A simple model of chemistry effects on the Air-Sea CO₂ exchange coefficient

Jørgensen, Hans E.; Sørensen, Lise Lotte; Larsen, Søren Ejling

Published in:
Journal of Geophysical Research: Oceans

Link to article, DOI: 10.1029/2018jc014808

Publication date: 2020

Document Version
Peer reviewed version

Citation (APA):
A simple model of chemistry effects on the Air-Sea CO$_2$ exchange coefficient

Hans E. Jørgensen1, Lise Lotte Sørensen2,3, Søren E. Larsen1

1Technical University of Denmark, Dep. of Wind Energy
2Aarhus University, Arctic Research Centre, Dep. Bioscience, Aarhus, Denmark
3Aarhus University, Dep. Environmental Science, Roskilde, Denmark

Key Points:

- Modification of CO$_2$ air-sea exchange by the Ocean CO$_2$ carbonate buffer is found to be negligible. The buffer is important for the processes, but not for our interpretation of measurements.
- The flux gradient method for estimation the flux is valid for CO$_2$ if the measurements in the water column are taken in depths where the ratio between the chemical and turbulent timescale is above 10.
Abstract

The transfer of CO$_2$ between air and water can be quantified by the use of a transfer or exchange coefficient. Here we have studied the effect on the exchange coefficient of CO$_2$ from inclusion of the carbonate buffer system in water. The methodology has been to solve the flux budget for the chemical reaction equations in the water column, combining the vertical flux in the air and the flux across the interface by the introduction of a so called resistance model for the whole system where the system have been simplified with respect to variation of certain parameters. The thermal effects on the flow and chemistry modelling have in the present study not been included, although this also plays a significant role on the air-sea exchange. The model shows the effects on the air-sea exchange coefficient from the carbonate chemistry in the water column are negligible if the measurements are taken at sufficient depth in the water. Hence, it is found that the skin-layer or interface layer contains the largest resistance and therefore controls the flux. It is also shown that measurement of the near-surface CO$_2$ gradients in ocean water is very difficult, as the gradients of CO$_2$ occur within the first meter from the water surface. In reality the equilibrium is reached within the first meter from the water surface. The results justify the use of standard methods to estimate the flux of CO$_2$ by measuring a concentration at typical larger than 3 meters depth and 10 meters above the surface.

1 INTRODUCTION

The ocean is an important sink to the atmospheric carbon dioxide (CO$_2$) serving to keep the atmospheric concentration level of this important climate gas down. Thus, air-sea exchange of CO$_2$ plays an important role in the climate gas budget and a detailed understanding of the mechanisms controlling the exchange is important to estimate future CO$_2$ concentrations in the atmosphere with a sufficiently high accuracy to predict future temperature changes and climate effects. The air-sea flux of a weakly soluble gas such as CO$_2$ is water-phase controlled (Wanninkhof et al., 2009) and is commonly estimated from the difference in CO$_2$ concentrations across the air-sea interface. The exchange is often expressed in terms of the partial pressure of the gas in air and in water by equations of the form:

\[\text{Flux} = kK_0 \Delta p\text{CO}_2 \]

where, $\Delta p\text{CO}_2$ is the difference in the partial pressure of CO$_2$ across the interface, K_0 is the aqueous-phase solubility of CO$_2$ and k is a gas transfer velocity, being a function of several parameters, but usually only parameterized by the wind speed or the surface stress (Wanninkhof et al., 2009; Garbe et al., 2014). In reality, k depends on many chemical, physical and biological processes in between the layers where the CO$_2$ gradient is measured. E.g. Wanninkhof and Knox (1996) studied the chemical enhancement on the CO$_2$ fluxes focusing on the chemical rates in the marine micro layer (molecular boundary layer) and found that the chemical rates should be added to the physical exchange rates; however, they also showed that the chemical enhancement is only of little importance on a global scale. Air-water exchange of gases can be enhanced by wave breaking and specifically the bubble-mediated transfer. Thus Woolf et al. (2007) introduced a bubble mediated flux term as a part of the exchange coefficient. Andreas et al. (2016) suggested that sea spray can also affect the gas exchange. The estimation of CO$_2$-fluxes across the air-sea interface is therefore associated with many sources of uncertainties and several parameterizations of k have been suggested in the literature, (Liss & Merlivat, 1986; Wanninkhof & Knox, 1996; Nightingale et al., 2000; Wanninkhof et al., 2002; Woolf, 2005; Ho et al., 2006; Prytherch et al., 2010; Rutgersson & Smedman, 2010).

However, the water column part of the CO$_2$ gradient driving the exchange has only received little attention. CO$_2$ is often sampled meters above and below the sea surface...
to establish $\Delta p\text{CO}_2$. Ward et al. (2004) and Woolf et al. (2016) addressed the effect on $\Delta p\text{CO}_2$ from temperature gradients in the microlayer, showing that the bulk CO_2 collected at a certain depth has to be adjusted according to the temperature gradient in order to reflect the $\Delta p\text{CO}_2$ driving the flux. Ward et al. (2004) describes how the temperature can change across the very shallow molecular boundary layer, and Woolf et al. (2016) investigated the solubility change of CO_2 due to temperature gradients and salinity. It could be anticipated that chemical reactions within the bulk water between the measurement point and the molecular boundary layer can alter the carbonate chemistry in the water to such an extent that this also needs to be considered when parameterizing the exchange coefficient for flux calculations. This was also pointed out and studied by Bolin (1960) several years ago. He concluded that the chemical time scale was much smaller than the turbulent transport time scale. However, this was based on very large exchange rates (0.01 to 1 cm sec$^{-1}$) and an assumption of an equilibrium between CO_2 in air and CO_2 in the sea. In the present study, we do not take salinity and temperature into account. However, we will evaluate the importance of chemical processes affecting the CO_2 gradient measured at distances of meters on each side of the marine surface using today’s parameterization of exchange velocities. We apply a mathematical model developed for a first order decaying chemical process combined with an atmospheric boundary layer model, where the chemical as well as the turbulent timescale is taken into account in the equations. see Kristensen et al. (1997)

2 MODEL DESCRIPTION

In order to describe and evaluate the effect on chemistry on the vertical flux of CO_2 we formulate a model where we split the vertical transport in three compartments:

1. the flux of CO_2 above the sea surface
2. the flux across a stagnant interfacial layer
3. the flux below the ocean surface

In the model the atmospheric concentration of CO_2 in a given height z ($C_a(z)$) is related to the corresponding concentration of CO_2 in a given water depth defined as $C_w(z)$. At a given depth the water concentration $C_w(z)$ will approach the equilibrium concentration within seconds to minutes. Here the equilibrium concentration in water is independent of the immediate exchange with the atmosphere but reflects the carbonate buffer system which changes on a slower timescale, in the order of hours to days (only significant fluxes over a longer time period will alter the balance of the buffer system).

A schematic presentation of the model developed within the following paragraphs is shown in figure 1. We have chosen not to focus on the skin-layer, since the purpose is to illustrate the effect from the buffer system in the water column on parameterization of the flux.

The general assumptions made in the modeling of the fluxes across the surface shown in figure 1 are:

• We assume a stationary situation within the time scales considered (typically defined as the period of the typical measurements, i.e. half an hour).
• The fields of concentrations are homogeneous in the horizontal directions in the water as well as in the air.
• The field of turbulence is homogeneous in the horizontal direction in the water and in the air.
• To simplify we neglect the role of stability in the air, and of vertical variation in temperature as well as variation of the composition of the water.
• Chemistry and physics in the skin-layer are not included in the present discussion.
\[C_a(z) = C_a(0) - \frac{\overline{wC}}{k \overline{u}} \ln \frac{z}{z_{0a}} \]

\[\overline{wC}_0 = \frac{k_p}{\sigma} (C_w(0) - \alpha C_a(0)) \]

\[C_w(z) = C_{eq} - \frac{\overline{wC}_0}{k \overline{u}_w} S(\xi) \]

\[\Delta \frac{\partial C}{\partial z} = \frac{1}{\tau_c} \frac{1}{\tau_f} (C - C_{eq}) \]

\[\frac{\partial \overline{wC}}{\partial z} = 0 \]

\[w_C = k_p \overline{C_w_0} - \alpha \overline{C_a(0)} \]

\[\cdot C_a \text{ (measured in air)} \]

\[\cdot C_{eq} \text{ (measured in water)} \]

Figure 1. A schematic view of the model setup with the equations for the different processes in water, the skin-layer and air.

In the following we will explain the assumptions and theory of the three compartments i.e. the air, the interface and the water in details.

2.1 CONCENTRATIONS AND FLUXES IN THE LAYER ABOVE THE SEA

In the air \(CO_2 \) is considered a passive gas, because there are no significant chemical reactions which alter the concentrations, hence the vertical flux is considered constant. Thus we obtain the well-known logarithmic concentration profile where the concentration of \(CO_2 \) in air is represented by \(C_a(z) \):

\[C_a(z) = C_a(0) - \frac{\overline{wC}_0}{k \overline{u}_a} \ln \left(\frac{z}{z_{0a}} \right) \] \hspace{1cm} (2)

Additionally, we state the similar wind profile for illustration

\[U_a(z) = \frac{u_a}{k} \ln \left(\frac{z}{z_{0a}} \right) \] \hspace{1cm} (3)

Here, \(U_a(z) \) is the wind speed, and \(u_a \) is the friction velocity, describing the vertical momentum transport, with \(k \) being the von Karman constant. \(C_a \) is the concentration at the height \(z_{0a} \), and we have here taken \(z_{0a} \) for the gas concentration to be equal to the roughness length for the velocity profile. This assumption is fairly good for the smooth to medium rough conditions over water according to Brutsaert (1975). The flux of \(CO_2 \) in the air is here described as \(\overline{wC}_0 \).
2.2 THE FLUXES ACROSS A STAGNANT INTERFACIAL LAYER

The stagnant inter-facial layer consists of the roughness scales in air and the water as shown in Figure 1. The chemical and physical processes in this layer are not considered in this paper. This layer includes three thin layers: a roughness sub-layer in the water, a roughness sub-layer in the air, and a very thin molecular boundary layer with a thickness (δ) of 0.1 - 200 μm (Coantic, 1986) all layers depending on the wind-speed. We assume that the fluxes through these layers are given by Equation 1, which can also be described in terms of concentrations instead of partial pressure and the flux w_C across this inter-facial stagnant layer can thus be described as:

$$w_C = k_p (C_w(0) - \alpha C_a(0))$$

(4)

where α is the dimensionless solubility of CO$_2$ in water and where $C_w(0)$ is the concentration in the water at z_{0w}, and $C_a(0)$ is the concentration in the air at at z_{0a}, and k_p is the exchange velocity across the stagnant interfacial layer. The concept of using a water roughness z_{0w} originates from the model of the upper oceanic boundary layer which is assumed to behave as the atmospheric boundary layer (Zilintikevich & Kreimann, 1991). Here We assume that CO$_2$ acts as a passive tracer in this very thin layer, i.e., all carbonate chemistry occurs below the molecular boundary layer. However, we do know that temperature gradients in the water column affect the CO$_2$ concentration, but to evaluate the effect of chemical reactions over the measured concentration gradient we will neglect temperature gradients. The exchange coefficient has, as cited in the introduction, been parameterized by several authors, and in wind/water tunnels the exchange coefficient k is often found to depend linearly on u_* for unbroken surfaces and can be written as:

$$k = b u_* Sc(T)^n$$

(5)

Here $Sc(T)$ is the Schmidt number for the tracer as a function of the temperature. T and u_* is the atmospheric friction velocity; b is a non-dimensional coefficient and n is an exponent discussed in Goddijn-Murphy et al. (2016). The form used here is taken from tunnel data (Ocampo-Torres & Donelan, 1994) where $n=1$ for unbroken surfaces. This linear relationship between u_* and the exchange coefficient is also supported by McGillis et al. (2007). However the value of n in the present study is not important as we are investigating the effects of chemistry in the water column.

For any given neutral wind, we can now determine the transfer across the interface, using equations 4 and 5. The relationship between the wind speed at a given height z above the water surface is expressed by equation (3), with the roughness given by equation (6) (Charnock, 1955). The exchange velocity u_{*a}, to be used in (5) can now be found by iteration. The empirical coefficient c over open waters can be taken as 0.014 from Charnock (1955).

$$z_{0a} = c u_{*a}^2 \frac{g}{u_{*a}^3}$$

(6)

$$u_{*w} = \frac{u_{*a}}{30}$$

(7)

Equation 7 specifies the relation between u_* in air and in water, which is here due to the density differences between air and water. The logarithmic wind profile can then be turned upside down so the profile specification of the velocity of the water from the surface and downwards also follows a logarithmic profile with the corresponding water momentum flux and roughness (Zilintikevich & Kreimann, 1991) where the water roughness is:
The coefficient c_w is estimated to about 5000 as a value in the middle of the interval: 10^3–10^4 suggested by Figure 4.2 in Zilintikevich and Kreimann (1991). By iteration of the equations (6), (7) and (3) the friction velocity in water can be expressed as a function of the wind speed.

2.3 CONCENTRATION AND FLUXES IN THE WATER

First we shall focus on the chemistry alone, secondly we will introduce the fluid motion as well. In the following, we simplify the carbonate buffer system and describe it as a simple first order decaying process, thereby obtaining an analytical solution for the fluxes in the water phase. In the water column the concentration of CO_2 changes due to the reactions with water (Stumm & Morgan, 1981):

\[
\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{CO}_3 \quad (9)
\]
\[
\text{CO}_2 + \text{OH}^- \rightleftharpoons \text{HCO}_3^- \quad (10)
\]

The latter chemical reaction is only important for pH higher than 10 and the first reaction dominates when pH is around 8 or less which corresponds more or less to the mean value of the pH values in the ocean (Stumm & Morgan, 1981). CO_2 is hydrated and forming carbonic acid H_2CO_3, which again is protolysed to HCO_3^- and CO_3^{2-}. The total reactions can therefore be written as

\[
\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons ^{k_{\text{CO}_2}} \text{H}_2\text{CO}_3 \rightleftharpoons ^{\text{Very fast}} \text{H}^+ + \text{HCO}_3^- \quad (11)
\]

Here we assume an equilibrium in the carbonate system between HCO_3^- and H_2CO_3 with the reaction rates $k_{\text{H}_2\text{CO}_3}$ and k_{CO_2} in order of 10 to 20 s$^{-1}$ and 0.025 s$^{-1}$ (Stumm & Morgan, 1981)

Given the assumption that the total alkalinity, pH and the temperature do not change from the skin-layer to the depth of the observation point, the chemistry in the water is reduced to a first order process arguing that the timescale of transforming CO_2 to H_2CO_3 is slower than the rest of the reaction velocities in the carbonate system. Furthermore, there is a huge buffer in the sea implying that the equilibrium concentration does not change over the timescale considered as we described in the assumptions of the model.

In the water we therefore obtain the following conservation equations.

\[
\frac{\partial C}{\partial t} = -k_{\text{CO}_2}C + k_{\text{H}_2\text{CO}_3}C_{\text{H}_2\text{CO}_3} \approx (-1/\tau_c)(C - C_{\text{eq}}) \quad (12)
\]

where C is the CO_2 concentration, $C_{\text{H}_2\text{CO}_3}$ is the H_2CO_3 concentration, C_{eq} is the equilibrium concentration of CO_2 in the water due to the buffer system which is given by the alkalinity ,pH ,and sea water temperature.

We have here parameterized the buffer mechanism of CO_2 in order to close eq. 12. Hence we assume that the mid term of eq. 12 can be written as $(1/\tau_c)(C - C_{\text{eq}})$. When the concentration of C is higher than C_{eq}, i.e a downward flux of CO_2, the rate of change constant is $1/\tau_c = k_{\text{CO}_2}$. In the following $\tau_c = 40\text{s}$ is chosen to be the reference for the chemical timescale.
Assuming stationary conditions and horizontal homogeneity a conservation equation for C can now be obtained as a balance between flux divergence and the local source, i.e.:

$$\frac{DC}{dt} = \frac{\partial \bar{wu}}{\partial z} + \frac{\partial C}{\partial t} = 0 \quad \text{(13)}$$

which combined with eq. 12 gives:

$$\frac{\partial \bar{wu}}{\partial z} = \frac{1}{\tau_c} (C - C_{eq}) \quad \text{(14)}$$

As stated, we have assumed stationarity and horizontal homogeneity. Following the methods applied within atmospheric chemistry for similar situations, Kristensen et al. (1997) derived an analytic solution for the flux of a decaying tracer. This solution is based on a second order closure model for the flux and mean concentration of a decaying tracer in a stationary and horizontally homogeneous field of turbulence combined with a stationary concentration field. From Kristensen et al. (1997), the equation for the flux of a decaying species in a turbulent field based on the assumptions above is:

$$\frac{w^2 \partial C}{\partial z} - \left\{ \frac{1}{\tau_T} - \frac{1}{\tau_c} \right\} \bar{wu} = 0 \quad \text{(15)}$$

where \(\tau_T\) is the turbulent time scale defined as \(z/u_*\), while \(\tau_c\) is determined as discussed above. The flux budget eq. 15 has here been reduced by the following:

- The chemical conversion can be described by a first order process, as given by eq. 12.
- The equation for correlation between pressure and concentration fluctuations has been closed with the flux and a turbulent timescale.
- third order correlation’s have been neglected.

As \(\tau_c\) is going to infinity we obtain the equations of a passive tracer, and the equation for the flux is reduced to the ordinary K closure for a passive scalar.

Inserting the derivative of the conservation equation 14 with respect to \(z\) into the flux budget equation 15, we obtain a closed form of the flux budget equation i.e.:

$$\tau_c \frac{\partial^2 \bar{wu}}{\partial z^2} - \left\{ \frac{1}{w^2 \tau_T} - \frac{1}{w^2 \tau_c} \right\} \bar{wu} = 0 \quad \text{(16)}$$

In this equation we introduce the following variables from Kristensen et al. (1997):

$$\frac{\kappa u_{*w}}{\sqrt{w}} = a \approx \frac{1}{3} \quad \text{(17)}$$

$$K_w = \frac{w^2}{u^2 \tau_T} \approx \kappa u_{*w} (z + z_{0w}) \quad \text{(18)}$$

It is assumed that the turbulent timescale or the diffusivity \(K_w\) beneath the water surface has a finite value determined by \(z_{0w}\). This assumption of a timescale different from zero, where \(z\) equals to zero, is different from the assumption of Kristensen et al. (1997), who did not include a \(z_{0w}\) in equation 18. We now introduce the normalized depth variable:
\[\xi = \frac{z + z_0}{\kappa u_* \tau_c} \]

which is equal to the Damköhler number (a ratio between the turbulent and chemical timescale) (Kristensen et al., 1997). The flux equation can now be rewritten as:

\[\frac{\partial^2 f(\xi)}{\partial \xi^2} - \left\{ \frac{1}{\xi} + a^2 \right\} f(\xi) = 0 \]

where

\[f(\xi) = \frac{\varpi(z)}{\kappa u_*} \]

The solution to eq. (20) where we have assumed that the flux at the depth \(z = 0 \) is \(\varpi c_0 \), and that the flux goes to zero at large depth is:

\[f(\xi) = \frac{F e^{-a\xi} U \left(\frac{1}{2a}, 0, 2a\xi \right)}{e^{-a\xi_0} U \left(\frac{1}{2a}, 0, 2a\xi_0 \right)} \]

where

\[\xi_0 = \frac{z_0}{\kappa u_* \tau_c} \]

and \(U(a, b, z) \) is the confluent hypergeometric function and \(F \) is a factor used to ensure the flux upper boundary conditions, i.e. \(f(\xi_0) = F = \frac{\varpi c_0}{\kappa u_*} \). The corresponding normalized concentration profile \(S(\xi) \) above the equilibrium concentrations in water can be found by inserting eq. 22 in eq. 14 which yields:

\[S(\xi) = \frac{F e^{-a\xi}}{e^{-a\xi_0} U \left(\frac{1}{2a}, 0, 2a\xi_0 \right)} \times \left\{ U \left(1 + \frac{1}{2a}, 0, 2a\xi_0 \right) + aU \left(\frac{1}{2a}, 0, 2a\xi_0 \right) \right\} \]

Figure 2 shows the flux profile obtained from eq. 22. The normalized flux is seen to decrease with increasing normalized depth. At the normalized depth of 10 to 15 it is seen that the flux has reduced to 3-4 % of the surface flux, which is small compared to overall uncertainties on surface flux estimates (Fairall et al., 2000; Sorensen & Larsen, 2010; Norman et al., 2012). The figure is shown for a wind speed U of 10 m/s. However, the ratio of 10-15 applies to all wind speeds, as also documented by Kristensen et al. (1997) for a similar process. Both the chemical removal and the turbulent flux are driven by the difference between \(C \) and \(C_{eq} \). This difference vanishes at a certain depth dependent on the timescales of the two processes (the turbulence and chemistry) as described above.

The flux profile in figure 2 shows that the flux of CO\(_2\) is not constant but changes with the depth due to the chemical removal. The changes are largest near the surface and approach zero at depths where the normalized depth is about 10-15. It is now possible to investigate in which depths the flux becomes negligible and thereby also in which depth the concentration will be close to the equilibrium concentration. Since the timescale of the turbulence depends on the wind, this depth will be wind speed dependent.

Figure 3 shows the depth where the Damköhler number is 10 as function of the wind speed and thereby also the depth where the concentration approaches the equilibrium concentration. As seen from the figure the gradient of the concentration occurs at shallow depths. This implies that the task of measuring a concentration profile different from the equilibrium concentration can be challenging due to the wind induced waves.
Figure 2. The normalized flux versus the normalized depth (from eq. 22). The equation is evaluated for $U(10m) = 10 \text{ m/s}$. The normalized depth corresponds to the Damköhler number, i.e. the ratio between the chemical and the turbulence timescales. It is seen that the normalized flux vanishes for a normalized depth of about 10.

Besides the effect on the solubility, the effect of temperature will also alter the chemical timescale. In figure 4 we have tried to show the effects of temperature on the water concentration profile by choosing two different timescale for the chemistry. Short timescale results in faster transformation of CO$_2$ to the equilibrium concentration C_{eq}. In comparison a timescale of 10000 s$^{-1}$ is also shown to illustrate a nearly passive tracer.

3 THE EXCHANGE COEFFICIENT WITH CHEMISTRY INCLUDED

Based on the model described in the previous sections we will now explore the modification of the exchange coefficient induced by the concentration gradients in water and air. We use the following equations:

\begin{align*}
\frac{\dot{w}C_o}{wC_0} &= k_p(C_w(0) - \alpha C_a(0)) \\
C_w(z_w) &= C_{eq} - \frac{\dot{w}C_o}{\kappa u* w} S(\xi) \\
C_a(z) &= C_a(0) - \frac{\dot{w}C_o}{\kappa u*} \ln(z/z_o)
\end{align*}

where eq. 25 describes the flux over the interface, eq. 26 the concentration profile in water, and eq. 27 the concentration profile in air. Combining these equations we obtain the following equation:

\[
\frac{\dot{w}C_o}{wC_0} = \left[\frac{1}{k_p} + \frac{S(\xi)}{\kappa u* w} + \frac{\alpha}{\kappa u*} \ln(z/z_o) \right]^{-1} \times (C_{eq} - \alpha C_a(z))
\]
The CO₂ concentration in the water at a depth below approximately three meter
will in general not be a function of depth, and the concentration will be equal to the equi-
librium concentration as discussed in section 2.3. Hence, we can conclude that for the
depths normally used for the pCO₂ measurements, which are larger than three meters,
the exchange coefficient can be expressed as:

\[\frac{\mu C_0}{\tau} = k(C_{eq} - \alpha C_a(z)) \] \hspace{1cm} (29)

\[k = \left(\frac{1}{k_p} + \frac{S(z_0)}{\kappa U_{sw}} + \frac{\alpha}{\kappa U_s} \ln(z/z_o) \right)^{-1} \] \hspace{1cm} (30)

It is now seen that the flux can be written as a new exchange coefficient \(k \) which
includes the skin-layer coefficient \(k_p \), the concentration modification in the water, and
the logarithmic profile in air. This is equivalent to a traditional resistance model (Joffre,
1988) and (Geernaert et al., 1998) including the turbulent water mass, the skin layer and
the air. Equation 29 describes the flux derived from measurements at a depth where the
equilibrium has been achieved, and a typical measuring height \(z \) above the water sur-
face. The ratio \(k/k_{\text{inert}} \) i.e the exchange coefficient for value of \(\tau_c \) where chemistry is in-
fluencing the gradients divided by process where chemistry is negligible e.g \(\tau_c \) large (e.g.
10000 s) is shown in figure 5 as a function of wind speed. From this we can conclude that
chemistry in the bulk water only has a minor effect on the exchange coefficient \(k \) in the
order 5 to 8 % with an diminishing effect as function of wind speed. The figure also shows
the smallest timescale has a larger effect compared to reference timescale of 40 s.

4 SUMMARY OF THE EFFECTS OF CHEMISTRY

The basis assumption behind the use of flux gradient relation in eq. 1 is that the
concentrations in the air and the water are horizontally homogeneous and stationary in
the two fluids with the only concentration gradient to be right at the interface. However, there is a concentration gradient both in the air and the water. In this paper we have studied the effects of the vertical concentration gradient in the water induced by the flux across the interface, including both the chemistry and the diffusion processes. The methodology has been to combine the turbulent flux budget with the chemical reactions in water, including a constant flux in the air.

We have shown that the effects of water chemistry on the Air-sea exchange coefficient are negligible. The skin-layer still contains the largest resistance and therefore controls the flux. The reason why the effect is small is mainly because of the size of the carbonate buffer and the speed of the chemical reactions involved.

Note that the theoretical calculations shows that the gradients of CO$_2$ of occur in the near-surface. In real life it is very difficult to verify these CO$_2$ gradients in water, since the depth of the equilibrium is reached within the first three meter. For low wind speeds, the layer where the gradients exist, will be very shallow, whereas for higher wind speeds the layer will be deeper, but the presence of waves, will make near surface measurements difficult.

Figure 4. The concentration profile of the difference between the equilibrium concentration and CO$_2$, shown for three different chemical timescales 10, 40 and 10000 s (dashed, full and dotted line) as function of depth. All the profiles are calculated for the wind speed equal 10 m/s at 10 m.
Figure 5. The exchange coefficient normalized with the exchange coefficient for an approximately passiv tracer gas k_{inert} (where $\tau_c = 10.000 \text{s}$) as function of the wind speed at 10 meter. The dashed line represent a chemical timescale of 10 s and the full line shows the case of 40 s

Notation

- $U + u$: The Reynold’s convention with capital letters being mean value.
- α: The dimensionless solubility
- τ_T: is the turbulent timescale.
- τ_c: is the chemistry timescale.
- a: pertains to the atmosphere, used when clarifying
- a is $u_{sw}/(<w^2>)^{1/2}$
- b: const. in eq. 5 relating k to u_* and $Sc(T)$
- C_{eq}: The equilibrium concentration of CO$_2$ in water given by the buffer of the carbonate system
- $C + c$: concentration of CO$_2$.
- c: in subscript: Pertaining to Chemistry
- c: Charnock’s constant in Charnock’s roughness formulation
- F: Normalized flux at the surface i.e. $\overline{wC_0}/\kappa u_*$
- g: acceleration due to gravity
- k: exchange velocity
- k_p: exchange velocity across the interfacial layer, z_{0a} and z_{0w}
- K: diffusivity
- K_0: solubility of CO$_2$ in the water
- Sc: the Schmidt number
- T: temperature (Kelvin)
- T: in subscript due to turbulent mixing” (eq. 14)
- $(U + u, v, w)$: wind or current vector
- u_*: friction velocity
- z: = height scale z_w positive downwards in the water, z_a positive upwards in the air
\(z_0 \) roughness length of the water surface, \(z_{0a} \) seen from the air flow above, \(z_{0w} \) as seen by the water current below

\(w \) index= pertains to water, used when clarifying

\(\Pi \) vertical flux of concentrations

Acknowledgments

The Arctic Research Centre (ARC), Aarhus University is acknowledge for financial supporting this work which is a contribution to the Arctic Science Partnership (ASP). In addition the authors would like to acknowledge the valuable comments from the reviewers, which have made a substantial improvement to the manuscript.

References

co₂ profile and mass balance techniques, in: Transport at the air sea interface. In (pp. 181–192). Springer Verlag Berlin Heidelberg.

\[C_a(z) = C_a(0) - \frac{\overline{w_c}}{\kappa u_*} \ln \frac{z}{z_{0a}} \]

\[\overline{w_c} = k_p (C_w(0) - \alpha C_a(0)) \]

\[C_w(z) = C_{eq} - \frac{\overline{w_c}}{\kappa u_{*w}} S(\xi) \]

\(C_a \) (measured in air)

\(C_{eq} \) (measured in water)
\[\frac{W_C}{W_{C0}} = \frac{Z_W + Z_{OW}}{K U_{*W} \tau_C} \]
Depth where \(C \approx C_{eq}, \tau_c = 40s \)

Depth where \(C \approx C_{eq}, \tau_c = 10s \)

\(z_w \) [m]

\(U_{10} \) [m/s]
Figure 4.
\[\frac{C(z_w)}{C(z_{ow})} \]
Figure 5.
\[\frac{k}{k_{\text{inert}}} \] vs. \(U_{10} \) [m/s]

- \(\tau_c = 40 \text{s} \)
- \(\tau_c = 10 \text{s} \)

\[\tau_c = 40 \text{s} \]

\[\tau_c = 10 \text{s} \]