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Abstract: As the development of large-scale offshore wind farms (OWFs) amplifies due to 13 

technological progress and a growing demand for renewable energy, associated footprints on the 14 
seabed are becoming increasingly common within soft-bottom environments. A large part of the 15 
footprint is the scour protection, often consisting of rocks that are positioned on the seabed to 16 
prevent erosion. As such, scour protection may resemble a marine rocky reef and could have 17 
important ecosystem functions. While acknowledging that OWFs disrupt the marine environment, 18 
the aim of this systematic review was to examine the effects of scour protection on fish assemblages, 19 
relate them to the effects of designated artificial reefs (ARs) and, ultimately, reveal how future scour 20 
protection may be tailored to support abundance and diversity of marine species. The results 21 
revealed frequent increases in abundances of species associated with hard substrata after the 22 
establishment of artificial structures (i.e. both OWFs and ARs) in the marine environment. Literature 23 
indicated that scour protection meets the requirements to function as an AR, often providing shelter, 24 
nursery, reproduction and/or feeding opportunities. Using knowledge from AR models, this review 25 
suggests methodology for ecological improvements of future scour protections, aiming towards a 26 
more successful integration into the marine environment. 27 

Keywords: scour protection; offshore wind farm; renewable energy; artificial reef; ecosystem 28 
restoration; ecological engineering 29 

 30 

1. Introduction 31 

Humans rely upon and utilize the marine environment for a variety of ecosystem services and 32 
valuable resources, leaving no parts of the oceans unaffected [1,2]. The majority of people live in the 33 
coastal zones, where anthropogenic activities have been progressively altering the seascape [3–5], 34 
resulting in direct and indirect negative impacts on marine biota [6]. The introduction and 35 
proliferation of artificial (i.e. engineered) structures to marine ecosystems, driven by commercial and 36 
residential demands, causes a phenomenon known as “ocean sprawl” [7]. “Ocean sprawl” refers to 37 
a marine environment that is increasingly becoming dominated by artificial structures, including 38 
artificial reefs, breakwaters, seawalls, piers, oil platforms and marine renewable energy installations 39 
[7], often causing various effects on the surrounding ecosystems [8]. 40 

An artificial reef (hereafter abbreviated as “AR”) may be defined as a structure of “natural or 41 
human origin deployed purposefully on the seafloor to influence physical, biological, or socio-42 
economic processes related to living marine resources” [9]. A designated AR can be employed for a 43 
variety of purposes; a primary aim is biological conservation and fisheries enhancement, extending 44 
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also to ecosystem restoration, as well as socioeconomic development [10,11]. Specific AR purposes 45 
may include aquaculture/sea-ranching, biomass increase, biodiversity enrichment, fisheries 46 
production, ecosystem management, prevention of coastal erosion, recreational activities (e.g. scuba 47 
diving, ecotourism, fishing), and research [10,12,13]. These engineered structures are typically 48 
constructed to resemble natural reefs as much as possible, with the ultimate goal to produce similar 49 
effects. There are also other structures acting as ARs that (a) have entered the marine environment 50 
accidentally (e.g. shipwrecks, lost containers), (b) have been repurposed (e.g. sunken ships for 51 
recreational activities) or (c) serve other functions (e.g. offshore oil and gas platforms) [14–17]. 52 

Another example of man-made infrastructure are offshore wind farms (hereafter abbreviated as 53 
“OWFs”). OWFs are increasingly established in marine areas with the purpose to meet the rising 54 
global demand for renewable energy [18,19]. Apart from the obvious benefits provided by renewable 55 
energy, OWFs may have several ecological effects on the marine environment. Ecological disruptions 56 
caused by OWF include avian collisions [20,21], underwater noise [22–24] and electromagnetic fields 57 
[18,25,26], as well as loss of soft-bottom habitat with the introduction of hard substrata [27]. Other 58 
changes caused by OWFs include increased abundance and biodiversity of hard-bottom species due 59 
to reef effects and creation of no-take zones within the OWF, with possible spill-over effects to 60 
neighbouring areas [28–30]. 61 

OWFs typically consist of an array of individual wind turbines placed on soft-bottom habitats. 62 
Since offshore wind turbines are located on soft sediment, scouring inevitably occurs around their 63 
foundations. Scour is created when a steady current (e.g. tide, wave activity) encounters a vertical 64 
structure on the seabed, causing local increases in flow speeds and turbulence levels and ultimately 65 
leading to the creation of a scour pit around the structure [31]. Scouring may compromise the stability 66 
and dynamic behaviour of wind turbine foundations [32]. The magnitude of scouring is affected by 67 
the current speeds, the water depth and sediment types [31]. 68 

Scour protection is a measure used to prevent the erosion of seabed sediment around individual 69 
foundations of offshore wind turbines [33]. Typically, scour protection consists of a filter layer made 70 
of gravel, shielded by a rock armour layer [34] (Figure 1). The material is placed around the 71 
foundation of the turbine (e.g. around the monopile) with a radius typically reaching up to 20 meters 72 
[34,35]. The size and design of the scour protection is determined by a range of environmental factors 73 
(i.e. wave and current activity, water depth, sediment characteristics), as well as structural factors 74 
(i.e. monopile diameter and design) [36,37] (Figure 1). Generally, the size of the scour protection area 75 
reflects the area of the scour pit that would arise due to the environmental factors (e.g. current speed), 76 
if the foundation was left unprotected [31], which is usually four to five times the monopile diameter 77 
[38]. 78 
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Figure 1. Illustration of a common scour protection design, modified from Whitehouse et al. [38]: 80 
Scour protection around an offshore wind turbine, laid on the seafloor. The vertical bar represents the 81 
monopile that holds the windmill rotor and turbine. The scour protection includes a preinstalled filter 82 
layer of small sized rocks (e.g. 5 cm in diameter) covered by an armour layer of larger rocks (e.g. 40 83 
cm in diameter). The filter layer prevents erosion of sand through the upper layer of larger rocks. The 84 
filter layer is usually about 0.5 m high, whereas the armour layer is about 1 m high. Edge scour (e.g. 85 
0.5 m deep) may develop in the periphery of the scour protection. Further details on scour protection 86 
designs are provided by Whitehouse et al. [38]. In the present review, the foundation is defined as the 87 
monopile and the surrounding scour protection as illustrated in the figure. 88 

It is increasingly recognized that the changes introduced during the Anthropocene, including 89 
ocean sprawl and coastal hardening, have transformative effects on natural ecosystems [7,39,40]. 90 
Hence, the establishment of a mutually beneficial relationship between biota and man-made 91 
infrastructure is crucial. The concept of “renewal ecology”, introduced by Bowman et al. [41], falls 92 
directly under this scope. Renewal ecology is defined as “a solutions-focused discipline aimed at 93 
creating and managing ecosystems designed to maximize both biodiversity and human well-being 94 
in the face of rapid environmental change” [41]. Although renewal ecology remains to be embraced 95 
widely, especially in the marine environment, the concept is progressively gaining support. 96 
Importantly, renewal ecology resembles IUCN’s principles of “Nature-based solutions”, recently 97 
embraced by the commission of the European Union [42]. For example, coastal defence structures are 98 
increasingly constructed not only to meet engineering requirements, but also to enhance biodiversity 99 
and provide ecosystem services [11]. Moreover, in terms of OWFs, The Netherlands recently 100 
introduced new permit obligations, requiring engineers to “make demonstrable efforts to design and 101 
build the wind farm in such a way that it actively enhances the sea’s ecosystem, helping to foster 102 
conservation efforts and goals relating to sustainable use of species and habitats” [43]. These new 103 
obligations recognize the increasing presence of anthropogenic infrastructures in the marine 104 
environment and therefore seek to design OWFs in a fashion where positive effects exceed negative 105 
effects for the marine biota. 106 

1.1 Objectives 107 

The concept of eco-engineering man-made infrastructure is increasingly discussed in the 108 
existing literature [44–46], however, to date, a review investigating how scour protection in OWFs 109 
may be tailored to create productive habitats for various fish species has not been carried out. The 110 
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present review aims to fill this void by synthesizing current evidence on changes in the abundance 111 
and diversity of fish and commercially exploited species in response to the establishment of OWFs in 112 
temperate seas and relating this knowledge to existing AR research. The overarching goal is to extract 113 
current knowledge of AR designs and use it to suggest scour protection refinements aimed at 114 
supporting fish abundance and diversity. Ultimately, improved fish production attributed to scour 115 
protection may support commercially exploited fish stocks and contribute to sustainable fisheries. 116 
The review concludes by identifying knowledge gaps and suggesting future research directions. Only 117 
ARs designed with a purpose (e.g. increasing species abundance and diversity) and designed 118 
similarly to scour protection (e.g. gravel, rocks, stones, granite, boulders etc.) were examined in this 119 
review, while accidental ARs (e.g. shipwrecks) [12] were disregarded. This allowed for comparisons 120 
between ARs and scour protections with the purpose of revealing various AR design refinements 121 
that could be transferable to future scour protection construction. Additionally, studies occurring in 122 
non-temperate regions were excluded, because the majority of OWFs occur in temperate marine 123 
waters. 124 

2. Materials and Methods  125 

The present study was conducted following the systematic literature review protocol developed 126 
by Pullin and Stewart [47]. The guidelines have been used by numerous systematic reviews related 127 
to offshore energy, including reviews concerning the potential of OWFs to act as marine protected 128 
areas [30] and the impacts of energy systems on marine ecosystem services [48]. 129 

2.1 Search Terms 130 

A wide range of search terms were selected to incorporate all the components of the study 131 
objectives. The specific search terms were formulated to gather all relevant literature from the 132 
databases. Similar to previous systematic reviews [49], negative terms were included to increase the 133 
efficacy of the string and to remove impertinent search results. Applied search terms are listed in 134 
Table 1, where terms with an asterisk (*) represent a search engine wild-card [49]. These search terms 135 
were applied to two different databases: “Web of Science” and “Scopus”. 136 

Table 1. Selected search terms used in “Web of Science” and “Scopus”. 137 

Technical terms: artificial reef *, reef effect*, fish attraction device*, artificial structure*, scour*, 

scour* protection*, scour control*, wind power foundation*, offshore wind, wind farm 

foundation*, turbine foundation*, offshore energy, offshore wind energy structure*, artificial 

offshore construction*, offshore wind farm*, wind turbine*, rock armour* 

Ecosystem-related terms: ecological effect*, impact*, sanctuary*, spillover, habitat*, habitat 

change*, habitat restor*, habitat creat*, species abundance*, biomass*, biodiversity, species 

composition*, species densit*, nurser*, recruitment, coloni*, migrat*, food availab*, ecological 

function*, aggregat*, productiv*, enhanced habitat*, heterogeneity, feeding, spawn* OR habitat 

creat*, habitat connectivity, habitat complexity, habitat enhancement*, no trawling zone*, hard 

bottom, invasive species, alien species, nonindigenous, habitat fragment*, habitat degrad*, 

habitat loss*, hard substrate*, substrate* 

Target species group term: fish* 

Negative terms: tropical, subtropical, Caribbean, Indian Ocean 

2.2 Screening Process 138 

The papers resulting from the searches were assessed for relevance at three sequential levels: 139 
title, abstract, and full text [47]. Papers included in the analyses fulfilled the inclusion criteria (Table 140 
2).   141 
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Table 2. Inclusion and exclusion criteria for the systematic review. 142 

Criteria Include Exclude 

Peer-reviewing Peer-reviewed studies Reviews & everything else 

Text Language English Everything else 

Years All years (1900-2018) - 

Location Temperate seas Everything else 

Intervention OWFs and designated ARs 
Accidental ARs, such as 

shipwrecks 

Subject Fish and fisheries Everything else 

2.3 Data Extraction 143 

Study characteristics and the findings of the resulting papers were recorded (Table 2). 144 
Specifically, documented details included: (a) the type of structure (e.g. AR, OWF and the associated 145 
scour protection), (b) the spatial scale of the study (e.g. area of AR or scour protection), (c) the 146 
temporal scale of the study (e.g. time elapsed after the deployment of structure), (d) the physical 147 
characteristics of the structure (e.g. material, shape) and (e) the examined variables (e.g. fish 148 
abundance and diversity). 149 

2.4 Data Analysis 150 

A quantitative analysis was conducted based on the data extracted by parsing the literature over 151 
1900 – 2018. Relevant literature was limited within a 37-year period (1982 – 2018), and for each year, 152 
the total number of AR and OWF papers was recorded. Similar to previous reviews [49], the 153 
accumulated number of papers for both subjects was plotted across time and general linear regression 154 
was applied to identify research trends. In addition, further analyses compared various parameters 155 
related to scour protection and ARs (e.g. material and water depth). Statistical analyses were carried 156 
out using the free software R Studio (R Core Team, 2019). 157 

3. Results 158 

3.1 Selection Process 159 

The selection process resulted in 7,027 papers, with a total of 6,537 remaining after duplicate 160 
removal. Following the removal of irrelevant subjects, locations, and reviewing the material through 161 
title, abstract, or full-text analysis, a total of 115 peer-reviewed papers met the inclusion criteria (Table 162 
2; Figure 2). Of those, 89 and 26 papers pertained to ARs and OWFs, respectively. 163 
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 164 

Figure 2.  A “PRISMA” diagram showing the flow of information through the different phases of the 165 
review [50]. 166 

3.2 Temporal research trends 167 

Published AR research started in the early 1980s, whereas OWF research started around the mid 168 
2000s (Figure 3). Despite this time difference, both topics reveal increasing trends (ARs: R2 = 0.34, p < 169 
0.001; OWFs: R2 = 0.39, p < 0.001). Earlier peer-reviewed literature could possibly be non-accessible 170 
due to historical limitations of certain search databases (e.g. Web of Science), creating potential bias 171 
in regard to the commencement of research on both topics. 172 
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 173 

Figure 3. Trends of research output (articles per year) for artificial reef (AR) and offshore wind farm 174 
(OWF) studies through the years 1982 – 2018 (source: Web of Science, Scopus). For clarity, data are 175 
presented in six years intervals, with the exception of the 2012-2018 period, which includes seven 176 
years. This unequal division was necessary to address the total period of 37 years that contained all 177 
articles fulfilling the inclusion criteria. Regardless of the duration of the time interval (six or seven 178 
years), data are presented as the mean number of articles per year from each time interval. 179 

3.3 Location of available studies 180 

Many AR studies originated from Southern Europe, Southwest USA and East Asia (Figure 4). In 181 
contrast, OWF studies mainly originated from northern Europe, particularly within the North Sea 182 
(including Belgium, Denmark, Germany, the Netherlands and the UK) (Figure 4). This indicates 183 
geographical differences between AR research and OWF research. Only Germany and the USA have 184 
covered both topics (Figure 4). 185 
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 186 

Figure 4. Number of artificial reef (AR) and offshore wind farm (OWF) studies per country 187 
throughout the years 1982 – 2018 (source: Web of Science, Scopus). 188 

3.4 Inconsistent study details 189 

The amount of study details varied between papers (Table 3). All studies reported the sampling 190 
method, whereas fewer studies included information about the spatial scale and the material used 191 
for the structure (Table 3). 192 

Table 3. A list of 17 variables reported in the articles that met the inclusion criteria (Table 2), similar 193 
to Whitmarsh et al. [51]. The table provides examples of the variables that were reported in each 194 
article, as well as the percentage of articles that mentioned each specific variable. For example, 195 
regarding the spatial scale of an AR or OWF (variable 8 from the top), an example of 700m2 is 196 
provided. This means that at least one of the reviewed articles examined an AR or OWF area covering 197 
700m2. The rest of the included examples follow the same logic and are not general findings. 198 

Variable Examples 

% of AR studies 

reported in (% 

out of 89) 

% of OWF 

studies reported 

in (% out of 26) 

General    

Type of Study Scientific Paper, Report 100 100 

Year published 2000, 2018 100 100 

Location Italy, North Sea, UK 100 100 

Study design    

Sampling method Visual census, Fishing 100 100 

Study design BACI*, Impact only 92 96 
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Temporal Scale 10 years after deployment 79 69 

Sampling Season Summer, Winter 82 92 

Structure    

Spatial Scale 700m2 44 54 

Depth 30m 76 61 

Material Concrete, rock 84 61 

Shape of material Cube, boulder 79 0 

Volume of material 1m3 52 4 

Effects on fish    

Overall impact +, +/-, - 94 88 

Biomass/Abundance +, +/-, - 72 73 

Diversity +, +/-, - 48 38 

Shelter (Complexity) Yes, No, Possibly 34 85 

Spawning/Settlement  Yes, No, Possibly 22 31 

+ Increase 199 

- Decrease 200 

+/- No noticeable effect 201 

* Before-after-control-impact experimental design 202 

3.5 Overlapping use of materials for ARs and OWFs 203 

Variable materials have been used for ARs and OWFs (Figure 5). In some occasions, ARs were 204 
created using various types of rocks [52,53], but the majority of ARs were made using designed 205 
concrete units [12]. Other AR components included metal and scrap materials [54,55] (Figure 5). Some 206 
AR studies compared different materials, sizes and shapes used for the construction of ARs and 207 
included more eco-friendly materials [56,57]. In contrast, scour protection structures commonly 208 
consisted of various rock types (stones, pebbles etc.), with 61% of the literature reporting on at least 209 
one of these materials (Figure 5). For the rest of the OWF studies (39%), the material used for scour 210 
protection was not described. Thus, evidence suggested that scour protection is mainly made of 211 
rocks. 212 
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 213 

Figure 5. Materials used for artificial reefs (ARs) and scour protection associated with offshore wind 214 
farms (OWFs). Some papers are included in multiple categories, because they studied more than one 215 
material. “Other” includes scrap materials, wood, tires and PVC materials. “N/A” means that the 216 
material used was not specified in the articles. 217 

3.6 Overlapping water depths used for ARs and OWFs 218 

Water depths of many AR and OWF studies are overlapping (Figure 6). The majority of AR and 219 
OWF studies concern structures that are located at water depths between 15 and 30m. Studies related 220 
to OWFs are, however, absent at water depths exceeding 30 m. This is largely due to OWF foundation 221 
typology, as monopiles (Figure 1) are rarely constructed at water depths exceeding 30m [58]. 222 
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Figure 6. Mean water depths of artificial reef (AR) and offshore wind farm (OWF) structures. Some 224 
papers are included in multiple categories, because they studied more than one structure, located at 225 
different water depths. “N/A” means that the water depth was not specified in the articles. 226 

3.7 Effects of ARs and OWFs on fish abundance 227 

Provision of food [59,60], spawning [61] and shelter opportunities [62] by artificial structures are 228 
among the main themes dominating the literature, causing changes in fish abundance, biodiversity 229 
and distribution. In general, the vast majority of the AR studies (94%) reported that fish abundance 230 
and biodiversity increased or was unaffected by AR deployment. More specifically, 49% of the 231 
literature reported locally increased fish abundances after AR deployment, while 31% found an 232 
increase in species richness in the AR area. Remaining papers did not report on the matter or recorded 233 
non-significant differences. Similarly, about half of the OWF literature (46%) also reported increases 234 
in fish abundance. Specifically, fish abundance was consistently higher near the OWF foundations 235 
compared to reference areas [63–67]. This was particularly the case for species associated with rocky 236 
substratum [68], but occasionally it also extended to soft-bottom species when sampling the sandy 237 
areas within an OWF [69]. There was evidence of locally increased fish abundance for at least eight 238 
fish species in the OWF literature: Atlantic cod (Gadus morhua), European eel (Anguilla anguilla), 239 
goldsinny wrasse (Ctenolabrus rupestris), pouting (Trisopterus lucas), rock gunnel (Pholis gunnellus), 240 
shorthorn sculpin (Myoxocephalus scorpius), sole (Solea solea), striped red mullet (Mullus surmuletus), 241 
and whiting (Merlangius merlangus) [35,65,68–71]. Reubens et al. [70] found an average density of 14 242 
pouting individuals per m2 on the scour protection, yielding an estimated local population of 22,000 243 
pouting individuals around one wind turbine foundation. It is important to note, however, that the 244 
results reflect case studies and not necessarily general findings. 245 

Only 38% of OWF papers reported on changes in fish diversity, however 40% of those (i.e. 15% 246 
of total) indicated that scour protection elevated fish diversity compared to neighbouring control 247 
areas [72,73]. Only one OWF study reported lower species diversity. Specifically, Wilhelmsson et al. 248 
[64] found lower diversity of demersal fish around the turbine foundations compared to the seabed 249 
1 to 20 m away. Conversely, a few studies indicated that a range of soft-bottom species were 250 
unaffected by the scour protection [65,74]. For example, Langhamer et al. [75] found that the 251 
abundance of viviparous eelpout (Zoarces viviparous) was unaffected by an OWF in Sweden. 252 
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Similarly, the abundances of adult individuals of several pelagic species, including horse mackerel 253 
(Trachurus trachurus), mackerel (Scomber scombrus), herring (Clupea harengus) and sprat (Sprattus 254 
sprattus), were unaffected by the scour protection at a Dutch OWF [69]. 255 

A limited number of AR studies examined possible effects on soft-bottom species (e.g. flatfishes). 256 
For example, Fabi and Fiorentini [76] reported lower catch rates of the soft-bottom fish species 257 
(e.g. Trigla lucerna and Soleidae spp.), compared to a control site, similar to Bombace et al. [77]. In 258 
relation to OWF, 19% of the studies included data on the impact on soft-bottom species. At Block 259 
Island Wind Farm, off Rhode Island in US, a study of seven flatfish species revealed no negative 260 
impacts [78]. On the contrary, Lindeboom et al. [65] reported a significant decrease in the soft-bottom 261 
species lesser weever (Echiichthys vipera) two years after construction of a Dutch OWF. Krone et al. 262 
[68] also reported low abundances of species associated with soft-bottom habitat, including species 263 
of Gobiidae and Callionymus spp., near the scour protection of a German OWF. Similar OWF related 264 
trends have also been observed for flatfish species, including dab (Limanda limanda), sole, and 265 
solenette (Buglossidium luteum) [69]. 266 

4. Discussion 267 

Although few countries have investigated both AR and OWF, this review identified overlap 268 
between AR studies and OWF studies in terms of water depth and materials, indicating that 269 
knowledge from temperate AR studies may be used to guide designs of future OWFs. Collectively, 270 
AR and OWF studies often observed an increase in abundance and diversity of fish species associated 271 
with hard-bottom habitats. Hard-bottom habitats provide food, shelter and habitats for reproduction, 272 
supporting the hypothesis that scour protection may create a reef effect [65]. Whether the increase in 273 
abundance is due to attraction or production is yet to be determined, however there is growing 274 
evidence of new production associated with OWFs [64,72,79,80]. By modifying the designs of future 275 
scour protection, a range of habitats may be supported, increasing the abundance of target species 276 
[81] and possibly influencing fisheries via various mechanisms, including spill-over effects [28–30]. 277 

4.1 Fish abundance, biodiversity and distribution associated with ARs and OWFs  278 

Artificial structures (i.e. both ARs and OWFs) typically hold higher fish density and biomass 279 
[82–84], largely attributed to the form, complexity, area coverage [62] and/or food abundance [85]. 280 
The findings of this review collectively confirm that artificial structures often increase the abundance 281 
of hard-bottom species as well as fish diversity in the local area. In some instances, however, artificial 282 
structures have no apparent reef effect for certain fish species, meaning that there is no noticeable 283 
increase or decrease for a given species. For example, abundances of adult individuals of several 284 
pelagic species, including horse mackerel, mackerel, herring and sprat were unaffected by the 285 
presence of scour protection [69]. While adult individuals of pelagic species seemed unaffected by 286 
scour protection, they may still utilize scour protection as spawning or rearing habitat. Hard-bottom 287 
substrates are often important for the spawning of herring [86–89], suggesting that scour protection 288 
could have similar function. The loss of soft-bottom substrate arising from OWF installations may 289 
occasionally decrease the abundance of soft-bottom fish species [65,68,69]; however, due to the small 290 
amount of area covered by scour protection within an OWF (approximately 0.8%), possible negative 291 
impacts are considered insignificant at the population level as indicated by previous studies [69,73]. 292 
Even though scour protection may have negative effects on soft-bottom species at the local scale, the 293 
effects should be evaluated at larger spatial scales and related to fish population sizes and 294 
movements. 295 

4.2 Attraction versus production 296 

There are mainly two hypotheses aiming to explain the increased fish abundance in artificial 297 
structures [90]. Firstly, the attraction hypothesis presumes that fish simply aggregate at the 298 
installations from the surrounding environment, without a net increase in the population of the larger 299 
area. Secondly, the production hypothesis suggests that the carrying capacity of the ecosystem 300 
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increases because of the artificial structures. According to the second hypothesis, fish growth, 301 
reproduction and/or survival is elevated in the area, resulting in population enhancement, eventually 302 
contributing to an increase in the net production, both for biomass and abundance [90,91]. 303 

While there is growing evidence of increased fish abundance associated with OWFs, it remains 304 
unclear whether fish are simply attracted from surrounding areas or if the OWF facilitates fish 305 
production. Recent studies have highlighted the importance of increased production associated with 306 
ARs [92–94]. For example, Roa-Ureta et al. [94] predicted a 35% increase in the carrying capacity for 307 
Diplodus vulgaris four years after ARs deployment, indicating new production. In terms of OWFs, 308 
several studies have suggested that OWFs act as nursery grounds and therefore, facilitate new fish 309 
production at the local scale [64,72,79,80]. In contrast, Wilson et al. [95] suggested that OWF 310 
foundations attract species from neighbouring areas, and Bergström et al. [35] concluded that 311 
elevated local abundance or diversity of fish near OWF foundations was due to a change in fish 312 
distribution, rather than a result of increased productivity. 313 

The attraction versus production debate remains unresolved in most cases and the outcome of 314 
the debate relies upon an array of factors. The responses towards introduced hard substrata may vary 315 
among species, environments, locations and age-specific requirements [90], while reef design 316 
characteristics, such as location, materials, size and number of units, also influence fish responses 317 
[91]. It is increasingly recognized that attraction and production effects are not mutually exclusive 318 
but should be considered as the two ends of a continuum [93,96–98]. 319 

4.3 Community changes associated with ARs and OWFs 320 

Adding hard substrate may alter ecosystems in ways that benefit some species more than others 321 
[35,99]. For example, based on hydrodynamic modelling, introduced substrate from OWFs and ARs 322 
may increase the settlement of jellyfish polyps, potentially leading to jellyfish blooms [100,101]. This 323 
can affect fish species, as jellyfish competes with planktivorous fish and may forage on fish larvae 324 
[100]. OWFs may also attract fish species that would not naturally reside in the area [64]. For example, 325 
goldsinny wrasse and grey triggerfish (Balistes carolinensis) were observed in Dutch OWFs, where 326 
they had not been recorded previously [69]. 327 

Non-indigenous fouling species, possibly invasive, may also utilize hard substrate associated 328 
with OWFs and ARs in soft-bottom environments [102]. Accordingly, OWFs may act as stepping-329 
stones [103], enabling species to spread over large distances through a series of short distance 330 
colonization events [63,102,104]; this may be particularly relevant for species like Jassa spp. that lack 331 
a distinct planktonic larval stage [104]. Due to the stepping-stone effect, sequential establishment of 332 
non-indigenous fouling species may occur rapidly on newly established OWF foundations [65,102]. 333 
Considering ocean warming, the placement of new hard substrata on the seascape may also facilitate 334 
the poleward expansion of non-indigenous species [105–107]. Observed non-indigenous species on 335 
OWF foundations include the Japanese oyster (Crassostrea gigas) and amphipods Jassa marmorata, 336 
Caprella mutica, and Caprella linearis [63,65,108,109]. In the Belgian part of the North Sea, ten non-337 
indigenous fouling macrobenthic species were identified on OWFs foundations [102]. OWF sites may 338 
also provide settlement habitat for pelagic larval particles that would otherwise have been 339 
unsuccessful in the area [110]. 340 

4.4 Scour protection functioning as an AR  341 

Reviewed literature suggests that OWFs provide similar functions for marine organisms as ARs 342 
[18,64,65,69–71,79,111,112], and OWF foundations have even been termed Windmill Artificial Reefs 343 
(WARs) [71,113]. These structures act as ARs by providing habitat, food, shelter and spawning 344 
opportunities, leading to the aggregation of various fish species around the foundations [65]. 345 
Importantly, scour protection enhances the habitat complexity and thereby augments the reef effect, 346 
as highlighted by previous studies [29,70,95,112,113]. 347 

4.4.1 Food provision 348 
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OWFs often increase the local food availability for fish. For example, Leonhard and Pedersen 349 
[109] estimated that the scour protection at a Danish OWF provided a 50-fold increase in the local 350 
food availability for fish, compared to the previously sandy area. The uneven and coarse surfaces of 351 
scour protection and foundations allow sessile, fouling organisms to settle and provide food for 352 
various fish species [66,114,115]. To examine the provision of prey items by scour protection, De 353 
Troch et al. [66] profiled the energy levels of Atlantic cod and pouting caught just above the scour 354 
protection. The study found that the scour protection provided both species with sufficient energy 355 
reserves to grow and/or reproduce [66]. Moreover, stomach analyses performed on pouting 356 
aggregating near scour protection found a preference for hard substrate prey, amphipod Jassa 357 
herdmani and porcelain crab Pisidia longicornis, the dominating epifauna on the OWF foundations 358 
[70,113]. Although further studies are needed, these findings suggest that scour protection may 359 
provide feeding opportunities for a variety of fish species. 360 

4.4.2 Shelter 361 

The layer of boulders and rocks commonly used for scour protection creates crevices that 362 
provide hiding opportunities for fish and other fauna [113], consistent with similar mechanisms 363 
occurring in natural boulder reefs [116]. Video footage and diving surveys revealed commercial 364 
species such as Atlantic cod and pouting utilizing crevices associated with scour protection for shelter 365 
[65,70]. Moreover, acoustic telemetry demonstrated that Atlantic cod exhibit strong residency, high 366 
site fidelity and habitat selectivity towards OWF foundations with scour protection [71]. Therefore, 367 
scour protection may serve as a potential fish refuge and shelter from predators and strong currents, 368 
similar to ARs. 369 

4.4.3 Nursery 370 

Several studies have observed nursery functions of scour protection [64,72,79,80]. For example, 371 
Krone et al. [68] revealed that OWF foundations function as nursery grounds for the edible crab, 372 
Cancer pagurus. Andersson and Ö hman [72] detected pregnant two-spotted goby females, as well as 373 
increased numbers of several size-classes associated with scour protection. On this basis, the authors 374 
hypothesized that the habitat created by the OWF facilitated recruitment and increased production. 375 
These indications signify that OWFs may function as nursery grounds, although the spatial extent is 376 
probably limited to the scour protection and the monopile alone. 377 

4.4.4 Distance between artificial habitats 378 

The location of OWFs may affect the composition and diversity of species assemblages that 379 
colonize and utilize the structures. A shorter distance to neighbouring hard substrata provides a 380 
greater likelihood of larvae and juveniles associated with local hard substrata to arrive and colonize 381 
[18]. A reef in a given area has a specific carrying capacity; often determined by reef size, in 382 
combination with the community composition (e.g. size of individuals and their foraging habits). To 383 
create the most productive ARs, it is important to consider the potential overlap with forage areas of 384 
neighbouring reef species. If the forage areas of two proximate ARs are overlapping, then the food 385 
availability and the potential yield from each AR may decrease [117]. Recently, Rosemond et al. [118] 386 
suggested a minimum buffer zone of 60m to 120m between neighbouring ARs to optimize the fish 387 
habitat utilization. The proposed buffer zone aims to minimize attraction from proximate reefs, 388 
maximize food resource availability in soft-bottom habitats around the reef and increase the area for 389 
typical fish behaviours, such as reproduction and foraging. Similar buffer zones between scour 390 
protections within OWF are de facto in place, since design guidelines highlight that the optimal 391 
distance between adjacent monopiles and scour protections should be seven times the rotor diameter 392 
of each turbine, resulting in distances exceeding ca. 430m between individual scour protections [119]. 393 
These observations suggest that individual scour protections function as individual reefs. 394 

4.4.5 Reef size 395 
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Numerous studies have indicated that reef volume and coverage area are crucial design 396 
requirements for a successful AR. A typical scour protection has a high perimeter-to-area ratio, with 397 
a radius up to 20 meters from the monopile [34,35], elevated about 1.5m above the seabed [38] (Figure 398 
1); this is equivalent to a reef with a volume of 471m3. Smaller ARs (i.e. similar to the size of a scour 399 
protection) often have increased fish densities in comparison to larger ARs [82,120,121]. This 400 
observation, however, applies mainly for attraction and not necessarily for new production [121]. 401 
Champion et al. [122] developed a model to examine the relationship between AR size and foraging 402 
capacity. Their model predicted that highest per-capita food availability occurs when the AR is 403 
relatively small. Ogawa et al. [123] reported that productivity of an AR increases directly with reef 404 
size from 400 m3 and up to 4000 m3, indicating that the minimum effective AR size is 400 m3 [123,124]. 405 
These AR findings suggest that the volume of an individual scour protection may be adequate to 406 
function as a reef. 407 

4.5 Optimizing scour protection 408 

A fundamental objective of this review is to extract knowledge from AR designs and apply it to 409 
scour protection research with the aim to potentially enhance favourable ecological functions. Even 410 
though the ultimate purpose of scour protection is to prevent the scouring of sediment (Figure 1), 411 
scour protection may also provide preferred habitats for several species [112]. The level of 412 
complexity, the distance between artificial structures, as well as the building material and water 413 
depth are the primary characteristics that determine the efficacy of an artificial structure in terms of 414 
supporting fish abundance and biodiversity [12,112,118]. 415 

4.5.1 Structural complexity 416 

Previous studies have observed a positive correlation between the structural complexity of ARs 417 
and fish diversity and abundance [62,125]. Typically, larger fish require larger crevices, while smaller 418 
fish prefer smaller crevices [126]. A heterogeneous structure with a variety of crevice sizes and shapes 419 
may augment desired reef effects by elevating habitat heterogeneity, allowing a variety of fish species 420 
and life stages to utilize the area [34]. Feeding efficiency and growth of fish are maximized at 421 
intermediate levels of structural complexity, since very dense structures may hinder foraging [127]. 422 
Required crevice variety may be achieved with the use of mixed-sized blocks or boulders that are 423 
adjusted to the preferred shelter size for targeted species. In this fashion, scour protection design may 424 
be tailored to certain species or life stages.  425 

The level of complexity can also be adjusted by the number of holes and crevices present in the 426 
applied material. For example, concrete modules with two holes may have a higher species 427 
abundance than simpler modules without holes [62]. Purposefully designed concrete reef units, also 428 
known as Reef Balls® , have 25 to 40 holes into a hollow centre [112]. Reef Balls®  are used as coastal 429 
defence structures and may also function as scour protection structures [112]. For a scour protection 430 
area of ca. 440m2, a single layer of 169 Reef Balls®  is required to protect one monopile [112]. The 431 
projected carrying capacity of a Reef Ball®  is approximately 385 kg of fish within a year, suggesting 432 
that the annual carrying capacity of a scour protection may approach 65,000 kg [29,112]. Although 433 
further research is required, these studies indicate that the structural complexity of scour protections 434 
may be elevated to enhance fish abundance and may even be tailored to certain fish sizes and life 435 
stages. 436 

4.5.2 Materials 437 

Different species settle on disparate substrates [128], suggesting that substrates may be tailored 438 
to suit target species. Rock is the most commonly used material for scour protection (Figure 5), 439 
because it is strong, stable, cost-efficient, erosion resistant and suitable for benthic flora and fauna 440 
settlement. Nonetheless, concrete-gravel aggregate may be more suitable for design manipulations 441 
[129,130]. In addition, a single scour protection may include various materials, such as boulders, 442 
gravel and synthetic fronds to replicate a natural range of habitats and further increase habitat 443 
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heterogeneity [81,112]. While synthetic fronds alone provide less surface area and space for 444 
colonization, they mimic vegetation and may provide additional ecological functions when combined 445 
with other types of scour protection [29]. 446 

4.5.3 Enhancing ecological function 447 

Although the large-scale effects of OWFs on marine ecosystems remain uncertain [69,73] and 448 
several studies have revealed negative effects of OWFs [131–133], the present review identified a 449 
range of ecosystem functions that might be enhanced by modifying the foundation of OWFs and the 450 
scour protection in particular (Figure 7). The conceptual illustration (Figure 7) is not exhaustive, and 451 
it remains crucial to develop and test structural manipulations of scour protection designs to achieve 452 
favourable outcomes. 453 

 454 

Figure 7.  Conceptual illustration of offshore wind turbine and proposed ecological functions of 455 
scour protection. Reviewed evidence reveals that scour protection may provide food, shelter and 456 
reproduction grounds for fish, as well as settlement grounds for bivalves and macro algae. Examples 457 
show species that could benefit from improved scour protection designs: (A) Marine mammal feeding 458 
grounds [134]; (B) Atlantic cod, utilizing scour protection structures [71]; (C) Atlantic herring, 459 
utilizing scour protection for spawning [89]; (D) Mussel and oyster banks [135]; (E) Macro algal 460 
restoration [136,137]; (F) Shelter for shellfish [91]. 461 

Mammalian and fish apex predators may utilize OWFs for foraging; GPS tracking of two seal 462 
species (Phoca vitulina and Halichoerus grypus) in the North Sea indicated foraging close to the OWF 463 
foundations [134] (Figure 7A). Similarly, significantly higher occurrence of harbour porpoises was 464 
recorded inside a Dutch OWF compared to reference areas, partly attributed to increased food 465 
availability [138]. Various fish species may exhibit strong residency at OWF foundations with scour 466 
protection [71] (e.g. Atlantic cod; Figure 7B), which are also included in the diet of the two seal species 467 
[139,140]. This indicates that modified scour protection designs enhancing fish abundance could 468 
translate into benefits for a range of apex predators. 469 
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Rough surface texture in the materials used for reef construction can enhance benthic settlement 470 
[115,141,142] (Figure 7D, 7E). Orientation of surfaces also plays an important role; bivalves, hydroids 471 
and barnacles mainly prefer colonizing vertical surfaces [135] (Figure 7D). High-vertical relief 472 
structures often support fish recruitment [143] and planktivore abundances, possibly by creating 473 
suitable hydrodynamic conditions [64]. Therefore, combined manipulations of materials and 474 
orientations may incite the growth of specific assemblages (Figure 7D, 7E). This may even be 475 
extended to setting up multi-use systems on OWFs, including, for example, mussel cultivation 476 
(Figure 7D). 477 

Moreover, the macroalgal colonization of scour protection may be augmented using macroalgae 478 
restoration techniques [136,137,144], as macroalgae has been shown to influence the composition and 479 
abundance of fish species on rocky habitats [145]. Verdura et al. [136] developed a relevant novel 480 
technique to restore patches of the canopy-forming alga Cystoseira barbata, while Fredriksen et al. 481 
[137] developed a method to restore kelp forests using rocks (Figure 7E). Macro algae growth may 482 
also support fish reproduction (Figure 7C). For example, in the Baltic Sea, herring select red algae 483 
Furcellaria lumbricalis and Polysiphonia fucoides as spawning substrate [89] (Figure 7C, 7E). This 484 
function requires that scour protection is in the photic zone, requiring shallow water OWFs. Such 485 
cases exist, however, including the “Horns Rev 1” OWF in the North Sea, which is situated at water 486 
depths between 6.5 - 13.5 m [73]. 487 

Shelter availability for shellfish species, such as the European lobster, Homarus gammarus, and 488 
C. pagurus, may create a demographic bottleneck [91]. Scour protection optimizations in favour of the 489 
European lobster could include size, shape, number of shelter entrances and substrate [146,147] 490 
(Figure 7F). Typically, adult lobsters and crayfish select crevices that have entrances analogous to 491 
their body size [148], while juveniles (carapace length, CL < 35mm) are active burrowers and find 492 
shelter in soft substrates [149]. Barry and Wickins [149] proposed a mathematical model to estimate 493 
the best rock size combination to produce holes suitable for individuals with CL between 38 - 145mm. 494 
The model estimated that a 10-size rock solution (ranging from 40 to 3000 mm radius) produced the 495 
best results. Even though their model is a simplified version of reality, because the modelled rocks 496 
are spherical and therefore result in a denser packing than what might occur naturally, the model 497 
may still provide rough recommendations for the optimal rock size combination for scour protection 498 
designs (Figure 7F). If specific lobster sizes are targeted, the following simplified equation (1) could 499 
be used to calculate the appropriate rock size radius (r) that will create the required target hole radius 500 
(x) [149]:  501 

𝑥 =  0.15𝑟 (1) 502 

For example, assuming that the rocks are spherical and homogenous in size, rocks with a radius 503 
of 1078 mm should be used to benefit lobsters with a CL of 145 mm [149]. To the best of our 504 
knowledge, preferred shelter sizes have not been quantified for fish, although such data could prove 505 
valuable to tailor scour protection designs for specific fish species and life stages. 506 

4.6 Advancing the field 507 

Soft-bottom species might be vulnerable when hard substrata (e.g. foundations) are introduced 508 
in their ecosystem, because soft-bottom habitat is eliminated. Due to conflicting results, further 509 
studies are required to determine the impact of scour protection on soft-bottom species. Likewise, 510 
edge and transition zone effects [150–155], as well as community recovery models [156–158] should 511 
also be taken into consideration. Given the complexity of patchy habitats induced by scour protection, 512 
such studies may reveal unique ecological conditions existing in the transition zones between scour 513 
protection and soft-bottom habitats, as well as how soft-bottom species recover after partial loss of 514 
their habitat. 515 

To date, no empirical studies have examined ecological effects of different scour protection 516 
configurations. It is crucial to identify the size, shape, height, orientation and material that provide 517 
most support for targeted ecosystem functions and services. The use of assorted scour protection 518 
materials should also receive further attention. Future studies should test concrete (possibly in Reef 519 
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Ball®  configuration) as an alternative material for scour protection. Further studies on preferred 520 
shelter dimensions for fishes are also needed to predict the optimal rock size for scour protections to 521 
provide ideal habitats for target species. Coastal defence structures have also been shown to offer 522 
opportunities for supporting ecological functions [11,159]. Even though these are not offshore 523 
structures, foundation designs of coastal OWFs could possibly benefit from coastal-defence 524 
knowledge [11,159]. This knowledge remains to be tested and integrated into cases where OWFs are 525 
being deployed in coastal areas. 526 

Many OWF studies concern areas that are de facto no fishing zones, since trawling and other 527 
fishing activities often are prohibited within a radius from the structures. These no-take conditions 528 
essentially create a marine protected area that may increase the abundance of fish in neighbouring 529 
areas through spill-over effect [28–30,160]. The spill-over could be harvested by sustainable fisheries, 530 
but the topic has received limited attention. The main knowledge gap is estimating how much 531 
additional fish biomass is added to the ecosystem (at a larger scale) due to the presence and design 532 
of scour protection. Mounting evidence suggest spill-over effects of marine protected areas [161,162], 533 
but it remains unknown to what degree the effects depend on scour protections inside OWFs. 534 

Existing evidence indicates that OWFs cause little to no effects on fish communities on a large 535 
spatial scale; however, due to the expected massive increase in OWFs [18,19], the scale of OWF effects 536 
is likely to expand over the coming years. With increased OWF development, effects of scour 537 
protection could reach a tipping point (i.e. induce a marine regime shift) [163,164], where a certain 538 
density of scour protections may have significant effects on large-scale fish communities. 539 

Apart from the scour protection, effects of the monopiles (or equivalent structures) should also 540 
be considered when determining changes in biodiversity and species abundance, as the community 541 
composition of the fouling fauna may differ along a depth gradient on a monopile [165]. Monopiles 542 
are, however, considered difficult to manipulate, opposite to the scour protection and were therefore 543 
excluded from the present review. Interestingly, monopiles may attract mid-water forage species 544 
[64,69] and associated predators, pointing to similar effects recorded at oil and gas platforms [15,166–545 
169]. There are clearly interactions between these mid-water species and the species linked to scour 546 
protection, which should be further explored for a better understanding of community changes. 547 

Lastly, when the production life of offshore infrastructure is over, current international policies 548 
call for removal of the structures. This type of decommissioning, however, could result in loss of 549 
marine habitat, especially considering species benefitting from OWFs [16,99,170]. Before 550 
decommissioning of the first OWF in the world (Vindeby, Denmark), the associated environmental 551 
impact assessment indicated that the removal of the foundation could reduce the local Atlantic cod 552 
abundance [171]. The impact on Atlantic cod was not attributed to the foundation removal activities 553 
per se, but rather to the loss of reef habitat in the area, after eliminating the foundations [171]. 554 
Therefore, before removing OWF foundations, reefing options may be considered [172,173]. An 555 
alternative to removal could be the “renewables-to-reefs” program, in which the foundation is 556 
partially removed, leaving the scour protection intact on the seafloor [174,175]. Modifying scour 557 
protection designs to favour fish abundance and diversity may amplify interests in keeping parts of 558 
the foundation intact during decommissioning. 559 

5. Conclusions 560 

This review is the first to transfer knowledge from AR studies to scour protection designs. 561 
Specifically, the review synthesized the effects of ARs and scour protection on fish biota and 562 
suggested approaches for enhancing the ecological function of scour protection. Overall, the vast 563 
majority of both AR and OWF studies report increases in fish abundance and diversity within the 564 
local area. Current evidence suggests that fish species of both high and low commercial value utilize 565 
the hard substrata that scour protection adds to the marine environment. This review has identified 566 
several scour protection manipulations that could influence abundance and diversity of fish species. 567 
By modifying future scour protection designs, fish abundance and diversity may be enhanced. As 568 
such, scour protection designs may be tailored to commercial species or threatened species. Further 569 
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empirical research is needed to explore and test new and innovative scour protection designs, with 570 
the ultimate goal of creating scour protections that support marine goods and ecosystem services. 571 
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