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Transiting extrasolar planets are key objects in the study of the formation, migration, and
evolution of planetary systems1. In particular, the exploration of the atmospheres of giant
planets, through transmission spectroscopy or direct imaging, has revealed a large diversity
in their chemical composition and physical properties2. Studying these giant planets allows
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one to test the global climate models3, 4 that are used for the Earth and other solar system
planets. However, these studies are mostly limited either to highly-irradiated transiting giant
planets or directly-imaged giant planets at large separations. Here we report the physical
characterisation of the planets in a bright multi-planetary system (HIP41378) in which the
outer planet, HIP41378 f is a Saturn-sized planet (9.2±0.1 R⊕) with an anomalously low
density of 0.09±0.02 g cm−3 that is not yet understood. Its equilibrium temperature is about
300 K. Therefore, it represents a planet with a mild temperature, in between the hot Jupiters
and the colder giant planets of the Solar System. It opens a new window for atmospheric
characterisation of giant exoplanets with a moderate irradiation, with the next-generation
space telescopes such as JWST 5 and ARIEL6 as well as the extremely-large ground-based
telescopes. HIP41378 f is thus an important laboratory to understand the effect of the irra-
diation on the physical properties and chemical composition of the atmosphere of planets.

The star HIP41378 was initially observed by the Kepler space telescope7 during campaign
C5 of the K2 mission8 from 2015-04-27 to 2015-07-10. The data revealed 5 transiting planets9.
Two of them have orbital periods of about 15 and 31 days and are named planets b and c, respect-
ively. They transited several times within the 80 continuous days of space-based photometry. The
other 3 planets, named d, e, and f , exhibit only one transit during C5. From their transit durations,
these planets were predicted to have orbital periods of several months to years.

HIP41378 was re-observed during K2 campaign C18 from 2018-05-12 to 2018-07-02 en-
abling the detection of new transits of the innermost planets as well as a second transit of planets
d and f . The new data permitted the derivation of a set of possible ephemerides for the outer
planets10, 11 with periods of about 1000 days and all harmonics down to about 50 days. The TESS
space telescope12 also observed this system from 2019-01-07 to 2019-02-02 and detected one
transit of each of the two innermost planets. Planets b to e have radii smaller than 5 Earth radii
(R⊕) and were expected to be of relatively low mass. However, planet f is a Saturn-sized planet
and was therefore expected to exhibit a relatively large radial-velocity signal9, at the level of about
30 m s−1.

To measure the planets’ masses and refine their orbital periods and properties, the host star
was subsequently observed with precise radial-velocity spectrographs. The first observations with
the SOPHIE spectrograph on the 1.93-m telescope at Haute-Provence Observatory (France) re-
vealed no significant variation, indicating that planet f is likely of lower mass than predicted. The
star was then observed by various high-precision radial-velocity facilities: the HARPS, HARPS-N,
HIRES, and the PFS spectrographs (see Methods). A total of 464 radial-velocity nightly-binned
measurements have been collected over four years with these 4 instruments (see Methods and
Supplementary Tables 2 – 5). They are displayed in Figure 1.

The host star HIP41378 is a late-F type dwarf with an effective temperature of Teff= 6290±77
K and an iron abundance of [Fe/H]= -0.05 ± 0.10 dex (Lund et al., submitted). The star exhib-
its a low activity signal with a photometric amplitude of 200 ppm and a period of 6.4±0.8 days
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(although it might be twice this value, see Methods). This activity signal is not observed in spec-
troscopy (See Methods and Supplementary Figure 2). The star was also observed in spectropolar-
imetry with the ESPaDOnS spectropolarimeter and no magnetic field was detected confirming its
low-activity level (see Methods). Thanks to high-precision and short-cadence photometric obser-
vations during C18, asteroseismic constraints on the fundamental properties of the host star were
derived (Lund et al., submitted). In particular, the mean stellar density of the star was measured to
be 0.785±0.008 g cm−3.

In order to refine the orbital periods of planets d, e, and f , the precise radial velocities
from the four aforementioned instruments were first analysed without the photometric data (see
Methods). The results of this preliminary analysis revealed two main aspects. Firstly, the orbital
period of planet f is only compatible with the 542-d solution allowed by the K2 photometry (See
Supplementary Figure 4). This solution is also the one that minimises the orbital eccentricity of this
planet11. Secondly, there is a significant signal for a non-transiting planet with a period of about 62
days (see Supplementary Figure 4). This new planet, called g, is in a 2:1 mean-motion resonance
(MMR) with planet c and might explain its observed ∼ 85-minutes transit timing variations11.
It is not possible for this 62-d signal to be either the planets d or e as they would need a high
eccentricity (greater than ∼0.6) to explain their long transit duration11, and the system would
likely be unstable10. In this preliminary analysis, planets d and e are not significantly detected.

The radial-velocity data were then jointly analysed with the photometric data from the two
K2 campaigns with PASTIS (Planet Analysis and Small Transit Investigation Software)13. The
SOPHIE data were not included in the analysis as they are not precise enough. The TESS data
were also excluded from the analysis because only one transit of planets b and c were detected
during the sector 7 and none for the outer planets. The central star was modelled using stel-
lar evolution tracks and atmosphere models (see Methods) taking into account the asteroseismic
constraints provided by the K2 C18 photometry. Given that planet d is undetected in the radial-
velocity data, the 278-d solution for its orbital period was assumed in the analysis as it corresponds
to the solution minimising its eccentricity (Lund et al., submitted).

The results are reported in Supplementary Table 7 and the physical parameters of the system
are listed in Table 1. The radial-velocity signals of planets b, c, g, and f are significantly detected
allowing us to determine their planetary masses, 6.89±0.88 Earth masses (M⊕), 4.4±1.1 M⊕,
7.0±1.5 M⊕, and 12±3 M⊕, respectively. Since planet g does not transit, its orbital inclination is
unknown and thus its derived mass is actually a minimum mass. However, since the rest of the
system is nearly coplanar, its inclination is expected to be close to ∼88◦. Therefore, the actual
mass of planet g is expected to be nearly identical to the minimum mass derived here. The planets
d and e are not significantly detected in the radial-velocity data indicating, with a 95% credible
probability, that their masses are less than 4.6 M⊕ and 22 M⊕, respectively. Although only one
transit of planet e has been detected, its orbital period is constrained to 369±10 days thanks to
the asteroseismic constraints (see Methods). As a consequence, planets d, e, and f are near a
3:4:6 MMR chain, hence the entire system may be in a 1:2:4:18:24:36 MMR chain. One might
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therefore speculate that more planets are still to be discovered in between HIP41378 g and d (see
Supplementary Figure 6).

All the five transiting planets in this system have relatively low densities (see Table 1) and are
therefore gaseous planets14 (see Figure 2). The most extreme planet in this system is planet f that
exhibits a mass of 12±3 M⊕ for a radius of 9.2±0.1 R⊕, leading to a bulk density of 0.09±0.02
g cm−3. A comparison of the physical properties of HIP41378 f with theoretical models of the
structure of low-mass exoplanets15 for a 3.1-Gyr old system revealed that this planet would need a
sub-solar metallicity to explain its large radius given its low mass (see Figure 2 and Supplementary
Figure 8). As a consequence, this planet is likely composed of a large atmosphere dominated by
hydrogen and helium and a very small core. Such a low-density planet with an age of 3.1 Gyr is not
predicted by the current formation and evolution models of exoplanets16 and it will be challenge
for such models to explain its history.

One possible explanation for the large radius of HIP41378 f given its relatively low mass is
that the planet is surrounded by an optically-thick ring17. The presence of rings would artificially
enlarge the apparent radius of the planet, hence decreasing its apparent density. This hypothesis
will be presented in a forthcoming paper (Akinsanmi et al., in prep.). Observing a transit of a ringed
planet f in the infrared, where the rings are expected to be optically thinner than in the Kepler
bandpass, could reveal a significantly smaller planet. Another explanation is that HIP41378 f is a
“super-puff” planet with an extended, outflowing atmosphere18.

Planet HIP41378 f orbits with a period of ∼ 542 days (1.5 years), hence is at a semi-major
axis of 1.4 astronomical unit (au) with an eccentricity smaller than 0.035 (at 95% credible prob-
ability – see Supplementary Table 7). Its equilibrium temperature, assuming a zero Bond albedo,
is 294+3

−1 K. This planet is thus at the inner edge of the conservative habitable zone19. Although
this large, gaseous planet is not likely to be habitable, it might host habitable exo-moons. Given
the brightness of the host star and the favorable orbital period and eccentricity of HIP41738 f ,
the planet is therefore one of the best planets to search for habitable exo-moons. Constraining the
presence of exo-moons in this system could give important insight to test the formation theories of
the Galilean moons20.

It is important to stress here that the six planets in this system have radial-velocity amplitudes
at the level of 1m s−1 or even below (see Supplementary Table 7). Such low-amplitude signals are
at the limit of the current instrumental stability. As a consequence, the masses and densities derived
in this paper might be affected by unknown systematics. Even in this case, the data exclude a large
mass for these planets, including for planet f , at odds with predictions based on its Saturn-like
radius9. The 95% credible upper limit on its mass is 18.6 M⊕, giving a 95% credible upper limit
on the density of 0.13 g cm−3. More radial velocities with improved stability spectrographs like
ESPRESSO21 on the ESO / VLT are needed to increase the accuracy of these detections, secure
the mass of planets d and e, and detect possible additional planets, especially at orbital periods
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between those of planets g and d.

With relatively low densities, hence low surface gravities, the planets in the HIP41378 system
are excellent targets for atmospheric characterisation. It will be possible to probe the atmosphere
of several planets within the same system with upcoming instruments on JWST 5, ARIEL6, and
ground-based extremely large telescopes, allowing for the direct comparison of their chemical
composition and physical properties (see Supplementary Figure 7). In this context, planet f is also
of special interest as it receives a modest stellar insolation flux of Sf = 1.7 erg cm−2 s−1, or 1.3 S⊕.
It is therefore filling the gap between the highly-irradiated hot Jupiters and the cold, solar-system
giants Jupiter and Saturn (see Figure 3). The latter are used as calibrators for atmosphere models
of giant planets. Being a temperate giant planet, its transmission spectrum might reveal different
properties and chemical species than the ones observed in the much hotter planets.

The planet HIP41378 f is joining the small population of extremely low-density planets,
such as Kepler-51 d22 or Kepler-79 d23 that were characterised by TTVs. These planets are however
orbiting at shorter periods and are transiting much fainter stars, which challenge their atmospheric
characterisation24.

Thanks to the asteroseismic constraints on the host star (Lund et al., submitted), it is possible
to derive the radius of the planets as well as the system’s age with an exquisite precision. Such a
level of precision is the goal of ESA’s PLATOmission25. Moreover, this is the first time that a low-
mass exoplanet in the habitable zone of a solar-like star has been characterised, hence paving the
way towards the characterisation of transiting true Earth analogs that will be detected by PLATO.
HIP41378 is therefore a foretaste of the systems that this upcoming space mission will provide, in
terms of both covered orbital period and precision on the fundamental parameters.
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Methods

1 Observation and data reduction

K2 The K2 long-cadence data from the C5 campaign and the short-cadence data from the C18
campaign were both reduced using the K2SFF pipeline26. The self-flattening technique to correct
for the systematics was applied taking into account the transit27 to improve the light-curve precision
preserving the transit shape and depth. The residual instrumental or stellar variability was then
corrected using a spline with knots every 10 days.

HARPS and HARPS-N The target star HIP41378 was monitored by the HARPS spectrograph28

mounted on the 3.6-m telescope at the La Silla Observatory (Chile). A total of 370 spectra were col-
lected over 3 years with a typical exposure time of 900s. These spectra have a signal-to-noise ratio
(SNR) up to 140 per pixel at 550nm. The star was also observed by the HARPS-N spectrograph29

mounted on the 3.6-m Italian Telescopio Nazionale Galileo (TNG) at the Roque de los Muchachos
Observatory (La Palma, Spain). A total of 176 spectra were collected over 4 years with typical
exposure times of 900s leading to SNR up to 170 per pixel at 550nm. The radial velocities for
both instruments were reduced with their online pipeline which consists of cross-correlating30, 31

the observed spectra with a binary mask corresponding to a G2 dwarf.

In order to test the high-frequency noise, such as granulation or p-modes for this late-F star,
two intensive-cadence observations were performed with HARPS over two consecutive nights.
Over each of these two nights (2018-03-10 and 2018-03-11) 24 spectra were collected continuously
over 2.1 hours with exposure times of 300s (see Supplementary Figure 1). The two time series have
an RMS of 3.7m s−1 for a photon noise of 3.7m s−1. Since no excess of RMS is observed, the star
is thus quiet over a timescale of hours and at the level of 1 – 3 m s−1 (see Supplementary Figure
1). The HARPS observing strategy was initially to take 2 to 3 spectra each night separated by a
few hours in order to average possible high-frequency noise32. After this sequence, the strategy
was changed to only one spectrum per night.

The number of spectra collected each night is highly heterogenous, between 1 and 24, and the
instrumental calibrations are performed only once a night. Therefore, to avoid systematic effects
with the daily calibrations, the HARPS and HARPS-N data were respectively nightly binned and
a calibration noise of 0.5m s−1 was added quadratically to the radial-velocity uncertainties. Each
night bin corresponds to an observation epoch. This leads to 216 HARPS and 155 HARPS-N
epochs.

Given the low radial-velocity amplitudes of the signals, only the nights when the uncertainty
is less than 5m s−1 were kept for the analysis. Finally, the end of life of the reference Thorium-
Argon lamp on HARPS occurred on 2018-11-28. The data collected the two previous nights are
affected by strong systematics and were rejected from the analysis.

The nightly-binned radial-velocity HARPS and HARPS-N data are available in the Supple-
mentary Tables 2 and 3, respectively.
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HIRES A total of 218 radial velocities were obtained on HIP41378 with the High Resolution
Echelle Spectrometer (HIRES)33 on the Keck I Telescope on Maunakea between 2016 September
and 2019 May. These data were collected with the C2 decker with a typical SNR of 200 per pixel
(250k on the exposure meter, ∼5-minute exposures). An iodine cell was used for wavelength
calibration34. Most of the HIRES data were collected with three consecutive exposures to better
average over any stellar oscillations that might occur on short timescale. A higher resolution
template observation was also collected with the B3 decker on 2016 October 10 with 1.1” seeing.
The template was a triple exposure with a total SNR of 340 per pixel (250k each on the exposure
meter) without the iodine cell. The HIRES data collection, reduction, and analysis followed the
methods of the California Planet Search35. Like for the other instruments, the 218 HIRES radial
velocities were nightly binned to 75 epochs. They are listed in Supplementary Table 4.

PFS Observations of HIP41378 were conducted with the Planet Finder Spectrograph (PFS)36 on
the 6.5m Magellan II telescope at Las Campanas Observatory in Chile in March-April 2016 and
January 2017. PFS is an iodine-calibration precision RV spectrograph and all data are reduced and
analysed by a custom IDL pipeline that has been shown to produce RVs with < 1 m/s precision on
bright, stable stars34. The HIP41378 PFS observations were conducted on twenty different nights,
often with multiple exposures per night to increase SNR per epoch. Twenty-seven individual iodine
spectra were acquired in total with exposure times typically between 500 and 700 seconds and SNR
values at peak blaze in the iodine orders typically between 120 and 190. These iodine spectra were
taken in 1x1 binning mode with the 0.5x2.5” slit, resulting in a resolving power ∼80,000; an
iodine-free template spectrum (consisting of three consecutive exposures) was also obtained with
the 0.3x.25” slit, resulting in a higher resolving power ∼130,000. The final radial velocities are
binned nightly and are reported in the Supplementary Table 5.

ESPaDOnS The star HIP41378 was also monitored with ESPaDOnS (Echelle SpectroPolarimet-
ric Device for the Observation of Stars)37 over ten days. Eight polarimetric observations were
obtained in late December 2017 and early January 2018, each of them consisting in a sequence of
four consecutive spectra with exposure times between 600s and 840s, leading to SNR of 500 per
pixel for the sequence. They were reduced with the same method as for the τ Bootis38 which has
similar stellar parameters to HIP41378 except for the rotation period (equal to 3.3d in the case of
τ Bootis). No polarimetric signal is detected in the Stockes V data of HIP41378. The upper limit
on the longitudinal magnetic field (i.e., the line-of-sight projected magnetic field averaged over
the visible stellar hemisphere) is 1.5 G at 1-σ. This non-detection is consistent with the results
on τ Bootis which is more active than HIP41378 and suggests that the surface magnetic field of
HIP41378 is complex and does not exceed a few G (i.e. weaker than that of τ Bootis that reaches
a maximum surface field of ∼10 G39, 40.

2 Activity analysis in photometry and spectroscopy

The photometric K2 data exhibit a faint rotational modulation with an amplitude at the level of
200 ppm. The autocorrelation function of the data indicates that the host star has a rotation period
of 6.4±0.8 days (see Supplementary Figure 3). Combined with the stellar radius (see Table 1),
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this gives an equatorial velocity of vrot = 10.1±1.3 km s−1, significantly larger than the υ sin i?=
5.2±0.5 km s−1 measured on the HARPS spectra. This indicates that either the star has an inclin-
ation of ∼33◦ or that the true rotation period is twice the aforementionned one.

The periodogram of the HARPS and HARPS-N radial velocities, full width half maximum
(FWHM), bisector, and Ca II H&K S index reveal no significant variability at the rotation period
of the star. The activity index, derived from the S index41, 42 is logR’H&K = -4.78±0.03. Therefore,
the star HIP41378 is inactive at the precision of the spectroscopic data. Derived from the activity
index, the rotation period of the star43, 44 is 8±3 d and its age45 is 2.52±0.23 Gyr. Both values are
compatible with the ones derived from photometry and isochrones through the combined analysis,
respectively, to within 1-σ.

3 Preliminary analysis of the radial-velocity data

The K2 photometry constrained the orbital periods of the transiting planets HIP4178 d and f
with 23 different solutions. Since only one transit of planet e has been detected, its orbital period
is poorly constrained. In order to determine the orbital period of the outermost planets, an `1

periodogram46 was computed on the HARPS, HARPS-N, HIRES, and PFS data assuming a jitter
of 2m s−1 for the two former instruments and of 4m s−1 for the two latter ones (see Supplementary
Table 7) as well as an offset between the instruments. The `1 periodogram is computed on a grid
from 0 to 0.95 cycles per day to avoid the 1 day region, prone to aliasing.

The results of this periodogram are presented in the Supplementary Figure 4. The main
peak is found at a period of 15.5d with a analytical false-alarm probability (FAP)47 at the level of
5× 10−6 %. This peak corresponds to the Doppler signal of the transiting planet HIP41378 b. The
two following strongest peaks are found at periods of 62.2d and at 75.8d. Their analytical FAP are
at the level of 0.03% and 91%, respectively. These signals support the presence of a non-transiting
planet, called g, with an orbit of 62.2 days, hence in 2:1 MMR with planet c (the 75.7d signal is
the 1-yr alias of the 62.2-d signal). This 62.2-d signal can not be associated to planets d, e, or f
for stability reason10.

Although the FAP are greater than 10%, other periodicities are detected in the `1 periodo-
gram: 31.5 days corresponding to the transiting planet c as well as a broad peak with two apparent
bulges, a small one from ≈ 350 to 410 days and a higher one from ≈ 410 to 650 days. The latter
one corresponds perfectly to the 542-d solution of planet f while the former one is likely related
to planet d or e. Another peak is detected with a period of 8.2d. Its FAP is however of 10% and
the period does not correspond to the rotation period of the star derived from photometry, nor of a
transiting planet and could be due to noise.

A Bayesian General Lomb-Scargle periodogram (BGLS)48 was computed from the residuals
of the best-fit 6 Keplerian-orbit model (see Supplementary Figure 5) where a peak at 8.2 days is
detected. To assess the stability of this periodicity over time, BGLS periodograms were generated
for each separate season of data, excluding the first season with the least amount of data. The 8.2d
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peak is strongly recovered from the season 3 dataset, but absent in season 2 and only marginally
present in season 4. Furthermore, by stacking the periodograms49, it is clear that even within
season 3, the 8.2d periodicity is unstable over time. This indicates that it is highly unlikely this
periodicity is related to a planet.

The `1 periodogram is only modelling circular orbits without the constraints from the pho-
tometry. To further refine the orbital periods of the outermost transiting planets accounting for the
transit epochs, the 464 radial-velocity epochs were analysed using a Markov Chain Monte Carlo
method from PASTIS13 with a 5 Keplerian-orbit and a long-term drift model. The ephemerides
of planets b and c were fixed to their photometric values. For the planets d, e, and f , a broad prior
on their orbital period was used but their epochs of transit were fixed to the one observed during
C5. For their orbital eccentricity, a prior was used that corresponds to the eccentricity distribution
observed in multiple-planetary systems50.

The residuals from the best fit exhibits a periodic signal at∼ 62.2d, corresponding to the low-
FAP peak detected by the `1 periodogram. A 6th planet, g, was thus added in the model and the
analysis repeated. This non-transiting planet being in 2:1 MMR with planet c, it is very likely the
source of its large TTVs. The exhaustive list of free parameters are reported in the Supplementary
Table 6, together with their prior and posterior distributions.

Even with a large prior distribution on the orbital period of planet f , the MCMC derived
a posterior distribution that corresponds perfectly and is compatible only with the 542-d solution
from the K2 photometry10, 11 (see Supplementary Figure 4). This 542-d solution is also the one
that minimised the eccentricity for planet f (Lund et al., submitted). Even if the chains converged
towards an orbital period of about 173 days for planet e, there is no detection of the planets d and
e in the radial velocity data. The data supports no significant drift.

4 Combined analysis

The two campaigns (C5 and C18) of the K2 mission were analysed together with the 464 epochs
from the HARPS, HARPS-N, HIRES, and PFS spectrographs as well as the spectral energy dis-
tribution (SED) from the star (see Supplementary Table 1). The analysis was performed with
PASTIS13. The photometric data were modelled with JKTEBOP (JKT Eclipsing Binary Orbit
Program) software51. To account for the long-cadence observations52 during C5, the photometric
model was oversampled at the 1-minute cadence, corresponding to the C18 short-cadence data,
before being binned back to the observation sampling to compute the likelihood. The quadratic
limb-darkening coefficients were taken from a well adopted theoretical table53. The radial velo-
cities were modelled using a 6-planet Keplerian-orbit model. The SED was modelled with the
BT-SETTL stellar atmosphere models54. The host star was modelled self-consistently using the
Dartmouth stellar-evolution tracks55.

The priors on the stellar parameters (Teff , [Fe/H], density) are taken from the results of the
asteroseismology study of HIP41378 (Lund et al., submitted) and from the Gaia DR2 for the
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distance to Earth with the parallax corrected for a systematic offset56.

The priors on the ephemerides of planets b and c as well as the transit epochs for planets d,
e, and f are taken as Gaussian distributions from previous studies11 with a width enlarged by a
factor 100. Since the period of planet d is not detected in the preliminary, radial-velocity analysis,
the 278-d solution10 that minimises its eccentricity (Lund et al., submitted) was chosen. For planet
e, a broad prior was used for the orbital period. Since the period of planet f was detected to be
546±18 days, the 542-d solution10 was used as the prior with a Gaussian distribution. Like for
planets b and c, the width of the Gaussian prior distributions for the orbital periods of planets d
and f were enlarged by a factor 100 to limit the bias from the results of previous analysis10, 11.
The prior on orbital eccentricity is the one observed for small planets in multiple-system50. For the
other parameters, uninformative priors were used.

The model does not account for gravitational interaction between the planets nor for transit
timing variations (TTVs). A photodynamical analysis57 would be needed to model the TTVs ob-
served on planet c in the Spitzer11 and TESS data. This is beyond the scope of this study and
will be explored in a following paper.

The exhaustive list of parameters used in the analysis are reported in the Supplementary Table
7 together with their prior distribution. The likelihood was computed assuming that the errors are
independent and distributed following:

L = p (D|θ, I) = 1√
2π
(
σ2
i + σ2

j

) exp
[
−1

2

(x− xt (θ))2

σ2
i + σ2

j

]
, (1)

where L is the likelihood, D, the data composed by x, θ the parameters, I the information, σi the
instrumental noise, σj a jitter noise, and xt (θ) the model.

A total of 96 Markov chains of 3 × 105 iterations were run, initially starting from the joint
prior distribution. Convergence of the chains was tested using a Kolmogorov-Smirnov test to make
sure that the chains not only reached the same maximum of likelihood, but that they reached the
same posterior distribution13. The converged chains were then merged after removing burn-in
phase. Finally, the median and 68.3% and 95% credible intervals were derived for each parameter
and reported in the Supplementary Table 7. This analysis is similar to the ones performed in
previous papers58, 59 reporting low-mass transiting exoplanets observed by K2.

In this combined analysis, the radial-velocity signals of planets b, c, g, and f are significantly
detected. They have masses ranging between 4.4 M⊕ and 12 M⊕. Except for g that is not transiting,
hence its radius is unknown, their bulk densities range from 0.09 g cm−3 to 2.17 g cm−3, with
densities decreasing with increasing orbital distance.

The radial-velocity signatures of planets d and e are not significantly detected in the data.
For planet d, assuming its orbital period is 278 days, its 95% credible-interval upper-limit on its
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mass is only of 4.6 M⊕, hence a bulk-density upper limit (at 95% credible interval) of 0.56 g cm−3.

Unlike in the preliminary analysis, based only on the radial-velocity data, the Markov chains
of the combined analysis converged towards an orbital period of 369±10 days for planet e while
only one transit of this planet has been detected so far. This is the result of the high-quality K2
C5 light curve together with the stringent stellar-density constraints from asteroseismology and
a narrow prior on orbital eccentricity motivated by the architecture of the system. This solution
would make planet e close to the 2:3 MMR with planet f . With such an orbital period, close to the
Earth revolution around the Sun, covering its orbit with spectroscopic observations is impossible
from the ground. As a consequence, the mass determined here of 12 ± 5 M⊕ is likely affected
by some systematics. In particular, the solution might be biased by the few HIRES measurements
taken at high airmass at the beginning of the fourth session (see Figure 1).

Given that planets d, e, and f transited within the 80-d duration of C5 and they are close
to MMR, every transit of f should be accompanied by a transit of d (2:1 MMR). For the same
reason, every two transits of f are escorted by a transit of e (2:3 MMR). The K2 campaign C18
was exactly 3 years after C5, hence two orbital periods of planet f . That explains why both planets
d and f transited which is unlikely given their long orbital periods. For the same reason, a transit
of planet e would have been detected if the campaign C18 had started a few weeks earlier.

The radial-velocity amplitudes of all planets in this system are at the level of the instrumental
stability. Thus the derived amplitudes might be affected by some unknown systematics. However
systematic effects are more likely to mimic a signal than smoothing out a large signal. Since
these relatively faint signals correspond to transit ephemerides (except for planet g which is in 2:1
MMR with planet c), it is unlikely that these systematics mimicked the radial-velocity signal of
a transiting planet, with the right period and transit epoch. If systematics are the origin of some
signal, in particular for planet f , it means that the planets would have an even lower mass, hence
density.

The results of this analysis concerning the stellar properties are compatible by construction
with the asteroseismology results (Lund et al., submitted), although 2-σ differences are found. The
reason for this is likely the fact this analysis self-consistently models the planetary transits and the
host star thanks to the astero-profiling density. It might also be the consequence of difference in
the stellar evolution tracks, or bias on the Teff caused by the SED.

As a sanity check, the combined analysis was also performed with the PyORBIT code60.
Radial velocities were modelled either with non-interacting Keplerian orbits or using the dynam-
ical integrator TRADES61, in two separate runs of the code, while transits were modelled using
the batman code62. We used the same priors as in the PASTIS combined analysis (see Sup-
plementary Table 7). Posterior sampling was performed with the affine invariant Markov chain
Monte Carlo sampler emcee63, employing 300 walkers over 2 × 105 steps. Convergence of the
chains and analysis of the results were performed using the same approach as in previous works
that made use of PyORBIT. Results are well within 1-σ of the ones obtained with the PASTIS
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analysis. We computed the RV difference between the non-interacting model and the dynamical
simulation, using the orbital parameters in Table 1 and for the temporal span of the observations64,
and while this difference shows a variable behaviour with time, the peak-to-peak amplitude is well
within 0.1 m/s, i.e. beyond the detectability level.
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46. Hara, N. C., Boué, G., Laskar, J. & Correia, A. Radial velocity data analysis with com-
pressed sensing techniques. Monthly Notices of the Royal Astronomical Society 464, 1220–
1246 (2016).

47. Baluev, R. V. Assessing the statistical significance of periodogram peaks. Monthly Notices of
the Royal Astronomical Society 385, 1279–1285 (2008).

48. Mortier, A., Faria, J., Correia, C., Santerne, A. & Santos, N. Bgls: A bayesian formalism for
the generalised lomb-scargle periodogram. Astronomy & Astrophysics 573, A101 (2015).

49. Mortier, A. & Cameron, A. C. Stacked bayesian general lomb-scargle periodogram: Identify-
ing stellar activity signals. Astronomy & Astrophysics 601, A110 (2017).

50. Van Eylen, V. et al. The orbital eccentricity of small planet systems. The Astronomical Journal
157, 61 (2019).

51. Southworth, J. Homogeneous studies of transiting extrasolar planets–i. light-curve analyses.
Monthly Notices of the Royal Astronomical Society 386, 1644–1666 (2008).

52. Kipping, D. M. Binning is sinning: morphological light-curve distortions due to finite integ-
ration time. Monthly Notices of the Royal Astronomical Society 408, 1758–1769 (2010).

16



53. Claret, A. & Bloemen, S. Gravity and limb-darkening coefficients for the kepler, corot, spitzer,
uvby, ubvrijhk, and sloan photometric systems. Astronomy & Astrophysics 529, A75 (2011).

54. Allard, F., Homeier, D. & Freytag, B. Models of very-low-mass stars, brown dwarfs and
exoplanets. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 370, 2765–2777 (2012).

55. Dotter, A. et al. The dartmouth stellar evolution database. The Astrophysical Journal Supple-
ment Series 178, 89 (2008).

56. Stassun, K. G. & Torres, G. Evidence for a systematic offset of- 80 µas in the gaia dr2
parallaxes. The Astrophysical Journal 862, 61 (2018).

57. Almenara, J. et al. Absolute masses and radii determination in multiplanetary systems without
stellar models. Monthly Notices of the Royal Astronomical Society 453, 2644–2652 (2015).

58. Santerne, A. et al. An earth-sized exoplanet with a mercury-like composition. Nature Astro-
nomy 2, 393 (2018).

59. Lopez, T. et al. Exoplanet characterisation in the longest known resonant chain: the k2-138
system seen by harps. Astronomy & Astrophysics 631, A90 (2019).

60. Malavolta, L. et al. The gaps programme with harps-n at tng-xi. pr 0211 in m 44: the first
multi-planet system in an open cluster. Astronomy & Astrophysics 588, A118 (2016).

61. Borsato, L. et al. Trades: A new software to derive orbital parameters from observed transit
times and radial velocities-revisiting kepler-11 and kepler-9. Astronomy & Astrophysics 571,
A38 (2014).

62. Kreidberg, L. batman: Basic transit model calculation in python. Publications of the Astro-
nomical Society of the Pacific 127, 1161 (2015).

63. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the mcmc hammer.
Publications of the Astronomical Society of the Pacific 125, 306 (2013).

64. Malavolta, L. et al. The kepler-19 system: a thick-envelope super-earth with two neptune-mass
companions characterized using radial velocities and transit timing variations. The Astronom-
ical Journal 153, 224 (2017).

Acknowledgements We are grateful to Mikkel Lund for sharing the manuscript on the asteroseismic con-
straints of HIP41378 before its publication. This has been extremely useful for the analyses presented here
and to reach these results. The HARPS team is grateful to the HARPS observers who conducted part of
the visitor-mode observations at La Silla Observatory: David Anderson, Nicola Astudillo, Xavier Bonfils,
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DBe, IJMC (PI), BJF, LAH, AWH, HIs, EAP, ESi, LMW. PFS CoIs, builders, and data reduction: FDa,
RPB, JDC, SAS, JKT, SXW, JNW. ESPaDOnS CoIs and data reduction: IBo, DBar, JFD, MRD, JLB, TAL,
CMo, ASa (PI), NCS.
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Figure 1: Radial velocity observations of the star HIP41378. The different colours correspond
to the different instruments: HARPS (orange), HARPS-N (green), HIRES (red), PFS (violet). The
black solid line is the best-fit model. Panel a Time series covering the 4 observing seasons. Panel b
Zoom of the time series obtained from the last season when HIP41378 was observed every possible
night with HARPS. Panels c, d, e, f, g, and h show the radial velocity folded to the phase of the
planets b, c, g, d, e, and f (respectively) once the contribution from the other planets has been
removed. Open circles are binned data.
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Figure 2: Mass – Radius diagram of low-mass exoplanets. Only planets that have a mass meas-
ured with a precision better than 50% are shown here (source: NASA exoplanet archive). Open
circles are the planets in the HIP41378 system. The different colored lines represent possible the-
oretical compositions for terrestrial worlds14. Objects denser than 100% metal core are considered
as non-planetary objects and those less dense than 100% water are considered to be gaseous. Black
dashed lines are models of giant exoplanets for an age of 3.1 Gyr with metals mass fraction of Z =
0.02 (Solar value), 0.5, and 0.9. The planet on the upper left of HIP41378 f is Kepler-51 d22.
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Figure 3: Radius of exoplanets as function of their stellar insolation flux. Only planets trans-
iting stars that have a magnitude brighter than Ks = 10 are shown here (in blue – source: NASA
exoplanet archive). Venus, the Earth, Jupiter, and Saturn are also displayed for comparison. The
five transiting planets in the HIP41378 system are plotted with the orange rectangles. The green
zone represent the conservative (green) and optimistic (light green) habitable zone19.
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Table 1: List of the main physical parameters of the HIP41378 planetary system.
Parameter Median and 68.3% credible interval

Host star
Effective temperature Teff [K] 6320+60

−30

Surface gravity log g [cgs] 4.294± 0.006
Stellar density ρ? [ρ�] 0.563± 0.006
Iron abundance [Fe/H] [dex] −0.10± 0.07
Mass M? [M�] 1.16± 0.04
Radius R? [R�] 1.273± 0.015
Age τ [Gyr] 3.1± 0.6
Distance to Earth D [pc] 103± 2
Rotation velocity υ sin i? [km s−1] 5.6± 0.5
Rotation period Prot [d] 6.4± 0.8
Activity index logR’H&K −4.78± 0.03

Planet b Planet c Planet g
Period P [d] 15.57208± 2× 10−5 31.70603± 6× 10−5 62.06± 0.32
Eccentricity e 0.07± 0.06 0.04+0.04

−0.03 0.06+0.06
−0.04

Semi-major axis a [au] 0.1283± 1.5× 10−3 0.2061± 2.4× 10−3 0.3227± .0036
Inclination i [◦] 88.75± 0.13 88.477+0.035

−0.061 –
Radius Rp [R⊕] 2.595± 0.036 2.727± 0.060 –
Mass Mp [M⊕] 6.89± 0.88 4.4± 1.1 7.0± 1.5∗∗

Bulk density ρp [g cm−3] 2.17± 0.28 1.19± 0.30 –
Equilibrium temperature∗ Teq [K] 959+9

−5 757+7
−4 605± 4.7

Stellar insolation flux S [S⊕] 140+5
−3 54+2

−1 22.3+0.8
−0.5

Planet d Planet e Planet f
Period P [d] 278.3618‡ ± 5× 10−4 369± 10 542.07975± 1.4× 10−4

Eccentricity e 0.06± 0.06 0.14± 0.09 0.004+0.009
−0.003

Semi-major axis a [au] 0.88± 0.01 1.06+0.03
−0.02 1.37± 0.02

Inclination i [◦] 89.80± 0.02 89.84+0.07
−0.03 89.971+0.01

−0.008

Radius Rp [R⊕] 3.54± 0.06 4.92± 0.09 9.2± 0.1
Mass Mp [M⊕] < 4.6† 12± 5 (< 22†) 12± 3
Bulk density ρp [g cm−3] < 0.56† 0.55± 0.23 (< 0.82†) 0.09± 0.02
Equilibrium temperature∗ Teq [K] 367+3

−2 335± 4 294+3
−1

Stellar insolation flux S [S⊕] 3.01+0.11
−0.06 2.1± 0.1 1.24+0.05

−0.02

†95% credible upper limit ; ‡Assumed orbital period ; ∗Assuming a zero albedo ;
∗∗Assuming an inclination of 88◦.
Reference values: M⊕= 5.9736.1024 kg, R⊕= 6378137 m, M�= 1.98842.1030 kg, R�= 695508 km,
1 au = 149597870.7 km, S⊕ = 1366083 erg cm−2 s−1
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