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20 Abstract:

21 Releasing hatchery-reared juveniles in the wild can mitigate the general decline in the natural stocks of European 

22 lobster, Homarus gammarus, L. However, growth and survival rates in lobster culture are low, presumably due to 

23 suboptimal nutrition and feeding. With the aim of determining appropriate nutrient levels, we tested different 

24 formulated extruded feeds for the culture of juvenile European lobster. Baseline metabolism (standard metabolic rate, 

25 SMR), in combination with the metabolic cost of feeding (specific dynamic action, SDA), and nitrogen retention 

26 during digestion and assimilation was investigated for six experimental diets. Diets were formulated to contain two 

27 different levels of protein (400 and 500 g kg-1), with three lipid to carbohydrate (L:CHO) ratios (low, medium, and 

28 high). These experimental diets were tested over a 32-day period, against a conventional control diet (Antarctic krill, 

29 Euphausia superba). During this period, the growth performance of the juveniles was assessed as molting frequency, 

30 increments in carapace length and whole body wet weight. At the end of the growth performance trial, oxygen 

31 consumption (MO2) and nitrogen excretion rates of individual lobsters were determined prior to and following the 

32 ingestion of a single meal. Molting occurred more frequently in juveniles fed with krill and krill resulted in a 

33 significantly higher specific growth rate than experimental dry feeds except for the 500-low diet. However, lobsters 

34 fed any of the three 500 and the 400-low diets had carapace length increments, SMR, SDA, and nitrogen retention 

35 similar to those fed the krill diet. Results suggest that protein is an important macronutrient for juveniles of this species 

36 and must be included above 40 %. Also, lobsters have a dietary requirement for carbohydrates ranging from 24% to 

37 35% probably related to the need for glycogen in chitin synthesis. The lower the protein content, the higher the 

38 requirement in carbohydrates.

39 Keywords: Formulated feeds; Antarctic krill; Nitrogen retention, Standard metabolic rate; Specific dynamic action; 

40 Growth.
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41 1. Introduction

42 The European lobster (Homarus gammarus) is an economically important decapod crustacean distributed from 

43 Northern Norway to Morocco and Eastern Mediterranean (Triantafyllidis et al., 2005). Commercial landings of this 

44 species are declining and efforts to enhance natural populations have been made by restocking with hatchery-reared 

45 juveniles (Agnalt et al., 2007). Hatchery production of European lobster aims to enhance growth and survival rates by 

46 securing optimal water quality, reducing predation, and by improving access to nutritional rich diets (Powell, 2016). 

47 Research efforts have been devoted mainly towards improving water quality conditions and the development of novel 

48 rearing systems (Daniels et al., 2013, 2015; Drengstig and Bergheim, 2013; Halswell et al., 2016; Middlemiss et al., 

49 2015), but less so towards the development of a species-specific formulated diet. The transition from live or frozen 

50 feeds to the use of dry formulated diets may be one way to support a simpler and more sustainable production through 

51 the ease of application, reduced cost, and a more consistent nutritional quality (Powell et al., 2017). 

52 The development of a nutritionally balanced formulated feed requires species-specific information on nutritional 

53 requirements. A considerable research effort on formulated feed development for spiny lobsters has been made in the 

54 last 30 years, the results of which indicate a dietary demand for high protein (> 45%), low lipid (<10%), and moderate 

55 carbohydrate (~20%) (Williams, 2007). However, the performance of spiny lobsters fed on formulated feeds remains 

56 poor, partially as a consequence of a lack of understanding of how they digest and assimilate this type of feeds (Perera 

57 and Simon, 2015). There is less literature available for homarid species than for spiny lobsters, and while some 

58 nutritional studies have been conducted on American and European lobster, appropriate nutritional levels are still to 

59 be defined. Based on the idea that diets should match the dry matter biochemical composition of an organism (Dall et 

60 al., 1991), the proximate composition content of Homarus americanus post-larvae suggests that an appropriate diet 

61 for this species should contain 53% protein, 4% lipid, and 12% carbohydrates (Haché et al., 2015). The observation 

62 that European lobster possesses a variety of carbohydrases (Glass and Stark, 1995), is indicative of a digestive capacity 

63 of different carbohydrate sources. Furthermore, Powell et al. (2017) identified glycogen deficiencies in the 

64 biochemical composition of H. gammarus larvae reared on formulated dry feed. Taken together, these findings suggest 

65 that the development of a formulated dry feed for European lobster should consider carbohydrates as a potential non-

66 protein energy source.
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67 The standard metabolic rate (SMR) represents the minimum energy expenditure of an ectotherm animal 

68 (Rosewarne et al., 2016). Although individuals with higher SMR have higher maintenance metabolism, previous 

69 studies also suggest this is indicative of an increased growth potential (Álvarez and Nicieza, 2005; Auer et al., 2015; 

70 Reid et al., 2012; Van Leeuwen et al., 2012). The magnitude of the postprandial metabolism, commonly referred to 

71 as the specific dynamic action (SDA), depends largely on the size and nutritional composition of a meal. It provides 

72 information on the cost and duration of the nutritional processes, including the energy expended towards food 

73 handling, absorption and storage of nutrients, deamination of amino acids, protein and lipids synthesis for growth, and 

74 synthesis of excretory products (Jobling, 1993). In crustaceans, the mechanical costs of digestion are calculated to be 

75 5% to 8% while protein synthesis accounts for 20% to 37% of SDA (Whiteley et al., 2002). Therefore, SDA 

76 determination is a useful performance parameter in nutritional studies. In principle, the higher the fraction of the meal 

77 energy allocated to SDA, the less energy will be retained to fuel locomotion, growth, and reproduction (Stieglitz et 

78 al., 2018). The present information on the metabolism in European lobster is sparse. Whiteley et al,. (1990) compared 

79 aquatic and aerial rates of MO2 (mass-specific oxygen consumption) of this species at a temperature range 10-20˚C. 

80 Later, Drengstig (2017) reported data of standard metabolism in H. gammarus at 20˚C. However, to our knowledge, 

81 no studies on the effects of dietary composition on SMR or the SDA of European lobster have been performed. 

82 Lobsters excrete the majority of the end product of protein metabolism across the gill epithelium in the form of 

83 ammonia (Burger, 1957), while a smaller part of nitrogenous waste is converted into urea in the antennal and maxillary 

84 glands (Binns and Peterson, 1969). Wickins (1985) investigated the effect of feeding on ammonia excretion by 

85 Homarus gammarus and observed that lobsters exhibited a significant increase in ammonia excretion after a meal. 

86 The efficiency with which dietary amino acids are deposited as new tissue can be estimated by the quantification of 

87 nitrogen excretion during digestion (Ming, 1985). Amino acids that are deaminated for de novo lipogenesis and 

88 glycogenesis, or oxidized for fuel, turn into nitrogenous waste (Skov et al., 2017). Therefore, high nitrogen excretion 

89 rates are indicative of reduced protein retention.

90 This study aimed to investigate the role of protein inclusion levels combined with different non-protein energy 

91 sources (lipids and carbohydrates) in the metabolism and growth of European lobster. For that purpose, the present 

92 work compared the respiration and nitrogen excretion rates of European lobster juveniles (< 1 g) reared on Antarctic 
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93 krill or experimental extruded dry feeds with different inclusion levels of protein, lipids, and carbohydrates. SMR, 

94 SDA response, nitrogen retention, and growth performance were determined and discussed. 
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95 2 - Materials and methods

96 2.1. Experimental animals

97 Experiments were conducted at the aquaculture facilities at the Technical University of Denmark, Section 

98 for Aquaculture, Hirtshals. All experimental animals were hatched from eggs obtained from wild European lobster 

99 females caught along the Skagerrak coast of North Jutland, Denmark. Experimental lobster juveniles were reared 

100 individually in cassette systems consisting of 200 mL compartments. Cassettes were placed in raceways supplied by 

101 a flow-through semi-closed seawater system at a constant flow rate of 330 L h-1 (18±0.5˚C temperature, 34±1 PSU 

102 salinity, > 90% dissolved oxygen, <0.1mg L-1 ammonia-N), subjected to a photoperiod cycle of 8h light: 16h dark. 

103 Lobsters were fed once daily with thawed Antarctic krill, Euphausia superba (Akudim A/S, Denmark). 

104 2.2. Growth trial

105 Animals were held under the above-described conditions for four months from settling, after which they were 

106 randomly divided into seven treatment groups (N=10, per diet) while ensuring animals were of similar size across all 

107 treatments (0.86 ± 0.06 g wet weight, mean ± SEM). An experimental period of 32 days before respirometry and 

108 nitrogen excretion trials was used for evaluation of growth performance. During this period, each juvenile was 

109 individually fed its respective diet in excess each morning, and allowed to feed for 4h before uneaten food was 

110 removed. Additionally, juveniles were allowed to feed on their molted exoskeletons. Molt occurrences were recorded 

111 daily. At the beginning and end of the experimental period, lobsters were gently blotted dry with a paper towel and 

112 body wet weight was recorded to the nearest 0.01g. Carapace length was recorded with a vernier caliper from the base 

113 of the eye socket to the posterior edge of the cephalothorax. The following formulas were used:

114   ( , %) =  ∑= 0( × ‒ 1) × 100
115 where: i = the day; Mi = number of molts on the day i; Lob = number of lobsters in each treatment.

116  ℎ  ( , % ‒ 1) = [ ( ) ‒ (  )] × ‒ 1 × 100 
117 where, BWf = final wet body weight, BWi

 = initial wet body weight.

118  ℎ  ( , %) = ( ‒ ) × ‒ 1 × 100
119 where: CLf = final carapace lentgh; CLi = initial carapace length.

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336



7

120 2.3. Experimental diets

121 Six formulated dry diets were evaluated using Antarctic krill as a reference diet. The six experimental dry 

122 diets were formulated to have two fixed protein levels (400 or 500 g kg-1), and for each protein level, three L:CHO 

123 ratio levels (low: 0.3, medium: 0.5, and high: 0.8-1.0). Different protein, lipid, and carbohydrate contents were 

124 achieved by altering squid meal, wheat gluten, wheat starch, and fish oil inclusion levels. Experimental diets were 

125 extruded as 4 mm pellets and were manufactured by SPAROS Lda (Olhão, Portugal). Proximal analysis of krill and 

126 experimental diets were performed in duplicate. Briefly, the diets were finely ground using a Krups Speedy Pro 

127 homogenizer and analyzed for crude protein, (i.e. Kjeldahl N × 6.25, ISO 5983-2 (2005), crude fat (Bligh and Dyer, 

128 1959), dry matter and ash (NMKL 23, 1991). Formulation and proximate composition are presented in Table 1.

129 2.4. Respirometry trial

130 Measurements were performed on 10 intermolt lobsters per dietary treatment. All animals used were fasted 

131 for 48h prior to respirometry measurements to ensure a post-absorptive state. Experiments were performed in 75 mL 

132 respirometers supplied with temperature-controlled aerated seawater, using 8 chambers at a time. The bottom of each 

133 chamber was equipped with a perforated base plate, under which a magnetic stirrer ensured water mixing in the 

134 chamber. Oxygen content was registered every 15 sec using a sensor connected to an optical oxygen meter (FireSting 

135 O2, Pyro Science GmbH, Aachen, Germany) installed in each chamber. MO2 measurements were performed by 

136 computerized intermittent flow, in loops of 60 min (consisting of a 5 min flushing period, followed by a 55 min closed 

137 period). The oxygen consumption rate was determined by linear regression of the decline in oxygen content during 

138 the closed period. The mass-specific oxygen consumption (MO2) was calculated based on the slope of the regression 

139 according to Steffensen (1989) as: 

140 2 =   ×   ×   ×  ‒ 1
141 where: α = slope (ΔpO2 × Δt -1), Vresp = volume of the chamber minus the volume of the lobster (using a lobster density 

142 of 1), β = oxygen solubility at the experimental temperature, and BW = wet body weight of the lobster. 

143 Standard metabolic rate (SMR) was estimated from the first 48h MO2 measurements, which was calculated 

144 as described by Skov et al. (2011). Briefly, MO2 measurements were grouped in frequency classes, and SMR was 

145 calculated from the most frequently occurring bins and their relative contribution. Following SMR measurements, 

146 chambers were opened and a pre-weighed piece of thawed krill or a feed pellet was offered to each lobster. During 
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147 feeding, chambers were kept unsealed, the flushing pump was stopped, and external aeration was provided. After a 

148 2h feeding period, the remaining krill or pellet was carefully removed and MO2 postprandial measurements resumed 

149 for 48h for estimation of SDA response. The uneaten feed fraction was collected, filtered, and dried for voluntary feed 

150 intake (VFI) estimation employing the following formula (Nguyen et al., 2014):

151 = ‒ ‒
152 where: dF = distributed feed, uF = unconsumed feed, L = leaching after 2h. Leaching was estimated by placing a 

153 pre-weighed quantity of each diet in the chambers under the same conditions as in the feeding period but in this 

154 case, without animals. 

155 For calculation of SDA variables digestion was determined to be completed when MO2 postprandial 

156 measurements plotted over time fell within 15% of the SMR previously recorded for that chamber (Jordan and 

157 Steffensen, 2007). According to Secor (2009), the following SDA variables were calculated to describe the 

158 postprandial MO2: SDAdur (h) is the time from feeding until MO2 converged with the SMR + 15%. The SDAcost (μg 

159 O2 g-1) is the post-feeding integrated excess MO2 above SMR. The SDApeak (μg O2 g-1 h-1) is the maximum value of 

160 MO2 above SMR during the SDA course and SDAttp (h) is the time from feeding to SDApeak. SDAcoef (%) is the SDAcost 

161 converted to energy using an oxycalorific coefficient of 14.06 J mg-1 O2 (Dejours, 1981) and divided by the energy 

162 content of the meal which was calculated from the estimated feed intake. The scope is the SDApeak divided by the 

163 SMR.

164 2.5. Nitrogen excretion trial

165 Following oxygen consumption measurements, each lobster was transferred to a 130 mL seawater container 

166 supplied with aeration. Water samples of 15mL were collected manually from individual chambers at time 0h and 48h 

167 for baseline screening of total ammonia and nitrogen excretion rates. After this period, lobsters were offered a pre-

168 weighed pellet or krill piece for 2h. After the meal, lobsters were transferred into containers with fresh seawater. Water 

169 samples were manually collected at time 0h and 48h for the determination of total postprandial ammonia and nitrogen 

170 excretion rates. Collected water samples were filtered (0.2μm, Filtropur Sarstedt, Numbrecht, Germany) and stored at 

171 0°C until analysis. Total nitrogen and ammonia nitrogen of collected water samples were determined in duplicate 

172 according to ISO 11905-1 (1997) and DS (1975), respectively. The voluntary feed intake was calculated from the 
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173 uneaten fraction that was collected, filtered, and dried. N intake was calculated as 16% of protein intake (Chibnall et 

174 al., 1943). Total postprandial nitrogen excretion was calculated using the following formulas:

175 ‒ = [( 48ℎ × 48ℎ) ‒ ( 0ℎ × 0ℎ)] × ‒ 1
176 ‒ = [( 48ℎ × 48ℎ) ‒ ( 0ℎ × 0ℎ)] × ‒ 1
177 = ‒ ‒ ‒
178 where: Nexcreted = total postprandial nitrogen excreted (mg total nitrogen per mg wet weight), Npre-feeding = pre-feeding 

179 nitrogen excretion (mg total nitrogen per mg wet weight), Npost-feeding = post-feeding nitrogen excretion (mg total 

180 nitrogen per mg wet weight), N48h = total nitrogen concentration at time 48h (mg total nitrogen per mL); N0h = total 

181 nitrogen concentration at time 0h (mg total nitrogen per mL), V48h = volume of the chamber at time 48h (mL), V0h = 

182 volume of the chamber at time 0h (mL), BW = wet body weight of the lobster. Nitrogen retention was expressed as 

183 percentage of total N intake.

184 2.6. Data analysis and statistics

185 Data are expressed as means ± SEM unless otherwise specified. All dietary treatments were subjected to a 

186 one-way ANOVA to test the experimental formulated dry feeds against the control diet (krill). Whenever significant 

187 differences were identified, comparisons against the krill diet were conducted using the Dunnett t-test. Data from 

188 experimental formulated dry feed treatments were subsequently subjected to a two-way ANOVA, considering protein 

189 level and L:CHO ratio as variables. Following a two-way ANOVA and whenever significant differences were 

190 identified, means were compared by the Holm-Sidak post hoc test. Data were checked for normal distribution and 

191 homogeneity of variances and, when necessary, log-transformed. Data expressed as a percentage were arcsin 

192 transformed. Carapace length increment was log(x+2) transformed due to a high frequency of null observations. 

193 Statistical significance was set at p ≤ 0.05. All statistical tests were performed using the IBM SPSS Statistics 25.0 and 

194 graphics were generated by GraphPad Prism version 5.0 software package. The linear regression of the decline in 

195 oxygen content was computed using R version 3.5.1 software (R Core Team, 2018).
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196 3. Results

197 3.1. Growth performance

198 Observation during feeding showed that H. gammarus juveniles were attracted to all experimental diets and 

199 actively manipulated the offered feed. Minimum cumulative molting during the 32-day growth trial was recorded as 

200 10% for the group of animals fed the 400-high diet. Maximum cumulative molting (90%) was observed for lobsters 

201 fed the krill diet (Figure 1). SGR was significantly higher (F6,69 = 4.90, p < 0.001) in krill-fed lobsters in comparison 

202 to lobsters fed experimental dry diets, with the exception of the 500-low diet (Figure 2A). Among experimental diets, 

203 SGR was unaffected by protein level (F1,59 = 2.63, p = 0.11), L:CHO ratio (F2,59 = 2.62, p = 0.08), or the interaction 

204 of the two variables (F2,59 = 1.05, p = 0.36). Nevertheless, protein content caused a significant positive effect on the 

205 carapace length increment (iCL) increment (Figure 2B). The iCL increment in lobsters fed the 500-high diet was 

206 significantly higher compared to animals fed the 400-high diet (F1,59 = 6.12, p = 0.02). The animals fed the 400-

207 medium and 400-high experimental diets presented a significantly lower iCL in opposition to the krill-fed animals 

208 (F1,69 = 2.89, p = 0.02). Voluntary feed intake expressed as dry weight was higher (F6,71= 3.19, p = 0.01) for the 400-

209 low and 500-medium diets compared to the krill. No significant effect on feed intake for protein or L:CHO ratio was 

210 detected on experimental diets. However, the interaction of both was statistically meaningful (F2,62 = 3.33, p = 0.04). 

211 The L:CHO ratio did not affect the 500 group of diets but in the 400 group, the 400-medium diet had a significantly 

212 lower VFI compared to the 400-low (Figure 3). 

213 3.2. Metabolic rates

214 The pre- and postprandial metabolic data for lobsters fed control and experimental diets are presented in 

215 Table 2. Individuals that did not ingest sufficient feed to induce a clear postprandial metabolic response were omitted 

216 from the analyses. Comparing the results of all treatments, animals fed the 400-medium and 400-high diets had 

217 significantly lower SMR compared to the krill-fed animals (Table 2, Figure 5). Within experimental diets, SMR was 

218 significantly affected by protein level and L:CHO ratio, but unaffected by the interaction of protein × L:CHO. With 

219 the exception of the 400-low, animals fed diets with 40% protein were observed to have significantly lower SMR 

220 values compared to the 50% protein diets (Table 2, Figure 5). The amount of ingested energy was significantly higher 

221 for lobsters fed on the 400-low and 500-medium diets compared to the krill-fed group (Table 2). No significant 

222 differences in meal energy were observed between experimental diets. SDAdur was significantly longer in lobsters fed 

223 400-low when compared to krill-fed lobsters. Within experimental diets, duration of SDA was affected by protein 
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224 level and the interaction of protein × L:CHO, but was unaffected by L:CHO ratio (Table 2, Figure 4). Results showed 

225 lobsters fed the 500-low diet had a shorter SDA response compared to the animals fed on the 400-low diet.

226 3.3. Nitrogen retention

227 The effects of dietary treatment on nitrogen budgets are shown in Table 3. As for the respirometry trials, 

228 animals that did not feed sufficiently were not included in the analysis. Within the experimental dietary groups, protein 

229 level, L:CHO ratio, and the interaction of the two, all significantly affected nitrogen intake. N intake was generally 

230 higher for the 50% protein diets with no effect of L:CHO. Among the 40% protein diets, N intake was highest for the 

231 400-low diet. Animals fed the 400-medium and 400-high diets presented a lower N intake in comparison to krill. No 

232 significant differences were observed for the total nitrogen excreted. Comparing all the dietary treatments, nitrogen 

233 retention was significantly lower in animals fed the 400-high diet against lobsters fed krill. Within the experimental 

234 diets the % total N retention was significantly affected by protein level, L:CHO ratio, and the interaction of protein × 

235 L:CHO ratio. Nitrogen retention was higher for the 50% protein diets with no effect of L:CHO. The lowest N retention 

236 was observed in the 40% protein, with a significant decrease with increasing L:CHO ratios (Table 3). The contribution 

237 of ammonia to the total nitrogen excreted varied between 64% and 88% among dietary treatments (data not presented) 

238 but no statistical differences were found (F6,33 = 1.37, p = 0.27).
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239 Discussion

240 The present study demonstrates a limited successful growth of European lobster juveniles fed on formulated 

241 dry feeds. Results indicate that SGR of European lobster juveniles fed the 500-low diet (50% protein, 9% lipid, 26% 

242 carbohydrate) was not significantly lower than the control group fed on krill. However, the cumulative molting rate 

243 was lower in all treatment groups fed formulated experimental diets. Results suggest that the poor growth performance 

244 of H. gammarus fed on formulated feeds remains one of the principal obstacles in the development of sustainable 

245 aquaculture of this species. Further optimization of formulated diets in terms of mechanical and chemical digestion is 

246 imperative. Improving pellet size, format, and texture, and supplementing feeds with additives (digestible binders, pH 

247 buffers, and exogenous enzymes) need to be addressed in future research.

248 Results from this study establish that the dietary regime affects the SMR in European lobster juveniles. 

249 Animals fed the 400-medium (40% protein, 15% lipid, and 31% carbohydrate) and 400-high diets (40% protein, 23% 

250 lipid, and 23% carbohydrate) showed the lowest SMR. According to Biro and Stamps (2010) a higher SMR is 

251 associated with a larger metabolic capacity. In the same study, the authors suggested that individuals with high 

252 metabolism were able to process larger meals. Therefore, under this hypothesis, SMR is expected to produce a positive 

253 impact on performance (Burton et al., 2011). Our results showed that the juveniles fed the 400-medium and 400-high 

254 experimental diets presented the poorest performance in terms of cumulative molting, SGR, and CL increment, 

255 confirming Biro and Stamps (2010) hypothesis. The voluntary feed intake for the group of animals fed these two diets 

256 was also the lowest, which most likely contributed to the poorest growth performance. Protein synthesis, a crucial 

257 process in growth, is strongly affected by the feed intake. Previous studies in several crustacean species have 

258 demonstrated that protein synthesis rates generally decrease in starved or less frequently fed animals (Carter and 

259 Mente, 2014). The reason why the feed intake was lower for the 400-medium and 400-high diets remains unclear but 

260 it might be related to lower palatability of these two diets, or that high lipid levels cause faster satiation. The growth 

261 compensation for animals fed the 400-low diet, i.e., low lipid (11%) and high carbohydrate (35%) is in agreement 

262 with the effect observed between SMR and L:CHO ratio. This result supports our initial hypothesis that carbohydrate 

263 represent an important macronutrient for H. gammarus especially in diets with reduced protein content. In fact, 

264 carbohydrates are important for crustacean species as glycogen is an essential precursor of chitin synthesis, serving a 

265 critical role during the molt cycle (Wang et al., 2016). 
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266 Studies on the SDA in lobster species are scarce, and, to our knowledge, there is no information for European 

267 lobsters. In this work, we observed that feeding caused a rise in oxygen consumption 2 to 3 times above SMR levels 

268 in European lobster juveniles fed the different diets. In a previous study, in 3.2 g Homarus americanus fed on 

269 formulated diets, Koshio et al. (1992) reported an SDA scope of 1.5. The smaller size of the lobsters tested in this 

270 study can explain the difference in the SDA scope, as the animal size is known to influence the SDA variables (McCue, 

271 2006). In the present study, the time to achieve the SDA peak ranged between 8h to 11h, with elevated oxygen 

272 consumption rates lasting for 17 to 24h. The SDA duration was significantly longer for the 400-low experimental diet 

273 compared to krill, which is likely related to the higher meal energy or protein intake (Secor, 2009). SDA duration in 

274 southern rock lobster (Jasus edwardsii) fed squid was longer than what we observed in European lobster juveniles. 

275 Crear and Forteath (2000) reported that 750 g J. edwardsii took 42h to return to the pre-feeding oxygen consumption 

276 level, while Radford et al. (2004) observed that SDA response in 16 g animals of the same species lasted 30h. In this 

277 study, SDA coefficient results showed that juveniles fed on the tested diets spend between 3.4% to 7.0% of the meal 

278 energy on digestive processes. These results are in agreement with the findings by Crear and Forteath (2000) who 

279 reported an SDA coefficient of 6.6% in J. edwardsii. Nevertheless, the amount of meal energy allocated to SDA 

280 reported for crustacean species is highly variable even within the same species. For example, Houlihan et al. (1990) 

281 observed an SDAcoef of 13.3% for 37 g Carcinus maenas while Wallace (1973) reported an SDAcoef of 3.4% in 10 g 

282 individuals of the same species. Collectively, these findings suggest that the duration of the SDA response and the 

283 SDA coefficient increases with increasing body sizes.

284 In this study, we observed that juveniles excreted the majority of the nitrogenous waste in the form of 

285 ammonia (64-88%). Results reported here suggest that the mechanism for nitrogen excretion in H. gammarus is similar 

286 to other aquatic crustacean species, namely, the H. americanus (Burger, 1957) and J. edwardsii (Binns and Peterson, 

287 1969). Total nitrogen budget results showed that the nitrogen retention of juveniles fed the 400-high diet (40% protein, 

288 23% carbohydrate, and 23% lipid content) was significantly lower than in juveniles fed the other experimental or 

289 control diets. The severely reduced N intake in this group of animals induced a negative nitrogen balance, i.e., nitrogen 

290 excretion exceeded the nitrogen intake. The incapacity of this group of animals for nitrogen retention suggested that, 

291 rather than protein deposition, animals were periodically undergoing tissue protein catabolism (Guo et al., 2012). 
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292 Results from this study suggest that European lobster juveniles with low SMR and low nitrogen retention 

293 have a reduced growth capacity. Nevertheless, the estimated SMR and nitrogen retention were highly affected by the 

294 feed intake of the different tested diets. Therefore, the results presented in this study should be interpreted with caution. 

295 Moreover, the growth performance indices were calculated over a 32-day period, which could be considered relatively 

296 short, particularly in the case of crustacean species. In these animals, wet weight changes follow a typical pattern 

297 through the molt cycle. The highest increase occurs in the brief period of rapid water uptake at ecdysis. Further 

298 moderate gains are related to carapace mineralization and tissue growth. Finally, during the intermolt period, there is 

299 a relative stabilization of fresh weight until the onset of the successive ecdysis (Nguyen et al., 2014). As follows, 

300 nutritional studies targeting evaluation of growth performance should allow at least one complete molt cycle per 

301 individual. 

302 SMR and nitrogen retention results from this study corroborate the hypothesis that juvenile H. gammarus 

303 perform better fed on 500 against 400 g kg-1 protein content in their diet. This level agrees with the protein content 

304 (52% DM) in European lobster larvae reported by Powell et al. (2017) supporting the idea that diets should meet the 

305 organism's biochemical composition. The results of this study show that protein is a fundamental nutrient in 

306 formulated dry feeds. However, its inclusion can potentially be reduced when compensated with appropriate 

307 carbohydrate levels. Carbohydrates are the least expensive energy source for aquatic animals (Wang et al., 2016) and 

308 therefore, this is an important opportunity for the production of sustainable and economically viable formulated feeds 

309 for this species.
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446 Table 1. Formulation and chemical composition of experimental diets.

Protein level 400 g kg-1 500 g kg-1

L:CHO ratio Low Medium High Low Medium High Krill

Ingredients (g kg-1)

Antarctic krill 1000.0

Fish meal a 150.0 150.0 150.0 150.0 150.0 150.0

Squid meal b 125.0 125.0 125.0 255.0 255.0 255.0

Krill meal c 250.0 250.0 250.0 200.0 200.0 200.0

Wheat gluten d 20.0 20.0 20.0 50.0 50.0 50.0

Wheat meal e 172.5 172.5 172.5 172.5 172.5 171.5

Wheat starch f 229.0 171.0 89.0 141.0 93.0 30.0

Fish oil g 22.0 80.0 160.0 0.0 48.0 112.0

Soy lecithin h 10.0 10.0 10.0 10.0 10.0 10.0

Vitamin & minerals premix i 20.0 20.0 20.0 20.0 20.0 20.0

Astaxanthin  j 1.5 1.5 1.5 1.5 1.5 1.5

Proximal composition (g kg-1 as fed) 

Moisture 78.0 81.0 82.0 86.0 81.0 71.0 916.1

Ash 68.1 68.0 66.2 68.70 68.2 66.3 11.6

Protein 400.0 397.0 385.0 497.0 495.0 481.0 58.2

Lipids 107.0 147.0 233.0 85.8 119.0 172.0 9.6

Carbohydrates  x 346.9 307.0 233.8 262.5 236.8 209.7 4.5

L:CHO ratio 0.3 0.5 1.0 0.3 0.5 0.8 2.1

Gross energy (KJ. g-1) y 19.0 19.8 21.6 18.7 19.5 20.8 1.8

Protein/Energy (g MJ-1) 21.0 20.1 17.8 26.5 25.4 23.1 32.6

447 a Micronorse: 70.9% CP, 8.7% CF, Tromsø Fiskeindustri AS, Norway.

448 b Squid meal: 83% CP, 4% CF, Sopropêche, France.

449 c Krill meal: 61.1% CP, 17.4% CF, Aker Biomarine, Norway.

450 d VITAL: 80.4% CP, 5.6% CF, Roquette, France.

451 e Wheat meal: 11.7% CP, 1.6% CF, Molisur, Spain.

452 f Meritena 200: 0.4% CP, 0.1% CF, 90% starch, Tereos, France.

453 g Fish oil: 98.1% CF, 16% EPA, 12% DHA, Sopropêche, France.

454 h P700IPM, Lecico GmbH, Germany.

455 i Vitamins (IU or mg kg-1 diet): DL-alpha tocopherol acetate, 200 mg; sodium menadione bisulphate, 50 mg; retinyl 

456 acetate, 40000 IU; DL-cholecalciferol, 4000 IU; thiamine, 60 mg; riboflavin, 60 mg; pyridoxine, 40 mg; 
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457 cyanocobalamin, 0.2 mg; nicotinic acid, 400 mg; folic acid, 30 mg; ascorbic acid, 1000 mg; inositol, 1000 mg; biotin, 

458 6 mg; calcium pantothenate, 200 mg; choline chloride, 2000 mg, betaine, 1000 mg. Minerals (g or mg kg-1 diet): 

459 copper sulphate, 18 mg; ferric sulphate, 12 mg; potassium iodide, 1 mg; manganese oxide, 20 mg; sodium selenite, 

460 0.02 mg; zinc sulphate, 15 mg; sodium chloride, 800 mg; excipient wheat gluten, Premix Lda., Portugal.

461 j Carophyll Pink 10% CWS, 10% astaxanthin, DSM Nutritional Products, Switzerland.

462 x Carbohydrate (%) = 100 – (Crude protein % + crude lipid % + moisture % + ash %)

463 y Gross energy (MJ kg-1) = Protein content × 21.3 kJ g-1 + Lipid content × 39.5 kJ g-1 + Carbohydrate content × 17.6 

464 kJ g-1) / 1000 kJ MJ-1 (Cuzon and Guillaume, 1997)
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470 Table 3. Dietary effects on nitrogen budgets in juvenile European lobster.

Protein (g.kg-1) L:CHO Nintake (μg.mg WW-1) Nexcreted (μg.mg WW-1) Nretention (%) N
Low 806.44 ± 269.46 a 65.80 ± 43.32 86.02 ± 9.54 ab 5

Medium 65.32 ± 23.35 *,b 30.41 ± 9.63 41.58 ± 15.47 b 6

400

High 42.73 ± 8.50 *,b 55.17 ± 25.91 -22.08 ± 38.85 *,c 4

Low 839.33 ± 153.47 a 71.02 ± 13.42 90.85 ± 1.36 a 6

Medium 1166.83 ± 387.53 a 72.78 ± 11.34 91.98 ± 2.17 a 4

500

High 873.94 ± 298.23 a 127.34 ± 71.63 87.12 ± 4.49 a 5

Control (Krill) 657.18 ± 74.53 190.85 ± 87.83 73.30 ± 12.11 4
1 One-Way ANOVA F6,33=17.14*** F6,33=1.00 F6,33=6.96 ***

2 Two-Way ANOVA

P F1,29=52.21*** F1,29=2.71 F1,29=19.03***

L:CHO F2,29=9.49** F2,29=0.07 F2,29=6.68**

P x L:CHO F2,29=9.64** F2,29=0.38 F2,29=5.79**

471 Values are mean ± standard error.

472 1 Superscript * indicate dietary groups significantly different from control (krill).

473 2 Means in the same column with different superscript letter are significantly different.

474 * p < 0.05; **p<0.01; ***p<0.001
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Fig. 1. Cumulative molting of European lobster juveniles (% of initial numbers) fed the different diets.

Fig. 2. Specific growth rate (A) and carapace length increment (B) after a 4-week period for European lobster juveniles 

fed on different diets. Data represents the mean ± SEM of 10 animals per treatment. Dietary treatments that were 

significantly different from control (krill) are marked with an asterisk. Different letters indicate significant differences 

between experimental formulated diets.

Fig. 3. The effect of dietary treatment on voluntary feed intake. Estimated individual feed intake values from both 

respirometry and nitrogen excretion trials were pooled. The box includes observations from the 25th to the 75th 

percentile and the whiskers above and below the box indicate the 10th and 90th percentiles. The horizontal line within 

the box represents the median value and the symbol (+) indicates the mean. Dietary treatments significantly different 

from control (krill) are marked with an asterisk. Different letters indicate significant differences among experimental 

formulated diets.

Fig. 4. Representative plots of pre and post-feeding metabolic rates (μg O2 g-1 h-1) over time in lobsters fed 

experimental (A, B, and C) and control (D) diets. The solid line represents SMR and the dashed line represents SMR 

+ 15%. The lobsters were fed at 0h (vertical dashed line). The SDA variables accounting for MO2 postprandial 

metabolism are visually explained in panel D.

Fig. 5. The effect of dietary treatment on the standard metabolic rate of European lobster juveniles. The box includes 

observations from the 25th to the 75th percentile and the whiskers above and below the box indicate the 10th and 90th 

percentiles. The horizontal line within the box represents the median value and the symbol (+) indicates the mean. 

Dietary treatments significantly different from control (krill) are marked with an asterisk. Different letters indicate 

significant differences among experimental formulated diets.
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