Design of a water reuse network in an industrial site in Kenya

Ramin, Elham; Schneider, Carina; Damgaard, Anders; Hélix-Nielsen, Claus; Flores Alsina, Xavier; Ramin, Pedram; Gernaey, Krist V.; Andersen, Maj M.

Publication date:
2019

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Design of a water reuse network in an industrial site in Kenya

Elham Ramin

Carina Schneider, Anders Damgaard, Claus Hélix-Nielsen, Xavier Flores Alsina, Pedram Ramin, Krist V. Gernaey, Maj M. Andersen
Eco-industrial Park

Source: Lee in Chiu 2015
Example – Kalundborg (DK)

Source: Symbiosis Center Denmark
GECKO Project

• Danida funded 2-year pilot research project

• Duration: April 2018- March 2020

• Aims to provide the scientific knowledge base to develop a national strategy for designing and projecting high-circular eco-industrial parks (industrial symbiosis) in Kenya

Objectives:

• Business research (WP2)

• Governance research (WP3)

• Technical feasibility studies of selected symbiosis solutions (WP4)

• **System modeling of symbiosis solutions** (WP5)
Ruarka industrial park
Ruaraka industrial park

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food (animal based)</td>
<td>9%</td>
</tr>
<tr>
<td>Food (vegetable based)</td>
<td>17%</td>
</tr>
<tr>
<td>Beverages</td>
<td>6%</td>
</tr>
<tr>
<td>Textiles</td>
<td>3%</td>
</tr>
<tr>
<td>Paper</td>
<td>3%</td>
</tr>
<tr>
<td>Chemicals</td>
<td>20%</td>
</tr>
<tr>
<td>Pharma</td>
<td>6%</td>
</tr>
<tr>
<td>Minerals</td>
<td>9%</td>
</tr>
<tr>
<td>Metals</td>
<td>6%</td>
</tr>
<tr>
<td>Plastics</td>
<td>15%</td>
</tr>
<tr>
<td>Waste collection</td>
<td>6%</td>
</tr>
<tr>
<td>Waste</td>
<td></td>
</tr>
</tbody>
</table>

Rainfall in Kenya

Groundwater level in Nairobi

(Source: UNEP-NET)
Case Study

<table>
<thead>
<tr>
<th>Companies</th>
<th>Units</th>
<th>Water use m³/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cooling Boiler</td>
<td>1000 500</td>
</tr>
<tr>
<td>B</td>
<td>Washing</td>
<td>126</td>
</tr>
<tr>
<td>C</td>
<td>Boiler</td>
<td>150</td>
</tr>
<tr>
<td>D</td>
<td>Process</td>
<td>550</td>
</tr>
<tr>
<td>E</td>
<td>Process Boiler</td>
<td>420 200</td>
</tr>
</tbody>
</table>
Existing Situation

Ground water → Process unit → Effluent treatment

Ground water → Process unit → Effluent treatment
Symbiotic Relationship

Ground water

Process unit

Reused water treatment

Effluent treatment

Ground water

Process unit

Reused water treatment

Effluent treatment
Water Treatment for Reuse

<table>
<thead>
<tr>
<th></th>
<th>Chemical Treatment</th>
<th>Ultra Filtration</th>
<th>Forward Osmosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD removal</td>
<td>80%</td>
<td>50%</td>
<td>90%</td>
</tr>
<tr>
<td>TSS removal</td>
<td>50%</td>
<td>80%</td>
<td>90%</td>
</tr>
<tr>
<td>TDS removal</td>
<td>10%</td>
<td>20%</td>
<td>95%</td>
</tr>
<tr>
<td>Unit cost</td>
<td>0.1 $/m³</td>
<td>0.2 $/m³</td>
<td>0.4 $/m³</td>
</tr>
</tbody>
</table>
Cost Functions

Total cost = Annualized capital cost + yearly operating cost
1. Water supply: Borehole drilling + Equipment + Pumping
2. Network = Pipes + Pumps + Treatment Units
 12% discount rate
 20-year life time
 - Maintenance: 5% of capital cost
Optimization – Model Superstructure

- Fresh water
- Treatment unit
- Process unit
- Mixer
- Splitter
Optimization – Deterministic Approach

Non-Convex Mixed Integer Nonlinear Program (MINLP)

\[
\begin{align*}
\min_x & \quad f(x) \\
\text{subject to:} & \quad Ax \leq b \\
& \quad A_{eq}x = b_{eq} \\
& \quad l_b \leq x \leq u_b \\
& \quad c(x) \leq d \\
& \quad c_{eq}(x) = d_{eq} \\
& \quad x_i \in \mathbb{Z} \\
& \quad x_j \in \{0, 1\}
\end{align*}
\]
Optimization – Metaheuristic Approach

Non-dominated sorting genetic algorithm – NSGA II (Deb et al, 2002)

Advantages
• Not problem specific
• “Hill climbing” method
• Higher stability

Disadvantage
• Premature convergence
• Near optimum solution

Further improvements
• Initialization of population
• Adjusting GA parameters

Solutions – Pareto Front

- Solution 1
- Solution 2

![Graph showing Pareto Front](image)

- Fresh water consumption %
- Total cost $ / m³

Map showing locations A to E.
Solution 1

Flow	Pipe diameter
> 100 m³/d | 90 – 160 mm
50 – 100 m³/d | 50 – 75 mm
< 50 m³/d | < 40 mm
Solution 2

Company

<table>
<thead>
<tr>
<th>Unit</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flow

- > 100 m³/d: 90 – 160 mm
- 50 – 100 m³/d: 50 – 75 mm
- < 50 m³/d: < 40 mm

Pipe diameter

- > 100 m³/d: 90 – 160 mm
- 50 – 100 m³/d: 50 – 75 mm
- < 50 m³/d: < 40 mm

Company

- A
- B
- C
- D
- E

Solution 2

Fresh water consumption % vs. Total cost $ / m³
Improving Economic Viability

Challenges
- Data quality
- Static versus dynamic
- The resilience measure
- Flexibility

- Heat recovery?
- Resource recovery?
Denmark

Symbiosis Center Denmark

Kenya

Google image
Conclusions

• Metaheuristic optimization approach shows high potential in water saving using water reuse network in an existing Kenyan industrial site

• The economic burden of water reuse can be decreased by recovering heat and valuable components from water (resource recovery)

• The metaheuristic approach can be used to perform uncertainty and flexibility assessments of water reuse networks
A New Danida project in South Africa:
Evaluation of Resource recovery Alternatives in South African water (ERASE)
Thank you for your attention!

Elham Ramin
Postdoctoral fellow
Technical University of Denmark
Elhr@kt.dtu.dk

DTU management
Maj Munch Andersen (Project coordinator)

DTU Environment
Anders Damgaard

DTU Chemical Engineering
Krist Gernaey (Steering committee)
Elham Ramin

DTU Civil Engineering
Lisbeth Ottosen

The Gecko Project Team