
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 28, 2024

Evaluation of land-use and transport network effects on cyclists' route choices in the
Copenhagen Region in value-of-distance space

Prato, Carlo Giacomo; Halldórsdóttir, Katrín; Nielsen, Otto Anker

Published in:
International Journal of Sustainable Transportation

Link to article, DOI:
10.1080/15568318.2018.1437236

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Prato, C. G., Halldórsdóttir, K., & Nielsen, O. A. (2018). Evaluation of land-use and transport network effects on
cyclists' route choices in the Copenhagen Region in value-of-distance space. International Journal of
Sustainable Transportation, 12(10), 770-781. https://doi.org/10.1080/15568318.2018.1437236

https://doi.org/10.1080/15568318.2018.1437236
https://orbit.dtu.dk/en/publications/903f3a73-616b-4d02-806d-dad24d0b3393
https://doi.org/10.1080/15568318.2018.1437236


Evaluation of land-use and transport network effects on cyclists’ route 

choices in the Copenhagen Region in value-of-distance space 
 

Carlo Giacomo PRATO a*, Katrín HALLDÓRSDÓTTIR b, Otto Anker NIELSEN b  

 
a School of Civil Engineering, The University of Queensland,  

St Lucia, 4072 Brisbane, Australia 

 
b Department of Management Engineering, Technical University of Denmark 

Bygningstorvet 116B, 2800 Kgs. Lyngby, Denmark 

 
* Corresponding author 

School of Civil Engineering, The University of Queensland,  

St Lucia, 4072 Brisbane, Australia 

Phone: +61.7.33651569, E-Mail: c.prato@uq.edu.au 



2 

Abstract 

Growing interest in sustainable transportation systems has driven decision-makers 

towards policies and investments aimed at promoting cycling, but little to no effort has 

been made towards incorporating bicycle transport in transport planning models. This 

study contributes towards this direction by estimating a bicycle route choice model in 

value-of-distance space from a large sample of 3384 cycling trips that were traced with 

GPS devices in the Copenhagen Region. The novelty of this study lies in (i) observing 

cyclists’ behaviour in a cycling-oriented country, (ii) exploiting rich data about the 

cycling environment, (iii) estimating the model in value-of-distance rather than 

preference space, and (iv) not focusing only on preferences for traditional variables 

(e.g., distance, turns, hilliness, intersections, motorised road characteristics), but also on 

perceptions and preferences for bicycle facilities (e.g., bicycle lanes, bicycle paths, 

bicycle traces) and land-use designations (e.g., residential, industrial, sports, scenic 

areas). The findings from the model show that: (i) cyclists exhibit heterogeneous 

preferences for avoiding right and left turns, cycling the wrong way, using roundabouts 

and bridges, and cycling alongside residential and scenic areas; (ii) cyclists dislike 

cycling on unpaved and hilly surfaces and alongside larger roads; (iii) cyclists have clear 

perceptions about different types of bicycle facility, with a preference for bicycle lanes 

and segregated paths; (iv) cyclists have clear perceptions about land-use designations, 

with a preference for cycling alongside sports and scenic areas; (v) time-of-day and air 

temperature contribute to the perceptions of cyclists and their preferences for bicycle 

facilities and land-use designations.  

Keywords: Cycling; Route choice; Land-use; Bicycle infrastructure; Doubly stochastic 

generation function; Generalised mixed path size logit. 
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1. Introduction 

In recent years, growing interest in sustainable transportation systems has driven 

decision-makers towards policies and investments aimed at promoting cycling. 

However, while notable effort has been posed towards representing motorised 

transport in planning models, little to no effort has been made towards incorporating 

bicycle transport in those models with the consequent unavailability to decision-makers 

of quantitative forecasts of the impact of those policies and investments. This study 

contributes towards the incorporation of cycling into planning models by providing 

knowledge about cyclists’ preferences not only in terms of traditional variables (e.g., 

distance, left turns, right turns, hilliness, road characteristics), but also in terms of 

bicycle facilities and land-use designations that decision-makers could invest and decide 

upon. Moreover, this study proposes rates of substitutions that express the preferences 

for various factors as a measure per unit of distance via the estimation of a model in 

value-of-distance space. 

Existing literature on cyclists’ route choice behaviour is based on either stated 

preferences (SP) data (e.g., Bovy & Bradley, 1985; Axhausen & Smith, 1986; Hopkinson 

& Wardman, 1996; Stinson & Bhat, 2003; Krizek, 2006; Hunt & Abraham, 2007; Tilahun 

et al., 2007; Sener et al., 2009) or revealed preferences (RP) data (e.g., Aultman-Hall et 

al., 1997; Shafizadeh & Niemeier, 1997; Hyodo et al., 2000; Howard & Burns, 2001; 

Larsen et al., 2013; Snizek et al., 2013; Yeboah & Alvanides, 2015; Zimmerman et al., 

2017). As SP data bear the advantage of controlling for the experimental environment 

but the disadvantage of not observing actual behaviour, large-scale RP data are to be 

preferred because the benefit of recording cyclists’ actual preferences surpasses 

possible technical problems related to tracing and map-matching, as well as possible 

modelling issues associated with generating plausible alternative routes for model 

estimation. When combined with the formulation and estimation of route choice 

models, large-scale RP studies create the opportunity for providing quantitative 

forecasts of cyclists’ behaviour.  

Large-scale RP studies on cyclists’ route choices have been performed in cities with 

both a cycling-oriented culture like Zurich (Menghini et al., 2010) as well as North 

American cities with a car-oriented culture like San Francisco (Hood et al., 2011), 

Portland (Broach et al., 2012), Waterloo (Casello & Usyukov, 2014), and Eugene 

(Zimmermann et al., 2017). These studies revealed that cyclists have a preference to a 
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greater extent for shorter distances (Menghini et al., 2010; Hood et al., 2011; Broach et 

al., 2012; Casello & Usyukov, 2014; Zimmermann et al., 2017), and to a lesser extent for 

lower gradients (Menghini et al., 2010; Hood et al., 2011; Broach et al., 2012; Casello & 

Usyukov, 2014; Zimmermann et al., 2017), fewer traffic lights (Menghini et al., 2010; 

Broach et al., 2012), lower numbers of turns (Broach et al., 2012; Zimmermann et al., 

2017) and shorter distances cycling the wrong way in one-way streets (Hood et al., 

2011). These studies uncovered also that cyclists have a preference for designated lanes 

rather than paths in San Francisco (Hood et al., 2011), for segregated paths and 

dedicated bridges rather than lanes in Portland (Broach et al., 2012), for lanes and 

boulevards dedicated to cycling in Eugene (Zimmermann et al., 2017), and more in 

general for marked routes in Zurich (Menghini et al., 2011). While it is understandable 

that distance was found to be the most relevant factor for cyclists’ route choice 

(especially for commuters), it is plausible that other factors emerged as less relevant or 

completely irrelevant because of the samples being most likely affected by self-selection 

bias (e.g., cycling enthusiasts) and the environment description being most likely 

impaired from sufficient observations of bicycle infrastructure to have significant 

estimates. It should be noted that a recent study proposed a bi-objective optimisation 

model where travel time was considered alongside the suitability of route to cycling 

(Ehrgott et al., 2012), a qualitative measure of how a route would appeal and 

consequently enter the route choice set of heterogeneous cyclists. Moreover, evidence 

from previous RP studies (Menghini et al., 2010; Hood et al., 2011; Broach et al., 2012; 

Casello & Usyukov, 2014; Zimmermann et al., 2017) suggested that cost functions 

containing variables other than travel time should be considered. However, route choice 

models were not estimated with these variables. 

This study presents a large-scale RP study on cyclists’ route choices from the 

perspective of an established cycling city. With high cycling market shares that reach 

about 37% of the commuting trips (Pucher & Buehler, 2012) and a highly developed 

and connected bicycle network from significant investments in dedicated infrastructure, 

the Copenhagen Region offers the ideal setting for a large-scale study aimed at 

understanding the effects of infrastructure and land-use on the choices of cyclists across 

the entire population. Accordingly, this study expands the existing body of literature by 

formulating and estimating a route choice model of cyclists in the Copenhagen Region. A 

generalised mixed path size logit model was estimated to uncover the determinants of 
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3384 cycling route choices while accounting for heterogeneity across the 291 cyclists, 

preference consistency within the cyclists, and similarities across routes. Specifically, 

the route choice model was not estimated in the traditional preference space, but rather 

in value-of-distance (VoD) space in order to evaluate the contribution of each factor per 

unit of distance. Notably, the estimation in VoD space echoes the estimation in 

willingness-to-pay (WTP) space (or value-of-time space) in that the model is estimated 

while accounting for the ratio with respect to the distance parameter (for details about 

WTP space model estimation, see Train and Weeks, 2005; Scarpa et al., 2008; Thiene 

and Scarpa, 2009; Hensher and Greene, 2011).  

Findings might be useful for emerging cycling cities when looking in particular at the 

effects of infrastructure and land-use on the cyclists’ route choices. This study analysed 

a rich set of bicycle network attributes such as distance, number of turns, number and 

type of intersections (e.g., give way, stops, roundabouts, traffic lights), gradient and 

distance cycling in the wrong way. Alongside the bicycle network, this study 

investigated a set of motorised network attributes describing road type, number of 

traffic lanes, speed limits, bridges and tunnels. Most relevantly, this study looked at a 

detailed set of bicycle infrastructure attributes, such as facility type (i.e., segregated 

bicycle path, bicycle lane, bicycle path in own traces, footpath, and steps), bridge 

availability, and surface type, as well as land-use attributes along the route that have 

been shown relevant to positive cycling experiences (e.g., Snizek et al., 2013), but have 

not been incorporated in route choice models. Last, this study checked whether 

preferences in the route choice relate to personal attributes (e.g., gender, age, average 

speed profile), trip related attributes (e.g., trip purpose, time-of-day, type of day, 

darkness), and weather attributes (e.g., temperature, sunshine, wind, precipitation).  

The remainder of this paper is structured as follows. Section 2 describes the 

methodology for collecting and processing GPS data as well as formulating and 

estimating the generalised mixed path size logit in VoD space for the representation of 

cyclists’ route choice behaviour. Section 3 illustrates the case-study with emphasis on 

the bicycle network and the sample characteristics. Section 4 presents the estimation 

results and illustrates the findings of the study. Section 5 draws conclusions from this 

large-scale RP study.  
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2. Methods 

2.1 GPS data collection and processing 

The data collection relied on GPS devices that were sent to a sample of participants 

in the Danish National Travel Survey (in Danish, TU Transportvaneundersøgelsen) that 

collects travel diaries of a representative sample of the Danish population between 10 

and 84 years old via the administration of about 1000 interviews per month. The 

sampling criteria were that the respondents participated in the TU survey within 6 to 12 

months prior to data collection, reported the use of the bicycle in their travel diary, lived 

in the Copenhagen Region, and were at least 16 years old (according to privacy 

regulations imposed by the Danish Data Protection Agency). Moreover, the sampling 

occurred over three rounds with the intention of obtaining a representative sample of 

the cyclists in the TU survey as well as covering different seasons: (i) from October to 

December 2012, (ii) from June to July 2013, and (iii) from August to October 2013. In 

addition to the GPS traces over a period of eight days, the participants were invited to 

fill a questionnaire about their socio-economic characteristics and a travel diary for one 

of the days they were wearing the GPS device. 

Extensive data processing was required to obtain data that could be suitable for 

cyclists’ route choice models, since the GPS traces were collected for all modes of 

transport. The data processing was carried out according to a four-step procedure 

(Schüssler and Axhausen, 2009): (i) GPS data cleaning to remove systematic and 

random errors from the data; (ii) trip and activity identification where the GPS device 

had been stationary and/or the spatial density of observations had been high for a 

period of time; (iii) trip segmentation into single-mode trip legs; (iv) mode 

identification with fuzzy logic rules that were adapted and extended to the travel 

behaviour of the Danish population (Rasmussen et al., 2015). The data processing 

method was validated by comparing the resulting trips and modes with the collected 

travel diaries. 

The data processing resulted in the identification of bicycle trips that were mapped 

to a high-resolution bicycle network using the map-matching algorithm developed by 

Nielsen and Jørgensen (2004). Map-matching led to identify trips with the exclusion of 

cases where no GPS traces could be map-matched because of activities scattered around 

that were wrongly classified as trips or large deviations (over 20%) between the 

distances calculated according to the map-matching and the ones calculated from the 
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processed GPS traces. The characteristics of the identified bicycle trips were defined 

according to the attributes of the bicycle network and then route choice models were 

formulated and estimated on the basis of these observed trips. 

2.2 Choice set generation 

The first stage of modelling route choice behaviour of cyclists was the generation of 

plausible alternatives to the observed routes. It is well known that model estimates are 

strongly influenced by choice set size and composition and that biased parameter 

estimates and choice probabilities are possible consequences of an incorrectly specified 

choice set (see, e.g., Bekhor et al., 2006; Prato and Bekhor, 2007; Bliemer and Bovy, 

2008; Rasmussen et al., 2017). As enumerating all the paths in a highly-detailed 

network is unrealistic, Halldórsdóttir et al. (2014) tested three choice set generation 

methods suitable to the task of generating relevant alternatives: (i) breadth first search 

on link elimination (BSF-LE) (Rieser-Schüssler et al., 2012); (ii) a doubly stochastic 

generation function (DSGF) (Nielsen, 2000; Bovy and Fiorenzo-Catalano, 2007); (iii) a 

branch & bound algorithm (B&B) (Hoogendoorn-Lanser et al., 2006; Prato and Bekhor, 

2006). As detailed by Halldórsdóttir et al. (2014), the tests focused on different multi-

attribute cost functions that considered not only route length or time, but also bicycle-

specific factors such as road types, bicycle infrastructure types, and land-use 

designations. The tests showed a significant increase in performances of the choice set 

generation methods when extending the cost functions to factors other than travel time 

and specific to the bicycle context.  

This study built on those tests by generating the alternatives to the observed routes 

via the best performing method, namely the DSGF that accounts for variations in 

travellers’ link cost and differences in travellers’ attribute preferences by drawing 

random costs and random parameters from probability distributions. Moreover, this 

study built on those tests by searching for the best specification of the cost function that 

would maximise the coverage of the observed routes (Ramming, 2002) in the high-

resolution network, namely maximise the number of observed routes that were 

reproduced at least once at the 80% overlap level in the generation process (see, e.g., 

Ramming, 2002; Prato and Bekhor, 2007; Rasmussen et al., 2017).  

The cost function used for the DSGF in this study extended the one presented by 

Halldórsdóttir et al. (2014) in that it included information regarding different bicycle 

path types (i.e., roads without any bicycle infrastructure, roads with bicycle lanes, roads 
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with segregated bicycle paths, bicycle paths in own trace, footpaths in own trace, steps), 

surface type (i.e., paved, unpaved), cycling the wrong way with respect to the motorised 

traffic in a one-way street (i.e., yes, no), and land-use designation (i.e., scenic paths, non-

scenic paths). It should be noted that, in the choice set generation, scenic paths were 

alongside coast, lake, wetland, stream, sand, heath, forests, and parks. Accordingly, the 

link cost function in this study was defined as follows: 

𝐶𝐶𝑎𝑎 = 𝛽𝛽𝑇𝑇𝑇𝑇𝑎𝑎 + 𝛽𝛽𝐷𝐷𝐷𝐷𝑎𝑎 + ∑ �𝛽𝛽𝑃𝑃𝑘𝑘𝑃𝑃𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎�
𝐾𝐾
𝑘𝑘=1 + ∑ �𝛽𝛽𝑆𝑆ℎ𝑆𝑆𝑎𝑎ℎ𝐷𝐷𝑎𝑎�

𝐻𝐻
ℎ=1 + 𝛽𝛽𝑈𝑈𝑈𝑈𝑎𝑎𝐷𝐷𝑎𝑎 + 𝛽𝛽𝑊𝑊𝑊𝑊𝑎𝑎𝐷𝐷𝑎𝑎 + 𝜀𝜀𝑎𝑎 (1) 

where Ta is the travel time on link a, Da is the length of link a, Pak is equal to 1 when link 

a is of path type k (k = 1,…,K) and 0 otherwise, Sah is equal to 1 when link a has surface 

type h (h = 1,…,H) and 0 otherwise, Ua is equal to 1 when link a has a scenic land-use on 

its right-hand side, Wa is equal to 1 when link a is in the wrong way with respect to the 

traffic and 0 otherwise, and εa is an error term associated with link a. It should be noted 

that Copenhagen has a right-hand side driving rule, which means that bicycle paths are 

on the right-hand side of the road with respect to the direction of traffic. In the DSGF, 

the parameters related to each variable (βT, βD, βPk for each path type k, βSh for each 

surface type h, βU, and βW) were coefficients to be drawn from random distributions to 

express the heterogeneity in cyclists’ perceptions of the attributes of the routes, and the 

error term εa was a coefficient to be drawn from a random distribution to express the 

heterogeneity in cyclists’ perceptions of the overall cost. The selection of the 

distributions and their parameters was imposed by an iterative process searching for 

the highest coverage of the observed routes (see, e.g., Ramming, 2002; Prato and 

Bekhor, 2007; Rasmussen et al., 2017).  

2.3 Model formulation and estimation  

The second stage of modelling route choice behaviour of cyclists was the 

specification of the utility function and the model itself. Given the focus in this study not 

only on preferences for traditional variables (e.g., distance, turns, hilliness, 

intersections, motorised road characteristics), but also on preferences for bicycle 

facilities and land-use designations, a utility function for the alternative routes was 

defined to exploit the rich amount of information about the cycling environment. 

Moreover, given the evident relevance of distance in cycling route choices (Menghini et 

al., 2010; Hood et al., 2011; Broach et al., 2012; Casello & Usyukov, 2014; Zimmermann 
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et al., 2017), a model formulation was chosen to evaluate the contribution of other 

factors with respect to the unit of distance.  

Accordingly, the simplest specification of the utility Unjt associated by cyclist n with 

the alternative route j in a choice set of J alternatives was defined as: 

 𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜷𝜷𝑛𝑛′ 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜹𝜹′𝒛𝒛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛 (2) 

where the vector xnjt contains a subset of characteristics of alternative route j as 

perceived by cyclist n in choice situation t, for which the preferences are expressed by a 

vector βn of random parameters, and the vector znjt contains a subset of characteristics 

of alternative route j as perceived by cyclist n in choice situation t, for which the 

preferences are expressed by a vector δ of fixed parameters. The error terms εnjt are 

extreme value distributed and allow capturing the panel effect of repeated observations 

t for the same cyclist n.  

The generalised mixed logit model (Fiebig et al., 2009) separated out the possibility 

that taste heterogeneity is independent of scale heterogeneity, and that taste 

heterogeneity is proportional to scale heterogeneity, by defining the random 

parameters as follows: 

 
𝜷𝜷𝑛𝑛′ = 𝜎𝜎𝑛𝑛𝜷𝜷 + [𝛾𝛾 + 𝜎𝜎𝑛𝑛(1 − 𝛾𝛾)]𝜞𝜞𝝂𝝂𝑛𝑛

𝜎𝜎𝑛𝑛 = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝜏𝜏2 2⁄ + 𝜏𝜏𝜔𝜔𝑛𝑛)  (3) 

where β is a vector that provides the average values of the preference parameters in 

vector βn, vn is a vector of random variables that provide the stochastic element of the 

preference parameters, Γ is a lower triangular matrix that provides the standard 

deviations and covariances of βn, γ is a weighting parameter that expresses how the 

variance of residual taste heterogeneity varies with scale (0 ≤ γ ≤ 1), σn is the individual 

specific standard deviation of the idiosyncratic error term, wn is the individual specific 

taste preference resulting in taste heterogeneity, and τ is the coefficient on the 

unobserved scale heterogeneity. It was assumed without loss of generality that 

𝑣𝑣𝑣𝑣𝑣𝑣[𝝂𝝂𝑛𝑛] = 𝑰𝑰, so that 𝑣𝑣𝑎𝑎𝑎𝑎[𝜷𝜷𝑛𝑛] = 𝜞𝜞𝜞𝜞′ (Fiebig et al., 2009, Hensher and Greene, 2011), and 

that βn is unchanged for the same cyclist n between different choice situations t. 

Given the interest in estimating a model in VoD space, it was assumed that the utility 

is separable in distance dnjt (with preference parameter 𝜆𝜆𝑛𝑛) and other non-distance 

characteristics:  

 𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜆𝜆𝑛𝑛𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜷𝜷𝑛𝑛′ 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜹𝜹′𝒛𝒛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛  (4) 



10 

Moreover, given the similarity problem in route choice, it was assumed that similarity 

across alternative routes is captured by a path size term (Ben-Akiva and Bierlaire, 1999; 

Prato, 2009): 

 𝑝𝑝𝑝𝑝𝑗𝑗 = −∑ �𝑑𝑑𝑎𝑎
𝑑𝑑𝑗𝑗
𝑙𝑙𝑙𝑙 ∑ 𝛿𝛿𝑎𝑎𝑎𝑎𝑗𝑗∈𝐶𝐶𝑛𝑛 �𝑎𝑎∈𝛷𝛷𝑗𝑗  (5) 

where da is the length of link a, dj is the length of route j, Φj is the set of links composing 

route j, and δaj is the link-route incidence dummy (equal to one if link a is part of Φj and 

zero otherwise). It should be noted that a path size term psnjt was then calculated for 

each choice situation t of each cyclist n. 

Accordingly, it was possible to specify the utility in eq. (4) in VoD space so that 

parameters could be obtained as direct estimates of the marginal rates of substitution 

between the parameters of the observed attributes and the parameter of the distance: 

 
𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜆𝜆𝑛𝑛�𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 + (1 𝜆𝜆𝑛𝑛⁄ )𝜷𝜷𝑛𝑛′ 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 + (1 𝜆𝜆𝑛𝑛⁄ )𝜹𝜹′𝒛𝒛𝑛𝑛𝑛𝑛𝑛𝑛� + 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛

= 𝜆𝜆𝑛𝑛�𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜽𝜽𝑛𝑛′ 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 + 𝝋𝝋′𝒛𝒛𝑛𝑛𝑛𝑛𝑛𝑛� + 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛
 (6) 

As suggested for the estimation in WTP space (Thiene and Scarpa, 2009; Hensher and 

Greene, 2011), the model in VoD space was obtained by setting γ = 0, defining the 

parameter λn = λd exp (λ0 + τwn) where the coefficient λd for the preference for distance 

is equal to 1, making the parameter λn the normalising constant in the VoD space 

representation, and relaxing the restriction λ0 = -τ2/2.  

Accordingly, the model in VoD space was estimated by using a form of the 

generalised mixed logit model where the probability Pnit of cyclist n choosing route i 

among the alternative routes j in situation t is expressed as follows (Hensher and 

Greene, 2011):     

 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑒𝑒𝑒𝑒𝑒𝑒�𝜆𝜆𝑛𝑛�𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛+𝜽𝜽𝑛𝑛′ 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛+𝝋𝝋′𝒛𝒛𝑛𝑛𝑛𝑛𝑛𝑛�+𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛�

∑ 𝑒𝑒𝑒𝑒𝑒𝑒�𝜆𝜆𝑛𝑛�𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛+𝜽𝜽𝑛𝑛′ 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛+𝝋𝝋′𝒛𝒛𝑛𝑛𝑛𝑛𝑛𝑛�+𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛�
𝐽𝐽𝑛𝑛𝑛𝑛
𝑗𝑗=1

 (7) 

where the estimated parameter βps does not belong to the VoD space. The model was 

estimated in NLogit 5 by simulating the log-likelihood function (Greene and Hensher, 

2010): 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �1
𝑅𝑅
∑ ∏ ∏ � 𝑒𝑒𝑒𝑒𝑒𝑒�𝜆𝜆𝑛𝑛�𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛+𝜽𝜽𝑛𝑛𝑛𝑛𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛+𝝋𝝋′𝒛𝒛𝑛𝑛𝑛𝑛𝑛𝑛�+𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛�

∑ 𝑒𝑒𝑒𝑒𝑒𝑒�𝜆𝜆𝑛𝑛�𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛+𝜽𝜽𝑛𝑛𝑛𝑛𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛+𝝋𝝋′𝒛𝒛𝑛𝑛𝑛𝑛𝑛𝑛�+𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛�
𝐽𝐽𝑛𝑛𝑛𝑛
𝑗𝑗=1

�
𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛

𝐽𝐽𝑛𝑛𝑛𝑛
𝑖𝑖=1

𝑇𝑇𝑛𝑛
𝑡𝑡=1

𝑅𝑅
𝑟𝑟=1 �𝑁𝑁

𝑛𝑛=1  (8) 

where dnit is equal to 1 if cyclist n chooses route i in choice situation t and 0 otherwise, 

𝜽𝜽𝑛𝑛𝑛𝑛 are simulated draws of 𝜽𝜽𝑛𝑛 where the parameters are expressed as a function of 

draws of σnr and vnr under the restriction that γ = 0. It should be noted that there are N 
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cyclists and R draws are extracted for Tn choice situations for each cyclist n and Jnt 

alternatives for each choice situation t for each cyclist n. 

3. Case-study 

3.1 Data processing 

The acceptance rate from the participants in the TU survey that were invited to wear 

a GPS device was about 65%, and a total of 318 cyclists from the Copenhagen Region 

were provided with the devices for an average of eight days. As planned, the 318 cyclists 

filled a travel diary and answered a socio-economic questionnaire. 

The four-step data processing cleaned the GPS traces from systematic errors, 

identified activities and trips, and segmented the trips by single modes. At this third 

step, a total of 6,378,651 GPS points and 14,557 single-mode stages were identified. 

After mode identification, a total of 2,681,108 GPS points and 5,027 bicycle trips were 

retained for further analysis. Then, the map-matching procedure mapped these trips to 

the high-resolution bicycle network prepared for this study from the combination of 

various sources: the two topographic networks TOP10DK (Kort & Matrikelstyrelsen, 

2001) and FOT-kort10 (FOT-Kort10, 2010), the network of the Danish National 

Transport Model (Rich et al., 2010), the OpenStreetMap network (OSM, 2015), and the 

NAVTEQ network (NAVTEQ, 2010). The compilation of the sources allowed to create a 

high-resolution geographic network of roads and paths used by cyclists, comprising 

361,053 directional links and 268,762 nodes for the study area as illustrated in figure 1. 

Additional details on the bicycle network are provided by Halldórsdóttir et al. (2014) 

and Halldórsdóttir (2015). 

The map-matching procedure allowed identifying 3,443 trips from 291 cyclists for 

further analysis. The large number of removed trips was related to the requirement of 

having high confidence for matching the trips to the network, and Rasmussen et al. 

(2015) showed that the confidence increased from 69% to 91% by using more 

restrictive rules that, in turn, identified with certainty a lower number of trips. The 

richness of the bicycle network allowed calculating the attributes for the routes: 

network attributes (e.g., distance, number of turns, number and type of intersections, 

gradient, distance cycling in the wrong way); road attributes (e.g., road type, number of 

traffic lanes, speed limits, bridges, tunnels); bicycle attributes (e.g., bicycle 
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infrastructure type, bridge availability, surface type); land-use attributes (e.g., high 

residential, low residential, industrial, sports, park, forest).  

  
Figure 1: Bicycle network of the Copenhagen Region, with overview of the region (left) and detail of the 

Copenhagen city centre (right) 

Data from the Danish Meteorological Institute (DMI) were joined with the bicycle 

trips in order to grasp whether differences in route preferences existed according to 

different weather attributes (i.e., temperature, sunshine, wind, precipitation).  

The sample of 291 cyclists was almost equally divided in gender (45.0% males and 

55.0% females) and quite widespread distributed in age (see figure 2). It would appear 

that the sample of cyclists did not suffer from self-selection bias as it compared 

reasonably well with the sample of cyclists participating in the TU survey (which in turn 

is representative of the Danish population). Commuting trips (31.8%) were identified in 

the peak hours between 7am and 9am as well as between 3pm and 6pm, while other 

trips (68.2%) were observed in the off-peak hours. The majority of the trips (80.6%) 

were in weekdays rather than weekends, and an even greater majority (85.7%) were in 

daylight rather than darkness. Additional details on the sample are provided by 

Halldórsdóttir (2015). 
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Figure 2: Age distribution of the 291 cyclists 

3.2 Generated choice sets 

The DSGF method with the cost function in eq. (1) was applied by defining the 

distributions of the beta parameters and the error term εa in order to obtain the 

maximum coverage of the observed routes (see, e.g., Ramming, 2002; Prato and Bekhor, 

2007; Rasmussen et al., 2017) and evaluating graphically the stochasticity of the 

generated alternatives.  

The maximum coverage, calculated as the percentage of observations for which the 

best generated route overlaps at least a certain threshold with the observed route 

(Ramming, 2002), was obtained with the beta parameters being log-normally 

distributed and the error term εa being gamma distributed with the distribution 

parameters presented in table 1. It should be noted that the distribution of the error 

term εa was chosen to be gamma also to allow for the error terms in the link to be 

additive over the route (for a discussion, see Prato, 2009).  

For model estimation purposes, observations where the observed route was 

reproduced at least at the 80% overlap threshold were considered consistent with the 

observed behaviour (e.g., Ramming, 2002; Prato and Bekhor, 2007) and the chosen 

routes were added to the choice set when they were not reproduced at the 100% 

overlap threshold. The maximum coverage with the presented distribution parameters 

for the DSGF method replicated over 80% of the observed routes with an 80% coverage 
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threshold and generated between 1 and 100 alternatives to the observed route (mean = 

65.6, st. dev. = 40.2). The 59 observations without alternatives to the observed one were 

discarded and, accordingly, the number of bicycle trips considered for model estimation 

was 3384 for the 291 cyclists.  
Table 1: Predefined cost parameters, plus the added scale parameters 

Parameter Variable Distribution Mean Variance 
βDS Length No distribution 1 0 
βTT Free time Log-normal 1 0.25 
ε Error term Gamma  0* 2 
βPT1 Road with no bicycle infrastructure Log-normal 1.25 1.5625 
βPT2 Road with bicycle lane Log-normal 0.75 0.5625 
βPT3 Road with segregated bicycle path Log-normal 0.5 0.25 
βPT4 Bicycle path in own trace Log-normal 0.5 0.25 
βPT5 Footpath in own trace Log-normal 1.5 2.25 
βPT6 Steps Log-normal 1.5 2.25 
βST1 Paved surface Log-normal 0.75 0.5625 
βST2 Unpaved surface Log-normal 1.25 1.5625 
βLU1 Scenic land-use (e.g., park, forest, coast) Log-normal 0.5 0.25 
βLU2 Non-scenic land-use Log-normal 1.5 2.25 
βWW Cycling the wrong way in one-way streets Log-normal 1.5 2.25 

Note: * The input is set to zero in the program in order to enable the program to centre the gamma distribution to the 
mean cost obtained with equation 1. 

Table 2 presents means and standard deviations of the network and land-use 

attributes for the chosen and the alternative routes. The chosen routes appear on 

average shorter and with fewer turns, lower gradient, and fewer intersections. It should 

be noted that almost all the variables are defined in relation to the distance (e.g., 

distance on a bicycle lane, distance alongside a road with two lanes, distance alongside a 

high residential area) because of the intention to estimate the model in VoD space. The 

network variables were defined according to the bicycle infrastructure on the road, 

while the land-use designations were divided into three categories according to being 

on the left-hand side, the right-hand side, or both sides of the road.  

Table 2: Variable description of the network and land-use attributes for the chosen and alternative routes 

   Chosen  
routes   Alternative 

routes 
Variable Unit mean st. dev.   mean st. dev. 
Network attributes            
Distance [km] 3.759 4.659  5.374 5.496 
Wrong way [km] 0.070 0.261   0.092 0.252 
Direction       

Left turns - 2.993 4.053  6.436 6.427 
Right turns - 2.711 2.953   4.901 3.914 
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Bicycle specific attributes       
Bicycle infrastructure type       

Motorised road without bicycle facilities [km] 0.927 1.363  1.326 1.722 
Motorised road with bicycle lane [km] 0.150 0.374  0.209 0.450 
Motorised road with segregated bicycle path [km] 2.326 3.627  2.643 3.620 
Bicycle path in own trace [km] 0.311 0.958  0.955 2.243 
Footpath in own trace [km] 0.045 0.193  0.235 0.583 
Steps [km] 0.001 0.008   0.005 0.026 
Bicycle facility type       

Bicycle bridge [km] 0.002 0.025   0.005 0.038 
Motorised traffic bridge crossing water [km] 0.015 0.068  0.030 0.099 
Motorised traffic tunnel [km] 0.000 0.010   0.000 0.011 
Cumulative elevation gain       

0-10 meters/km [km] 0.004 0.006  0.006 0.006 
10-35 meters/km [km] 0.009 0.013  0.013 0.016 
35-50 meters/km [km] 0.002 0.003  0.003 0.005 
Above 50 meters/km [km] 0.003 0.007   0.007 0.013 
Surface type       

Paved [km] 3.658 4.540  4.921 5.007 
Cobblestone [km] 0.006 0.077  0.037 0.217 
Unpaved [km] 0.090 0.439  0.400 1.157 
Number of intersections       

Give way [no] 0.617 1.743  0.756 1.908 
Roundabout [no] 0.518 2.093  0.741 2.480 
Traffic light [no] 7.913 11.794   9.629 11.753 
Motorised network attributes       
Motorised road type       

Large motorised roads [km] 1.847 3.390  2.027 3.142 
Medium motorised roads [km] 0.603 1.198  0.686 1.125 
Large local roads [km] 0.006 0.091  0.008 0.086 
Small local roads [km] 1.266 1.745  2.604 3.294 
Traffic calmed roads [km] 0.037 0.187   0.050 0.215 
Motorised free speed       

Below 11 km/h [km] 0.308 0.866  0.870 1.889 
11-30 km/h [km] 0.293 0.634  0.641 1.040 
31-50 km/h [km] 2.478 3.021  3.030 3.047 
51-70 km/h [km] 0.613 1.729  0.736 1.654 
71-90 km/h [km] 0.067 0.769  0.096 0.695 
91-100 km/h [km] 0.000 0.000  0.001 0.029 
Over 100 km/h [km] 0.000 0.000   0.000 0.016 
Number of motorised traffic lanes            
1 lane [km] 0.010 0.073  0.009 0.063 
2 lanes [km] 2.937 3.631  3.810 3.713 
3 lanes [km] 0.045 0.159  0.043 0.149 
4 lanes [km] 0.262 1.172  0.339 1.114 
5 lanes [km] 0.047 0.209  0.065 0.242 
6 lanes [km] 0.086 0.426  0.138 0.535 
7 lanes [km] 0.000 0.000  0.000 0.000 
8 lanes [km] 0.007 0.054   0.008 0.057 
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Land-use designations       
High residential area on the right side [km] 0.497 0.804  0.722 1.023 
High residential area on the left side [km] 0.496 0.809  0.723 1.025 
High residential area on both sides [km] 1.413 1.927   1.726 1.866 
Low residential area on the right side [km] 0.509 0.981  0.730 1.214 
Low residential area on the left side [km] 0.469 0.904  0.681 1.153 
Low residential area on both sides [km] 0.787 1.596   1.067 1.709 
Industry on the right side [km] 0.251 0.588  0.312 0.624 
Industry on the left side [km] 0.248 0.585  0.306 0.612 
Industry on both sides [km] 0.164 0.516   0.222 0.555 
Technical on the right side [km] 0.173 0.446  0.209 0.420 
Technical on the left side [km] 0.166 0.415  0.209 0.418 
Technical on both sides [km] 0.104 0.283   0.150 0.338 
Park on the right side [km] 0.333 0.618  0.555 0.900 
Park on the left side [km] 0.366 0.628  0.607 0.919 
Park on both sides [km] 0.223 0.711   0.636 1.262 
Sport on the right side [km] 0.056 0.205  0.112 0.326 
Sport on the left side [km] 0.054 0.183  0.101 0.297 
Sport on both sides [km] 0.017 0.123   0.021 0.123 
Forest on the right side [km] 0.155 0.529  0.275 0.719 
Forest on the left side [km] 0.150 0.540  0.268 0.696 
Forest on both sides [km] 0.146 0.581   0.355 1.144 
Scenic on the right side [km] 0.185 0.540  0.346 0.794 
Scenic on the left side [km] 0.154 0.473  0.315 0.744 
Scenic on both sides [km] 0.095 0.315   0.168 0.462 

 

4.2 Route choice model estimates 

Given the observed routes from the data processing and the alternative routes from 

the choice set generation, generalised mixed logit models in VoD space were estimated 

with iterative testing of variable significance for both single attributes and their 

combinations. The asymptotic t-test was used to verify whether parameter estimates 

were different from zero at the 95% confidence level, the t-test for estimate differences 

was employed to decide whether parameter estimates were to be aggregated for 

various attributes, and correlation values were checked to observe whether parameter 

estimates were to be excluded because of multi-collinearity. Distributions were tested 

for the various attributes in the utility function: bounded distributions (e.g., lognormal, 

constrained triangular) were considered for attributes for which cyclists were expected 

to have a clear negative preference (e.g., number of turns, elevation gain); unbounded 

distributions (e.g., normal, triangular) were contemplated for attributes for which 

different cyclists could have different preferences (e.g., cycling the wrong way, land-use 

designations). 
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Table 3 presents the results for the best model specification where the parameter 

estimates are significantly different from zero at the 95% confidence level while 

accounting for parameter combinations and attribute interactions. Among the 

parameter combinations, attributes that did not exhibit significantly different estimates 

and hence were combined were bicycle lanes and paths, roads with 3 and 4 lanes, roads 

with 5 lanes or more, industrial and technical areas, as well as park and forest and 

scenic areas. Taste heterogeneity across cyclists was found significant for number of 

turns (lognormal distributions), cycling the wrong way (normal distribution), number 

of roundabouts (normal distribution), cycling on a motorised bridge (normal 

distribution), cycling alongside sports areas both on one and two sides of the road 

(normal distribution), cycling alongside scenic areas with medium to high temperature 

both on one and two sides of the road (normal distribution). Parameters expressing the 

taste heterogeneity are reported with the mean and the standard deviation of their 

respective distributions. Notably, a likelihood ratio test between the generalised mixed 

logit model in VoD scale (LogL = -8,685.44, number of parameters = 46) and the equally 

specified mixed logit model in preference space (LogL = -8,543.65, number of 

parameters = 48) shows that the former is to be preferred over the latter (LRT = 283.58, 

df = 2, p = 0.0000). Moreover, scale heterogeneity is observed as the variance parameter 

for scale is equal to 0.461 and significant at the 99% confidence level. Lastly, the 

correction for the similarity across alternative routes has the expected positive sign 

indicating that utility is reduced for similar routes, and it has a value slightly higher than 

the 1 that is theoretically expected (Ben-Akiva and Bierlaire, 1999).  

It should be noted that table 3 presents the estimates while fixing the estimate of the 

distance equal to 1 in mean and 0 in standard deviation. This means that the 

interpretation of the estimates (namely the rates of substitutions) needs to consider 

that a positive (negative) sign implies that the attribute contributes to a perception of a 

route being longer (shorter) per unit of distance. For example, cycling in the wrong way 

has a parameter estimate with a mean of 2.412 which suggests that, on average, the 

route is perceived 241.2% longer when cyclists choose to ride their bicycle against the 

motorised traffic. Similarly, cycling on bicycle lanes and paths in the peak hours has a 

parameter estimate of -0.249 which suggests that the route is perceived 24.9% shorter 

when cyclists choose to ride their bicycle on lanes and paths in those hours. 
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Table 3: Model estimates of the generalised mixed logit in VoD space 

Parameter estimate  st. err. t-test  p 
Network attributes        
Distance (mean) 1.000 - - - 
Distance (st. dev.) 0.000 - - - 
Wrong way (mean, normal distribution) 2.412 0.257 9.40 0.000 
Wrong way (st. dev., normal distribution) 1.597 0.196 8.14 0.000 
Direction     
Straight - - - - 
Left (mean, lognormal distribution) 0.990 0.066 14.89 0.000 
Left (st. dev., lognormal distribution) 0.508 0.086 5.93 0.000 
Right (mean, lognormal distribution) 1.668 0.070 23.90 0.000 
Right (st.dev., lognormal distribution) 0.565 0.101 5.57 0.000 
Cumulative elevation gain     
0-10 meters/km - - - - 
10-35 meters/km 1.841 0.764 2.41 0.016 
35-50 meters/km 2.091 0.851 2.46 0.014 
Above 50 meters/km 4.893 1.777 2.75 0.006 
Bicycle infrastructure type     
Motorised road without bicycle facilities - - - - 
Segregated bicycle path / lane - peak hours (mean, normal distribution) -0.249 0.082 -3.05 0.002 
Segregated bicycle path / lane - peak hours (st.dev., normal distribution) 0.096 0.047 2.02 0.042 
Segregated bicycle path / lane - off-peak hours -0.195 0.071 -2.73 0.006 
Bicycle path in own trace - peak hours 0.366 0.081 4.53 0.000 
Bicycle path in own trace - off-peak hours 0.146 0.044 3.31 0.001 
Footpath in own trace 2.167 0.170 12.75 0.000 
Steps 10.281 3.137 3.28 0.001 
Surface type     
Paved - - - - 
Not paved 0.212 0.071 2.97 0.003 
Infrastructure     
Bicycle bridge -2.879 1.409 -2.04 0.041 
Motorised traffic bridge, crossing water/sea (mean, normal distribution) 1.275 0.507 2.51 0.012 
Motorised traffic bridge, crossing water/sea (st.dev., normal distribution) 0.430 0.180 2.39 0.017 
Number of intersections – yield  0.093 0.041 2.25 0.024 
Number of intersections – roundabout (mean, normal distribution) -0.129 0.040 -3.23 0.001 
Number of intersections – roundabout (st.dev., normal distribution) 0.255 0.086 2.96 0.003 
Number of intersections – traffic lights 0.208 0.077 2.72 0.007 
Number of motorised traffic lanes     
1 lane -1.390 0.480 -2.90 0.004 
2 lanes - - - - 
3 to 4 lanes 0.234 0.064 3.67 0.000 
5 or more lanes 0.449 0.101 4.46 0.000 
Land-use attributes        
Low residential area (on the right side and both sides) - - - - 
High residential area on the right side - peak hours 0.141 0.070 2.02 0.042 
High residential area on the right side - off-peak hours 0.288 0.084 3.45 0.001 
Industrial area on the right side 0.235 0.102 2.31 0.026 
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Sports area on the right side (mean, normal distribution) 0.503 0.226 2.22 0.026 
Sports area on the right side (st. dev., normal distribution) 0.274 0.134 2.04 0.041 
Scenic area on the right side: low temperature 0.183 0.073 2.49 0.013 
Scenic area on the right side: medium-high temperature (mean, normal distribution) -0.330 0.114 -2.89 0.004 
Scenic area on the right side: medium-high temperature (st.dev., normal distribution) 0.152 0.068 2.23 0.026 
High residential area on both sides: peak hours 0.101 0.043 2.34 0.019 
High residential area on both sides: off-peak hours 0.232 0.078 2.98 0.003 
Industrial area on both sides 0.353 0.136 2.60 0.009 
Sports area on both sides (mean, normal distribution) -0.369 0.160 -2.31 0.021 
Sports area on both sides (st. dev., normal distribution) 0.182 0.076 2.39 0.017 
Scenic area on both sides: low temperature 0.478 0.218 2.19 0.029 
Scenic area on both sides: medium-high temperature (mean, normal distribution) -0.383 0.189 -2.03 0.042 
Scenic area on both sides: medium-high temperature (st.dev., normal distribution) 0.121 0.058 2.09 0.037 
Correction for similarity across routes     
ln(Path-size) 1.238 0.018 67.62 0.000 
Parameters of the generalised mixed logit model     
Variance parameter τ 0.461 0.062 7.48 0.000 
Weighting parameter γ 0.000 - - - 
Sample mean σn 1.000 - - - 
Sample st.dev. σn 0.164 - - - 
Distance (preference space) -1.213 0.165 -7.36 0.000 
Number of estimated parameters: 48 
Number of observations: 3,384 
Number of individuals: 291 
Null log-likelihood: -12,827.84 
Final log-likelihood: -8,543.65 
Adjusted rho-square: 0.330 

 

4.2.1 Network attributes 

The estimate of the distance in preference space shows that cyclists prefer shorter 

routes, while the estimates in VoD space indicate that a higher number of left and right 

turns is related to the perception of longer routes. These results confirm previous 

findings about both the distance (Menghini et al., 2010; Hood et al., 2011; Broach et al., 

2012; Casello & Usyukov, 2014; Zimmermann et al., 2017) and the relation between left 

and right turns (Hood et al., 2011; Broach et al., 2012). Moreover, these results suggest 

that a left turn is perceived on average as about a 423m detour and a right turn as about 

a 221m detour (reasonably, in countries with left-hand side driving the right turn would 

be expected to be more penalised). Also, taste heterogeneity across cyclists exists and 

the tail of the distribution suggests that a percentage of cyclists heavily dislike any turn 

movement.  

Interestingly, estimates in VoD space for cycling the wrong way shows that 

significant heterogeneity emerges: while the mean of the parameter distribution shows 
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a clear negative preference as the distance in the wrong way is perceived as 2.4 times 

higher than the one in the right way, the standard deviation of the estimated 

distribution suggests that about 6.6% of the cyclists have a positive preference for 

shortcuts involving being on the wrong direction of a one-way street. While the issue of 

cycling the wrong way was observed by Hood et al. (2011), taste heterogeneity was not 

looked into. It should be noted that the 6.6% value emerges from the normal 

distribution having a mean of 2.412 and a standard deviation of 1.597 that gives the 

probability of a value being positive equal to 93.4%, and the consideration that the 

ratios are with respect to the negative preference for distance.  

The best model specification suggests that going downhill or on a flat terrain do not 

imply variations in the perceptions of distance, while going uphill implies that cyclists 

feel as if their distances increase in line with an increase in the gradient. It should be 

noted that the analysis of slope involved looking into both gains and losses with 

different categorisations. Interestingly, an average elevation gain over 5.0% implies that 

the perception of the distance is about 4. 9 times the one if the terrain was flat or 

downhill. The dislike for steep slopes was qualitatively assessed also in San Francisco 

(Hood et al., 2011) and Portland (Broach et al., 2012), although it was not quantified. 

Also, no differences were found between males and females or across age categories, in 

contrast with findings from San Francisco indicating that females are more sensitive to 

average uphill slopes than males (Hood et al., 2011).  

Model estimates in VoD space suggest that the bicycle infrastructure type has an 

effect on the perception of distance by cyclists, and specifically bicycle lanes and paths 

have a positive effect in the feeling of a reduced distance as suggested by previous 

literature (Menghini et al., 2010; Hood et al., 2011; Broach et al., 2012). Moreover, the 

best model specification suggests that the benefit is higher in peak hours with respect to 

off-peak hours, and it is in both cases a moderate one with a perception of decreased 

distance in the order of about 24.9% and 19.5%. Unlike previous studies, the best model 

specification indicates that cyclists are not willing to take detours towards bicycle paths 

in their own trace, and they are even less willing to do so during peak hour. A possible 

explanation is that the classical Copenhagen configuration (road – curb – bicycle 

lane/path – curb – sidewalk) does not entail a path in its own trace, but a path 

integrated within the road network. Another possible explanation is that some paths in 

their own trace are not paved, another element that contributes to cyclists perceiving 



21 

their routes as longer. Lastly, a peculiarity of this study consists in looking at dedicated 

cycling bridges that provide a significant relief in the perception of distance and indicate 

that the policy of the municipality of Copenhagen of investing in dedicated bridges is 

absolutely embraced by cyclists. 

Model estimates in VoD space indicate that cyclists in the Copenhagen Region are 

sensitive to the number of intersections, with yielding signs and traffic lights 

contributing to the perception of longer routes, in line with previous findings in Zurich 

(Menghini et al., 2010). Interestingly, roundabouts are the only type of intersection with 

a significant random parameter that shows an interesting positive effect in average, 

which can only be explained with the fact that cyclists have the right of way with respect 

to the motorised traffic in roundabouts combined with the fact that drivers have high 

awareness of cycling traffic and do not violate this right. However, the distribution for 

the parameter about roundabouts shows that about 30.7% of cyclists perceived instead 

that their routes are longer because of the presence of this type of intersection. Notably, 

tests for traffic variables did not find a significant effect for speed limits and traffic 

volumes, in line with findings from San Francisco (Hood et al., 2011) but in opposition 

with findings from Portland (Broach et al., 2012). Possibly, bicycle lanes and paths are 

mainly where roads have high traffic volumes, which makes the effect of the latter 

already captured in the effect of the former. Also possibly, the number of lanes was a 

proxy also for the traffic as narrower roads seem to have a positive effect on the 

perception of lower distances, while larger roads appear to have the opposite effect.  

4.2.2 Land-use attributes 

The best model specification suggests that cyclists are sensitive to both what is on 

the right-hand side as well what is around them on both sides in terms of land-use 

destinations. A low residential area was selected as the category of reference, given that 

the Copenhagen Region is characterised by this type of area especially in the outskirts of 

the municipality. 

Estimates in VoD space suggest that high residential areas imply the perception of 

longer distances, in particular when the areas are to the right of the cyclists and even 

more so during off-peak hours. This finding could be related to the higher number of 

possible conflicts, since in these areas there are more public transport stops, shopping 

opportunities, and office premises. The higher penalty for off-peak hours could be 

associated with the fact that commuting during peak hours compensates for these 
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negative effects by getting a better perception of distance given a higher focus on direct 

routes to work.  

Estimates in VoD space indicate that industrial areas are not liked by cyclists that 

clearly are willing to take detours to avoid them in both cases that they are on the right-

hand side or both sides of the cyclists. The same does not apply for sports areas, and 

interestingly a vast majority (96.7%) of the cyclists seem to perceive longer routes 

when cycling alongside sports areas that are on the right-hand side of the road, while 

the vast majority (97.9%) of the cyclists appears to have the opposite feeling when the 

sports areas are on both sides of the road where they cycle.  

Scenic areas are preferred by cyclists, but only depending on the air temperature. It 

should be noted that models were estimated with several categorisation of the air 

temperature, and the best model specification was obtained when distinguishing low 

(below 5°C), medium (between 5°C and 15°C) and high (over 15°C) temperature and then 

combining medium and high temperatures because their parameter estimates were not 

significantly different. Cyclists clearly perceive routes being shorter when passing 

through parks, forests, coastal locations, and other scenic areas unless the temperature 

becomes low and then they are not willing to take detours. Interestingly, air temperature 

was the only weather attribute that entered the best model specification, although it is 

plausible that weather attributes such as wind and precipitation affect more the choice 

of cycling since for example rain would be equally affecting every alternative route.  

5. Discussion and conclusions 

Given the lack of consideration for non-motorised traffic in transport planning 

models, this study contributes to expand the knowledge about cyclists’ preferences by 

formulating and estimating a generalised mixed logit model in VoD space that takes into 

account not only network attributes, but also bicycle specific attributes as well as land-

use designations. The behavioural model in this study is a fundamental step towards the 

specification of a cost function that can be used in a cycling traffic assignment model to 

be combined with the vehicle and public transport assignment models in the 

Copenhagen Region.  

The model provides indications about the different factors affecting cyclists’ route 

choices as well as quantitative evaluations of their effect on the perception of distance. 

The estimation of the model in VoD space indicates that cyclists minimise left turns, 
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right turns, and uphill slopes. It is also evident that cyclists perceive routes being 

shorter when they are able to separate themselves from traffic, avoid large roads, and 

possibly use the bridges that the municipality is heavily investing in. More interestingly, 

it is apparent that cyclists select their routes in low residential areas and within sports 

areas or scenic areas (provided that it is not too cold). The value of the estimation of the 

model in VoD space not only indicate the preference direction, but also quantify the 

effects of the various factors via the estimation of the rates of substitution that are 

essential to support planners in making informed decisions. Although the values for the 

Copenhagen Region might not be transferable “as is” to other regions, the order of 

magnitude appears sensible and further research in different regions appears valuable 

for planners to make informed decisions. Recent studies in other areas have shown the 

value of calculating rates of substitution such as the value of congestion (e.g., Liu et al., 

2007; Wardman and Ibañez, 2012; Prato et al., 2014) for car drivers or the value of 

transfer penalties (e.g., Raveau et al., 2011; Anderson et al., 2014; Raveau et al, 2014) 

for public transport users.  

The findings from this study suggest that thinking about new bicycle infrastructure 

does not imply only reflecting on the type of infrastructure and its separation from the 

motorised traffic, but entails also pondering on its location and its configuration when it 

comes to the possibility of choosing a location alongside a land-use destination and the 

possibility of including a bicycle bridge. Cyclists seem to consider shorter routes in 

scenic areas and across sports areas, which indicates the need for planning not only to 

cater to cyclists, but also to indulge the population at large that would possibly consider 

cycling if more dedicated infrastructure allowed them to cycle in pleasant conditions. 

Hence, the major finding from this study consists in the derivation of a utility function 

that can be easily translated into a cost function for the evaluation of competing bicycle 

projects: by knowing which type of infrastructure would be constructed where, the 

calculation of the distance perceived by the Copenhagen Region cyclists could derive 

from the estimated parameters in the utility function and could help decision-makers in 

the evaluation of the effectiveness of the projects in terms of the predicted share of 

cyclists using the piece of infrastructure. Moreover, although the parameters might not 

apply “as is” to another context, those values might allow decision-makers in other 

areas of the world to grasp approximately whether alternative pieces of infrastructure 

could be more or less attractive. 
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Avenues for future research emerge from this study. Firstly, the utility function 

should be used within a cycling traffic assignment that should consider the formulation 

of volume-delay functions at the very least in the centre of Copenhagen where 

congestion on bicycle lanes is observed in the morning. Secondly, a procedure for 

having the utility function from model estimation to mirror the cost function in the 

traffic assignment model could be considered to ensure consistency between the 

observed behaviour and the predicted behaviour.  
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