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I Summary & resumé (på dansk) 

The greater goal of this thesis is to understand the growth patterns of the filamentous fungus 

Aspergillus niger in submerged cultivations. The resulting morphology is reported to have impact 

on productivity of the diverse products that are manufactured by A. niger.   

Existing mechanistic growth models and knowledge had to be consolidated and expanded with 

confirming trials and testing of various parameters to influence the morphology to create the 

ideal morphology for the specific production process. The topics included in this thesis cover 

morphology altering by pH, power input by agitation, presence and concentration of particles, 

initial conidia concentration and ion concentration.   

The outstanding feature of this thesis is the tracking of morphology with particle size analysis by 

laser diffraction. Assuming spherical particles, first conidia and in the later course of the 

fermentation pellets, the Fraunhofer approximation was deemed to suffice in precision detail for 

displaying a volume based density function. To follow development of conidia aggregation, 

germination and pellet formation, the bimodal distribution could be split into modes of conidia 

and pellets to differentiate their respective particle size development. 

Using the lab strain Aspergillus niger AB1.13, several growth conditions were evaluated in terms 

of influence on morphology engineering towards either freely dispersed mycelia or pelleted 

growth with defined diameter to prevent particle internal gradients. A conception is presented 

with the core control handle to determine when pellet formation takes place being pH. Initial 

cultivation at a pH of 3 prevented the first conidia aggregation step and the following aggregation 

could be controlled by shifting pH upwards to 5.5. The particle size could be tuned by adjusting 

parameters like power input and initial conidia concentration which possess inferior influence on 

particle size and biomass development compared to pH. 

The resulting model was applied onto an industrial glucoamylase producing strain in courtesy of 

Novozymes A/S. The media was as close to the production environment as the settings of the 

model allowed. The result was that this strain behaved very differently from the suggested 

model, and all settings that were evaluated experimentally resulted in mixed morphology with 
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both freely dispersed mycelia and pellets being present. In most cases, the pellets were also 

fragmenting before cultivation end thus making particle size engineering meaningless. 

The model was then applied to the Aspergillus niger wildtype BO-1 strain to validate its general 

usefulness. Being the third strain to be tested, a third growth pattern could be detected. This 

indicates that morphology engineering probably must be evaluated for each strain separately. 

The question arose if morphology matters to produce enzymes, in this case production of 

glucoamylase with BO-1. With introduction of different concentration of cellulose particles, the 

respective morphologies could be tailored. Employing the achieved morphologies as inoculum 

for cultivations, it was shown that freely dispersed BO-1 mycelia morphology is superior in 

producing glucoamylase despite oxygen limitation. 

In conclusion, production processes should be checked for their morphology and the respective 

strain preference of producing enzymes.   
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Resumé 

Det overordnede formål med denne afhandling er at forstå filamentøs svampen Aspergillus nigers 

vækstmønster. De forskellige morfologier kan påvirke produktiviteten af forskellige produkter 

fremstillet med A. niger. 

De eksisterende mekanistiske vækstmodeller og viden skal konsolideres eksperimentelt for at 

undersøge indflydelsen af forskellige parametre på morfologien, således at den ideelle 

morfologifor den specifikke proces kan bestemmes. Emnerne i denne afhandling dækker over 

modificeringer i morfologien ved hjælp af pH værdien, power input fra omrøring, tilstedeværelse 

og koncentration af partikler samt de oprindelige konidier - og ionkoncentrationer. 

Det enestående særkende ved denne afhandling er sporingen af morfologi med partikel størrelse 

analyse ved laser diffraktion. Antagelsen er, at der foreligger sfæriske partikler, først konidier og 

i løbet af den senere gæring pellets. Derfor er kriteriet for Fraunhofer approximation vurderet   

tilstrækkeligt i præcision for at vise en volumenbaseret densitetsfunktion. For at følge 

udviklingen af konidie-aggregation, spiring og pellet dannelse, bliver den bimodale fordeling 

opdelt i modi for konidier og pellets for at differentiere deres respektive 

partikelstørrelsesudvikling.  

Med lab stammen Aspergillus niger AB1.13 blev flere vækstbetingelser evalueret mht. indflydelse 

på morfologiens design mod enten frit spredte mycelier eller pelletvækst med defineret diameter 

for at forhindre partikelinterne gradienter. En vækstmodel blev skabt, hvori det vigtigste 

justeringsparameter for at bestemme hvornår pellet dannelsen finder sted, er pH værdien. En 

indledende pH på 3 forhindrer det første konidie-aggregationstrin og i det følgende kunne 

sammenlægning af biomassen kontrolleres ved at flytte pH opad fra 3 til 5.5. Partikelstørrelsen 

kan indstilles præcist ved at justere parametre som power input og konidiestartkoncentration, 

som har en mindre indflydelse på udviklingen af partikelstørrelsen og biomassen i forhold til pH.  

Den resulterende model blev anvendt på en industriel glucoamylase producerende stamme stillet 

til rådighed af Novozymes A/S. Kultiveringsmedierne var så tæt på produktionsmiljøet som 

modellens indstillinger tillod. Resultatet var, at denne stamme opførte sig meget anderledes end 



7 
 

den antagende model. Alle indstillinger, der blev evalueret eksperimentelt, resulterede i blandet 

morfologi med både frit spredte mycelier og pellets. I de fleste tilfælde fragmenterede biomassen 

før afslutning af gæring. Det gør partikelstørrelsesdesign meningsløst for denne stamme.  

Modellen blev derefter anvendt på vildtypen Aspergillus niger BO-1 for at validere modellens 

generelle anvendelighed. Med denne tredje stamme blev et tredje vækstmønster påvist. Dette 

indikerer, at morfologi design sandsynligvis skal vurderes separat for hver stamme.  

Spørgsmålet opstod hvorvidt morfologien er afgørende for at producere enzymer, i dette tilfælde 

produktion af glucoamylase med BO-1. Med indførelsen af forskellige koncentrationer af 

cellulose partikler kunne de respektive morfologier skræddersys. De opnåede morfologier blev 

brugt som inokulum for en gæring med ”ren” morfologi. Det blev påvist, at de frit spredte BO-1 

mycelierer bedre egnet til at producere glucoamylase på trods af iltbegrænsningen.  

Den ultimative konklusion er, at hver produktionsproces med filamentøse svampe skal 

analyseres separat med hensyn til morfologidesign og stammens præference for at producere det 

ønskede produkt.  
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III Nomenclature 

Abbreviations 

A. niger Aspergillus niger 

AGU Glucoamylase Activity Units 

BDM Bio Dry Matter 

DLVO 

Theory explaining aggregation in aqueous 

solution; named after Derjaguin, Landau, 

Verwey and Overbeek 

DOT Dissolved oxygen tension 

FBRM Focussed Beam Reflectance Measurement 

FDA Food and Drug Administration (US) 

GRAS Generally regarded as safe 

HPLC High performance liquid chromatography 

ISO 
International Organization for 

Standardization 

NAD(P) 
Nicotinamide adenine dinucleotide 

phosphate 

OTR Oxygen Transfer Rate 

PDA Potato dextrose agar 

PCR Polymerase Chain Reaction 

PNPG 4-Nitrophenyl α-D-Glycopyranoside 

RFLP 
Restriction Fragment Length 

Polymorphism 

UV Ultra violet (light) 
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Greek letters 

 Density [g L-1] 

 Zeta potential [mV] 

ϴ Scatter angle of laser 

λ Wavelength of light [nm] 

µ Biomass growth speed [h-1] 

µmax Maximal biomass growth speed [h-1] 

⍵  Thickness of active layer [m] 

Roman letters 

Cx Concentration of biomass 

Kg Kilogram 

k Growth constant 

L Litre 

m meter 

M Molar concentration [mol L-1] 

osmol Osmotic concentration 

Qr(x) Cumulative particle size sum 

qr(x) The particle size density distribution 

R Radius 

pH 
Negative of the base 10 logarithm of the 

molar concentration of hydrogen ions 

pKa 
Negative of the base 10 logarithm of the 

acid dissociation constant 

RPM  Revolutions per minute [min-1] 

T Temperature 

VVM 
Aeration rate in volume [gas] per volume 

[liquid, reactor] per time [minute] 

W Watt [kg m2 s−3] 
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Chapter 1: Introduction to the project 

The overall aim of this project is to understand the growth patterns of the fungus Aspergillus 

niger in submerged cultivations leading to different morphologies that might impact the 

productivity in industrial processes at Novozymes A/S. Existing mechanistic growth models and 

knowledge must be consolidated and expanded with additional experiments for generating the 

data confirming these models, and which also aim at identifying the parameters that could 

describe the morphological development of the fungus. Therefore, the topics covered by this 

thesis include designing a certain morphology type by altering cultivation conditions as well as 

particle size development to obtain advanced fermentation strategies of industrial relevance.  

1.1 Structure of the thesis 

Work on this thesis was done over a period of around 10 years and there are various traceable 

reasons for this elongated time frame. This is reflected in the structure of the thesis: The methods 

and a growth control model were developed with the lab strain Aspergillus niger AB1.13 at the 

institute of biochemical engineering of the Technische Universtität Braunschweig, Germany. The 

findings of this work were applied to an amylase producing production strain in courtesy of 

Novozymes A/S at different scales. Based on the contradicting results, the wild type BO-1 strain 

was introduced as a third strain, with the aim of finding out whether the lab or production strain 

differed compared to “normal” behaviour.  

1.1.1 The introductory part 

The chapters “Introduction to the project”, “About Aspergillus niger”, “Particle size analysis”, 

“Conceptions about A. niger morphogenesis” and “Conceptions about A. niger morphogenesis” 

belong to the introductory part. The latter is included based on supplemental information about 

the applied particle size measurement systems and cultivation environments. 
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1.1.2 The results and conclusions sections 

The chapter “Results & discussion” is split into a of three sections, one for each strain. Each strain 
section contains sections about biomass growth, particle size development and/or enzyme 
activity trends, respectively. 

The chapter “Conclusions” is organised similarly, which is per strain, and this chapter is followed 

by a subchapter providing the overall conclusions of the thesis. 

1.2 Introduction to Biotechnology 

The utilization of microorganisms by mankind is millennia old, especially in the nutritional 

sector. The first written rules about how to produce a starch based alcoholic beverage date back 

to Sumerian times, about 4000 BC. The deeper understanding of the underlying processes has 

not been unveiled for a long time, though. The structured and scientific approach to microbial 

processes was decisively initiated by the construction of capable microscopes by Antonius van 

Leeuwenhoek (1632 – 1723). By using microscopy, microorganisms were described for the first 

time1. Van Leeuwenhoek’s results were first verified 200 years later by the work of Louis Pasteur 

who also brought this topic to the scientific community2.  Already in the beginning of the 20th 

century, industrial production processes based on fungal cultivation were thriving and were also 

the subject of scientific investigations: In 1917, for example, Currie described “The Citric Acid 

Fermentation of Aspergillus niger”3. Nowadays, the market volume for this product, citric acid, is 

around 1.75 million tons per year4 and still, research is ongoing5,6. 

Citric acid has numerous application possibilities, and its producers are similarly versatile: 

Filamentous fungi. The application spectrum of filamentous fungi ranges from recombinant 

protein production7, bio-catalysis of fatty acid esterification8, production of nitriles9, production 

of pharmaceutical products through stereo-selective biotransformation of steroids10 and up to 

production of enantiomer purified epoxides11. The industrial production of enzymes by 

filamentous fungi is a major focus point on its own: With enzyme products, the human carbon 

footprint can be reduced by e.g. enabling low temperature laundry cleaning12 or the 

manufacturing of ethanol out of lignocellulosic feedstock for usage as biofuel13.  
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1.3 Challenges in submerged cultivation of filamentous fungi 

Use of enzymes as catalyst in production processes has several production advantages, like 

stereo-selectivity (stereospecific pure L-malic acid production14) or the ability of combining 

several catalytic steps in one enzymatically catalysed reaction step15,16 under relatively mild 

conditions (processing of biorenewables17). However, it is also important to mention that the 

management of an enzyme producing process relying on filamentous fungi can be challenging: 

The polarised growth of the filamentous fungi, e.g. Aspergillus niger, can cause the development 

of differentiated macroscopic morphologies.  

The morphological extrema are growth as freely dispersed mycelia on the one hand, and the 

development of tightly entangled hyphae that form spherical particles known as pellets on the 

other hand. The morphology potentially influences the production yield: It has been described in 

the literature that penicillin is produced by the fungus found as dispersed mycelia18 while the 

model protein glucoamylase of the lab strain Aspergillus niger AB1.13 is secreted with highest 

productivity when the strain is in a pellet state 6,19.  

From a process point of view, the main disadvantage of the freely dispersed mycelia is the 

increased viscosity of the broth which might hamper bulk mixing behaviour inside the 

bioreactor20. In contrast, growth as pellets leads to almost Newtonian flow behaviour of the 

media which excels in terms of mixing characteristics. In consequence, gradients in the bulk 

phase are reduced under conditions promoting pellet formation.  

The gradients might however appear inside the bio-particle because oxygen and substrate must 

be transported towards the centre. The diffusion of nutrients into the core of the pellet becomes 

limiting when the nutrient consumption rate increases. On top of the potential starvation 

metabolic products like e.g. carbon dioxide cannot adequately be transported towards the bulk 

phase6. 

The most effective method of controlling the potential diffusion limitation is to take control over 

the particle size development: A maximum threshold of particle size must not be exceeded. As 

secondary factor, particle density could be employed. Both methods rely on controlling particle 
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size development from the onset of secondary particle formation, which in the case of Aspergillus 

niger is represented by aggregating conidia, and later growth in particle size as function of 

growing biomass21. 

 

1.4 Origins of the project 

The origin of this work lies in the special research area (in German: Sonderforschungsbereich) 

SFB 578 by the German Research Foundation and its subproject B3 which focussed on controlling 

the morphology of a filamentous production host22. This host is Aspergillus niger, a fungus which 

is classified as a coagulating organism that forms conidia with the potential to attach to each 

other as conidial aggregates23. 

During the B3 project, the aggregation behaviour of the A. niger conidia and the growth of the 

pelleted biomass were studied and described by e.g. Grimm24–26 and Kelly27–29. The main 

conclusions from their work affect cultivation parameters like initial conidia concentration26, 

power input by agitation28,30 and aeration31 as well as the pH value.  

Their respective models are based on different particle size measurement techniques and are 

separated by process time. There is a 15 h gap between Grimm’s conidia aggregation model and 

the start of Kelly’s pellet growth model. The lack of overlap is based on conidia aggregation 

kinetics, which are very fast, and pellet growth, which includes big particles with coarse surfaces.  

Because optical methods are too slow to follow the conidial aggregation, it is tracked in situ and 

online by focussed beam reflectance measurement (FBRM). The FBRM method is mostly limited 

by the coarse surface structure with hyphae sticking out: Particles with sizes above 50 µm were 

detected as several smaller ones. Therefore, and depending on the cultivation conditions, FBRM 

could just be used to characterize the first 15 – 20 h of the cultivation. 

The opposite problem was faced when employing (manual) picture analysis to cultivations 

younger than 24 h. The particles were simply too small for the chosen setup during the initial 

cultivation phase. Additionally, sampling is required which introduces a new source of variation 
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as the particles tend to aggregate and representative sampling is not possible. An example of  

how biomass looks in the early stages of fermentation is given in Figure 1. 

 

Figure 1: Early stages of Aspergillus niger AB1.13 cultivation contains conidia, conidia aggregates and biomass 
with the tendency to aggregate when agitation is not available (e.g. sampling) 

 

1.5 Goal definition 

The original purpose of this thesis is to unify Grimm and Kelly’s models of aggregation and 

growth. Required is therefore a particle size measuring technique that covers a particle size span 

from 3 µm (conidia) to 2 mm (pellets). Ideally, the measurement takes place in situ as sampling 

would alter the aggregation of the biomass. At the same time, the sensor should be 

cleansable/removable from the system to counter the frequent issue of fouling in fungal 

fermentations 21.  

1.5.1 Particle size analysis 

Laser diffraction is a method that fulfils the requirements. It is well-established in areas with 

inorganic particles and comes therefore with a lot of know-how. The usual spectrum of usage 

ranges from characterising concrete particles32 up to pharmaceutical aerosols33 and calcium 

carbonate particles for bone glue34. Lartiges was one of the first to use the Malvern MasterSizer 
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laser diffraction spectrometer for biological studies in 2001 for analysis of microorganism 

populations from river Rhine sediments35. Apart from the above-mentioned size range, the 

Malvern MasterSizer 2000 can be connected to a bioreactor via a by-pass which enables online 

measurement and potential cleansing. Its usage has not been described before for this kind of 

application. 

1.5.2 Modelling the growth 

A Grimm and Kelly unifying approach must start by investigating which factors are decisive at 

which point in time for the aggregation of conidia and biomass. It is stated that aggregation of 

conidia does not take place at a fermentation pH of 3 while it is very pronounced at a pH of 5.536. 

Step changes from non-aggregating to aggregating conditions should enable insights about the 

different kinds of interactions: conidia – conidia, conidia – hyphae and hyphae – hyphae. These 

are the cornerstones of the later pellet regarding size and density. Ideally, and depending on the 

production purpose, a defined biomass dry matter concentration can be created with a 

determined particle diameter which does not exceed a certain maximum.  

This means the development of a morphology control model for controlling the development of 

the biomass during the cultivation beginning with conidia and up to fully mature biomass. 

Metabolic activity should be tracked for the fungal reactions towards manipulations of its 

cultivation environment like e.g ionic strength, pH value, presence of particles and mechanical 

power input by agitation as well as aeration and head space pressure. The aim is to provide the 

best morphology for high productivity in an industrial strain.  

For the industrial setup, pre-cultures are common37 and thus investigations about pushing the 

fungus into a certain morphology has to start there. For economic reasons38 or to stimulate the 

specific enzyme production39, the cultures often contain complex raw materials which is a 

difference towards academic laboratory conditions. Thus, the potential influence of the state of 

the substrate must be evaluated. Key is to keep the broth’s rheology in control for an optimised 

oxygen transfer rate (OTR) from aeration into the bulk phase of the fermentation.  
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With different viscosities and particle diameters, it could be determined whether gradients in the 

bulk phase or the particle internal are limiting. Ideally, a preference of morphology for 

production of enzymes could be identified.  

For verification of the model achieved with the lab strain, an internally well characterized 

amylase production strain of A. niger is chosen. This strain is known to be able to form both 

pellets as well as freely dispersed mycelia. The knowledge gain could directly merge into the 

current production process. The improved productivity would increase production capacity and 

would lead to beneficial economics. Therefore, the experiments will be conducted at several 

scales ranging from shake flasks, 20 L reactors up to pilot scale of 400 L.  
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Chapter 2: About Aspergillus niger 

The genus Aspergillus is a member of the family of ascomycetes and belongs to the order of 

eumycetes, i.e. higher fungi. The genus includes about 350 species40. In contrast to other sac 

fungi, Aspergillus niger does not develop a sexual stadium. The reproduction is solely done by 

asexual formation of conidia. In this specific case, the terms spores and conidia are synonym. 

Therefore, A. niger is also classified as deuteromyces, fungi imperfecti41.   

Traditionally, the different species in this genus were identified by their morphological 

characters and sorted into subgenera mainly based on the phenotype42. The most recent 

approach to taxonomically classify the fungus is based on its phylogeny and follows the “one 

fungus – one name” principle43. Accordingly, there are now four subgenera, Aspergillus, 

Circumdati, Fumigati, and Nidulantes) and 20 sections proposed44. The classification is justified 

by the finding that these fungi built a monophyletic group45. With these newer findings, some 

traditional names were replaced with correct ones. This also means that e.g. a company’s strain 

library must be updated to display the correct taxonomy, avoid confusion and improve 

communications46. 

The monophyly is based on sequencing technology that allows analysing the internal transcribed 

spacer region of the ribosomal RNA gene cluster which is used as official DNA barcoding region 

for fungi. This method might be insufficient to distinguish between different species though47. As 

a secondary marker, the DNA structure for the fungus’ b-tubulin can be employed48. The 

Restriction Fragment Length Polymorphism (RFLP) method49 has recently been updated with 

additional PCR analysis to quickly differentiate between species inside a subgenus50.   

As saprophytes, the natural role of these filamentous fungi is the digestion of dead biomass like 

e.g. trees and other solid and complex substrates which makes the filamentous fungi a good 

source for discovery of e.g. cellulose digesting enzymes. To be able to make nutrients available, 

an efficient secretion system is required which is also advantageous for exploitation of the fungal 

productions capabilities: If the target protein could be secreted, downstream processing can omit 

unit operations required for treatment of the biomass51. 
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As eukaryotic organism, A. niger can do posttranslational protein modifications which resemble 

the products of cell cultures to some extent. These include proper folding of bigger protein 

molecules, methylation and glycosylation which could be of immense importance for 

pharmaceutical products, especially considering production of heterologous and eukaryotic 

proteins7. 

Obtaining the GRAS status is advantageous for industrial purposes– generally regarded as safe. 

The American Food and Drug Administration (FDA) approved A. niger as a GRAS organism in 

1994. With this approval of  the strain, the approval of processes by the authorities becomes less 

of a hassle as well despite the fact that the production organisms are still able to build up 

mycotoxins depending on the applied process parameters52,53. 

 

2.1 Tip growth of hyphae 

The vegetative form of Aspergillus is characterized by a septate and branched polynuclear 

mycelia. When reaching suitable conditions, asexual conidia will be developed by cell division of 

a hyphal segment into a specialized sporogenous cell. Figure 2 showcases the overall 

development of conidia from A. nidulans, a close relative to A. niger: One hyphae starts growing 

aerial into a stem and becomes a vesicle by swelling (A & B). In a budding-like process, metulae 

are formed (C) which produces up to three phialides (D). The phialides are continuously 

sectioned into single-nucleus conidia (E).  

Sensing substrates, the first biomass as such is a thallus extending the conidia54. After swelling, 

the conidia develop a germ tube which becomes the later hyphae. The growth of the developing 

hyphae is polarized and highly directed towards substrates55. Prolongation of the hyphae 

exclusively takes place in a narrowly defined area at the hyphal tip, the apical cell, which is 

separated by a septum from the sub-apical cells. Several cell nuclei could be present in the apical 

cell41. 

The germ tube’s growth speed is exponential at first and becomes linear with increasing hyphal 

length. Growth speed is determined by the micro tubules based vesicle velocity which provides 
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the apical cell with cell wall synthesis building blocks produced in the entire hyphal volume. An 

additional factor is also the exo-/endo-cytosis equilibrium which interacts with flexible actin 

stabilization of the tubules56.   

 

 

Figure 2: Morphological changes during conidiophore formation. Shown are scanning electron micrographs of the 
stages of conidiation. (A) Early conidiophore stalk. (B) Vesicle formation from the tip of the stalk. (C) Developing 
metulae. (D) Developing phialides. (E) Mature conidiophores bearing chains of conidia 57,58. 

The transition from exponential to linear growth speed also reflects the point in time when 

branching of hyphal elements out of the sub-apical cells starts to occur59. Further branching 

happens when the content of bio-synthesis material exceeds the consumption of this material by 

the apical cell. Theoretically, the amount of hyphal mass can develop exponentially thus leading 

to an overall quasi exponential growth similar to that of a unicellular organism6. 

It is believed that the hyphae could be separated into three sections: An extension zone 

representing the tips of the hyphae, an active region which is responsible for growth and product 

formation and an inactive hyphal region60. 

2.2 Morphologic appearance 

The natural habitat of A. niger supplies the fungus with solid substrates. While polarized growth 

and branching of hyphae is well suited here, it leads to a range of morphological appearances in 
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submerged cultures.  Figure 3 illustrates the two extrema: a) Growth as distinct spherical 

aggregates which are called pellets & b) growth as freely dispersed hyphae or mycelial clumps6,61.  

The freely dispersed growth is characterized by mycelial trees which are found distributed in the 

cultivation medium. Because of freely dispersed growth, the apparent viscosity of the suspension 

could be drastically increased. The extreme situation could be reaching pseudo-plastic flow 

behaviour62. To ensure a sufficient mass and heat transfer therefore requires (relatively) high 

power input which also could be problematic from an economical point of view for large scale 

cultivations.  

 

Figure 3: Types of morphology typically found in submerged cultures of filamentous fungi a) pellet; b) freely 
dispersed mycelia. 

Despite the higher power input, inhomogeneity can still occur in terms of pH, oxygen and 

nutrient supply and carbon dioxide and heat removal, respectively. Moreover, intensive power 

input might hamper the growth/development of the biomass due to excessive shear which in 

turn might have a negative effect on the synthesis of heterologous proteins63. When shear is not 

an issue with the selected strain or the chosen setup, freely dispersed mycelia seems to allow 

enhanced production based on the fact that the morphology at the microscopic level has an 

influence on the production kinetics and on the secretion of enzymes64.  

In contrast, pellets consist of highly entangled hyphae and can reach particle sizes of several 

millimetres. The pelleted morphology type can be preferred because there are no free hyphae to 
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increase the viscosity. The resulting Newtonian fluid behaviour of the bulk phase is marked by 

superior mixing characteristics with lower required power input65: Bulk gradients can mainly be 

avoided. However, nutrient concentration gradients might occur in the pellet66. 

The mass transport inside of particles might be diffusion limited above a particle size of 1 mm6,67. 

The limitation will be enhanced by consumption of oxygen and substrates by the growing 

biomass. From a process point of view, smaller pellets are thus preferred over bigger ones68, 

mainly because of the lower diffusion distances. The diffusion is also dependent on the density 

and porosity of the pellet which stands for the overall surface being in contact with the liquid 

phase69.  

Depending on the desired product, the optimal morphology for a given bioprocess might vary 

and cannot be generalized. In some cases both types of morphology are present in one process70. 

Penicillin G produced with Penicillium chrysogenum, for example, is produced with highest 

productivity when grown as freely dispersed mycelia18,71. In contrast, citric acid is produced with 

optimal space-time-yield when Aspergillus niger is cultivated as pelleted suspension5,72. 

In the case of the production of the enzyme glucoamylase, it seems like A. niger prefers the 

pelleted state. The assumed reason for this is that catabolite repression is not activated in the 

inner regions of the pellet due to the gradient inside the pellet. Since there also is an oxygen 

gradient, the oxidative inactivation of protein synthesis could be prevented73. The morphological 

development towards pellets can therefore be seen as differentiation which, induced by cell-cell 

interaction, could lead to specialization of single segments and thus to an improved production 

capability6.   

The morphology of filamentous fungi is double edged: The productivity as well as the 

fermentation conditions can be affected by the outer appearance of the fungus. The challenge is 

to separate these effects to be able to connect observed productivity gains to the correct 

phenomenon causing it.  
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2.3 A. niger growth in submerged culture 

In analogy to the growth characteristics of single cell organisms, the biomass development of a 

filamentous fungus in a batch cultivation can be divided into different phases. After inoculation 

with conidia, there is a lag-phase. The lag-phase represents adaption of the organism to the new 

environment. Before swelling and germination take place (see 2.1 Tip growth of hyphae), the 

surface charge and structure of the conidia might be altered. Non-covalent proteins could be 

detached and the conidia’s UV-protection substance, melanin, dissolves. These two phenomena 

could be decisive for later stages of the cultivation and will have a major influence on the model 

of aggregation of conidia described by Grimm30. 

Taking up water marks the beginning of metabolic activity. The conidia swell and germ tubes are 

formed. For A. niger, the lag phase of conidia varies between 6 – 10 h26. Following the lag phase, 

an exponential biomass growth phase takes place which transforms into linear growth (see 2.1 

Tip growth of hyphae).  

There are two major types of models describing the fungal growth. The first assumes that the 

dispersed mycelia follow similar growth characteristics as single cell organisms. The dynamics of 

the biomass concentration can therefore be considered as exponential and the law of Maltus can 

be applied with Cx as concentration of biomass, t as time and µ as growth rate: 

Equation 1: Law of Maltus describing growth 

𝑑𝐶

𝑑𝑡
= μ  C  

With the growth rate being constant in the exponential phase (no limiting substrate), the 

differential equation can be integrated 

Equation 2: Law of Maltus integrated with constant µ 

μ =
𝑙𝑛

𝐶 (𝑡 )
𝐶 (𝑡 )

𝑡 − 𝑡
 

The maximal specific growth rate µmax of Aspergillus niger is usually between 0.1 and 0.3 h-1 6. 
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Figure 4: Pellet structure of Aspergillus niger AB1.13. The inner circle A marks the core of the pellet which also 
contains aggregated spores attached to each other and hyphae. The middle layer B is characterized by hyphae 
with relatively low density. The outward layer C shows active growth and appears denser than the middle layer74. 

The second approach to describe fungal growth rate takes pellets and their structure into 

account. Figure 4 displays how the interior of the pellet can look like. It is assumed that just the 

outer layer (C) is active. If the number of hyphal tips is now increasing exponentially, the pellet 

radius R increases with a constant rate based on the initial radius R0, assuming no (diffusion) 

limitations. Equation 3 describes this relation in dependency of the thickness ⍵ of the active 

layer, the growth rate of the biomass µ and time t. 

Equation 3: Mathematical description of pellet radius in dependency of time, growth rate and thickness of the 
active layer 

𝑅 = 𝑅 +  𝜔 μ 𝑡  

This mathematical description also forms the basis of the cube root law which was developed in 

the 1950s by Emerson75: 

Equation 4: cube root law describing pelleted growth 

𝐶 (𝑡) =  𝐶 𝑡 + 𝑘 𝑡 
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During the exponential phase of the outer and active layer, the factor k is a constant which was 

determined to be in the range 0.035 ≤ k ≤ 0.07 𝑘𝑔  𝐿  ℎ  for the strain Aspergillus niger 

AB1.1328 which was employed for the experiments.  

 

2.4 Fermentation parameters influencing morphological development 

The cultivation media represents the direct environment of the fungus which naturally makes it a 

parameter with substantial influence on future growth and morphology. Lack of nitrogen, for 

example, is described to induce pelleted growth while excessive phosphate as growth enhancer 

suppresses it6. The ion composition of the media is also important: Manganese ions (Mn2+) can 

induce aggregation of biomass to pellets in an else dispersed cultivation72.  

A lack of Mn2+ ions in turn is reported to reduce the activity of an oxalo-acetate-acetal-hydrolase 

which in a cascaded effect increases production rate of citric acid11. This emphasizes the fragile 

balance between direct effects of media on the productivity and its effects on morphology. 

The pH value of the media influences the transport and the solubility of nutrients and it might 

affect extracellular enzyme activity. From the morphological point of view, the pH value is 

decisive in terms of surface charge of the conidia. In general, it  has been reported that Aspergillus 

niger tends to grow as freely dispersed mycelia at pH values of 2 while growth at pH 5.5 mainly is 

pelleted76,77.   

Aspergilli in general are known for their resilience over high sodium chloride concentrations up 

to 20 %78. High salinity affects morphology and production of e.g. enzymes though79. Osmolality 

in the range of 0.2 to 4.9 osmol kg-1 was tested on two different academic Aspergillus niger strains 

with the results that lag phase increases with higher osmolality while the overall biomass 

development was hampered. The morphology changed from spherical pellets towards elongated 

particles in a more mycelia like growth pattern. Intriguingly, the productivity increased80.  

A different approach for control of the morphological development was introduced by addition of 

microparticles consisting of silicate or aluminium oxide to the cultivation 81,82: The presence of 
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microparticles during cultivation strongly influenced the morphology, and by varying both size 

and the concentration of the particles, distinctive morphologies were achieved. It is believed that 

the addition of inert microparticles causes a disturbance of the initial spore aggregation (see 

chapter 4.1 )81. Based on these observations, the addition of inert microparticles looks promising 

as a tool for morphology engineering of filamentous fungi. 

The concentration and type of inoculum (conidia or vegetative forms) are described to affect the 

morphological development30.  A start concentration of conidia above 108 mL-1 usually leads to 

dispersed growth, or, in turn, pelleted growth can just be achieved by applying a start 

concentration below 108 mL-1 6. It seems, though, that pellet formation follows an optimum 

function: Employing a lower conidia inoculum concentration like e.g. 104 mL-1 leads to formation 

of bigger pellets in lower concentration while more pellets with smaller diameter develop with 

higher conidia concentration26. 

Apart from the desired effects of improved dispersion of the gas phase and an enhanced bulk 

mixing with higher mass and heat transport, mechanical power input also influences the 

morphology: Shear can damage the cell structure. Changes in morphology, growth rate and 

production rate might be the consequences6,65,67,83. With a variation of the power input, the fluid 

dynamics inside the reactor are altered.  With higher power input, the intensified interactions 

between pellets and eddies lead to shaving off hyphae that stick out of pellets, thus leading to a 

smoother pellet surface and thus a denser outer active layer28. 

In summary, the above-mentioned parameters have an influence on the morphological 

development of A. niger. Given sufficient knowledge about the leverage of these parameters on 

the fungal behaviour, they could actively be employed as handles to design and steer the 

cultivation towards a specific outcome in terms of morphology. 
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Chapter 3: Particle size analysis 

3.1 Particle Size properties – dispersion 

The system that should be measured consists of a liquid phase (cultivation media) which as 

continuous phase resembles the dispersion agent, and a solid phase (the biomass). The 

dispersion value characterizes the system. It consists of a numerical value and a unit and could be 

geometrical (e.g. sectional area for a digital image analysis) or physical (e.g. the mass for 

gravimetrical measurements). It is important to realize that particles usually do not appear in a 

unified shape or size and that a collective of particles usually exists as a mixture which 

complicates the collectives’ characterization. 

The dispersion value is determined with particle size dependent characteristics. The particle size 

measuring technique serves to register this dispersion value. In many cases, the dispersion value 

is converted into the diameter of an equivalent sphere (spherical equivalent diameter). 

Alternatively, the system could be calibrated with spherical particles to relate the measured 

value with spherical particles. First then will it be possible to present the composition of a 

particle collective as a particle size distribution. 

Particle size distributions are usually presented in two ways. The first way is as a cumulative sum 

of the distribution Qr(x). It resembles a representation of the distribution which for each point x 

on the X-axis adds up the relative subsets of particle sizes smaller than the specific particle size x. 

All particle classes together or all measured particles together converge to a cumulative sum of 1. 

Figure 5 displays the cumulative sum function.  

In this context, the index r describes the type of distribution, e.g. if this is a volume or a number 

distribution. Because r resembles the exponent of the equivalent diameter, it has a significant 

effect on the shape of the curve: Number, length, area and volume are displayed as 0, 1, 2 and 3, 

respectively.  With index r increasing, the greater is the influence of larger particles on the shape 

of the distribution. This means that smaller particles have less influence on the shape of a volume 

distribution than in a number distribution34. This concept is graphically explained in Figure 6.  
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Figure 5: Display of the cumulative particle size sum and the particle size density distribution 

 

 

 

Figure 6: Graphical explanation of the two types of output from particle size distribution measurements. The bar 
charts represent the two outputs when a sample is measured with the 7 particles to the left. 

 

As described before, the value of the cumulative sum of the distribution for the maximal particle 

size equals 1. This means that the value of the cumulative sum is zero for any size below the 

minimum particle size in the distribution. If the relative number of particles at a certain particle 
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size x (alternatively the infinitesimally small interval Δx) is of interest and if the sum function is 

continuously differentiable, the distribution density qr can be derived as displayed in Equation 5. 

Equation 5: particle size density distribution is the derived version of the distribution sum 

𝑞 (𝑥) =  
𝑑𝑄 (𝑥)

𝑑𝑥
 ↔  𝑄(𝑥) =  𝑞 (𝑥)𝑑𝑥 

To characterize a particle size distribution with the lowest number of parameters possible, 

different location parameters can be defined. The most common is the median: 

 Beside the arithmetic mean value of the number weighted particle diameter, the median 

value xmed,r is of importance. At this particle size, 50 % of all measured particles are of 

smaller equivalent size. In the cumulative sum of the distribution Qr(xmed,r) hence takes 

the value 0.5. The median is heavily dependent on the type of distribution. Usually, the 

median should just be used for mono-modal distributions. 

 When encountering bi- or multi-modal distributions, it could make sense to employ the 

mode xmod,r instead of median xmed,r84. Xmax,r resembles in this context the highest value of 

qr(x). The mode is defined as the particle equivalent diameter which is present at the local 

maximum in the density distribution (see Figure 25 on page 78). 

The location parameters are easily available and are standard output of modern particle size 

measurement systems. When the laser diffraction system solves the spectra via the Fraunhofer 

analysis, it makes sense to weigh the distributions as sectional area as the assumption is that the 

light is bent towards a circular projection plane34,84.  

 

3.2 Definition of agglomeration and aggregation 

The terms agglomeration and aggregation have a different meaning outside the particle 

technology area. Inside particle technology, however, both terms describe a collection of primary 

particles. During the work presented in this thesis, the primary particles are Aspergillus niger 

conidia. A precise definition at the beginning of this work is necessary though because even 
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specialists in the field of the particle technology area are not always following the conventions85, 

and different international organisations suggest deviating terminology (British Standard 

Institution). In the powder processing field it was even suggested to solely use the term 

agglomeration85. The following definitions justify the usage of the terms agglomeration and 

aggregation for this thesis: 

 The word agglomeration derives from the Latin verb aglomerare which translates as to 

bundle or to clump together to a ball or assembly86. Agglomerates consist of primary 

particles that are loosely connected with each other. The connection is not due to surfaces 

but on edges and angles. The surface of an agglomerate equals the sum of the surfaces of 

all single particles. Due to low coherence, an agglomerate can be easily disintegrated.  

 The term aggregation is not used in the biological sense in this work, where the term 

stands for the fact that cells form collections of cells without losing their individuality. 

Instead and despite of this, the definition from the particle technology area will be 

employed. According to the Oxford English Dictionary, an aggregate is a mass which 

consists of a collection of individual particles86. The origin of the term derives from the 

Latin verb agregare, which means to merge. Following this description, an aggregate is 

defined as a more tightly bonded collective of particles compared to an agglomerate. 

Further, it was stated by Gerstner (as mentioned in 87) that an aggregate consists of 

primary particles attached to each other via surfaces. In consequence and in contrast to 

the agglomerate, the surface of the aggregate is smaller than the sum of the surfaces of the 

individual particles, and the inner surface of the aggregate is inaccessible. Due to the tight 

bonds, this particle assembly cannot be easily broken up by e.g. intensified hydrodynamic 

energy provided by agitation. 

The definitions and the mechanism describing conidia attaching to each other during the primary 

aggregation would allow the characterization as agglomeration process because spherical 

particles cannot attach to each other via surfaces. It cannot be excluded though that there are 

interactions between molecules, e.g. proteins or melanin, because the definition of agglomeration 

is not sufficiently precise. Further on, Grimm describes that aggregation and de-aggregation of 
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conidia reach an equilibrium until the secondary aggregation step25. The particle size distribution 

of conidia and the aggregates, respectively, show that the aggregates do not entirely break up 

into their primary particles. This supports using the term aggregate and aggregation henceforth. 

 

3.3 Principles of laser diffraction 

Laser diffraction will be used to follow the particle size development. The instrument of choice is 

a Malvern MasterSizer 2000. The measuring principle is based on scattering of a laser beam 

when dispersed particles are obstructing the optical path of the light beam. Diffraction is the 

phenomenon that occurs when interferences arise in the geometrical shadow of the particle 

where absence of light would normally be expected. Interference describes the interaction of two 

harmonic waves with identical wavelength which either leads to amplification or cancellation. 

In the shadow of a spherical particle, scatter of monochromatic and coherent light (laser) causes 

several diffraction maxima as positive interference and minima as destructive interference. The 

distances between the maxima and minima are dependent on the particle size and the 

wavelength of the light. Employing a laser with known wavelength makes it possible to use the 

diffraction pattern to analyse the particle sizes of the obscuring particles.  

Figure 7 schematically displays the optical bench of the laser diffraction analyser. The 

arrangement is set up to detect as many scatter signals as possible. Ensuring the correct 

concentration of particles is important such that the light can reach each individual particle 

independently. Assuming now that all particles harbour the same size, all will scatter the light in 

the same angle.  

The minima and maxima can be focused onto the focal plane with a lens. The result is an intensity 

distribution with the absolute maximum in the middle (all not deflected or scattered beams of the 

laser which are also used to determine the overall obscuration). Perpendicular to the direction of 

the light beam, the intensity follows a wave-like pattern in which the intensity of the maxima 

decreases with increasing distance to the center88.  



32 
 

 

Figure 7: Schematic structure of a laser diffraction analyzer with the typical, circular symmetric intensity 
distribution caused by scattering of light on spherical particles (picture from Malvern online course). 

Assuming now that the dispersed particles form a grid and that the dispersant acts like slits, the 

following relation for determination of the location of the maxima can be used: 

Equation 6: Basic relation between wave length λ, location of the first maximum z, the particle size x and the angle 
the light will be scattered at (Fraunhofer approximation on multiple slit). 

𝑠𝑖𝑛𝜃 ≈  
𝑧 𝜆

𝑥
 

The location of the first maximum z = 1 is dependent on the size of the projection area of the 

particle given the wave length λ of the employed laser is constant. With increasing particle 

diameter x, the scatter angle ϴ decreases. Apart from the setup of the instrument, for example in 

terms of light intensity or distance from the particle, the intensity of light detected at the sensor 

is dependent on the number of particles89. 

If an ensemble consists of particles with different sizes, all signals from particles with the same 

size will be bundled. It also means that there is an overlay of signals from particles with different 

sizes as all particles receive the incoming light beam at the same time. To solve that challenge, 

ring-like detectors (diode-detectors) are installed with fixed angles in the focal plane of the 

Fourier lens. Knowing the intensity of the first maximum allows for concluding how big the 

fraction of this specific particle size is.  
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There are different methods to solve the scatter patterns of a known particle size distribution. 

There is as the first approach the Mie-theory which is the exact solution to Maxwell’s wave 

equation for spherical symmetrical particles. For calculation of scatter patterns, the optical 

parameters must be known. The Mie- theory is valid for all size ranges, wavelengths and scatter 

angles.  

The second approach is the Fraunhofer approximation. It is part of the Mie-theory and is only 

valid for particle sizes above the Mie-range: 𝜆 ∗ 10  ≤ 𝑑 ≤ 10 * λ. The here employed helium-

neon laser generates a wavelength of λ = 0.632 µm which corresponds to reliable measurements 

down to particles with the smallest particle diameter of 6.3 µm. Required optical parameters are 

that particles are spherical and that these are impervious to light so that these can be treated like 

discs which only cause forward scatter of the light with rather low angles (≤ 10 µm)90.  

The optical properties refractive index and absorption coefficient change during the cultivation 

and are hence not known for most of the experiments. It is therefore advised to solve the scatter 

pattern with the Fraunhofer approximation (ISO 1332091).  

The smallest particles encountered in this work are the conidia: These are spherical and light 

impervious, and have a diameter of around 3 – 5 µm. Microscopic control proved that the 

Malvern MasterSizer 2000 is capable of determination of the correct size of spores using just the 

Fraunhofer approximation, and hence this method will be employed in the following. It has to be 

kept in mind that results might deviate from reality if the given assumptions are not (longer) 

valid91. 
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Figure 8: Two-dimensional illustration of how the particle size is determined for three different types of 
morphology typically seen in this study of A. niger. To the left: an example of freely dispersed hyphae, in the 
middle: mycelia aggregate, to the right: pellet. The coloured arrows indicate examples of lengths which the 
MasterSizer could detect, dependent on the direction of the particle as it passes through the measuring chamber. 
The coloured circles illustrate the volume of the particle which the software would calculate based on this 
measured length 92–94 

That means that the method is only applicable when a submerged A. niger culture consists only of 

conidia or pellets. When the morphology includes dispersed mycelia and free hyphal elements, 

this method it not very suitable. Figure 8 illustrates examples of how laser diffraction would 

detect particles when measuring a submerged culture of filamentous fungi with different types of 

morphology 94,95. The arrows on the figure indicate examples of particle lengths which would be 

detected. The circles indicate the respective volume (presented in 2D) corresponding to the 

detected lengths if the result is given as volume distribution. The figure illustrates the two major 

problems related to measuring particle size distribution of different morphologies:  

1. A single hyphal element can be measured to several different lengths, meaning it would be 

almost impossible to distinguish between orientation of particles and the distribution in 

particle size.  

2. It is difficult, if not impossible, to distinguish between pellets and large agglomerates of 

mycelia. As experienced from this study, loose agglomerates can grow very big, and when 

results are analysed as a volume distribution, all small particles become insignificant.  
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Calculating now the particle size distribution of a particle ensemble of unknown composition 

requires a complex process. In the case of the Malvern approach, solving the spectra is an 

iterative process. Out of the scatter pattern the software derives a particle size distribution 

(using Fraunhofer approximation). That distribution is then used to predict the scatter pattern. If 

now the calculated scatter pattern is not congruent to the measured one, the calculation process 

will be repeated. When reaching the pre-defined precision, the calculation process will be 

terminated. The particle size distributions based on laser diffraction are heavily dependent on 

the employed algorithm84,89. 

Major advantages of laser diffraction in the context of this work are the large number of particles 

that are constantly measured which gives some statistical certainty, and the ease of handling 

compared to the (not automated) image analysis. The most important advantage though is the 

possibility to connect the Malvern MasterSizer 2000 to the bioreactor via a bypass as a quasi-

online measurement for the particle size distribution with a short sampling interval (frequent 

measurement points). 

A drawback of the method might be the inability to track the concentration of the measured 

particles even though the number of particles is inherently influencing the intensity signal of 

each scatter maximum. The information about number of particles contained in the scattering 

pattern cannot be quantified, though84.  

The user must be aware about the sources of systemic errors. If the above stated requirements 

for the method are not matched, there could be major deviations in the calculated distributions 

compared to the real ones. Therefore, it is recommended to employ microscopy for controlling 

and documenting the laser scattering results.  
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Chapter 4: Conceptions about A. niger morphogenesis 

4.1 Concept of conidia aggregation by Grimm 

According to Metz and Kossens62, most filamentous organisms could be classified as either 

coagulating or non-coagulating. Examples of the latter are some Streptomyces species which 

develop one pellet per spore – the hyphae forms the core of the pellet76. For the coagulating 

organism type, like the here investigated A. niger, the conidia possess the potential to attach to 

each other during the early stages of the cultivation. The core pellet could thus consist of 

aggregated conidia which are surrounded by the hyphal network developed out of one or more 

but not necessarily all conidia. 

Grimm developed a two-staged model of conidial and biomass aggregation26. The model is based 

on population balances which handle the entity of particles inside the reactor. The first step is the 

adaptation phase of the cultivation: Just moments after inoculation, conidia attach to each other – 

aggregation! The relative particle concentration drops to about 90 % of the original value. Figure 

9 illustrates this concentration drop at the very beginning of the graph. For the remaining part of 

the lag phase, the particle concentrations appear to be stable. It is described as a dynamic 

equilibrium between aggregation of conidia and aggregates and the respective disintegration.  

The second stage is initiated with the beginning of germination and active biomass growth. With 

biomass growth, new surfaces are built up exponentially and non-germinated conidia or smaller 

aggregates could attach to it. This leads to the second decrease in particle concentration between 

7 and 13 h in Figure 9 which correlates to the growth rate. A dynamic equilibrium is reached 

again at a lower concentration of particles. The secondary aggregation stage can be considered 

terminated after about 15 h when all conidia have germinated or are attached to/incorporated 

into other particles. Using the software PARSIVAL by CiT GmbH96 for modelling the aggregation 

via population balances enables to calculate the kinetics of the aggregations. 
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Figure 9: Kinetic model of aggregation of A. niger conidia consisting of two stages. First, there is a conidia-conidia 
interaction which happens at the onset of the cultivation. Secondly, conidia attach to growing biomass/hyphae 
after germination30. 

For balancing, the aggregation and the biological growth are formulated as growth, source and 

sink functions. The primary aggregation is based on two counteracting processes. The first is the 

formation of conidia packages with the velocity constant k+1. The second resembles the 

disintegration of packages into conidia (or particles of a smaller size class) and is characterized 

by the disintegration constant k-1. Both aggregation and disintegration lead to genesis and 

disappearance of particles with a chord length of L.  

Primary aggregates with a specific chord length of L, a parameter which resembles the spherical 

equivalent diameter, could develop by attachment of smaller aggregates (bagg(L), aggregation 

source function) as well as by disintegration of bigger aggregates (bbreak(L), disintegration source 

function). As equilibrium, there also is a loss of aggregates with the chord length L which could 

happen by recombination with other aggregates to form larger particles (dagg(L), aggregate sink 

function) or disintegration into smaller particles (dbreak(L), disintegration sink function).  

For the secondary aggregation it is further assumed that the decline in conidia concentration is 

proportional to the average length increase of the hyphae and that conidia can attach anywhere 
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on the newly built surface97. Growth of the biomass can be both source and sink for a distinct 

chord length. It is though integrated in the model as provider of surfaces for attachment. 

Equation 7 summarizes the descriptions in the above paragraphs: 

Equation 7: Mathematical description of the population balance model 

𝜕𝑛 (𝐿, 𝑡)

𝜕𝑡
=  𝑏 (𝐿) − 𝑑 (𝐿) +  𝑏 (𝐿) − 𝑑 (𝐿) 

Both mechanical power input and the pH value of the media can influence the kinetics of the two 

aggregation stages. The particles existing during the first stage are too small to be affected much 

by the power input, though one known exception are reactors with high aeration rate and thus 

high energy input.  In general, the influence of power input increases with progressing growth 

and particle size, mostly on the secondary aggregates.  

It was investigated how the pH value of the media influences the surface charge of the conidia, 

which is described by the -(zeta-)potential, and how this is related to the rate of aggregation 

during the primary stage. Lowering the pH leads to a lower drop in particle concentration during 

both stages of aggregation. According to the DLVO theory98, the pH value stabilizes the 

aggregates. Furthermore, the quantification of interaction forces can be used for linking the fluid 

dynamic load description on the aggregates as it incorporates the local maxima in load 

intensities. 

 

4.2 Pellet growth model by Kelly  

In 2006, Kelly described the pellet growth of Aspergillus niger AB1.1329. The pellet population is 

regarded as a collective of particles that differ in dispersion characteristics like diameter, 

concentration and morphology (see section 2.2 ). The dispersion characteristics are influenced by 

the growth process and change during the cultivation.  

For this model, it is assumed that mature pellets occur after 20 h of cultivation and that 

successive growth happens as pellet growth (of the active biomass layer). Pellet growth is 
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characterized by increasing median values dP,50,1, especially until cultivation time reaches 30 h. 

Afterwards and in dependency of the mechanical power input, Kelly calculated the pellet growth 

speed to be a constant velocity of uP,max = 0.043 mm h-1. 

Because of accumulation of growth inhibiting factors, the pellet growth decreases after around 

50 h into the cultivation despite sufficient nutrients being available. An equilibrium between 

positive growth-related processes and the negative processes like erosion of the outer hyphae 

because of mechanical influences like shear as well as decreasing stability/tensile strength of 

hyphae is then assumed to be established. At the same time, the pellet density decreases. Caution 

is advised by the author because the calculation of particle volume is proportional to the 

diameter to the power of 3 (Vparticle ~ dparticle3) which makes the measurement error prone. 

Just as the model for the aggregation, the software PARSIVAL was used to model the growth via 

population balance. The model relies on the measurement of the dispersion characteristics which 

become terms for particle growth and erosion as well as metabolic rate. Because the cultivation 

experiments are batch processes, there are no sources or sinks in terms of volume. For the model, 

the particles do not disintegrate completely. Instead, it assumes that exposed hyphal branches 

are eroded. In principle, these sheared off hyphae can form new pellets of their own. The absolute 

number of these sheared off hyphae though is sufficiently low to be neglected99. These 

assumptions allow the simplified version of the population balance which describes the time 

dependent changes in the pellet population only with the particle growth velocity uP:  

 

Equation 8: population balance as growth model with time changes and growth/erosion as summands 

𝜕𝑞 (𝐿, 𝑡)

𝜕𝑡
+  

𝜕

𝜕𝑡
𝑢  𝑞 (𝐿, 𝑡) = 0 

The particle growth velocity is defined by the fraction of active biomass of the pellet as well as 

damping of growth by inhibitors. Because diffusion limitations might occur inside the particles 

when particle diameter increases, it is assumed that keeping the hyphae at the core of the 

particle alive is not prioritized, or they might even be completely lysed ( decreasing particle 
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density)100. Consequently, this means that there is just the outer layer of biomass contributing to 

growth. The model offers the possibility to adjust the density and the substrate limitation inside 

of the pellet manually accordingly to experimental findings, without the necessity to add 

additional terms to the population balance. 

 

4.3 Control of the morphology 

The previous chapters “Concept of conidia aggregation by Grimm” and “Pellet growth model by 

Kelly” describe the interaction of conidia with conidia, conidia with hyphae as well as the particle 

size expansion by biomass growth of an active layer as a function of time and the mechanical 

power input. Both models are based on population balances, though Kelly’s pellet growth model 

is not a balance as such because it does not include neither sources nor sinks for the overall 

number of particles. Hence it is “just” a growth model.  Based on the difference in particle 

concentration at the end of the aggregation model and the beginning of the pellet growth model, 

it is assumed that there might be a tertiary aggregation step. 

The time point of this hypothetical step after the outgrowth of conidia and before mature pellets 

occur leads to the assumption that this aggregation is based on hyphae-hyphae interaction. Per 

the description of secondary aggregation, single and not germinated spores could link hyphae 

together but these would be affected by the pH of the cultivation media, the power input and the 

general physiological conditions of A. niger.  These parameters are hence the biggest sources of 

influence and therefore also the most potent handles for controlling the morphology. Ideally, the 

conditions inside the bioreactor can be switched from aggregation promoting to aggregation 

preventing conditions. 

The schematic overview over control possibilities to direct the morphology to specific particle 

sizes in Figure 10 is based on the following ideas: Conidia at the onset of the cultivation (as well 

as in the inoculum) at a pH 3 remain as single particles and maybe as smaller aggregates. The by 

Grimm observed aggregation does not happen. The conidia swell, germinate and are present in 
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higher concentration by skipping aggregation compared to cultivation at pH 5.5 (condition 

applied for the derivation of Grimm’s model). 

If a pH of 3 is maintained, both the biomass and the degree of branching increase during the 

exponential phase. If this phase at a pH of 3 is continued further, the fungus continues to grow as 

freely dispersed mycelia, which is also why the pH was rated with 100 in the index of control 

potential at the start-up of cultivation – it is decisive. The control potential declines after 

germination as the number of conidia present and being able to aggregate decreases, and there 

might be a lack of suitable aggregation candidates.  

Conidia in cultivations started with a pH value of 3 do not aggregate. This means that the conidia 

concentration after inoculation resembles the later concentration of vegetative biomass particles 

after outgrowth. Increasing initial conidia concentrations might lead to a higher biomass content. 

 The initial concentration of conidia only shows control potential when the start pH is 5.5 which 

is due to the primary aggregation. With germination, the control potential of the conidia 

concentration diminishes until the end of the secondary aggregation phase. Changing the pH after 

germination does thus not have any influence on further aggregation behaviour.  
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Like the initial conidia concentration, the power input is supposed not to be a major factor when 

the cultivation shows a pH of 3. The effect of power input on the primary aggregation is limited, 

which is also prevented due to pH. Instead, the power input is an excellent parameter to control 

the growth of the particles with bigger sizes like after 15 h cultivation.  

Based on the description above, it could be stated that it should be possible to control the 

potential hyphae-hyphae interaction and therefore also the final appearance/shape of the 

biomass with the parameters initial conidia concentration, volumetric power input and pH value 

of the media. Except for the initial conidia concentration, the parameters can be changed actively 

while running the cultivation for forcing freely dispersed growing mycelia into the shape of 

pellets. 

The underlying model approach includes Grimm’s description of the two-staged conidia 

aggregation, Kelly’s pellet growth model as well as influences on the potential tertiary 

aggregation. It is very unlikely that the formation of pellets could be reverted with the presented 

means. This reflects the definition as aggregates which cannot easily be divided into the primary 

particles. There also is the probability that the primary particles, conidia, do not exist anymore 

because of germination which also implies interlocked hyphae. The latter means two things: The 

pellets are aggregates and there must be a hyphal aggregation interaction.  
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Chapter 5: Materials & methods 

5.1 The strains 

Based on the structure of this project, several strains were investigated: Aspergillus niger lab 

strain AB1.13 to develop the control model, a glucoamylase producing production Aspergillus 

niger strain for testing the model in an industrial setup, and a naturally high producer of 

glucoamylase wildtype A. niger strain for concluding on productivity experiments in a setup that 

yields publishable results: 

 Aspergillus niger AB1.13 is a protease deficient, uridine auxotrophic and glucoamylase 

producing strain23. It was derived by UV-irradiation from A. niger AB4.1101.  

 The glucoamylase producing strain was provided by Novozymes A/S; information on the 

provided strain is confidential, apart from the fact that the strain has been optimized in 

the classical sense. 

 Aspergillus niger BO-1 (DSM 12665) was also provided by Novozymes A/S. The strain is 

known as a natural high producer of glucoamylase102,103 and is used for both verification 

of the previous findings as well as to determine how much the physiology of the fungus 

contributes to differences in the productivity. 

 

 

5.2 Media 

 

5.2.1 Solid media (propagation) 

All strains were kept as glycerol stabilized cryo-cultures in vials at – 80 °C. 
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5.2.1.1 Academic media for AB1.13 

A defrosted conidia solution aliquot was inoculated on PDA plates containing (in g L-1) potato-

dextrose-agar (30.0), agar (10.0) and uridine (1.0). After 5 days of growth at 30 °C, conidia were 

harvested with 0.9 % NaCl-solution (w/v). The obtained solution was clarified with Miracloth 

(Merck KGaA; typical pore size about 22–25 µm) and yielded a conidia concentration of about 

1011 L-1 which was verified with a spectrophotometer at 640 nm. The suspension was used to 

inoculate the medium of the bioreactor obtaining a final spore concentration of 5 108 L-1 in the 

bioreactor. 

5.2.1.2 Industrial strain and wildtype BO-1 

Spore propagation medium was inspired by the collaboration with Novozymes A/S and work 

published by Vongsangnak104: 218 g L-1 sorbitol, 10 g L-1 glycerol 99.5 %, 2.02 g L-1 KNO3, 25 g L-1 

agar, and 50 mL L-1 salt solution (26 g L-1 KC l, 26 g L-1 MgSO4 * 7 H2O, 76 g L-1 KH2PO4 and 

50 mL L-1 trace element solution (40 mg L-1 Na2B4O7 * 10 H2O, 400 mg L-1 CuSO4 * 5 H2O, 1.2 g L-1 

FeSO4 * 7 H2O, 700 mg L-1 MnSO4 * H2O, 800 mg L-1 Na2MoO4 * 2 H2O, 10 g L-1 ZnSO4 * 7 H2O)).  

The cultures were inoculated with 5 mL of spore solution harvested from mycelium grown on 

this agar at 30 °C for 12 days. Spores were harvested with Tween 80 0.1% 

5.2.2 Liquid media 

5.2.2.1 Academic media 

The composition of the medium for batch cultivation experiments consisted of (in g L-1) glucose 

(20.0), uridine (0.24), 50 mL L-1 salt solution containing (in g L-1) (NH4)2SO4 (33.0), KH2PO4 

(50.0), MgSO4 * 7 H2O (4.0), CaCl2 * 2 H2O (2.0) and 0.1 mL L-1 trace element solution. The trace 

element solution consisted of (in g L-1) C6H8O7 * H2O (50.0), ZnSO4 * 7 H2O (50.0), Fe(NH4)2(SO4)2 

* 6 H2O (10.0), CuSO4 (1.6), H3BO3 (0.5), Na2MoO4 * H2O (0.5) and MnSO4 * H2O (0.5). The salt 

solution and the trace element solution were sterilized separately and added aseptically to the 

sterilized bioreactor with the remainder of the medium. This medium is based on a modified 

Vogel’s medium as described in Emmler’s work19.  
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5.2.2.2 Production strain 

The employed medium was inspired by production cultivation broth and consisted of: 63 g L-1 

sucrose, 76.8 g L-1 soy grits, 1.1 ml L-1 antifoam and tap water adjusted to a total weight of 11 kg 

before sterilisation. 

For a high osmolality trial to test an additional effect on conidial aggregation80, medium was 

enriched with 63.6 g L-1 sodium chloride dissolved in 2.5 L tap water. The required concentration 

of sodium chloride was determined from the theoretically calculated osmolality for the soy grits 

and sucrose added, see Table 1.  

Table 1: Overview of the numbers and concentrations used, and calculated for estimating the osmolality and 
required amount of sodium chloride. Soy bean meal was assumed to have a water content of 8 %105. 

 
g/mol g/kg g in SBM Molar g (DM) Osmol/kg 

Calcium  40.08 2.71 2.30 0.057 
  

Magnesium  24.31 2.27 1.93 0.079 
  

Phosphorus  30.97 5.14 4.36 0.141 
  

Available phosphorus  - - - - 
  

Potassium 39.10 6.66 5.65 0.145 
  

Sodium 22.99 0.3 0.25 0.011 
  

Sodium Chloride 58.44 
   

764 2.18 

Soybean meal 
    

848.42 0.04 

Sucrose 342.30 
   

756.60 0.18 
       

Total Osmolality 
     

2.40 

 

 

5.2.2.3 BO-1 media 

Two different media were used for cultivation: ½ MU-1 and MLC. The media compositions are as 

following: 
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½ MU-1: 130 g L-1 Maltodextrin 01, 3 g L-1 MgSO4, 6 g L-1 KH2SO4, 5 g L-1 KH2PO4, 0.5 ml L-1 

antifoam, 0.5 ml L-1 trace metals described for solid media in section 5.2.1.2  and 20 ml L-1 50 % 

sterile urea compound. Urea compound is added after autoclavation.  

MLC: 40 g L-1 glucose, 50 g L-1 soy meal, 4 g L-1 citric acid, 0.1 ml L-1 antifoam. 

 

5.3 Cultivation conditions 

 

5.3.1 Cultivations with Aspergillus niger AB1.13  

The standard conditions for this strain are pH 5.5, 0.5 VVM, 107.5 W m-3 (⩠ 300 RPM) and an 

initial conidia concentration of 5 * 106 L-1. The core of the experiments is to shift the pH from 3 

(non-aggregating) to 5.5 (aggregating conditions) to provoke a dynamic reaction to conclude on 

the type of aggregation (conidial, hyphal or a mixed form) and the importance of different factors. 

5.3.1.1 pH and pH shifting experiments 

Table 2: Overview over pH shifting experiments 

Experiment type Initial pH Shift after Final pH Duration of shift 

pH 5.5 5.5 – 5.5 – 

pH 3.0 3.0 – 3.0 – 

pH shift in 0.5 h 3.0 8 h 5.5 0.5 h 

pH shift in 1 h 3.0 8 h 5.5 1 h 

pH shift in 2 h 3.0 8 h 5.5 2 h 

pH shift in 4 h 3.0 8 h 5.5 4 h 

pH shift after 6 h 3.0 6 h 5.5 2 h 

pH shift after 10 h 3.0 10 h 5.5 2 h 

pH shift after 12 h 3.0 12 h 5.5 2 h 
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The basis of the experiments is at constant pH of 5.5 and 3, respectively, which resembles 

aggregating and non-aggregating conditions. Shifting the pH happened by manual pH regulation 

with 2 M NaOH which was added drop-wise to prevent biomass from being damaged. A more 

diluted caustic soda solution would have influenced the reactor volume too much. Table 2 

provides an overview over the conducted experiments and their respective timing. 

 

5.3.1.2 Power input and power input shifting experiments 

Much attention was paid to the influence of power input on the cultivations when reviewing 

literature6. With testing the AB1.13 at different power input levels and shifting, like with pH, 

from non-aggregating to aggregating conditions could aid in designing the proper biomass 

particle. Table 3 provides an overview over the conducted experiments and their respective 

timing. 

Table 3: Overview over power input experiments 

Experiment type Initial W m-3 Shift after Final W m-3 

300 RPM 107.5 – 107.5 

150 RPM 25 – 25 

shift after 8 h 107.5 8 h 25 

shift after 12 h 107.5 12 h 25 

400 RPM 212 – 212 

500 RPM 430 – 430 

 

5.3.1.3 Initial conidia concentration 

It is described that the initial particle/conidia concentration influences the aggregation26. Hence 

the extent of influence of conidia concentrations must be tested in terms of usage as levers for 

altering the resulting morphology. Apart from the standard conidia concentration of 5 * 106 L-1, 

concentrations of 2.5 * 106 L-1, 4 * 107 L-1 and 5 * 107 L-1 are tested. 
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5.3.1.4 Bioreactor system 

The employed bioreactor is an Applikon glass reactor with 2 L working volume. As depicted in 

Figure 11, the reactor featured agitation with Rushton impellers on two levels with one extra 

impeller as foam crusher. The standard setting is 300 RPM which resembles 107.5 W m-3. 

 

Figure 11: Schematic drawing of the employed bioreactor system; more features than aeration and baffles are 
installed and are illustrated in the following Figure 12 

For improved mixing, 3 baffles are installed and the reactor can be aerated. Air flow rate was 

controlled with a Vögtlin gas flow meter while off-gas analysis is conducted with a BC preferm 

system (Bluesens). Additional features are depicted in the schematic drawing of the on-top view 

of the reactor lid in Figure 12. Per standard, temperature and pH are measured and controlled. 
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Figure 12: Lid of the employed bioreactor system; all installed features are illustrated 

Uncommon features are the submerged sample port and the sample return for the in-line particle 

size analysis which is explained in the subchapter further down in this section on page 51. The 

technical details of the reactor are summarized in Table 4. 

 

Table 4: Technical details of the bioreactor system 

Reactor part Description Symbol Value Unit 

Reactor Vessel 

Total volume VG 3 [L] 

Total height H 250 [mm] 

Working volume VA 2 [L] 

Filling height hl 170 [mm] 

Inner diameter D 130 [mm] 

Ratio H/D Hl/D 1.3  

Aeration system 

Installation 

height 
h2 35 [mm] 

Number of holes - 7  
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Reactor part Description Symbol Value Unit 

Rushton 

Number of discs - 2 (3)  

Diameter D 45 [mm] 

Height impeller 1 h3 50 [mm] 

Height impeller 2 h4 12 [mm] 

Blades per disc - 6  

Baffles 

Number - 3  

Width dB 14 [mm] 

Distance to wall dA 10 [mm] 

 

In-line laser diffraction analyser  

 

Figure 13: Bioreactor system with in-line laser diffraction analysis; A Malvern MasterSizer 2000, B bypass, C 
peristaltic pump for bypass, D 3 L bioreactor, E off-gas analysis, F pH regulator, G temperature regulator, H stirrer 
regulator, I rotameter for air flow control, J thermal mass flow meter for air flow check-up, K dosing pumps for pH 
adjustment 



52 
 

The outstanding feature for the cultivations with A. niger AB1.13 is the bypass from the 3 L 

Applikon reactor to the laser diffraction analyser Malvern MasterSizer 2000. The effect of the 

tube pump was verified with manual image analysis control and deemed negligible for the 

employed pump rate of 0.28 L min-1.  The setup is displayed in detail in Figure 13.  

 

5.3.2 Conditions for the industrial strain 

The standard conditions for this strain in 20 L reactors is pH 5.5, 0.6 VVM (higher air flow needed 

due to gas analysis minimum flow), 600 RPM and initial conidia concentrations in the order of 

104 L-1. These experiments are carried out to validate or falsify the derived AB1.13 model. Factors 

which are part of the model are variations in pH, initial conidia concentration, power input and 

salt content (see section 5.2.1.1 for media composition, Table 1).  

The following pH set-points without shifting pH are used: pH 3, 4, 5, 5.5, 6 and 7. The standard 

initial conidia concentration is 7 * 102 L-1 and high concentration inoculums of 2* 103 and 1 * 105 

conidia L-1 are tested for confirming the findings of Grimm26 and the potential role for the 

morphology control model. The last parameter, salt concentration and molality, is introduced to 

extend the underlying model. Wucherpfenning did some work in 2011 describing the 

morphology engineering this way80 which should be replicated with the industrial strain to 

investigate the practical usefulness.  

5.3.2.1 A. niger industrial strain trials 

The work with the lab strain Aspergillus niger AB1.13 resulted in ideas of how to control the 

morphology of A. niger in industrial cultivations. With this work, these ideas could directly be 

applied to a process like a production process with an actual industrial strain. Novozymes A/S 

provided both the setup, the lab equipment and the strain for this rare occasion of hypothesis 

testing and direct comparison of strains. 

The concrete task is the evaluation of the main findings from the academic AB1.13 strain about 

the influence of pH on the macro morphology. Different pH levels which remain constant for the 
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duration of the fermentation should be screened to find out if either mycelial growth, ideally at 

pH 3, or pelleted growth, ideally at 5.5, is promoted. Besides these two pH values, pH 4, 5 and 6 

were tested as well to investigate possible deviations with the industrial strain from the earlier 

academic findings.  

 

5.3.3 Aspergillus niger BO-1 conditions for provoking different morphologies 

The reasoning for performing additional experiments with the wild type was to find the cause for 

the outcome of the experiments with the industrial strain. The soy included in the MLC resulted 

for the most part in mixed morphology and was hence not further in the focus of the 

experimental work to be conducted. Table 5 gives the overview about the basic settings which 

were also chosen for MLC cultivations. Apart from that, a VVM of 1 was employed in the reactors.  

 

Table 5: Growth conditions for BO-1 to create distinct pelletised growth or distinct dispersed growth. 

 Basis pelletised growth conditions Basis dispersed growth conditions 

Medium ½ MU-1 ½ MU-1 

Temperature 30ᵒC 30ᵒC 

Inculcation conc. 5·107 conidia l-1 5·107 conidia l-1 

pH 3.5 4.2 

Agitation (reactor) 150 RPM 600 RPM 

 

5.4 Analytics 

5.4.1 Laser diffraction 

Most of the particle size analysis was done using the Malvern Mastersizer software 5.40. For the 

Fraunhofer approximation for size distribution calculation (see section 3.3 ), the optical 

properties of water are selected and the particles are considered to be spherical, non-reflective 
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and non-transparent. The approximation model was set to general purpose following the 

manufacturer’s guideline for “samples from nature”90. This model reflects that the spherical 

particles are not smooth. 

Table 6: properties of laser diffraction analysis 

Refractive index biomass n(BM) 0 

Absorption coefficient biomass (BM) 0 

Refractive index medium n(H2O) 1.33 

Density medium ρ(H2O) 1 kg L-1 

Interval between measurements 285 s 

Duration of one measurement 15 s 

Snaps per measurement 150000 

Total number of measurements per cultivation ≥ 380 

 

5.4.1.1 MasterSizer 3000 measurements for BO-1 indications 

The BO-1 cultivations were monitored off-line by quantifying the particle size distribution with 

the newer (compared to the Malvern MasterSizer 2000 which was used for the AB1.13 strain) 

Malvern MasterSizer 3000. Unlike the previous description of the on-line Mastersizer, it was 

connected to a manual wet dispersion unit (Hydro SM) which was flushed with demineralised 

water between the measurements. Water, added to the dispenser before the sample, was kept in 

a container over night to reduce the presence of air bubbles. The sample was added directly to 

the water in the dispenser until a certain obscuration was reached.  

For samples with dispersed mycelia and mixed morphology the obscuration was 15-20 % and for 

distinct pelletised growth it was 19-24%. Stirring speed in the dispersion unit was 1400-1500 

RPM. Samples were measured three times with a duration of 10 seconds for each measurement. 

All data used from the particle size distribution is in the form of an average of two or more 

measurements.  
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The MasterSizer 3000 software provided the result of a particle size distribution as the 

percentage of particles divided in 101 size classes ranging from 0.01 µm to 3300 µm. The sizes 

represented the different particle lengths/diameters detected by the analyser. The percentage 

values corresponding to the 101 size classes can be analysed with different methods. The data 

analysis reported here was based on graphical representation of the data in plots, and then as 

Dv(10), Dv(50) and Dv(90) values. Dv(90) is the 90 % percentile, meaning that 90 % of the 

particles in the sample are equal to this size or smaller, and Dv(10) and Dv(50) then correspond 

to the 10 % percentile and the median (50 % of the particles equal to this size or smaller) of the 

sample 106.  

5.4.2 Measurement of -potential 

AB1.13 Conidia were harvested as described in section 5.2.1 , and then rigorously dispersed 

before filling them in a cuvette together with liquid cultivation media (section 5.2.2.1 ) at pH 2.3 

for measurement in a Malvern zeta-sizer nano. The -potential measurement is micro-

electrophoretic, and the pH was continuously titrated towards pH 6.2 with 0.1 M NaOH. The 

series of measurements consisted of five runs. Already at this point it should be emphasized that 

the measurement of the -potential is heavily dependent on the presence of salts and especially 

biomass. The latter has not been quantified in the samples, and therefore it cannot be taken into 

account, which means that the results should be interpreted with great care and with a critical 

attitude towards the final results107. 

5.4.3 Statistical Analysis 

The statistical analysis of the achieved data and the derivation of the control model in terms of 

biomass and particle size growth were done using the software SAS jmp. The data basis here 

consisted of data from all A. niger AB1.13 cultivations. The factors looked at are power input, 

initial conidia concentration, pH value as well as time point and duration of the pH shift from 

non-aggregating to aggregating conditions. A regression analysis via least square methods was 

performed on the data cloud. 
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5.4.4 Bio dry matter (BDM) 

Bio Dry Matter (BDM) was analysed with two different approaches explained in the following. All 

BO-1 cultivations were analysed following centrifugation except for the experiments with 

addition of cellulose. It was decided to shift to the filtration approach for the latter set of 

cultivations based on the higher precision that was needed for the specific calculation of biomass 

to activity ratio.  

5.4.4.1 BDM by centrifugation 

BDM was analysed by determining the weight of empty glass tubes, adding a certain weight of 

sample and then centrifuging the glass tube containing the sample at 3000 RPM for 10 minutes. 

The supernatant was discarded, followed by 2 washing steps with demineralised water and 

centrifugation while applying the same centrifuge settings. The tubes with washed samples were 

dried at 110ᵒC overnight and weighed afterwards. BDM was calculated by means of the following 

equation: 

Equation 9: Calculation of bio dry matter using centrifugation 

𝑏𝑖𝑜 𝑑𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 
𝑔

𝑘𝑔
=

(𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑓𝑡𝑒𝑟 − 𝑤𝑒𝑖𝑔ℎ𝑡 𝑏𝑒𝑓𝑜𝑟𝑒) · 1000

𝑤𝑒𝑖𝑔ℎ𝑡 𝑠𝑎𝑚𝑝𝑙𝑒
 

5.4.4.2 BDM by filtration 

BDM was analysed by determining the weight of filters dried for 20 minutes at 110ᵒC. A 5 ml 

sample was filtered and washed thoroughly with demineralised water. Filters were dried at 

110 ᵒC overnight and weighed afterwards. In a situation where the filter was used to determine 

BDM in a preculture to ensure inoculation of equal amounts of biomass (for parallel cultivations 

in the cellulose experiments), the filters were dried in the microwave oven for 15 minutes. 

BDM was calculated by means of the following equation: 

Equation 10: Calculation of bio dry matter using filtration 

𝑏𝑖𝑜 𝑑𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟
𝑔

𝑙
=

(𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑓𝑡𝑒𝑟 − 𝑤𝑒𝑖𝑔ℎ𝑡 𝑏𝑒𝑓𝑜𝑟𝑒) · 1000

𝑚𝑙 𝑠𝑎𝑚𝑝𝑙𝑒
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5.4.5 BO-1 morphology scale 

A scale from 1-6 has been employed to evaluate the observed morphology during experiments. 

Later discussion will refer to this scale to provide a quick overview over the achieved 

morphology in a simplified way. It also makes it possible to plot morphology in graphs along with 

other data like BDM and enzyme activity.  

The morphology scale is presented in Figure 14 with illustrations of the morphology 

corresponding to three different points on the scale. Point 1 on the scale indicates distinct 

dispersed growth and point 6 distinct pelletised growth.  

 

Figure 14: Morphology scale used to simplify the explanation of morphology throughout the report. Three 
illustrations are indicating approximately how morphology would look like in a microscope for three points on the 
scale. At point 1 morphology consists of entirely dispersed mycelia, point 3 – 4 is a situation with half mycelia, half 
pellets or aggregates of various size and shapes. At point 3, the morphology is dominated by dispersed growth, at 
point 4 it is dominated by pelletized growth. At point 6 the morphology is distinct pelletized. 

 

5.4.6 BO-1 enzyme assay  

Enzyme activity was determined by use of 4-Nitrophenyl α-D-Glycopyranoside (PNPG) (Sigma-

Aldrich N1377). Under reaction with AMG, 4-nitrophenol will be released from PNPG which 

appears yellow under alkaline conditions. By spectrophotometric analysis the intensity of the 

yellow can be measured which indicates how much 4-nitrophenol has been released, i.e. a 

measure of enzyme activity.  
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For determination of AMG activity, samples were centrifuged at 3000 RPM for 10 minutes and 

the supernatant was stored at -20 ᵒC for 1-3 weeks until enzyme assays were performed. The 

standard used for activity analysis was prepared from a cultivation with the known activity of 

307 AGU g L-1. For each series of measurements, 10 µl of standard and the respective samples 

were each mixed with 100 µl PNPG and incubated for 30 minutes at room temperature. The 

reaction was quenched by addition of 50 µl stop reagent (0.5 M Na2CO3). The absorbance was 

measured at 405 nm and the AMG activity was calculated based on comparison of the standard to 

the calibration curve which was created with the standard concentration series.  

5.4.7 BO-1 pellet concentration 

The pellet concentration could be determined in cultivations with ½ MU-1 medium with distinct 

pelletised growth. 1 ml of sample was dispersed on a Petri dish from which pellets were counted, 

without magnification. Pellets were counted for 6 ml of each sample. 

 

Figure 15: Picture taken from a Petri dish during pellet count after 60 hours of cultivation, for the determination 
of the pellet concentration 

  

6 mm 
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Chapter 6: Results & discussion 

 

6.1 Aspergillus niger AB1.13 as model strain for control of morphology 

 

6.1.1 Development of AB1.13 biomass under different experimental conditions 

6.1.1.1 pH value and shifting pH from non-aggregating to aggregating conditions 

To exclude a variation of the bio dry matter concentration (BDM) based on a deviation of the 

actual initial conidia compared to the target concentration, Equation 11 is used to determine the 

corrected biomass concentration. The correction factor is based on the ratio between the target 

and the actual concentration of conidia. All AB1.13 bio dry matter concentration values reported 

below in the figures are corrected in this way.  

Equation 11: correction factor for bio dry matter concentration 

𝑐 , = 𝑐  
𝑐(𝑐𝑜𝑛𝑖𝑑𝑖𝑎)

𝑐(𝑐𝑜𝑛𝑖𝑑𝑖𝑎)
 

For providing a better overview, the pH-shift experiments are divided into groups: Different shift 

speeds (0.5 h, 1 h, 2 h & 4 h) and different time points (6 h, 8 h, 10 h & 12 h). Table 2 (section 

5.3.1.1 ), summarizes the grouping. Both groups refer to the same references at a constant pH of 

3 (non-aggregating conditions) and 5.5 (aggregating conditions). 

First, the influence of the shift speed should be determined. The pH was shifted with caustic soda 

from the non-aggregating conditions, pH 3, to aggregating conditions, pH 5.5, at different 

speeds/durations of the shifts. Shifting too fast could potentially harm the initial biological 

development while shifting slowly, i.e. a gradual shift over a longer period of time, might overlap 

with the above described growth and aggregation phases.  
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Figure 16: The bio dry matter is drawn as a function of the cultivation time for the different durations of the shift 
from non-aggregating pH 3 to aggregating pH 5.5 conditions. For better comparison, the corrected biomass (see 
Equation 11) was plotted. 

Figure 16 displays the achieved bio dry matter concentrations for the shift-duration experiments. 

Low initial values of BDM are expected during the lag-phase. After 6-8 h of growth, differences in 

BDM due to the applied pH conditions become visible: The basic aggregating conditions with a 

constant pH of 5.5 show the lowest BDM values during the whole course of the cultivation and 

result in slightly more than 1 g L-1 of BDM after 32 h of cultivation. Consequently, the slope is 

lowest and the derived maximum growth rate is only about µmax = 0.15 h-1. 

Cultivations with a starting pH of 3 showed higher BDM concentrations throughout the 

cultivation and especially at the final measurement after 32 h. The results in Figure 16 can be 
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summarized as follows: the slower the shift from pH 3 to 5.5 is executed, the less severe are its 

effects on the growing biomass. The shift with 2 h duration reaches almost the same maximal 

growth speed of µmax ~0.20 compared to 0.22 h-1 and almost the same BDM, 3.25 compared 3.75 

g L-1) as the top-performing cultivation at constant pH 3. 

It must be emphasized that the pH shift from 3 to 5.5 is executed starting at 8 h cultivation time 

while the real consequences take effect 24 h later at the end of the cultivation. Therefore, the time 

lag between the environment change and the appearance of the consequences should be 

incorporated into the model for controlling growth (see section 4.3 ). 

It confirms that the biomass adapts to the altered cultivation conditions. Changing pH influences 

the surface charge of the cytoplasm membrane, which in consequence could alter transport 

processes through the membrane like for example the proton dependent trans-membrane 

synport process of importing glucose108. The slower the conditions are changed, the more time is 

available to the organism to adapt to the changes. 

Figure 17 is built the same way as Figure 16 and represents the respective bio dry matter 

concentrations for cultivations with pH shifted at different cultivation time points. Like before, 

cultivations at constant pH 5.5 performed worst in terms of BDM development. The question is if 

this inferior behavior is due to the fermentation parameters or the pelleted growth from swelling 

of the conidia.  

The second lowest BDM values were observed for the fermentation with the earliest shift of pH 

from 3 to 5.5 after 6 h which relates to the question posed in the previous paragraph. At 6 h, the 

conidia already are swollen but have not developed germ tubes. This links to the primary 

aggregation described by Grimm. The achieved BDM is though doubled up compared to 

cultivations at constant pH of 5.5.  

The BDM developments of cultivations with pH shift after 12 h and after 6 h result in the third 

lowest final BDM concentration. Consequently, this means that point in time of the pH shift and 

its consequences on bio dry matter development (and particle size) follow a maximum/optimum 

curve. After the shifting pH at 12 h, the BDM development is characterized by a lower µ which 
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could represent a re-adaptation of the biomass to the new environment that happened at a 

moment when the growth speed was accelerating to reach µmax.  

The pH shift after 8 h resulted in BDM of 3.25 g L-1 which means 2.7-fold increase in biomass 

compared to cultivations with constant pH 5.5. Only cultivations with a constant pH of 3 and a 

shift after 10 h yielded a higher BDM value.  

 

Figure 17: The bio dry matter is drawn as a function of the cultivation time for the different time points of the shift 
from non-aggregating pH 3 conditions to aggregating pH 5.5 conditions. For easier comparison, the corrected 
biomass concentration values (see Equation 11) were plotted. 

In summary, it could be stated: Obviously, high BDM is achieved with higher µmax. There is a time 

point around 12 h though which is prone to interruptions of growth. For the control model, this 
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could be used as a lever to control/limit the biomass concentration and thus the formation of 

particles/pellets with too large diameter. 

6.1.1.2 Power input with shift towards aggregation promoting conditions 

Figure 18 displays the biomass concentration development when shifting the cultivation 

conditions to more aggregating conditions in terms of mechanical power input by stirring 

analogous to the previously discussed pH experiments.  

 

Figure 18: The bio dry matter concentration is plotted as a function of the cultivation time for the different time 
points of the shift from less aggregating 107.5 W m-3 condition to aggregating 25 W m-3 conditions. For better 
comparison, the corrected biomass concentration values (see Equation 11) were plotted. Because of the lower 
BDM values, the Y-scale differs from the previous two plots. 
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The standard power input is 107.5 W m-3 at 300 RPM (which also is used for the experiments 

with the pH shifts). This was reduced to 25 W m-3 (150 RPM) after 8 and 12 h, respectively to 

create more aggregating conditions. With BDM concentrations below 1 g L-1 after 32 h, the most 

important result is that inferior oxygen transfer or other bulk transfer rates hamper the biomass 

development and should not be employed as a handle to limit biomass growth at any point of the 

cultivation.  

 

6.1.1.3 Power input and initial spore concentration 

During the development of the control model for biomass and particle size, power input was 

investigated and considered to be a potential factor influencing the formation of a specific 

biomass morphology. A power input of 212 W m-3 (400 RPM) and 430 W m-3 (500 RPM) was 

tested, apart from the standard value of 107.5 W m-3 (300 RPM). 

Similarly, initial conidia concentrations were tested:  Apart from the standard of 2.5 * 106 L-1, 

concentrations of 4 * 107 L-1 and 5 * 107 L-1 were tested.  

All experiments deviating from standard conditions described in section 5.3.1  resulted in BDM 

concentrations below 1 g L-1 and are thus considered out of the question for potential industrial 

use102.  

The superior mass transfer with higher power input apparently is balanced by more damage to 

the biomass than what was expected based on Kelly’s descriptions27. It could be that the power 

input has a higher damaging potential on growing biomass (used here) than on mature pellets 

that were used in the studies of Kelly. Similarly, Grimm described that there might be growth 

inhibition for high inoculum concentrations25 which can be confirmed here, and more conidia do 

not necessarily result in a higher biomass concentration. 

That also means that these two factors, power input and initial conidia concentration, are not of 

interest as single control parameters for the model. Still, these handles could be employed to 

balance the major levers.  
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6.1.2 Metabolic activity in dependency of environmental conditions 

One of the main points of the pH-shift experiments was that the biomass thrived better when A. 

niger AB1.13 experienced lower pH conditions. It was thus investigated via HPLC analysis how 

the carbon conversion was affected by the environmental conditions. 

Figure 19 displays the result of the HPLC and off-gas analysis from the pH-shift point in time 

experiments. Clearly, the supplied C-source has not been used up: The cultivations at a pH of 5.5 

converted most of the provided carbon into gluconic acid (17 % glucose, 57 % gluconic acid). 

Gluconic acid also is bio-available and is known as early by-product in citric acid production109. 

The glucose to gluconic acid conversion does not involve a consumption of available carbon.  

 

Figure 19: C-balance after 32 hours of cultivation; show case from the pH shift point in time experiments; the pH 
shift is from non-aggregating conditions of pH 3 to aggregating conditions of pH 5.5 

Cultivations with a pH change from 3 to 5.5 converted almost all available carbon into gluconic 

acid (just around 1 % of the glucose left). With the enzyme glucose oxidase being inactive below 

pH 3.55, it is expected that no gluconic acid is formed and 77 % of the supplied glucose remained 

in the media. This also means that the average yield in biomass just reached 𝑌 ⁄ =

0.12 𝑔  𝑔  which is considered to be very low110. 
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In combination with a low BDM concentration of less than 1 g L-1, a yield 𝑌 ⁄  below 

0.15 𝑔  𝑔  usually points towards an atypical biomass development as higher values 

are expected based on literature reports6,111–113. A major influencing factor for development of 

biomass concentration could be the peristaltic pump for the laser diffraction by-pass. With 

microscopic control, no deviating morphology was detected.  

Also, the experiments with lower mechanical impact (lower power input) did not show an 

enhanced growth which would have been expected if shear was the major factor. In fact, it is 

reported that higher power input rates would not damage the cells, but instead aid growth 

because of the higher oxygen transfer rate that could be achieved31,114. 

Because of A. niger’s preference for low pH values108, it is not unexpected that a triple BDM 

concentration is reached at pH 3 compared to 5.5. Changing the pH from 3 to 5.5 during the 

cultivation has, as expected, a negative effect on the biomass formation. Part of this could be the 

high concentration of gluconic acid as a marker for stress. The conversion usually takes place 

with (too) high glucose concentrations, at glucose oxidases pH optimum of 5.5 and high levels of 

dissolved oxygen109. All three factors are present and point out that the cultivation medium might 

be better suited for organic acid than for protein production. Energy consumption by the 

conversion is supposed to be too low to hamper growth processes.  

In general, gluconic acid is a weak acid with a pKa of 3.86 which reportedly is produced by A. 

niger to counter “high” pH environments115. The conversion of glucose is conducted by the exo-

enzyme glucose oxidase which usually is either secreted into the media or acts as cell wall 

associated enzyme116. The regeneration of the enzyme after the reaction requires oxygen and 

results in formation of hydrogen peroxide. The latter is toxic to the fungus and induces the 

production of a catalase117. This reaction (mechanism) is also exploited for production of glucose 

oxidase and gluconic acid with the Aspergillus genus118. 

The efforts of the cells to reduce the pH cause a lower yield in both biomass as well as potential 

product. Other side products with the same effect are polyols which usually are formed by A. 

niger to regenerate the co-factor NAD(P)H when a lack of oxygen is encountered119. Since no 
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polyols were detected by HPLC, it can be concluded that no oxygen limitation is present which 

includes the core of the pellets. This was also expected as the pellet size remained below 1.2 

mm66,67,120,121 and the low BDM.  

With 75 % of the initial carbon source left in the medium after 32 h and being able to exclude 

mechanical factors as well as oxygen limitations leads to the assumption that growth could be 

limited by the lack of an essential ingredient in the minimal medium122. HPLC analysis confirmed 

that the limiting factor is not uridine as it wasn’t depleted at the end of the cultivations.  

A potential cause for low bio dry matter concentrations could originate from the genealogy of the 

strain: It was derived by random chemical and UV mutagenesis (see section 5.1 ). As a 

consequence, the metabolism could be disturbed by deficits in regulatory functions123. This kind 

of effect can also be observed with undirected integration of heterologous genes into the genome 

of microorganisms in general124. 

 

6.1.3 Particle size analysis 

Particle size distributions were analyzed with the laser diffraction analyzer Malvern MasterSizer 

2000. The native output of the device is the disperse function of Q2(x) (see section 3.1 ) based on 

the Fraunhofer approximation of the cross-sectional area. This sum function is converted into the 

density function with the assumption of equivalently sized spherical particles. 

The particle volume density distributions of the fermenter content are recorded every 5  minutes. 

They can be stacked behind each other using time as the Z-axis to create a 3-dimensional graph 

like Figure 20.  
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Figure 20: Display of relative particle volume distribution in percent (Y-Axis) over size range in µm (X-Axis) and 
the cultivation time in hours (Z-Axis); Aspergillus conidia and conidial aggregates with which the cultivation was 
inoculated can be seen in the size band around 2.5 µm throughout the cultivation. This cultivation experienced a 
shift in pH after 6 h. 

At the onset of the cultivation, only the seeding material consisting of conidia/spores is detected 

at sizes about 2-5 µm at 0 h. A large fraction appeared to be aggregated at sizes around 50 µm – 

this can be considered an artefact of the volumetric evaluation: The diameter is incorporated to 

the power of three and few big particles can skew the distribution. 

The three-dimensional presentation of the data in Figure 20 can be confusing at first. Guidance to 

read it starts with the volume share of the conidia increased directly after inoculation which 

could resemble  the aggregation process described by Grimm25. In this case, the initial pH is 3 and 

therefore represents non-aggregating conditions. The equilibrium of aggregation and 
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decomposition is tilted towards the latter. The average size converges towards 6 µm with most 

conidia/particles not being aggregated.  

The “shoulder” in the size range of around 20 µm could be identified by microscopic analysis as 

mostly conidial aggregates and some agar fragments and conidiophores from the solid 

propagation that slipped through the Miracloth filtration (average pore size of 22–25 µm). This 

reflects the necessity of the filtration step to avoid skewing the particle size density distribution 

with unwanted particles.  

Until around 5 hours of cultivation, the distribution has been mono-modal and now develops into 

a bi-modal distribution. The “shoulder” of conidial aggregates at 20 µm develops into a second 

maximum. At the same time, the contribution of the conidia to the distribution decreased 

constantly.  

The depicted cultivation in Figure 20 started with non-aggregating conditions at pH 3 and was 

shifted towards aggregating conditions to pH 5.5 after 6 h of cultivation. While conidia 

aggregation is mostly avoided, the secondary aggregation described by Grimm could take place to 

full extent.  

Formation of hyphae is the basis for the secondary aggregation as additional surfaces are 

provided for conidial attachment. In consequence, the number of conidia is reduced leading to a 

lower conidial volume share and increased volume share of aggregates. The increase in particle 

size and volume share is though mostly based on the growth of biomass. 

The secondary aggregation terminates after around 13 h of cultivation, which resembles particle 

sizes around 100 µm. This pre-Kelly growth theoretically follows the same principles as the later 

pelleted growth29.  

It is important to emphasize that volume based distributions are discussed. Higher volume 

shares could be based on few bigger particles. The volume based density distribution q3(x) was 

chosen because it enables both many small particles and fewer bigger particles being displayed 

satisfactorily in one graph. 
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The most important finding from the three-dimensional particle size distribution in Figure 20 is 

that the Aspergillus growth process does not follow a mono-modal distribution! Further analysis 

and characterization of growth and aggregation processes are therefore based on the mode dmax,3 

with which the distribution could be divided into conidia/aggregates and (pre-mature) pellets.  

The border between the modes is set at a size of 45 µm based on microscopic analysis, which 

confirmed that larger particles were more pellet type than conidial aggregates. These could be 

understood as pellet precursors with the potential to become a mature pellet in the sense of 

Kelly’s model.  

 

Figure 21: The particle size distribution (Figure 20) is split into two peaks: The first peak consists of conidia and 
conidial packages up to a size of 50 µm and the second is representative for the growing hyphae (above 50 µm). 
The maximum volume share of each peak is determined for each point in time. 

Figure 21 is a snapshot from the particle volume density distribution (Figure 20) after 8 h. 

Approximately 2.4 % of the total measured volume is occupied by the spherical equivalent 

diameter of 5.5 µm – conidia. It resembles the highest value inside this conidial fraction and is 

hence the conidia mode dmax,3,conidia. The pellet fraction is treated the same way: About 3.6 % of 
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the total measured volume is within the size class of 100 µm (in spherical equivalence diameter). 

This is the pellet mode dmax,3,pellet.  

The mode of the respective particle fraction, conidia or pellet, with the higher volume share will 

further on be called the leading particle class. In this specific case, the leading particle class is the 

pellet fraction and the size will be stated at 100 µm. The other fraction is still present and will 

also be displayed in later graphics.  

Analyzing the results into more detail, and focusing only on the mode of conidia fraction, results 

in Figure 22. That figure displays the size trend of conidia for cultivations at pH 3 and 5.5, 

respectively. The initial particle size of conidia inoculated into pH 5.5 is with 3.8 µm 8 % smaller 

than the conidia at pH 3 with 4.1 µm. In the following, the conidia at both pH values swell and the 

average size of the conidia increases until 10 and 12 h, respectively. This resembles the swelling 

of conidia by taking up water for initiating growth processes. Formation of germ tubes moves the 

particle size even more.  

 

Figure 22: Detail of the conidia mode – following the swelling and outgrowth over time. A starting pH of 3 resulted 
in slightly larger values for the spherical equivalence diameter for spores which also could be tracked for almost 
the whole fermentation. A starting pH of 5.5 showed “smaller” spores which seem to disappear after 14 h.  

The conidia at pH 5.5 remain smaller throughout the measurement period. A possible 

explanation could be desorption of melanin, proteins or other cell wall associated (macro-) 
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molecules which involves a change of surface charge125. This finding also leads to considerations 

and discussion in the following section 6.1.4 “-potential & conidia surface structure”. 

The stagnating and after 13 h declining size of the pH conidia is an effect caused by the relative 

distribution. Most conidia swell, germinate and grow into bigger particle classes, and “leave” 

therefore the conidia mode and become part of the aggregate mode. The remaining spores do not 

grow or even swell and are supposedly dormant/inactive. 

No more conidia could be detected at pH 5.5 after 13 h. In combination with the lower achieved 

BDM (see section 6.1.1.1 ), it can be concluded that the disappearance is probably not due to 

growth. It is rather an expression and indirect confirmation of the secondary aggregation 

described by Grimm25: Conidia attach on the newly provided surface by growing hyphae. The 

reverse conclusion is that choosing pH 3 at least partially circumvents the aggregation stages, 

which is important in terms of controlling the morphology (see section 4.3 “Control of the 

morphology”). 

6.1.3.1 pH and pH shift experiments 

Aspergillus niger develops its morphological extrema of freely dispersed mycelia and pellets at 

pH values of 3 and 5.5, respectively. Shifting the pH from the first to the second conditions 

assumingly would result in a hybrid morphology. For characterization and evaluation of control 

possibilities towards achieving the goal of a maximum particle size ≤ 1 mm, factors such as 

duration and point in time of the conditions applied were tested. 

 

Shift from pH 3 to 5.5: Duration  

Figure 23 displays the result of using the above-described method of splitting the particle size 

distribution into the two modes of conidia and pellets, respectively. As particle size development 

of the conidia has been discussed, the focus now is on the aggregate/pellet mode and the 

respective leading particle class (conidia or pellets). The overview of the experiments considered 

here are presented in Table 2 in section 5.3.1.1 “pH and pH shifting experiments”. 



73 
 

 

Figure 23: Display of the conidia and aggregate mode and the leading particle class determined with the method 
depicted above, and the dependency on the duration of shifting the pH from non-aggregating to aggregating 
conditions (from pH 3 to pH 5.5). The slowest shift leads to larger particle sizes at later time points; the single dots 
for each experiment setup reflects first appearance of aggregates. 

Aggregates are defined to be of larger spherical equivalent diameter than 45 µm. At pH 5.5, 

aggregates could already be detected after 5.5 h of cultivation (the red triangle in Figure 23). 

After 7 h, the volume share of the aggregate mode is higher than the conidia mode, making it the 

leading particle class.  

With an initial pH of 3 and therefore under non-aggregating conditions, aggregates are detected 

earliest after 8 h which corresponds to beginning biomass growth. The points in time are 

respectively marked in Figure 23. This observation points towards the circumvention of the 

conidia aggregation process.    
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The “jump” in the drawn curve in Figure 23 illustrates the point in time when the volume share of 

the pellet mode becomes the leading particle class when it increases above the volume share of 

the conidia mode. The faster shifts with durations of 0.5 and 1 h, respectively, have been 

completed before the pellet mode becomes leading. For the longer shift durations of 2 and 4 h, 

respectively, the change in leading particle class to pellets happens before the shift has been 

completed. 

For the 2 h lasting shift, the leading particles switched to aggregates after 9.5 h cultivation time, 

corresponding to 75 % of the shift duration. Similarly, aggregates become leading particle class 

after 11 h during the 4 h duration shift which resembles the same 75 % shift completion ratio. 

The underlying cause could be longer time at lower pH which means better conditions for the 

conidia to germinate and grow. Consequently, these were not available any more for conidial 

aggregation. Instead, more biomass is present which could actively react towards the changes in 

the environment of the fungus. 

Not presented in Figure 23 is the particle size analysis for cultivations at pH 3. It is because 

growth occurred as freely dispersed mycelia. No distinct particles were formed but long hyphae 

loosely entangled to flocs are registered as aggregates after around 17 h.  

The particle size behavior and the course of the leading particle class for the cultivations at pH 

5.5 are different compared to the experiments starting at pH 3. The aggregate mode became the 

leading particle class after 5.5 h of cultivation. This is about 2.5 h before the shift takes place in 

the other experiments. At this point, biomass growth has not started yet, and Grimm’s 

aggregation model can be corroborated in terms that there must be conidia–conidia based 

aggregation.  

Cultivations featuring a starting pH of 5.5 are hence the only cultivations showing the primary 

aggregation as vegetative biomass is first present after 8 h. This also indicates that there is a 

secondary aggregation after 8 h. 

Figure 24 shows the microscopic control after 16 h of a cultivation that was started at pH 3 and 

which has been shifted to pH 5.5 after 12 h in 2 h. Conidia, germinating conidia as well normally 
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grown hyphae are present. Some germinated conidia are associated with hyphae of other 

particles. This kind of interaction was expected but has not been described yet. 

 

 

Figure 24: Microscopic control after 16 h of cultivation with a start pH of 3 and a shift to pH 5.5 in 2 h after 12 h of 
cultivation: A single conidia present in the broth; B single conidia germinating without being part of an 
aggregate; C germinated spores attaching to hyphae of another particle  primary aggregation seemed to be 
partially circumvented 

Once the aggregates became the leading particle class in all cultivation types, apart from the shift 

in 4 h, their mode is at a size range of 90 – 100 µm (Figure 23). Compared to the start pH of 5.5, 

the shifted cultivations showed the “jump” in dependency of the duration of the shift. About 15 h 

into the cultivations though, the shifted ones caught up in size and all cultivations converged 

towards a particle size of 600 µm.  

The higher particle size growth speed for the shifted cultivation could be explained by either 

aggregation of bigger particles than just conidia (e.g. biomass flocs) and a higher growth rate (see 

section 6.1.1.1 ), or potentially both phenomena occurring at the same time. 

It is around a cultivation time of 13 h when the development of the aggregate mode for all 

cultivations begins to match each other and to follow a similar trend. This resembles the point of 
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transition of particle size control from the regime of pH towards an increased influence of power 

input (compare with Figure 10 in section 4.3 “Control of the morphology”).  

This point marked the time when the growth dynamics in dependency of fluid dynamics follow 

the model described by Kelly. Apart of pH, other fermentation parameters are the same for all 

cultivations and a similar development and maybe a convergence to a specific size was expected. 

The converging size in Figure 23 is based on a power input of 107.5 W m-3 (300 RPM) and is 

about 900 µm after 32 h despite the differences in the environmental condition and the stress on 

the cells related to withstanding the differently changed pH conditions.  

Larger particles potentially receive more time to interact with each other the longer Aspergillus 

niger cultivations are maintained at the non-aggregating conditions pH of 3. In the time frame of 

12 – 13 h, it can be stated that the 2 h lasting shift results in aggregates of about 300 µm which 

are bigger than the 200 µm aggregates resulting from the 1 h lasting shift.  The shortest shift 

duration of 0.5 h results in the smallest aggregates of below 200 µm. 

The exception to this series of experiments is the 4 h long lasting shift which forms aggregates in 

sizes of around 500 µm at the point when aggregates become the leading particle class. Unlike the 

other experiments and in consideration of the achieved BDM development (see section 6.1.1.1 ), 

larger particles must have interacted with each other which again points towards the previously 

described hyphal interactions in addition to the two aggregation stages described by Grimm.  

Circumventing the primary aggregation of conidia and bringing bigger biomass flocs to interact 

with each other by changing the pH comes with another consequence: The cores of these bio-

particles do not consist of aggregated spores but of rather fluffy biomass which results from 

growth at a low pH of 3. In comparison to Figure 4 in section 2.3 “A. niger growth in submerged 

culture”, the density and size of the core and the fluffy layer around it (areas A and B) can be 

controlled via the pH handle of the cultivation. It is apparent that the physical properties of 

mechanical shear are more pronounced on the bigger and fluffier particles that originated from 

the longer shifts.  
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This is supported by the size of the aggregates in the beginning of pellet growth: Pellet formation 

and development occurs earliest of all experiments and like depicted in Figure 4 at pH 5.5. The 

biomass grows as an active outer layer (C). In theory, denser aggregates result in a constant slope 

of the particle size increase while the slope of the supposedly less dense aggregates/pellets, like 

the ones derived from the shifted pH, vary in slope as the cube root law (Equation 4 in section 2.3 

“A. niger growth in submerged culture”) is not necessarily followed.  

Per the description in section 2.3 , the pellet growth is based on exponential tip growth which 

results in a linear increase of the particle diameter. Aging hyphae in combination with 

mechanical shear lead to denser pellets because hyphae sticking out of the pellets are removed 

by shear forces. Hyphae therefore grow into internal clearances and enforce the active layer of 

the pellet dependent on the power input.  

 

Shift from pH 3 to 5.5: point in time 

Like the previous chapter, the pH is shifted from non-aggregating to aggregating conditions, i.e. 

from pH 3 to 5.5. Different points in time of the pH shift during a cultivation are under 

investigation. The shift duration is set to 2 h as this appears to be the best compromise of 

obtaining the desired effect of aggregation in combination with higher than standard biomass 

concentrations. As references, cultivations with a single pH of 3 and 5.5, respectively, are 

employed. 

Figure 25 displays the obtained results in the same manner as for the pH shift duration 

experiments. As expected, cultivations at pH 5.5 show the first aggregates earliest after 5.5 h. 

Aggregates also become the leading particle class earliest in that cultivation, after 7 h. In contrast, 

cultivations with a single pH of 3 do not show pellet formation though some loose flocs are 

observed.  
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Figure 25: Leading particle class determined with the above depicted method of the modes over time for A. niger 
cultivations at pH 5.5, pH 3 and with a shift in pH from 3 to 5.5 over 2 h after 6, 8, 10 and 12 h; the later the shift is 
conducted, the later the aggregation of biomass occurs and the longer time it takes until the first aggregates can 
be observed; cultivations at a pH of 3 do not show aggregates at all despite the course of the experimentally 
determined curve – intensive biomass growth leads to high obscuration in the laser diffraction analyzer and 
therefore to unreliable measurements  

Cultivations with pH shift from non-aggregating conditions (pH = 3) towards aggregating 

conditions of pH 5.5 after 6 and 8 h both have the aggregate mode becoming the leading particle 

class after 9.5 h. This is 4 h later than the cultivation at pH 5.5. This has been expected due to the 

findings of the experiments with pH shift duration (Figure 23) and the conclusion that primary 

conidia aggregation probably could be omitted. 

The shift initiated at 6 h has been completed at 8 h (the light blue arrow indicator in Figure 25) 

with aggregates being present during the shift. It is 1.5 h after completion of the shift that the 
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aggregates become the leading particle class. The time frame would correspond to the lag-phase 

which means that the first aggregates are probably formed by a primary aggregation process.  

The experiments with a shift beginning at 8 h have aggregates becoming the leading particle class 

at the same point in time (after 9.5 h) as after the shift at 6 h. This indicates the involvement of 

biomass growth which corresponds to Grimm’s secondary aggregation with hyphal interaction.  

Following the involvement of growing biomass, the cultivations with pH shifted at 10 and 12 h 

formed first respective aggregates after initiation of the pH shifting process. Aggregates become 

the leading particle class around completion of the shift. At this point in time, spores have been 

germinated or remained dormant (compare to Figure 22). While no primary aggregation could 

have taken place, the aggregates consist of hyphal flocs which aggregate with each other.  

The mechanism can only be based on hyphal interactions and it is confirmed by microscopic 

control. Examples are shown in Figure 26. In consequence, the knowledge gap between the 

works of Grimm and Kelly now could be bridged with a “tertiary hyphal aggregation” mechanism.  

The longer the cultivations remain at pH 3, the longer time the biomass can develop under 

growth enhancing conditions. Changing the environmental conditions and forcing an aggregation 

of these larger flocs leads to different particles. Figure 26 proves the “non-core” and this is also 

represented in the particle size of the mode: The aggregate mode of the two latest shifts after 10 

and 12 h, respectively, showed larger particle/aggregate sizes towards the end of the cultivation 

compared to the aggregating condition of a cultivation at pH 5.5.  

If the core of the pellet, or more the bio-particle, does not consist of conidia aggregates and if 

there is no core as such, the resulting density of the particle must be lower. Also, hyphae are 

sticking out of the particle in a higher degree compared to when grown as pellet at pH 5.5.  

The fluffy structure of the particle allows for a higher particle internal biomass growth. This 

would correspond to the observed superior biomass development for the late shift cultivations 

compared to the earlier shifts considering the similar slope in particle size increase over time. 
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Figure 26: Bio-particles formed during the experiments with shift of pH from 3 to 5.5 after A 10 h and B 12 h. The 
particles were derived from samples taken after 24 h of cultivation. No pellet core built of conidia was present, and 
instead, the particles were assemblies of rather loose biomass flocs.  

In conclusion, the point in time of changing the pH can be employed as lever for the morphology 

control and to design particles with sizes below 1 mm with earlier pH shifts resulting in smaller 

pellets compared to later pH shifts.  

 

6.1.3.2 Power input and initial conidia concentration 

The influence of mechanical power input and the initial conidia/particle concentration are levers 

for fine-tuning of the final particle size. The outcome of the experiments in terms of achieved 

biomass is not satisfying (see section 6.1.1.3 ). Therefore, this chapter summarizes the achieved 

particle size results for trials with a shift in power input from standard conditions of 107.5 W m-3 

(300 RPM) to supposedly aggregation enhancing lower power input of 25 W m-3 (100 RPM) at 

time points of 8 and 12 h in Figure 27, increased permanent power input of 212 W m-3 (400 RPM) 

and 430 W m-3 (500 RPM) in Figure 28 and initial conidia concentration of 5 * 106 L-1 (standard), 

2.5 * 106 L-1, 4 * 107 L-1 and 5 * 107 L-1 in Figure 29. 
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Figure 27: Mode and leading particle class in dependency of a shift in power input by agitation from standard 
conditions of 107.3 W m-3 (300 RPM) to 25 W m-3 (100 RPM). 

The shift in power input towards aggregation promoting conditions is shown in Figure 27. The 

outcome is that lower power input from cultivation start leads to a delay of the moment where 

the aggregates become the leading particle class. This is not expected as low power input 

conditions are supposed to promote aggregation. In combination with the low biomass (section 

6.1.1.3 “Power input and initial spore concentration”) concentration, it can be concluded that 

suboptimal growth conditions, like e.g. lack of oxygen126,127 lead to delayed germination which in 

turn delays the secondary aggregation.  

The aggregates formed under the low power regime (low power from start as well as the shifted 

cultivations) develop particles with a diameter of 1100 µm. This is 46 % bigger than under 

standard conditions which resulted in 750 µm big pellets. The size difference is based on hyphae 

sticking out of the particle which are not being sheared off when lower power input is applied.  
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25 W m-3 power input was sufficient to avoid sedimentation of the bioparticles, but else the lack 

of mixing and the resulting lack of oxygen transfer, hampered the biomass too much in terms of 

the particle size and growth control model. 

 

Figure 28: Mode and leading particle class in dependency of mechanical power input by agitation in standard 
conditions of 107.3 W m-3 (300 RPM), 25 W m-3 (100 RPM), 212 W m-3 (400 RPM) and 430 W m-3 (500 RPM). 

Figure 28 displays the biomass’ reaction on higher than standard power inputs. All the 

experiments presented were conducted at single stirrer speed. The result is that aggregates 

become the leading particle class in dependency of the power input: The higher the power input 

by agitation is, the later the aggregates became the leading particle class.  

Exceptions are the experiments with low power input (25 W m-3 at 100 RPM) for reasons 

discussed above for the results presented in Figure 27. This is in line with Grimm’s description of 

fluid dynamics and its influence on the secondary aggregation step.  
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The shift in stirrer speed was instant. The time needed for aggregates to become the leading 

particle class took longer the higher the power input was. It was most likely due to fluid 

dynamics which influence the previously claimed tertiary aggregation as interaction of hyphae.  

The power input of 430 W m-3 resulted in the slowes rise in particle size from 10 to 12 h 

cultivation time. It could also be that hyphal aggregation was prevented and instead pellet 

growth was responsible for the observed gains in particle size.  

The increased power input of 212 W m-3 & 430 W m-3 compared to the standard 107.5 W m-3 

resulted in smaller pellets and all respective cultivations converged towards a final particle size 

of 700 µm. This means that the micro scale of eddies derived from the Kolmogorov scale of length 

and the respective production range of the dissipation spectrum128 can be neglected in terms of 

particle size development. There is however a possibility that these were the cause for the 

deferred biomass development (compare to section 6.1.1.3 ).  

 

Figure 29: Mode and leading particle class in dependency of initial conidia/particle concentration with standard 
conditions of 5 * 106 L-1 compared against 2.5 * 106 L-1, 4 * 107 L-1 and 5 * 107 L-1. 
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The evaluation of the effect of initial particle concentration can be found in Figure 29. With initial 

conidia concentrations being higher than the standard 5 * 106 L-1 conidia concentration, 

enhanced primary aggregation led to aggregates becoming the leading particle class even before 

growth set in.  

The first measured aggregates had a diameter of 60 µm – 40 % smaller than the first aggregates 

achieved with standard inoculation conditions of 5 * 106 L-1. With increasing time, these 

aggregates slowly grew in particle size reaching just 400 µm final size compared to 750 µm for 

the standard cultivation.  

Again, these experiments resulted in an unsatisfactorily low BDM. Like the power input, conidia 

concentration can therefore be a fine-tuning parameter for the particle size. The biomass growth 

could be hampered by particles consisting of too many conidia. There might be competition 

between the conidia in order to grow and a quorum sensing like behavior could limit the number 

of conidia that actually germinate129 with lower biomass and particle growth as a consequence. 

6.1.4 -potential & conidia surface structure 

In general, the -(zeta-) potential is used to describe the surface of particles in terms of their 

isoelectric point. Despite being a potential of the not distinctively defined shear layer, the state of 

the electro-static double layer can be described given a sufficiently large particle ensemble.  

Figure 30 displays the results of the -potential measurements of Aspergillus niger AB1.13 

conidia in cultivation medium in dependency of the pH value. The salt content of the media also 

contributes to the measurement, and compared to inorganic particles like silicon or titan dioxide, 

the measured range of -10 – 10 mV is considered very low130. The closer to zero the -potential is 

the less electrostatic repulsion there is between particles. The lowest -potential is measured at 

pH 5.5 which also resembles the premise for aggregating conditions.  

At the same pH of 5.5, the cultivation media turned turbid when inoculated with conidia: Melanin 

desorbed from the surface of the conidia. Melanin is mainly known as a compound involved in 

providing UV protection for the spores131, but also stabilizes the conidial surface by bridging 
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between surface proteins54 which influences the vegetative phase132 and it guards against 

chemicals133.  

 

Figure 30: The -(zeta-) potential for Aspergillus niger AB1.13 conidia in cultivation media was very low at all 
measured pH values; it was lowest (around 0 mV) at pH 5.5; the lower the -potential, the less electrostatic 
repulsion is present, which could mean “improved” aggregation conditions.   

The desorption could possibly scavenge harmful substances from the media but more 

importantly, it leaves the conidial surface, including the cell wall associated proteins and 

hydrophobins134, exposed. Figure 31 displays the conceptual model of melanin desorption. 

In the left part of Figure 31, conidia at a pH of 3 are depicted. The melanin layer is intact, covering 

both the chitin wall and the proteins stabilizing the bioparticle. Increasing the pH to 5.5, the 

melanin desorbs and dissolves in the media leaving the chitin wall and proteins, e.g. 

hydrophobins, exposed.  

Hydrophobins could enable hydrophobic interaction for improved aggregation. The smaller 

particle diameter registered for conidia at pH 5.5 with the laser diffraction in section 6.1.3.1 

supports this conceptual model and so does electron microscopy, imaging proving a thinner 

melanin layer135. 
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Figure 31: Conceptual model of melanin desorption with pH 3 applied for the left part of the figure, and pH 5.5 
applied to the right; 1 represents the melanin associated to the 4 conidia and 3 surface proteins; melanin desorbs 
at a pH of 5.5 2 leaving the proteins and the chitin wall of the conidia exposed for possible hydrophobic 
interaction, thus creating conditions for “better” aggregation.   

 

6.2 A. niger AB1.13 optimized parameters for particle size and biomass control 

The introduction stated two major goals that should be achieved: Firstly, an optimized amount of 

biomass – too much biomass would mean spill of substrates for building up and maintaining 

biomass – and secondly, the particle (pellet) size should remain below 1 mm to avoid internal 

substrate limitations in the particle.  

The null hypothesis for the statistical analysis is: The process parameters pH, power input and 

initial conidia concentration each had no significant influence on the development of the biomass. 

It is rejected only for the pH as high biomass concentrations could be reached employing pH 3 as 

start condition. With progressing time at pH 3, more and longer hyphae were formed which then 

remained freely dispersed. If pellet growth is preferred, a transition in morphology from freely 

dispersed to pelleted could only be achieved with a shift in pH. 

Analogously, the significance is tested for particle size and all parameters are positive correlated. 

The analysis trend shows that the final particle size increased when both initial conidia 
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concentration as well as power input were decreased while the pH should be raised (to generate 

particles!). Focusing on the particle size, an example size of 800 µm could be reached with 6 * 

108 conidia L-1, a power input of 179.3 W m-3 (358 RPM) and a pH of 5.4. 

Including the biomass in a combined model of BDM and particle size led to pH as single 

significant factor. By shifting pH from 3 to 5.5, dependent on the point in time and on the 

duration, both particle size and bio dry matter can be controlled in an appropriate way.  

 

Figure 32: Statistical analysis shows that reaching an optimum concentration of bio dry matter of 2.9 g L-1 while 
keeping the maximum particle size at 800 µm could be achieved by shifting the pH from 3 to 5.5 after 9.7 h over a 
time span of 1.4 h.  
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Figure 32 displays the influence range achieved by varying the pH shift point in time and the 

duration of the shift in general as well as for the example case of a designated BDM of 2.9 g L-1 

and a maximum particle size of 800 µm: The conclusion is that the shift should start after 9.7 h 

and should last 1.4 h.  

Figure 32 is organized in the way that the target values are represented in the rows and the 

columns are built by the influencing parameters point in time of the shift and duration of the 

shift. The dotted straight lines in the graphs are an orientation help and resemble the above 

stated example. The plotted graphs show the trend for each parameter and its respective 

influence on the target variables and are covered by the confidence interval.  

The regression analysis was based on two functions: 

Equation 12: Function describing final BDM concentration of the cultivation 

𝐵𝐷𝑀 =  𝑓 (𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 , 𝑃𝑜𝑖𝑛𝑡 𝑖𝑛 𝑡𝑖𝑚𝑒 ) 

Equation 13: Function describing the final particle size 

𝑓𝑖𝑛𝑎𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑖𝑧𝑒 =  𝑓 (𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 , 𝑃𝑜𝑖𝑛𝑡 𝑖𝑛 𝑡𝑖𝑚𝑒 ) 

For the example, the variables were set to 2.9 g L-1 and 800 µm. To calculate the parameters for 

other values of the variables, a family of curves can be derived for the parameter space of 

BTM = 1, 2, 3, 4 g L-1 with the Equation 12 & Equation 13. A pre-defined particle size could then 

be reached by reading the point in time and the duration of the shift: 

Equation 14: function describing final particle size in dependency of BDM, pH shift duration and point in time of 
the pH shift 

𝑓𝑖𝑛𝑎𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑖𝑧𝑒 =  𝑓 +  𝑓 − 𝐵𝐷𝑀 

In summary, it is possible to design a specific bio dry matter content as well as final particle size 

without introducing any further ingredients that might become problematic in further 

downstream processing81, of course given that pH adjustment is part of the set-up anyway. The 

industrial scenario for application of this model could be industrial cultivations, specifically seed 
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tanks for growth of biomass. Ensuring the ideal format of the biomass morphology at the onset of 

the process could mean conditioning of the biomass for the intended production purposes. 

 

6.3 Aspergillus niger production strain 

The experiments with the production strain are conducted at 20 L scale under what resembles 

conditions close to production. The most important result of all attempted trials is that the strain 

behaves very differently compared to the results obtained with the Aspergillus niger AB1.13 

strain: All experiments resulted in various degrees of pellet formation with freely dispersed 

mycelia present and with pellets disaggregating later in the fermentation. The data in this 

chapter serves more as proof that the model has been tested than to support any detailed 

scientific discussion. 

6.3.1 Production strain growth at pH 5.5 

The morphology was assessed for growth at pH 5.5, and results are displayed in Figure 33. 

Different from expectations, the biomass develops both large and small pellets next to soy grit 

particles up to 60 h fermentation time. Microscopic control also reveals pellets not being 

spherical but of different shapes i.e. elongated and with apparently different densities (visual 

observation). Furthermore, scattered mycelia and clumps are observed among the pellets. After 

60 h, the pellets slowly disperse. After 79 h, few small pellets and clumps are left and 

mycelia/hyphae are mostly fractured.  
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Figure 33: Morphological changes in the production strain at pH 5.5; at first mixed morphology with later 
defragmentation into mycelial growth after 79 h 

 

6.3.2 Production strain growth at pH 3 and 4 

Growth at lower pH than 5.5 is intended to result in freely dispersed mycelia. In fact, it resulted in 

no growth at all (data not shown). A positive control has been conducted with a shift to pH 5 after 

which biomass growth was observed with identical morphological traits as depicted for pH 5.5. 

 

6.3.3 Production strain growth at pH 6 

Because no growth was observed at pH 3 and 4, pH was moved upwards to achieve a higher 

repulsion between the conidia as described in section 6.1.4 and Figure 30: The zeta-potential at 

pH 6 is with 6 mV quite “far” away from 0, similar to pH 3. pH 6 should thus result in less/no 

pellets. Figure 34 presents several pictures as an illustration of the achieved morphology in this 

experiment. 
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Figure 34: Morphological changes in the production strain at pH 6; against expectations pellets are present in a 
mixed morphology which disaggregates after 60 h.  

The morphology was more aligned with the theory with less pelleted growth and more formation 

of mycelia. Still, pelleted growth was clearly present during the fermentation, although the pellets 

were present in lower numbers than at pH 5.5. Also, aggregated mycelia and fluffy biomass 

clumps were contributing to the overall morphology. An earlier exponential growth was 

observed by off-gas measurement and by microscopic control. Mycelia and small aggregates were 

already after 19 h and larger pellets formed later. This could be an indication for a tertiary 

aggregation type of hyphal interaction. 

 

6.3.4 Production strain with increased initial conidia concentration 

As described for the academic strain Aspergillus niger AB1.13 and as described by Grimm25, the 

initial conidia concentration has an influence on the morphogenesis. Chapter 6.1.1.3 and 6.1.3.2 

refer to the experiments with high inoculum concentrations which should promote enhanced 

mycelial growth. The pH level is chosen according to the findings reported in the previous 

section. The highest employed inoculum features in 1*105 spores L-1 which is very comparable to 

the starting conditions of the academic strain. 



92 
 

Compared to the standard conditions of the industrial strain, 7 * 102 L-1 & pH 5.5, the lag phase 

lasts 10 h which is 9 h shorter. Based on off-gas (CO2-) analysis, the amount of biomass formed 

seems to be improved compared to standard conditions (pH 5.5, 7 * 102 L-1). In contrast to the 

AB1.13 strain, the biomass development benefits from increasing the initial conidia 

concentration.  

 

Figure 35: High initial conidia concentration of 105 L-1 at pH 6 showed more and smaller pellets than with normal 
initial conidia concentration (according to visual inspection). 

The morphology for high initial conidia concentration started with the development of very small 

pellets only. Morphology example pictures are shown in Figure 35. The pellets were seen to be 

formed by small aggregates, and from there developed into more distinguished and small pellets. 

Around 50 – 60 h, the pellets begin to break up which means pellets lasted longer regarding the 

earlier growth than at standard conditions (depicted in the previous section).  

The increase of the inoculum to 105 conidia L-1 does not result in mycelial growth. Instead, many 

small pellets develop with a later dispersion.  
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6.3.5 Production strain in media with high osmolality 

Cultivations at pH 5.5 under high osmolality conditions are conducted in order to promote 

mycelial growth which is reported in the literature80. Since it was not possible to measure or 

monitor the osmolality on site, the hypothesis test was based on a theoretically calculated 

osmolality (see section 5.2.2.2 ).  

As expected, the germination phase was affected by the high osmolality80. It was prolonged to a 

duration of up to 70 hours compared to an average of ~27 h under normal conditions.  

 

Figure 36: Morphological changes in the production strain at pH 5.5 with high osmolality; pellets present against 
expectations 

It can be concluded that despite an osmolality of 2.4 osmol/kg, small pellets were formed. Still, 

the amount of pellets seemed lower by visual inspection than experienced with pH 5.5. These 

results are in contrast to the findings achieved by Wucherpfennig with the AB1.13 strain80. A 

possible cause for the observed results could be the specific fermentation conditions, like the 

industrially inspired complex media and the theoretically estimated osmolality. However, 

exceeding the osmolality levels employed in the pursuit of gaining control of the fermentation 

with respect to achieving mycelial growth can be considered an unrealistic scenario for industrial 

purposes.  
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6.4 Aspergillus niger BO-1 wildtype 

This chapter’s scope is the creation of an alternative fermentation strategy to develop distinct 

pelletised and dispersed growth in submerged cultivation after the “interesting failure” of 

morphology engineering with the production strain. The approach is based on the impression 

that the soy particles were the main cause for the observed mixed morphology. Therefore, two 

major fermentation conditions are developed and referred to as ‘basis pelletised growth’ and 

‘basis dispersed growth’ conditions (see Table 5, section 5.3.3 “Aspergillus niger BO-1 conditions 

for provoking different morphologies”).  

The first result was the choice of the cultivation media (compare to chapter 5.2.2.3 BO-1 media): 

The MLC media contained, just like the media used for the industrial strain cultivations, soy. All 

the MLC cultivations resulted in a mixed morphology with a score of 3 – 4 on the morphology 

scale displayed in Figure 14 in section 5.4.5  “BO-1 morphology scale”.  

Most importantly, the mixed morphology was achieved independently of pH and agitation. Figure 

37 displays the morphological outcome after 41 h of cultivation in combination with a 

MasterSizer 3000 laser diffraction measurement of the volume density distribution. The particle 

size distribution can be employed as a quantitative indicator for the general state of the 

morphology where a broader distribution represents the less pelleted morphology.  

Negative trials were conducted with Bacto-Soytone, a digested and particle free soy replacement. 

It resulted in pelleted growth under low agitation condition, though two thirds of the cultivations 

showed unsatisfyingly low biomass development.  

The BO-1 strain, showed the inverse behaviour compared to the findings with the Aspergillus 

niger AB1.13 lab strain that lower pH results in more freely dispersed mycelia in general. The 

pelleting conditions were found at pH 3.5 while the freely dispersed mycelia grew at 4.2. 

However, it is concluded that pH is not a major factor for morphological development. Under high 

agitation speed, the morphology will be fully dispersed (morph. scale: 1). 
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Figure 37: Particle size distribution and microscopy pictures after 41 hours from the two cultivations with MLC 
medium. 

6.4.1 Particle size and morphology 

6.4.1.1 A. niger BO-1 under conditions for freely dispersed mycelia 

Figure 38 consists of two plots and microscopy pictures to compare dispersed growth with and 

without change of pH. In that figure, A and B represent the particle size distribution over time at 

pH 4.2 and 3.5, respectively. The cultivation conditions are stated in Table 5. Below the particle 

size distributions, time series of microscopy pictures for both cultivations are presented. 

The figure demonstrates that there were no major differences in morphology by changing pH to 

3.5. The development of the particle size distribution was very similar, and was supported by 

microscopic analysis. At lower cultivation pH, the mycelia elements seemed to grow in a wider 

size span and with higher average size.  

Mycelia in the cultivation with basis pH grew to around 800 µm in maximum average size, 

whereas the cultivation with the lower pH of 3.5 reached a maximum size of 1200 µm. The 

overall morphology is mycelial and these big “particles” represented entanglement of flocs 

(agglomerates). These differences were hence an artefact because no pellets are present. 
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Figure 38: Particle size distribution and microscopy pictures from the two cultivations in reactors with dispersed 
growth. A has the basis condition of dispersed growth defined in Table 5 which is the reproduction of the dispersed 
growth found in the preliminary study. B has the same cultivation conditions, except that the pH is 3.5. 

The overall patterns of the particle size distribution observed for the two cultivations are similar. 

Initially, elements of dispersed growing mycelia expanded in size and were measured as large 

particles by the Mastersizer 3000. With a maximum size of 800-1200 µm around 35 to 45 hours 

of cultivation, these began to break up into smaller elements. This resembled the behaviour of the 

industrial strain (see section 6.3 ).  

Analogous to MLC trials, cultivation pH is not a major factor for morphological development of 

Aspergillus niger BO-1 strain in ½MU-1 media. With high agitation speed, the morphology will be 

fully dispersed (morph. scale: 1). 
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6.4.1.2 A. niger BO-1 under pelleting cultivation conditions 

Figure 39 represents particle size distribution for cultivations run with pelletizing conditions of 

pH 3.5 instead of 4.2 and 150 RPM instead of 600 RPM (Table 5). The achieved pellets developed 

in size towards an average diameter of around 1000-1100 µm.  

Distinct pelletised growth was present for the first two time points as no particles with a 

diameter smaller than 500 µm could be detected. After around 65 h, the distribution became 

wider towards the smaller particle sizes as the pellets began to fracture.  

 

Figure 39: Particle size distribution of two replicates R1 and R2 under pelletizing conditions for three different 
time points; earliest samples to the left; cultivations not performed in parallel  slight deviation in sampling time 
(stated in the figure legends). 

Figure 40 depicts microscopy pictures from these cultivations. Pellets were very hairy and loose 

in structure which resembled A. niger AB1.13 lab strain pellets developed under low agitation 

conditions described by Kelly28. The fluffy structure presumably indicates susceptibility towards 

shear stress.  With diameters in the range from 800 µm to more than 3000 µm, internal substrate 

limitation problems might occur.  
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Figure 40: Microscopy pictures from independent duplicates performed under pelletising conditions; each picture 
in one row is derived from the same cultivation: Reference 1 as R1 at the top and R2 as second reference in the 
bottom with each cultivation point in time in hours stated above or below the pictures for R1 and R2, respectively. 

6.4.1.3 A. niger BO-1 Initial conidia concentration 

Analogue to the AB1.13 and the industrial strain, the initial conidia concentration was increased 

to manipulate the particle size27,83,136. The conditions were set to promotion of pellet formation 

with a conidia inoculation concentration increase by a factor 10 to 5 * 108 conidia L-1 after 

inoculation.  

 

Figure 41: Particle size distribution of the cultivations under pelletising growth conditions called R1 and R2 (from 
Figure 39), compared with the cultivation with 10 times higher initial spore concentration called High ino. The 
figure represents the size distribution from samples taken at three different time points, with the earliest samples 
to the left and the latest to the right. As the cultivations were not performed simultaneously the sample times are 
different and the exact time of sampling is written in between brackets in the legends of each figure.  
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Figure 41 represents the particle size distribution for the cultivation with high inoculation 

concentration along with the pellet references R1 and R2 (from the previous section 6.4.1.2 ). The 

average pellet diameter reached around 1000-1100 µm for all three cultivations. The increased 

inoculum had no major impact on the size of the pellets despite the expectation of smaller 

pellets83,136,137. 

As expected, the pellet concentration increased with higher inoculum concentration. The increase 

of the pellet concentration did however not directly correspond with the increased spore 

concentration: While the initial concentration was increased by a factor 10, the pellet 

concentration raised just by factor 2 to 5.  

 

 

Figure 42: Microscopy pictures from cultivation with pelletising conditions and cultivations with high spore 
inoculation concentration; rows represent the cultivations, columns the respective different time points where 
samples were taken. 

The method of increasing inoculum concentration is also found inconsistent. Figure 42 

represents the microscopic control of three cultivations: the top row corresponds to the 
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reference pelletised growth conditions and the two bottom rows are from cultivations with 10 

times higher spore inoculation concentration. Similarities in morphology can be observed in the 

two top rows compared to the bottom row meaning that the two higher inoculum cultivations 

differed more from each other than the difference between the high inoculum 1 cultivation and 

the pellet reference cultivation. The pellets of high inoculum 2 grew hairier and were more loose 

in structure. Particle size distributions revealed similarly sized pellets though. This implies that a 

higher conidia inoculation concentration is not well suited as lever for engineering the particle 

size. 

6.4.1.4 A. niger BO-1 Power input 

Like for the A. niger AB1.13 strain, a shift in power input was evaluated for its potential to 

influence morphology. In contrast to the lab strain, the aim of the BO-1 trials was to limit the 

pellet size growth with higher agitation speeds like described by Kelly28. Six cultivation setups 

start with standard pelleting conditions (see Table 5 in section 5.3.3 ). After formation of pellets, 

the agitation speed was gradually raised with 100 RPM per 4 hours. Table 7 describes how and 

when the agitation speed was raised. The resulting morphology after 52 and 68 hours of 

cultivation was characterised by means of the morphology scale (see Figure 14, section 5.4.5 ).  

Table 7: Overview over experiments initiated with standard pelletizing conditions with gradual increase in 
agitation speed introduced after pellet formation at different time points; red arrows across table cells mark the 
time point of the shift. 

Name Agitation speed (RPM) Morphology 

Time 0-23 h 27 h 31 h 35 h 39-97 

h 

52 h 68 h 

↑850  150 600 600 850 850 3 1 

↑600  150 150 150 600 600 3 1 

↑250, late  150 150 150 250 250 6 4 

↑350, late  150 150 150 250 350 3 2 

↑250, early 150 250 250 250 250 6 5 

↑350, early 150 250 350 350 350 5 3 
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Increase of agitation speed to 600 and 850 RPM 

For cultivations with agitation speed increase to 850 and 600 RPM, the agitation speed was 

gradually increased from 150 RPM to 600 RPM over a period of 4 hours. The agitation speed was 

then further increased to 850 RPM during another 4 hours period for the respective cultivation. 

The particle size distribution of the two cultivations is provided in Figure 43 which illustrates the 

development of the morphology throughout the cultivations.  

 

 

Figure 43: Particle size distribution for cultivations started under pelletising conditions with agitation speed 
increased from 150 RPM to 850 RPM and 600 RPM after respectively 23 and 31 hours of cultivation. 

Pellets continued to grow in particle size after the agitation speed increase. Instead of reduced 

particle growth, pellets began to fracture leading to a rating of 3-4 on the morphology scale after 

43 hours of cultivation.  

A comparison with microscopy pictures in Figure 44 confirmed that both cultivation types with 

raised agitation resulted in combined dispersed and pelletised morphology 8 hours after their 

respective maximum agitation speed was reached (600 and 850 RPM). After 68 hours, both 

cultivation types were fully dispersed (morph. scale: 1).  
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Figure 44 also shows that the pellets lost their spherical shape. Instead, the shape became more 

elongated with long mycelia threads sticking out. This could be a result of the combination of the 

loose structure of the pellets and the increased impact of shear.  

The loss of spherical shape observed with microscopic analysis also leads to a general 

questioning of the usefulness of the assessment of particle size with laser diffraction. The basic 

requirements of the technique (spherical particles being impervious to light) were not matched 

any longer. Particle size analysis with laser diffraction for this type of morphology should just be 

employed as an indicator of the development.  

 

 

Figure 44: Microscopy pictures for cultivations started under pelletising conditions with agitation speed increased 
from 150 RPM to 850 RPM and 600 RPM after respectively 23 and 31 hours of cultivation; top row with increased 
agitation to 850 RPM after 23 hours at different time points; bottom row with increased agitation speed to 600 
RPM after 31 h at different time points. 

 

Increase of agitation speed to 250 and 350 RPM 

To avoid breaking of the pellets, the agitation speed was increased to “just” 250 and 350 RPM. 

That was assumed to be a condition that resembles higher agitation speed conditions which 

should cause the formation of smaller and more compact pellets28. At 23 and 31 hours, 

respectively, the agitation speed was raised gradually with 100 RPM over a period of 4 hours.  
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While no major morphological difference could be observed between agitation speeds raised to 

850 and 600 RPM respectively, the agitation speed increase to 250 and 350 RPM resulted in 

differences in the observed morphologies. Figure 45 depicts that pelletised growth was 

maintained after the shift. Cultivations with agitation speed raised to 250 RPM continued to grow 

pelletised (morph. scale: 6) after 52 h. In contrast, the pellets in cultivations with the agitation 

speed raised to 350 RPM fractured after 52 hours, scoring only between 3 and 5 on the 

morphology scale.  

 

Figure 45: Microscopy pictures for cultivations started under pelletising conditions with agitation speed increased: 
top row with increased agitation to 250 RPM after 31 hours; second row bottom with increased agitation to 350 
RPM after 31 hours, third row with increased agitation to 250 RPM after 23 hours and bottom row with increased 
agitation speed to 350 RPM after 23 hours. 

 

At 23 hours, large aggregates were in the process of developing into pellets. Eight hours later, 

spherical pellets were formed with 2-3 times larger diameter than previously. It appears that the 



104 
 

smaller particles adapted to higher agitation (shift after 23 h) while applying higher agitation on 

larger pellets (shift after 31 h) induced fragmentation.  

Visual inspection showed that pellets in cultures with later agitation increase were more hairy 

than the ones with late agitation increase. Especially in combination, i.e. a pellet with more hairy 

appearance and larger diameter, the pellet would be expected to be more prone to disintegration 

due to lower mechanical stability with long threads of mycelia sticking out of pellets. Hyphae 

could be sheared off and would then develop into dispersed growth. The pellets remaining intact 

and keeping their larger size could suffer from diffusion limitation and autolysis 76,138. 

In consequence, it was not possible to create smaller or more shear resistant pellets of Aspergillus 

niger BO-1 by raising agitation speed after pellets were formed. However, the time point of the 

increase of agitation speed influenced fracturing of pellets which was not intended. It was 

expected that industrial production conditions provide a higher power input than the one applied 

in the experiments described here, meaning that power input as control handle for particle size 

control is not applicable here. 

 

6.4.1.5 A. niger BO-1 Added cellulose particles 

The purpose of adding particles into the cultivation is to confirm the impression from the 

industrial strain that the fungus prefers to attach to solids. Cellulose was chosen as it is 

indigestible to A. niger, in contrast to soy. Cellulose particles were added in concentrations from 

0.05 to 50 g L-1. 

Figure 46 gives an overview of the differences in morphology achieved with the different 

cellulose concentrations. With a cellulose concentration of 50 g L-1, mostly dispersed growth with 

small mycelial aggregates (morph. scale: 2) with a size about 80-90 µm in diameter could be 

created.  
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Figure 46: Microscopy pictures from preliminary shake flask cultivations with added cellulose particles to the 
medium; 2 pictures displayed after 40 hours per setup; the cellulose concentration added is stated above the 
images. 

With a cellulose concentration of 15 g L-1 and 5 g L-1, the aggregates became larger. Pellets, in 

contrast, are not frequently observed (morph. scale: 3-4). With 2 g L-1 of cellulose particles, large 

pellets with a diameter up to 3500 µm are formed along with small aggregates with a size down 

to 600 µm (morph. scale: 4).  

Common for the three cultivations with 15, 5 and 2 g L-1 cellulose particles was that dispersed 

mycelium was rare while aggregates in a size range from respectively 425, 550 and 600 µm and 

up to above 3500 µm dominated the morphological development.  

Cultivations with a cellulose concentration of 0.5 and 0.05 g L-1 resulted in distinct pelletised 

morphology (morph. scale: 6) with pellet diameters in a more limited range from 900 – 3200 µm. 

6.4.2 A. niger BO-1 Biomass growth, morphology and enzyme activity 

Differentiating morphology solely by addition of particles makes it possible to determine how the 

morphology affects growth and enzyme production. This is without changing parameters which 

possess high influence on productivity, like agitation and pH.  
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Figure 47: Graphic overview of BDM, morphological outcome per morphology scale, enzyme activity and growth 
rate. The cultivations experienced the same conditions in each shake flask with ½ MU-1 medium but with addition 
of different cellulose concentrations. The growth rate is indicated above the grey bars in h-1 units. 

Figure 47 presents the BDM, enzyme activity and morphological outcome after 88 hours of shake 

flask cultivation. There was a tendency that growth rate is affected by the particle concentration.  

Cultivations with the highest concentration of particles, i.e. dispersed growth, had the lowest bio 

dry matter concentration. Cultivations with low concentration of cellulose, i.e. pelletised growth, 

showed the highest growth rate. The enzyme activity was, in contrast to the growth rate, highest 

in the cultivations with highest particle concentration and lowest in the ones with low particle 

concentration. The activity difference was 60 %.  

The enzyme activity and activity per biomass was proportional to the morphological 

development. The higher the number of larger pellets and the lower the extent of free mycelia 

was, the lower was the resulting enzyme activity. Driouch et al.81 described the same tendency 

for the AB1.13 strain.  

 

6.4.2.1 Activity development in function of dissolved oxygen tension 

Figure 48 depicts the relation between dissolved oxygen tension (DOT) and enzyme activity per 

quantity of biomass dry matter for a series of cultivations discussed in section 6.4.1.4 . All 
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cultivation conditions were identical except for agitation speed. Along with the previously 

discussed cultivations initiated at 150 RPM with a subsequent raise of agitation speed to 250, 

350, 600 and 850 RPM, respectively, cultivations were run with constant agitation speed of 150 

and 600 RPM as well.  

The best results in terms of activity development could be reached with higher agitation rates 

with the cultivations with constant speed of 600 RPM being superior. The second-best setup 

were cultivations with agitation speed raised from 150 to 850 RPM at the respective cultivation 

time points of 49 and 57 hours. In comparison to each other, it is striking that the 600 RPM 

became oxygen limited 8 h earlier after 49 h than cultivations shifted to 850 RPM. Despite these 

additional 8 h under oxygen limitation, the enzyme activity per BDM was 40 % higher with the 

600 RPM constant agitation speed. 

These two different agitation regimes resulted in different morphologies: The constant speed of 

600 RPM results in distinct dispersed growth (morph. scale: 1) throughout the whole cultivation. 

In contrast, the low initial agitation of 150 RPM lead to pelleted growth which subsequently 

evolved into a mixed morphology between 34 and 43 hours (morph. scale: 64) and into 

dispersed growth between 52 and 68 hours (morph. scale: 31). The process of changes in the 

morphology have been discussed in section 6.4.1.4 and Figure 44 depicts the development.  

In consequence, the morphology of the biomass is of greater importance for enzyme production 

than the DOT. The cultivation with most dispersed growth results in the highest enzyme 

productivity despite being oxygen limited first. 

 A similar observation can be made for cultivations with agitation speed raised to 350 RPM after 

23 hours and 31 hours, respectively: The later up-shift in agitation speed after 31 h resulted in 

the occurrence of a DOT limitation that was 5 h earlier than in the experiment with the earlier 

agitation speed shift (after 23 h). The enzyme activity per BDM is though 34 % higher for the 

later shift.  
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Figure 48: Data from a series of experiments with identical fermentation conditions except for agitation speed: 
Constant agitation speed of 150 and 600 RPM, cultivations initiated with 150 RPM with agitation speed raised 
subsequently are indicated with an arrow (↑); A represents dissolved oxygen tension (DOT) as function of 
cultivation time, B represents enzyme activity per BDM and morphology for samples taken after 68 hours of 
cultivation. 

The only difference between these two cultivations was the point in time at which agitation 

speed has been raised. The later shift resulted in earlier fracturing of the pellets, and thus the 

cultivation was operated for a longer time with a more dispersed morphology.  

6.4.2.2 Activity development after inoculation with pelleted and mycelial pre-cultures 

Morphology appeared to be decisive for amylase production. To conclude on this, identical main 

cultivations are prepared which are inoculated with dispersed and pellet growing precultures, 

respectively. For better comparison in terms of DOT, the same setup was carried out at different 

agitation speeds. An overview over the setup is given in Table 8. 
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Table 8: Overview of cultivations inoculated with different morphologies; fermentation conditions are presented 
along with the expected (Exp.) and the observed morphology after 40 hours of cultivation per Figure 14; column 
‘Setup’ indicates pre-cultures were carried out in shake flask (Sh. F.) defined after Table 5. 

Pre-culture Main cultivation 

Morphology of 
preculture 

Agitation 
(RPM) 

pH 
Morphology 

Expect. Observed 

Pelletised 150 4.8 6 6| Pelletised 

Pelletised 250 4.8 5 5| Pelletised 

Dispersed 150 4.8 2 3| Aggregates 

Dispersed 250 4.8 1 2| Dispersed 

 

Precultures were grown in shake flasks under the basis conditions for pelletised and dispersed 

growth provided in Table 5 with the exception that pH in the cultivation with dispersed growth 

was lowered to 3.5 for technical reasons. After 31 hours of cultivation, new shake flasks with 

fresh medium were inoculated with equal amounts of biomass from the precultures. 

The top rows of the pictures in Figure 49 and Figure 50 present the morphological development 

of the pelletised inoculated cultivation. Cultivations inoculated with pelletised biomass 

maintained their pelletised morphology until 40 hours of cultivation with agitation speed at 250 

RPM. Until 65 h, the morphology changed from pellets to dispersed growth (morph. scale: 53). 

The cultivation with pelletised inoculum and agitation speed at 150 RPM developed large pellets 

up to 6000 µm in diameter in samples taken after 40 and 65 hours cultivation time. After 65 

hours of cultivation, pellets began to fracture. The major part of the biomass remained pelletised 

(morph. scale: 54). 
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Figure 49: Microscopy pictures from cultivations inoculated with pelletised (top row) and dispersed (bottom row) 
precultures; pictures taken from samples from different time points as stated above the pictures; shake flask 
cultivations were running at 150 RPM. 

 

Figure 50: Microscopy pictures from cultivations inoculated with pelletised (top row) and dispersed (bottom row) 
precultures; pictures taken from samples taken at different time points as stated above the pictures; shake flask 
cultivations were running at 250 RPM. 

The bottom rows of pictures in Figure 49 and Figure 50 present the morphological development 

of the dispersed inoculated cultivation at the respective agitation speeds of 150 and 250 RPM. 

After 40 hours, the mycelium in the main cultivations inoculated with dispersed growing 

preculture clumped together and forms aggregates. After 65 hours, small, dense oval, pellets 

began to form at both agitation speeds.  
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Dispersed mycelia were still present at this point (morph. scale: 4). The agitation speed of 250 

RPM resulted in smaller and denser clumps: The sizes of the pellets at 150 RPM reach from 200 

to 800 µm in diameter compared to 100 to 700 µm at 250 RPM.  

Figure 49 and Figure 50 depict that the morphological development resulted in a mixture, 

dominated by dispersed mycelium with aggregates and/or pellets. The obtained morphology 

across the trials was not alike. 

Figure 51 presents the morphological development, the bio dry matter (BDM) concentration and 

the enzymatic activity (AGU) during the cultivations inoculated with pelletised and dispersed 

preculture.  

 

Figure 51: BDM, enzyme activity and morphology plotted as function of time for the cultivations inoculated with 
pelletised biomass (red, circle marker) and dispersed biomass (blue, triangle marker); A represents an agitation 
speed of 150 RPM, figure B represents cultivations with an agitation speed of 250 RPM. 
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According to Figure 51, the BDM concentration after 40 h was 2 to 3-fold higher for cultivations 

which were inoculated with dispersed mycelium compared to pellets. It was maybe a result of 

inferior biomass development that activity development has not been initiated at this point in 

time with the pelletised inoculum. 

After 65 hours, the enzyme activity was more than 3.5 times higher in dispersed inoculated 

cultivations than for pelletised inoculated cultivations run with an agitation speed of 250 RPM.  

For cultivations running at 150 RPM, enzyme activity with dispersed inoculum reaches 8 times 

higher values than for pelletised inoculated cultivations. 

Between 40 and 65 h at 250 RPM and between 65 and 90 hours at 150 RPM, the differences in 

BDM concentration became lower. It could be caused by the higher growth rate of the dispersed 

inoculated cultures that led to oxygen limitation earlier. The pelletised inoculated cultivation 

thus got time to “catch up”. 

In general, the cultivations performed better at 250 RPM. The bio dry matter content was 31 % 

improved when inoculated with dispersed biomass, and even 50 % for pelleted inoculum. The 

activity trend followed the general biomass development which was improved to 140 % 

(dispersed inoculum) and 33 % (pelletised inoculum), respectively.  

There is a clear correlation to the power input and it can be argued that the underlying cause is 

higher OTR achieved with higher agitation. According to literature139, especially the high 

viscosity prone disperse cultivation should benefit from better mixing which is confirmed in the 

experiments. 

To emphasize the difference between the different inoculum morphologies, the activity per bio 

dry matter was calculated as a condensed version of the comparison in Figure 51. The result is 

given in Figure 52. Cultivations with dispersed inoculum at 250 RPM reached three-fold higher 

enzyme production per biomass after 90 hours of cultivation than pelleted inoculum. That result 

was obtained despite the occurrence of oxygen limitation (see section 6.4.2.1 ). 
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Figure 52: Enzyme activity per BDM plotted as function of time for the cultivations inoculated with pelletised 
biomass (red, circle marker) and dispersed biomass (blue, triangle marker). The graph to the left represents 
cultivations with an agitation speed of 150 RPM, the graph to the right represents cultivations with an agitation 
speed of 250 RPM. 

Summarizing both figures (Figure 51 & Figure 52), it can be stated that the level of agitation has 

impact on the biomass growth rate and enzyme production of A. niger BO-1. A more pronounced 

effect can though be achieved by inoculating with different morphologies.  

The impact can be seen in measured enzyme activity (Figure 51). It is even clearer when 

employing enzyme activity per BDM (Figure 52).  Both enzyme activity and enzyme activity per 

BDM are higher for the dispersed morphology than for the pellets under the respective agitation 

regimes. Interestingly, the low agitated dispersed cultivation reaches higher values in both 

enzyme activity and enzyme activity per biomass.  

6.5 Overall result 

The most striking result across the strain comparison is how much their respective behaviour 

towards different environments or changes therein varies. After all, all 3 strains tested belong to 

the same genus, Aspergillus niger. Table 9 gives an overview over the strains that were studied, 

and the respective experiments and results.  

In terms of morphology, the strain AB1.13 is the best investigated one with publications from 

several scientistse.g. 19,25,29,74,80,81,140. Strain BO-1, in contrast, is well investigated in terms of its 

metabolic aspects and production of amylasee.g.20,103,119,124,141,142. It must be pointed out that the 
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focus of this work is on morphological engineering to enforce either freely dispersed growth or 

formation of pellets with a (application) defined maximum particle diameter and structure.  

Table 9: Overview over all three Aspergillus niger strains, the tested factors and their respective impact on 
morphology; fields marked with * are tested and described in this report 

Factors A. niger AB1.13 A. niger production A. niger BO-1 

 tested impact tested impact tested impact 

Initial 

conidia conc. 

Yes*,25,97 Low on pellet 

size 
Yes* No Yes* Low 

pH 

Yes* Major on 

conidial 

aggregation 

Yes* 

Major on growth 

(does not grow 

below pH 5) 

Yes* 
Low on 

morphology 

Power input 

Yes*,25,29  Major on 

pellet size 

development 

No – No 

Major on 

aggregate 

formation 

Particles  

Yes143 Major on 

conidial 

aggregation 

Yes* Potential reason 

for mixed 

morphologies 

Yes* Major to prevent 

biomass 

aggregation 

Media  

No 

– 

No – Yes* No (most effect 

of media derives 

from particles) 

Molality/salt 

content 

Yes80  Major on 

pellet size 

development 

Yes* Slower growth No – 

productivity 

Yes27,144 
Lower in 

bigger 

particles 

NA – Yes* Pellets were 

inferior for 

amylase 

production 
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First after observing the interesting failure of applying the AB1.13 settings to both the industrial 

strain and the BO-1 wildtype reference, did the question of productivity related preferences of 

the morphology become more important to answer.  

To summarize: A. niger AB1.13 grows best at pH 3 with highest biomass formation in a dispersed 

morphology while pH 5 induces pelleted growth with just 30 % biomass. A shift from pH 3 to 5.5 

can be considered the best way to achieve pellets of defined diameter and density.  

Other parameters like power input and initial spore concentration are inferior to pH in shaping 

morphology but could be applied for tuning. The bigger the particles grow, the more influential 

becomes the effect of power input. Salt content/molality and addition of particles have also been 

tested but are not included in the conception of morphology engineering in Figure 10. 

Applying the achieved AB1.13 knowledge about designed particle size/morphology in general on 

a production strain couldn’t be called successful as the industrial strain did not grow at pH values 

below 5. zetapotential measurements showed that pH 6 might feature the same repulsion 

behaviour between the conidia. An effect could indeed be observed but model conception failed, 

mainly because the propagated two-staged aggregation26 did not happen (to the expected 

degree).  

It was concluded that the particles contained in the media could be the course for the resulting 

mixed morphologies. At least, the trends of getting a higher content of mycelia and pellets, 

respectively, could be confirmed which includes the findings of high osmolality. 

The background of the industrial strain is “classic strain optimisation”. It is known that this might 

result in some different behaviour based on the “out-of-phase” phenomenon145,146. The 

unspecified background nature is shared with AB1.13. Therefore, the known wildtype BO-1 was 

chosen for a second series of evaluation experiments. Planned as the decisive strain, it responded 

to changes in its environment in a different way.  

Yet again and like the industrial strain, the pH did not play a decisive role for morphogenesis of 

the strain BO-1. In contradiction to the AB1.13 findings, more pellets were formed at lower pH 
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values for the BO-1 strain. Most experiments ended in mixed morphology with a tendency 

towards one of the extreme forms.  

It was, however, possible to differentiate the biomass into only dispersed mycelia and only 

pellets. Pellets could only be achieved with – in industrial terms unrealistically – low agitation147. 

For BO-1, the two-staged aggregation process from the lab strain AB1.13 could not be repeated. 

Conidial aggregation could though be observed in one cultivation meaning that there is 

aggregation potential but it does not play a major role for this strain.  

Two out of the three tested strains did not show the two-staged aggregation that was described 

earlier. To put the melanin desorption model (Figure 31, section 6.1.4 ) in focus: Wargenau et al. 

did several investigations on the -potential of AB1.13 and calculated the electrical charge148,149.  

The investigation confirmed the melanin desorption model and this study’s findings that conidial 

aggregation could be prevented at a low pH of 2 while pH 5 showed a maximum of this 

phenomenon. Introducing a -potential dependent degree of ionization in the surface coating (i.e. 

melanin), the thickness of the layer decreased with increasing pH. Their statement is that 

aggregation of conidia is more an electrostatic effect than a physiological one. However, melanin 

desorption and electric repulsion/attraction should be universal and hence detectable for all 

strains. 

Alternatively, instead of the melanin, a structural change of rodlets might be the cause for the 

observed behaviour. The rodlets of conidia are usually described as self-assembling amphipathic 

proteins/amyloids which include the hydrophobins150,151. The purpose is manifold, but of main 

interest is their ability as surfactant and their respective feature of hydrophobicity. If the AB1.13 

suffers a mutation which increases the latter, it could be a reasonable explanation for the 

increased aggregation rates observed with AB1.13 compared to the industrial and BO-1 strains.   

Addition of indigestible cellulose particles to BO-1 cultivations could be used to enforce a certain 

morphology. These experiments gave indications that a morphology with dispersed mycelia was 

the superior morphology in terms of producing glycoamylase. A decisive test with dispersed and 
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pelleted pre-cultures proved a higher amylase production per bio dry matter when dispersed 

morphology is applied, even if the cultivation suffers from oxygen limitation. 
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Chapter 7: Conclusions 

7.1 Aspergillus niger AB1.13 

The introduction of this thesis describes the possibilities of value creation with microbiological 

and biotechnological processes as well as the challenges related to this approach. Therein, the 

focus lies in the control of the morphology of the cultures.  

Control of the morphology of a culture can be achieved with the help models describing the 

system. The models incorporate the knowledge of different biomass aggregation mechanisms. 

This includes the coagulative conidiophores in respect to the fermentation parameters like pH of 

the culture, the mechanical power input and the initial conidiophore concentration.  

Most of the published growth models are limited to the micromorphology like the tip growth56, 

avoidance of food spoilages by Aspergilli152 or the description of human infection pathways153. 

Newer papers that cover the macro-morphology that occurs in stirred tank reactors154 are often 

based on the work of Grimm25 and Kelly29. The time gap between both models has previously 

been discussed. Because of the gap, the complete fermentation process is not covered by these 

models. 

The present work closes the time gap in terms of metrology and ideology and matches therefore 

the requirements posted in the introduction:  

Particle size analysis 

The method used for measuring particle sizes is laser diffraction analysis. It is well established in 

inorganic processes (concrete, toner particles). Within biotechnology, this method is rather 

unknown and means entering a new area of research. It has successfully been shown that 

microbiological cultures of A. niger can be characterized by means of particle size distributions 

created with laser diffraction.  
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The sensitivity of the methods is so good that swelling of the spores during the lag phase could be 

detected. Despite the small size and the usage of the volume distribution, spores could be 

detected throughout fermentations under the applied settings.  

Effects of the pH value on A. niger AB1.13 conidiophores and growing biomass could successfully 

be demonstrated. Furthermore, it is not only possible to record and visualize particle size 

distribution, but also to track the changes in morphology online. This feature has not yet been 

reached by any other optical method20,155. 

The further course of the cultivation could also be tracked in terms of particle size information by 

splitting the bi-modal distribution into modes. This enables to follow the formation of aggregates 

in dependency of the pH. The comparison of the modes, conidiophores and pellets, of each 

experimental set-up can be visualized in easily understandable graphs and is therefore well 

suited for further trials aiming at detailed characterization of the biomass status inside a 

bioreactor. 

Confirming & extending Grimm’s and Kelly’s models 

Due to the employed analysis methods and the conducted experiments, the previously published 

findings of Grimm and Kelly could be confirmed. The gap in fermentation time left by their works 

could be closed. 

Furthermore, the question of a hypothetical third aggregation step of the biomass as a hyphae-

hyphae interaction could positively be answered by circumstantial evidence. The existing 

aggregation model for spores of the organism A. niger AB1.13 could be extended. Deeper 

investigation of the primary aggregation in terms of a population balance is not possible though 

due to that fact that laser diffraction is a counting measurement method.  

The now developed model should enable to predict and control the target parameters bio dry 

matter and particle size of cultivations without introducing substances as aggregation seeds into 

the process143, which might otherwise cause issues in downstream processing. An application 

could, for example, be an improved seed tank for biotechnological production. Optimized 
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biomass concentrations in the desired morphology could be achieved by using the settings given 

by the control model.  

The underlying idea is that optimal growth in seed tanks would lead to a reduced lag phase of the 

inoculated main fermenter. This would directly translate into increased productivity as well as 

optimal use of costly fermentation capacity.  

Different cultivation parameters have been evaluated in terms of their impact on the growth of A. 

niger AB1.13 cultivations. The tendencies can be summarized as follows: 

 Cultivation pH 3 results in disperse biomass. pH 5.5 results in pelleted biomass. Changing 

pH from 3 to 5.5 will make biomass aggregate.  

 pH 3 for the complete cultivation period leads to non-swollen and non-germinated conidia 

being detectable with laser diffraction until the end of the cultivation. This confirms the 

two-staged aggregation model for pH 5.530 and its circumvention at pH 3.  

 Cultivations with initial pH of 3 result in an up to 3 times higher concentration in biomass 

even if pH is shifted to pH 5.5 later during the cultivation. This is fundamental for all 

growth dependent functions of the cell, like for example the production of enzymes in 

industry.  

 With increasing pellet size, further growth is found to be dependent on the mechanical 

power input. There is a minimum threshold in power input as 25 W m-3 (150 min-1) has 

led to insufficient mixing with less biomass growth.  

 Aggregates/pellets with bigger particle size and higher bio dry matter content might pass 

beyond the particle size recommendations as diffusion limitations inside the pellet might 

occur156. Being more susceptible to mechanical power input, particle size controlled 

agitation could ensure that pellets with a pre-defined size will grow slowly in diameter28.   

 The melanin desorption is correlated to the pH value of the broth: The AB1.13 spores lose 

their melanin layer at a pH of 5.5 and an increased aggregation can then be observed 

consequently.  

o Aggregation of the spores can thus be avoided by starting the fermentation at a pH 

of 3 and increasing to the desired pH after germination. The shift should take place 



121 
 

before the exponential growth phase as developed biomass requires longer 

adaptation time. 

7.2 Production strain 

When the AB1.13 settings are applied to the industrial strain, it followed the same trend like 

biomass growing as pellets at pH 5.5. It comes as a surprise that this strain does not seem to be 

able to thrive or even germinate at pH 3. 

Employing the results from the AB1.13 -potential measurement (Figure 30), pH 5 or 6 should be 

similarly suited for dispersed growth of the industrial strain. The respective -potentials are -5.8 

and 6 mV, where both values are almost equally far away from 0 mV at pH 5.5. A decrease in pH 

to 5.0 does not influence morphology while pH 6 successfully shifted the morphology to mostly 

dispersed. 

The main conclusion from the previous two paragraphs is though that the chosen strain does not 

show “pure” growth as dispersed mycelia or pelleted biomass. Instead, mixed morphology with 

tendencies in one or the other direction is observed. 

A threefold increase in the spore inoculum concentration at pH 6 does not maintain or promote 

mycelial growth. Instead, larger pellets could be observed which remained throughout the 

fermentation. Their number and size decreased towards the end when some form of 

fragmentation happened.  

It could be shown that the large pellets do not result in oxygen limitation in the bulk phase, 

thereby conforming known facts about viscosity and oxygen transfer62.  

A general connection could be made between oxygen limitation and the production of polyols 

which should be lower in the presence of oxygen119, and which in turn promotes organic acids 

production. The latter has been seen for the academic AB1.13 strain while the production strain 

formed glycerol, probably as overflow metabolite. It could be argued whether this is due to the 

partly pelleted morphology with particle internal transport limitation or a trait of this particular 

strain.  
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The changes made in pH, osmolality and inoculum concentration impact the metabolism and 

growth profiles of the cells. This cannot be said in relation to morphology. It has not been 

possible to prevent pellet formation through the applied means. All of this signifies the 

complexity of submerged fermentations with filamentous fungi in industrial environments where 

the impacts described in the literature do not necessarily suit, also if the strains belong to the 

same genus.  

 

7.3 Aspergillus niger BO-1 

The study of the wild type strain Aspergillus niger BO-1 is intended to verify the model built on 

the lab strain AB1.13 and to avoid discussions about the genetic (unknown) lineage of the 

production strain. The focus has been on creating small pellets with a diameter below 1000 µm 

and to double-check if there is a difference in productivity between dispersed growth and 

pelleted growth in submerged fermentation.  

As for the other strains, parameters stated in the model are employed to pursuit the purpose: 

 pH screening 

 10 times increase of initial conidia concentration 

 Two different media with one containing particles 

 Addition of particles in several concentrations in the else particle free medium 

 Agitation speed at four different levels  
o Two different points in time with agitation speed increase 

The pellets resulting from “normal” pelletised growth conditions turn into a loose and hairy 

structure and are vulnerable to an agitation speed of 350 RPM or higher in shake flasks. In 

general, it is rather difficult to achieve the same clear pelletised morphology as for the AB1.13 lab 

strain. In contrast to the lab strain, the most influencing factor is power input (and not pH).  

The ½ MU-1medium employed for this strain contains 130 g L-1 maltodextrin which means a 10-

fold higher concentration of C-source compared to the lab strain. This is a considerable difference 

to the reported media (this work’s AB1.13 media & 26,27,80,97,143), but here is should be mentioned 
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that the C-source has though not been reported as differentiator for morphology. Also, pH effects 

on morphology are adverse as lower pH of 3.2 resulted in “better” pelleted growth while the 

higher pH of 4.2 resulted in a higher free mycelial content which is a contradiction of the AB1.13 

findings of lower pH being beneficial for mycelial growth by skipping conidial aggregation.  

Conidia aggregation could though be observed in a single cultivation with particle free MLC 

medium (soybactone instead of soy). Here, the two-staged aggregation could be confirmed by 

microscopic analysis. However, it can be concluded that the BO-1 strain is capable of conidial 

aggregation under special circumstances that could not be deeper investigated in this study. 

This finding though paved the way for pellet-engineering with cellulose particles. As A. niger is 

incapable of digesting cellulose, particles enable investigation of morphological effects on 

enzyme production without changing parameters affecting productivity. The result is that 

amylase production is enhanced when the fungus growth is freely dispersed. 

Dissolved oxygen tension is crucial to enzyme production37. Pelletised growth leads to delayed 

DOT declination in a cultivation compared to dispersed growth. Still, cultivations with more 

dispersed growth develop higher AGU activity at the end of the cultivation, even when oxygen 

limitation set in earlier. Dispersed mycelial growth has a higher positive effect on productivity 

than the availability of oxygen.  

In conclusion, there are two major results from studies with the BO-1 strain: 

1. It is not possible to control pellets size in the sense of the model developed with the lab 

strain A. niger AB1.13.   

o Limiting the pellet size below 1 mm (the maximum diameter for avoiding internal 

substrate limitations) has failed.  

o The initial morphology would not be maintained under production conditions as 

the pellets fracture quickly under high shear. In contrast, dispersed mycelia also 

develop some type of (elongated) pellet. 
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2. Morphology has the major effect on enzyme productivity. It is more pronounced than DOT 
and agitation. Dispersed mycelia are considerably more productive than fluffy pellets and 

other aggregates developed in this study. 
 

7.4 Overall conclusion 

It is possible to employ laser diffraction as a tool to monitor submerged fungal cultivations: 

Effects of the pH value on A. niger AB1.13 conidiophores and growing biomass could successfully 

be demonstrated. The sensitivity of the method is so good that swelling of the spores during the 

lag phase could be detected. Despite their small size and the usage of the volume distribution, 

conidia could be detected throughout all conducted fermentations with circumvented primary 

aggregation.  

The further course of the cultivation could also be tracked in terms of particle size information by 

splitting the bi-modal distribution into its modes. This enables to follow the formation of 

aggregates as a function of pH. The comparison of the modes, conidiophores and pellets, of each 

experimental set-up can be visualized in easily understandable graphs and is therefore well 

suited for further experiments on characterization of the biomass status inside a bioreactor. 

A. niger is known to be a spore aggregating species under submerged cultivation and thereby 

forms coagulating pellets 26,76,81. Many recently published investigations are based on the AB1.13 

strain and its well described aggregating behaviour. The results achieved in this study reveal that 

two other strains of the same genus, Aspergillus niger, one production strain and one wild type 

strain, do not show this pronounced conidia aggregation behaviour. Consequently, it can be 

concluded that conclusions reported for the AB1.13 strain cannot be extrapolated to other 

strains, even if these strains are from the same genus. 

Without the conidial aggregation, the onset of pellet formation26,76,81 is omitted and hence, also in 

accordance to the morphology control model (Figure 10, section 4.3 ), more mycelial growth 

could be observed with a tendency towards formation of mixed morphologies.  
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The general conclusion in terms of morphology is that strains of the same genus might react 

differently to changes in the environome and hence the advice for production purposes is to do 

individual tests. The arguments supporting this conclusion are the rather unspecific effects of 

classical strain optimization which usually includes random mutagenesis and screening146, or 

side effects of genetic manipulations124. 

In terms of productivity, not much recent literature is available92 which means that there has not 

been a clear answer on how much morphology matters for enzyme production. The discussion 

usually is about balancing oxygen mass transfer into the liquid phase which is improved with 

lower viscosity if the biomass comes in the shape of pellets or if the number of growing tips 

enhances the production and secretion of enzyme.  

The conclusion from the conducted experiments is clear: Dispersed mycelia is the superior 

morphology for producing enzymes with wildtype Aspergillus niger. Moreover, it could be 

demonstrated that morphology is more important than the dissolved oxygen tension. 
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