaques (Table 5).

Finally, we evaluated in vivo and ex vivo differences in our tractography volume measurements of
the above tracts in macaques (Fig. 6, Table 6). We found no significant differences in volume proportions
between in vivo and ex vivo macaques for the majority of tracts, including the cingulum, where the volume
fraction in in vivo monkeys was 3.65 ± 0.61%, uncinate fasciculus, 3.09 ± 0.83%, frontal aslant tract, 3.20 ±
0.48% and superior longitudinal fasciculus, where the volume proportion was 1.75 ± 0.74%, 1.29 ± 0.61%
and 2.35 ± 0.36% for branches I, II and III. A significant difference was observed however for the inferior
fronto-occipital fasciculus proportional volume, which was 5.76 ± 1.60% in the in vivo macaque data
compared with 3.25 ± 0.94% in the ex vivo data (Welch’s F(1, 6.08) = 8.34, p = 0.027). The absolute
volumes were significantly different between in and ex vivo macaques in all tracts analyzed except the
superior longitudinal fasciculus III. The arcuate fasciculus was not included in this statistical comparison as
it was not possible to reconstruct this tract in the in vivo macaque datasets, possibly due to insufficient
spatial resolution. To investigate inter-species differences within the same modality, we also compared
human and macaque in vivo data (Fig. 7). Significant species differences were found in nearly all tracts,
showing the same if not greater differences in tract volume proportions as seen in the human vs. ex vivo
11
monkey comparisons above. The absolute tract volumes were also significantly different between humans and in vivo monkeys. Statistical comparisons are detailed in Table 6.

Discussion

Two main findings emerged from our study. Firstly, the larger proportional volume of frontal connections in humans compared with monkeys is driven by association, commissural, projection and intra-frontal networks, suggesting greater communication within and between the frontal and other lobes. Secondly, within the association tracts, species-differences were driven by tracts important for motor planning, top-down visual and auditory processing, auditory memory and language. No significant differences were observed in tracts involved in emotional processing, such as the cingulum and uncinate fasciculus.

One novel dimension of our study was to consider the full extent of connections between the frontal and other lobes. Conventional voxel-based and tissue-sectioning techniques only measure white matter within the frontal lobes, whereas tractography analyzes networks extending throughout the brain. In our study, tractography revealed larger proportional volumes of local and extended frontal networks in humans compared with monkeys. This result is in line with voxel-based analyses in the present study and in the literature (Schoenemann et al., 2005; Smaers et al., 2011) and emphasizes the role of the frontal lobes in distributed networks (Smaers et al., 2017; Donahue et al., 2018). Evidence suggests that this result is driven by prefrontal rather than pre- and primary motor frontal connections (Smaers et al., 2017). Given the larger proportion of frontal white matter in humans than monkeys, we expected the converse to be true for some non-frontal tracts, as seen with the anterior commissure. This finding aligns with previous studies demonstrating a significantly smaller anterior commissure cross-sectional area in humans than monkeys (Foxman et al., 1986; Rilling and Insel, 1999).

In addition, we demonstrated that the greater proportional volume of human frontal connections was true of association, projection and commissural tract groups. This is consistent with previous reports suggesting that cortico-ponto-cerebellar connections (Rammani et al., 2006; Smaers and Vanier, 2019), and the anterior corpus callosum (Catani and Thiebaut de Schotten, 2012) receive proportionally larger
contributions from prefrontal areas in humans compared with monkeys. Among the association pathways, greater frontal connectivity was documented in humans for both intra- and interlobar tracts, suggesting more crosstalk within and between frontal and non-frontal areas.

Furthermore, our analysis of individual long association tracts revealed unique features of human white matter connectivity, with the arcuate fasciculus showing the most striking species-differences. Non-human primates share a subcomponent of the arcuate fasciculus with humans, projecting to the posterior superior temporal gyrus, consistent with previous macaque axonal tracing (Petrides and Pandya, 2002; Schmahmann and Pandya, 2006) and diffusion imaging studies (Croxson et al., 2005; Rilling et al., 2008). This subcomponent is thought to be involved in acoustic spatiotemporal processing and stimulus identification (Aboitiz and Garcia, 2009). However, in humans, the long segment of the arcuate fasciculus projects more anteriorly to the superior temporal gyrus and extends to the middle and inferior temporal gyri (Catani et al., 2005; Thiebaut de Schotten et al., 2012), which are proportionally larger in humans. The arcuate fasciculus links perisylvian regions involved with auditory memory (Rauschecker and Scott, 2009; Schulze et al., 2012), word learning (López-Barroso et al., 2013) and syntax (Wilson et al., 2011).

Another tract with significant differences between species was the inferior fronto-occipital fasciculus. While the functions of this tract remain largely unknown (Forkel et al., 2014), its greater proportional volume in humans may facilitate direct frontal access to visual inputs and top-down control of early visual processing for functions like face and object perception (Pins and ffytche, 2003; Bar et al., 2006), and reading (Shaywitz et al., 2002). It is important to note that the existence of this tract in monkeys is debated, and most visual associative areas in the human occipital lobe are located in temporal and parietal lobes of the monkey brain. Tractography (Mars et al., 2016; Feng et al., 2017) and blunt dissection studies (Decramer et al., 2018; Sarubbo et al., 2019) show connections between frontal and occipital lobes in monkeys, matching the trajectory of the inferior fronto-occipital fasciculus in humans (Curran, 1909). However, neither of these methods is able to distinguish mono- from polysynaptic pathways, leaving open the question of whether these pathways are direct connections, or composed of segments with lateral terminations in the temporal cortex. The question arises because many axonal tracing studies, able to identify monosynaptic pathways, have failed to reveal the inferior fronto-occipital fasciculus (Schmahmann
and Pandya, 2006; Petrides, 2013). Other macaque axonal tracing studies have revealed connections between frontal and occipital cortices (Barbas and Mesulam, 1981; Gerbella et al., 2010; Markov et al., 2014), however their methods are not sensitive to axonal trajectories and do not report whether these axons follow the course expected for the inferior fronto-occipital fasciculus. Further investigation is required to resolve this issue.

Differences in the superior longitudinal fasciculus were also significant. These fronto-parietal tracts are involved in motor cognition (Duffy and Burchfiel, 1971; Leiguarda and Marsden, 2000; Parlatini et al., 2017) and visuospatial attention (Corbetta et al., 2002; Picard and Strick, 2003; Buschman and Miller, 2007; Goldenberg and Spatt, 2009; Thiebaut de Schotten et al., 2011; Parlatini et al., 2017). Their damage manifests with visuospatial neglect (Beis et al., 2004; Thiebaut de Schotten et al., 2014) and impaired reaching and grasping in humans and monkeys (Leiguarda and Marsden, 2000), suggesting common functions across species. Indeed the superior longitudinal fasciculus provides parietal input to the premotor cortex (Petrides and Pandya, 1984), part of an interconnected frontal network for hand and digit movement (Dum and Strick, 2002; 2005; Howells et al., 2018), which is highly developed across primates (Hopkins and Phillips, 2017). Beyond manual dexterity, inter-species differences in this tract may be related to functions greatly developed in humans, such as tool-making (Hecht et al., 2015) and writing (Duncan, 2010; Purcell et al., 2011; Planton et al., 2013; Genovesio et al., 2014).

The lack of species differences in the uncinate fasciculus and cingulum indicates a shared anatomical substrate for these fronto-limbic tracts dedicated to aspects of memory (Gaffan and Wilson, 2008), decision making (Rushworth and Behrens, 2008) and social and emotional behavior (Rolls, 2015). Similarly, lack of differences in the frontal aslant tract, a recently described pathway between the inferior frontal gyrus and superior medial frontal cortex (Lawes et al., 2008; Catani et al., 2012b) may indicate a common substrate for vocalization or orofacial movements (Petrides et al., 2005).

To verify that interspecies differences in our results were not driven by \textit{in – ex vivo} differences, we compared both modalities within macaques, and investigated species differences with \textit{in vivo} data. The \textit{in – ex vivo} comparison showed overall agreement in proportional volume, while absolute volume was greater
in vivo, possibly due to ex vivo tissue shrinkage or greater partial volume effects in the lower resolution in vivo datasets. Our comparison of in vivo human and macaque data showed similar interspecies differences to the main results. We therefore favored using ex vivo monkey datasets in our analysis over lower resolution in vivo data, to maximize our ability to resolve small white matter bundles in the monkey brain.

While tractography is the only method currently able to reconstruct white matter pathways in vivo (Dell'Acqua and Catani, 2012; Jbabdi et al., 2015), its limitations are widely acknowledged (Jones, 2010; Dell'Acqua and Catani, 2012; Dell'Acqua and Tournier, 2019). We used deterministic rather than probabilistic tractography to avoid tract length and direction biases (Jones, 2010; Liptrot et al., 2014; Donahue et al., 2016), whole brain seeding to prevent initialization point bias, and spherical deconvolution to estimate multiple fiber directions per voxel (Dell'Acqua et al., 2010; Jones, 2010; Catani et al., 2012a). To minimize false positives (Maier-Hein et al., 2016), tractography was inspected by an expert anatomist (M.C.) and streamlines with anatomically implausible trajectories manually removed.

In this paper we focused on the frontal lobe, however, other areas of association cortex play equally significant roles in human high-level functions. Temporal and parietal regions are also shown to be disproportionately larger in humans than monkeys (Van Essen and Dierker, 2007) though the prefrontal cortex appears to show the greatest difference (Smaers et al., 2017). Accordingly in our results, the frontal tracts with the greatest species-differences in volume proportion were those connecting with temporal, parietal and occipital areas. In future, the networks of other lobes should be studied more fully to understand differences between human and non-human primates (Catani et al., 2017).

In conclusion, diffusion tractography revealed greater proportional volume of frontal white matter networks in humans compared with monkeys, with significant differences for association, commissural, projection and intra-frontal networks. Striking interspecies differences were found for the arcuate, superior longitudinal and inferior fronto-occipital fasciculi. Other frontal association tracts and one non-frontal limbic tract, the anterior commissure, occupied similar or smaller volume proportions in humans compared with monkeys. While unable to make inferences about evolution directly, these results support the hypothesis of rearrangement of whole brain connectivity during human evolution. This pattern of long-
range frontal connectivity in humans may have resulted from reduced reliance on certain limbic functions, increased feed-forward relay of sensory inputs and direct top-down modulation of early perceptual processing necessary for the development of higher cognitive functions.

References

17

Figure Legends

Figure 1. Pipeline for dissection of the association, commissural, projection and intra-frontal tracts, illustrated in a single macaque brain. A) An inclusion region of the whole left or right hemisphere was used to extract all hemispheric connections. Exclusion regions (not pictured) were used to remove artefactual streamlines coursing through the contralateral internal, external and extreme capsules. B) From the set of streamlines in each hemisphere defined in A), an inclusion region of the frontal lobe was used to select only streamlines passing through the frontal lobe, including those extending between frontal and non-frontal regions. These frontal lobe connections were then further separated into the following groups: C) association fibers, using an inclusion region of the frontal lobe (1) and exclusion regions in the midsagittal section (2) and the subcortical nuclei (3); D) commissural fibers, using the two frontal lobes (1, 2) as inclusion regions; E) projection fibers, using one inclusion region of the frontal lobe (1) and one in the brainstem and thalamus (2); and F) intra-frontal association fibers. Intra-frontal fibers were defined with the condition that both ends of the streamline must be within the frontal lobe region of interest. The same approach was used in all species.

Figure 2. Regions of interest used to dissect individual tracts in the human (left) and monkey (right) brain. For each example, 3D reconstructions and 2D sections are shown. In addition to the regions depicted here, exclusion regions were used in the midsagittal plane, brainstem, subcortical nuclei and internal capsule to exclude commissural and projection tracts, and remove individual spurious streamlines. A) Uncinate fasciculus (lateral view): inclusion regions of interest are placed in the anterior temporal lobe (pink) and external/extreme capsules (orange). B) Cingulum (medial view): a single inclusion region (pink) on multiple coronal slices along the cingulate gyrus is used, to ensure that the superior projections of the dorsal cingulum are included. C) Frontal aslant tract (anterior view): an inclusion region (light blue) is placed in the white matter medial to the inferior frontal gyrus in the sagittal plane. In humans, a second inclusion region (yellow) is placed in the white matter inferior to the superior frontal gyrus in the axial plane, while in monkeys an atlas-defined region of the superior frontal gyrus is used as the second inclusion region, to include all streamlines projecting to the medial frontal regions. Exclusion regions were then placed in the frontal pole. D) Superior longitudinal fasciculus (SLF) (lateral view): one inclusion region
(yellow) is placed in the parietal lobe in line with the superior aspect of the central sulcus, and one inclusion region is used for each of the three branches, SLF I (light blue), II, (dark blue) and III (purple) all in a coronal plane passing through the precentral gyrus. Exclusion regions are used in the temporal and occipital lobe in both humans and monkeys. E) Inferior fronto-occipital fasciculus (lateral view): one inclusion region is used in the external/ extreme capsules (pink) and one in the anterior border of the occipital lobe (yellow), both in the coronal plane. F) Arcuate fasciculus, long segment: in the human, one inclusion region (orange) is placed in the coronal plane just anterior to the central sulcus and one inclusion region in the axial plane inferior to the temporo-parietal junction (blue). In the monkey, to be as inclusive as possible, atlas-defined regions of the frontal lobe (pink mask) and superior temporal gyrus (yellow mask) were also used as inclusion regions of interest. In addition to the inclusion regions pictured here, exclusion regions were placed in the external/extreme capsules and the white matter of the superior temporal gyrus to remove the middle longitudinal fasciculus, and in the white matter medial to the supra-marginal gyrus to remove SLF fibers. G) Anterior commissure: two inclusion regions were used to capture the compact bundle of the anterior commissure as it crosses the midline. Each region has two slices in the sagittal plane on either side of the midline, one more medial (green), one placed more laterally (yellow). Exclusion regions were used to remove spurious streamlines forming part of the fornix, anterior thalamic projections, and other projections from the brain stem.

Figure 3. MRI methods for comparing cortical and white matter volumes across species. Images show the rescaled anatomy of representative cases and graphs display proportional and absolute volumes with mean values and data points for individual brains (H, humans n = 20; V, vervets n = 4; M, macaques n = 5). A) Voxel-based measures of frontal cortex volume. B) Voxel-based measures of frontal white matter volume. C) Tractography-based measures of frontal tracts volume. D) Tractography-based measures of anterior commissure (AC) volume. *p < 0.05; **p < 0.01; ***p < 0.001 when comparing humans to either vervets or macaques. For full statistical results see Results and Table 3.

Figure 4. The main tract groups compared between humans, vervets and macaques. Images show tractography reconstructions of A) the frontal association (green), B) commissural (red), C) projection (blue), and D) intralobar frontal (orange) networks in single representative brains. Graphs show
both proportional and absolute volume of each tract group, where data points represent individual brains (H, humans n = 20; V, vervets n = 4; M, macaques n = 5) and species mean values are indicated by horizontal lines. *p < 0.05; **p < 0.01; ***p < 0.001 when comparing humans to either vervets or macaques. For full statistical results see Results and Table 4.

Figure 5. Comparison of the major frontal association tracts between humans, vervets and macaques. Images show tractography reconstructions from individual brains and graphs show proportional and absolute tract volume measures. Data points represent individual brains (H, humans n = 20; V, vervets n = 4; M, macaques n = 5). Species means are indicated by horizontal lines. The tracts shown are: A) cingulum (burgundy color) and uncinate fasciculus (UF, dark green), which represent the major fronto-limbic association tracts; B) frontal aslant tract (FAT, pink); C) fronto-parietal connections of the superior longitudinal fasciculus (SLF I, light blue; SLF II, dark blue; SLF III, purple); D) inferior fronto-occipital fasciculus (IFOF, yellow); E) arcuate fasciculus, long segment (AF, light green). *p < 0.05; **p < 0.01; ***p < 0.001 when comparing humans to either vervets or macaques. For full statistical results see Results and Table 5.

Figure 6. Comparison of ex vivo and in vivo macaque tractography data in the macaque. Images show tractography reconstructions of A) the cingulum (burgundy) and uncinate fasciculus (UF, dark green), B) frontal aslant tract (FAT, pink), C) superior longitudinal fasciculus (SLF I, light blue; SLF II, dark blue; SLF III, purple), D) inferior fronto-occipital fasciculus (IFOF, yellow) and E) arcuate fasciculus, long segment (AF, light green). Graphs show both proportional and absolute tract volumes for individual brains species mean values. There were no significant differences in proportional tract volume between groups, except for the inferior fronto-occipital fasciculus (Welch’s F(1, 6.08) = 8.34, *p = 0.027). The AF could not be reconstructed in the in vivo datasets. For full statistical results see Table 6.
Figure 7. Comparison of human and macaque *in vivo* tractography data. Images show tractography reconstructions of A) the cingulum (burgundy) and uncinate fasciculus (UF, dark green), B) frontal aslant tract (FAT, pink), C) superior longitudinal fasciculus (SLF I, light blue; SLF II, dark blue; SLF III, purple), D) inferior fronto-occipital fasciculus (IFOF, yellow) and E) arcuate fasciculus, long segment (AF, light green). Graphs show proportional and absolute tract volumes for individual brains measured from the *in vivo* dataset for both humans and monkeys. *p < 0.05; **p < 0.01; ***p < 0.001 when comparing humans to either vervets or macaques. Statistics were not carried out for the AF, as it was not possible to reconstruct this tract in the macaque *in vivo* datasets. For full statistical results see Table 7.
Ex vivo macaque | In vivo macaque | Proportional volume | Absolute volume

A

B

C

D

E

Normalized volume

Volume (log scale, ml)

Volume (log scale, ml)
Table 1. Diffusion MRI acquisition parameters

<table>
<thead>
<tr>
<th>Group</th>
<th>Resolution (mm3)</th>
<th>b-value (s/mm2)</th>
<th>b0 volumes</th>
<th>DWI volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>2.40 × 2.40 × 2.40</td>
<td>3000</td>
<td>7</td>
<td>60</td>
</tr>
<tr>
<td>Vervet 1</td>
<td>0.50 × 0.50 × 0.50</td>
<td>7660</td>
<td>18</td>
<td>256</td>
</tr>
<tr>
<td>Vervets 2-4</td>
<td>0.50 × 0.50 × 0.50</td>
<td>3151</td>
<td>16</td>
<td>87</td>
</tr>
<tr>
<td>RM</td>
<td>0.50 × 0.50 × 0.50</td>
<td>4310</td>
<td>3</td>
<td>61</td>
</tr>
<tr>
<td>CM</td>
<td>0.43 × 0.43 × 0.43</td>
<td>8000</td>
<td>12</td>
<td>119</td>
</tr>
<tr>
<td>RM in vivo</td>
<td>1.00 × 1.00 × 1.00</td>
<td>1500</td>
<td>10</td>
<td>80</td>
</tr>
</tbody>
</table>

RM: Rhesus macaque, CM: cynomologus macaque. Unless indicated, the monkey datasets were acquired ex vivo.
Table 2. Spherical deconvolution and tractography parameters

<table>
<thead>
<tr>
<th>Group</th>
<th>(\alpha)</th>
<th>No. iterations</th>
<th>Angle (°)</th>
<th>Absolute</th>
<th>Relative (%)</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>0.25</td>
<td>1000</td>
<td>30</td>
<td>0.40</td>
<td>4</td>
<td>20 – 400</td>
</tr>
<tr>
<td>Vervet 1</td>
<td>0.50</td>
<td>1000</td>
<td>45</td>
<td>0.20</td>
<td>5</td>
<td>10 – 400</td>
</tr>
<tr>
<td>Vervets 2-4</td>
<td>0.10</td>
<td>2000</td>
<td>45</td>
<td>0.20</td>
<td>5</td>
<td>10 – 400</td>
</tr>
<tr>
<td>RM</td>
<td>0.10</td>
<td>3000</td>
<td>45</td>
<td>0.20</td>
<td>5</td>
<td>10 – 400</td>
</tr>
<tr>
<td>CM 2104</td>
<td>0.15</td>
<td>2000</td>
<td>35</td>
<td>0.15</td>
<td>5</td>
<td>10 – 400</td>
</tr>
<tr>
<td>CM 2203*</td>
<td>0.38</td>
<td>2000</td>
<td>40</td>
<td>0.18</td>
<td>5</td>
<td>10 – 400</td>
</tr>
<tr>
<td>RM in vivo</td>
<td>1.00</td>
<td>1500</td>
<td>35</td>
<td>0.15</td>
<td>5</td>
<td>10 – 400</td>
</tr>
</tbody>
</table>

RM: Rhesus macaque, CM: cynomologus macaque. Unless indicated, the monkey datasets were acquired \textit{ex vivo}. The above parameters are explained fully in Dell’Acqua et al. (2013); \(\alpha \), shape factor of the fiber response function; No. iterations of the spherical deconvolution algorithm; Angle, maximum angle threshold between adjacent voxels; Absolute threshold, a tractography stopping threshold based on the hindrance modulated orientational anisotropy index; Relative threshold: a stopping threshold for tractography, set to a percentage of the maximum lobe amplitude of the fiber orientation distribution function; length threshold for streamlines. * Different parameters are used to account for differences in signal to noise, which may result from varying \textit{ex vivo} tissue quality.
Table 3. Proportional and absolute frontal volume measurements between species

<table>
<thead>
<tr>
<th>Volume measures</th>
<th>Human (mean ± st. dev.)</th>
<th>Vervet</th>
<th>Macaque</th>
<th>Post hoc comparisons (P values)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Human vs vervet</td>
</tr>
<tr>
<td>Frontal Cortex (voxel-based)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion (%)</td>
<td>32.69 ± 0.79</td>
<td>28.89 ± 0.79</td>
<td>29.12 ± 1.22</td>
<td>0.002</td>
</tr>
<tr>
<td>Absolute (ml)</td>
<td>95.27 ± 8.45</td>
<td>2.68 ± 0.13</td>
<td>3.16 ± 0.57</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Frontal white matter (voxel-based)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion</td>
<td>40.80 ± 0.62</td>
<td>23.33 ± 0.72</td>
<td>23.19 ± 1.04</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Absolute</td>
<td>96.69 ± 7.93</td>
<td>2.33 ± 0.19</td>
<td>2.92 ± 0.59</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Frontal tracts (tractography)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion</td>
<td>66.18 ± 2.56</td>
<td>48.16 ± 2.94</td>
<td>47.98 ± 4.54</td>
<td>0.001</td>
</tr>
<tr>
<td>Absolute</td>
<td>382.60 ± 45.30</td>
<td>11.91 ± 2.04</td>
<td>13.48 ± 2.80</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Anterior commissure (tractography)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion</td>
<td>4.59 ± 1.15</td>
<td>9.90 ± 1.30</td>
<td>7.86 ± 1.80</td>
<td>0.004</td>
</tr>
<tr>
<td>Absolute</td>
<td>26.73 ± 7.91</td>
<td>2.46 ± 0.56</td>
<td>2.18 ± 0.56</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Frontal and non-frontal (anterior commissure) volume measures in humans (n = 20), vervets (n = 4) and macaques (n = 5). Descriptive statistics and Games-Howell post hoc comparisons between species are given for proportional (normalized by total volume for each measure) and absolute volumes. See Results for Welch’s ANOVA statistics.
Table 4. Proportional and absolute frontal tract group volume measurements between species

<table>
<thead>
<tr>
<th>Tract group</th>
<th>Human (mean ± st. dev.)</th>
<th>Vervet</th>
<th>Macaque</th>
<th>Post hoc comparisons (P values)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Human vs vervet</td>
<td>Human vs macaque</td>
<td>Vervet vs macaque</td>
<td></td>
</tr>
<tr>
<td>Association</td>
<td>36.69 ± 3.13</td>
<td>25.92 ± 3.48</td>
<td>23.15 ± 6.46</td>
<td>0.010</td>
</tr>
<tr>
<td>Proportion</td>
<td>211.92 ± 27.19</td>
<td>6.36 ± 0.92</td>
<td>6.64 ± 2.52</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Absolute</td>
<td>34.58 ± 3.30</td>
<td>27.85 ± 3.67</td>
<td>26.19 ± 5.76</td>
<td>0.002</td>
</tr>
<tr>
<td>Commissural</td>
<td>200.42 ± 32.31</td>
<td>6.93 ± 1.67</td>
<td>7.42 ± 2.22</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Proportion</td>
<td>14.52 ± 1.44</td>
<td>4.80 ± 1.82</td>
<td>5.14 ± 2.25</td>
<td>0.001</td>
</tr>
<tr>
<td>Absolute</td>
<td>83.60 ± 9.78</td>
<td>1.22 ± 0.59</td>
<td>1.50 ± 0.78</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Projection</td>
<td>16.33 ± 1.77</td>
<td>9.50 ± 0.73</td>
<td>7.79 ± 1.04</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Absolute</td>
<td>94.53 ± 14.68</td>
<td>2.34 ± 0.34</td>
<td>2.17 ± 0.45</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Association, commissural, projection and intra-frontal tract group volumes in humans (n = 20), veverts (n = 4) and macaques (n = 5). Descriptive statistics and Games-Howell post hoc comparisons between species are given for proportional (normalized by total volume for each measure) and absolute volumes. See Results for Welch’s ANOVA statistics.
Table 5. Proportional and absolute volume measurements of frontal association tracts between species

<table>
<thead>
<tr>
<th>Tract</th>
<th>Human (mean ± st. dev.)</th>
<th>Vervet</th>
<th>Macaque</th>
<th>Post hoc comparisons (P values)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Human vs Vervet</td>
</tr>
<tr>
<td>Cingulum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion (%)</td>
<td>4.06 ± 0.62</td>
<td>3.21 ± 0.29</td>
<td>3.04 ± 0.23</td>
<td>-</td>
</tr>
<tr>
<td>Absolute (ml)</td>
<td>23.28 ± 3.35</td>
<td>0.79 ± 0.10</td>
<td>0.85 ± 0.16</td>
<td>< 0.001</td>
</tr>
<tr>
<td>UF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion</td>
<td>2.56 ± 0.69</td>
<td>2.38 ± 0.39</td>
<td>1.97 ± 0.53</td>
<td>-</td>
</tr>
<tr>
<td>Absolute</td>
<td>14.86 ± 4.11</td>
<td>0.58 ± 0.08</td>
<td>0.56 ± 0.20</td>
<td>< 0.001</td>
</tr>
<tr>
<td>FAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion</td>
<td>3.37 ± 1.00</td>
<td>2.35 ± 0.86</td>
<td>2.47 ± 0.92</td>
<td>-</td>
</tr>
<tr>
<td>Absolute</td>
<td>19.26 ± 5.19</td>
<td>0.59 ± 0.24</td>
<td>0.71 ± 0.34</td>
<td>< 0.001</td>
</tr>
<tr>
<td>SLF I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion</td>
<td>3.46 ± 0.93</td>
<td>0.71 ± 0.36</td>
<td>1.22 ± 0.44</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Absolute</td>
<td>20.00 ± 5.85</td>
<td>0.17 ± 0.09</td>
<td>0.35 ± 0.15</td>
<td>< 0.001</td>
</tr>
<tr>
<td>SLF II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion</td>
<td>3.66 ± 1.17</td>
<td>1.12 ± 0.36</td>
<td>1.06 ± 0.55</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Absolute</td>
<td>20.96 ± 6.09</td>
<td>0.27 ± 0.07</td>
<td>0.31 ± 0.18</td>
<td>< 0.001</td>
</tr>
<tr>
<td>SLF III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion</td>
<td>3.65 ± 1.08</td>
<td>1.33 ± 0.06</td>
<td>1.54 ± 1.02</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Absolute</td>
<td>21.07 ± 6.40</td>
<td>0.33 ± 0.05</td>
<td>0.46 ± 0.33</td>
<td>< 0.001</td>
</tr>
<tr>
<td>IFOF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion</td>
<td>9.59 ± 1.22</td>
<td>3.80 ± 0.89</td>
<td>3.25 ± 0.94</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Absolute</td>
<td>55.34 ± 8.73</td>
<td>0.95 ± 0.30</td>
<td>0.92 ± 0.33</td>
<td>< 0.001</td>
</tr>
<tr>
<td>AF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion</td>
<td>8.96 ± 1.38</td>
<td>1.58 ± 0.11</td>
<td>1.45 ± 0.13</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Absolute</td>
<td>52.07 ± 10.88</td>
<td>0.39 ± 0.03</td>
<td>0.40 ± 0.05</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Individual frontal association tracts (cingulum, uncinate fasciculus UF, frontal aslant tract FAT, superior longitudinal fasciculus SLF I, II and III, inferior fronto-occipital fasciculus IFOF, and arcuate fasciculus AF) in humans (n = 20), vervets (n = 4) and macaques (n = 5). Descriptive statistics and Games-Howell post hoc comparisons between species are given for proportional (normalized by total volume for each measure) and absolute volumes. See Results for Welch's ANOVA statistics.
Table 6. Proportional and absolute volume measurements of frontal association tracts in *in vivo* macaques

<table>
<thead>
<tr>
<th>Tract</th>
<th>In vivo macaques</th>
<th>Comparison with ex vivo macaques</th>
<th>Comparison with in vivo humans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proportion (%)</td>
<td>Absolute (ml)</td>
<td>Welch’s F</td>
</tr>
<tr>
<td></td>
<td>In vivo</td>
<td>Comparison with ex vivo</td>
<td>df within-groups</td>
</tr>
<tr>
<td></td>
<td>macaques</td>
<td>macaques</td>
<td>groups</td>
</tr>
<tr>
<td>Cingulum</td>
<td>3.65 ± 0.61</td>
<td>0.84</td>
<td>7.18</td>
</tr>
<tr>
<td></td>
<td>1.57 ± 0.18</td>
<td>46.44</td>
<td>8.91</td>
</tr>
<tr>
<td>UF</td>
<td>3.09 ± 0.83</td>
<td>4.18</td>
<td>7.96</td>
</tr>
<tr>
<td></td>
<td>1.34 ± 0.37</td>
<td>19.35</td>
<td>7.87</td>
</tr>
<tr>
<td>FAT</td>
<td>3.20 ± 0.48</td>
<td>2.83</td>
<td>6.21</td>
</tr>
<tr>
<td></td>
<td>1.37 ± 0.12</td>
<td>16.86</td>
<td>4.83</td>
</tr>
<tr>
<td>SLF I</td>
<td>1.75 ± 0.74</td>
<td>1.14</td>
<td>7.68</td>
</tr>
<tr>
<td></td>
<td>0.74 ± 0.24</td>
<td>10.54</td>
<td>8.60</td>
</tr>
<tr>
<td>SLF II</td>
<td>1.29 ± 0.61</td>
<td>0.01</td>
<td>7.95</td>
</tr>
<tr>
<td></td>
<td>0.56 ± 0.28</td>
<td>3.36</td>
<td>8.55</td>
</tr>
<tr>
<td>SLF III</td>
<td>2.35 ± 0.36</td>
<td>1.34</td>
<td>4.42</td>
</tr>
<tr>
<td></td>
<td>1.01 ± 0.16</td>
<td>11.92</td>
<td>5.50</td>
</tr>
<tr>
<td>IFOF</td>
<td>5.76 ± 1.60</td>
<td>8.34</td>
<td>6.08</td>
</tr>
<tr>
<td></td>
<td>2.46 ± 0.55</td>
<td>32.61</td>
<td>8.37</td>
</tr>
</tbody>
</table>

Individual frontal association tracts (cingulum, uncinate fasciculus UF, frontal aslant tract FAT, superior longitudinal fasciculus SLF I, II and III and inferior fronto-occipital fasciculus IFOF) in *in vivo* macaques (*n* = 6). The arcuate fasciculus could not be reconstructed in *in vivo* macaques. Descriptive statistics and F, within-groups degrees of freedom (df) and P values are given. In all cases the between-groups df = 1. Welch’s ANOVA was used to compare *in vivo* with *ex vivo* macaques, and *in vivo* with humans. Results are presented for proportional (normalized by total volume for each measure) and absolute volumes.