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VECTOR VELOCITY ESTIMATION USING estimating , using an autocorrelation algorithm , vector veloc 
TRANSVERSE OSCILLATION ( TO ) AND ity components from the high resolution ultrasound data . 
SYNTHETIC APERTURE SEQUENTIAL In another aspect , a non - transitory computer readable 

BEAMFORMING ( SASB ) storage medium is encoded with computer readable instruc 
5 tions . The computer readable instructions , when executed by 

TECHNICAL FIELD a processor of a computing system , cause the processor to : 
transmit , via a transducer array , an ultrasound signal , 

The following generally relates to ultrasound Vector Flow receive , via the transducer array , echoes generated in 
Imaging ( VFI ) and more particularly to estimating vector response to the transmitted ultrasound signal , beamform the 
velocity for flowing structures using a combination of TO " echoes and generate a low resolution line of data for each 
and SASB dual stage beamforming . emission , and wirelessly transmit the low resolution lines of 

data to another device . The computer readable instructions , 
BACKGROUND when executed by the processor of the computing system , 

further cause the processor to : wirelessly receive the trans 
The visualization of blood flow dynamics is an important mitted low resolution lines of data with the other device , 

and effective clinical tool for the diagnosis of a number of beamform the low resolution line of data and generate high 
pathological conditions . Ultrasound scanners are capable of resolution ultrasound image data , and estimate , using an 
estimating 2 - D velocity vectors in real - time , allowing cli - autocorrelation algorithm , vector velocity components from 
nicians to extract useful information from complex flow 20 the high resolution ultrasound data . 
patterns . The feasibility of a real - time duplex imaging Those skilled in the art will recognize still other aspects 
sequence in a commercial consumer level tablet was dem - of the present application upon reading and understanding 
onstrated in Hemmsen et al . , “ Implementation of real - time the attached description . 
duplex synthetic aperture ultrasonography , ” in Proc . IEEE 
Ultrason . Symp . , 2015 , pp . 1 - 4 . In Hemmsen et al . , the 25 BRIEF DESCRIPTION OF THE DRAWINGS 
approach was based on synthetic aperture sequential beam 
forming ( SASB ) . The ultrasound data were transferred wire The application is illustrated by way of example and not 
lessly to a tablet where processing and visualization were limited by the figures of the accompanying drawings , in 
performed . The estimation was based on directional beam - which like references indicate similar elements and in 
forming , and the lines were cross - correlated to find the 30 which : 
velocities . Unfortunately , this approach requires a flow angle FIG . 1 schematically illustrates an example ultrasound 
estimation and all permutations need to be cross - correlated , imaging system : 
which is time and computationally intensive . As such , this FIG . 2 shows an example imaging setup with a linear 
approach is not well - suited for fully operative real - time transducer array ; imaging , and there is an unresolved need for another 35 FIG . 3 schematically illustrates the example ultrasound approach . imaging system in connection with a computing apparatus ; 

SUMMARY and 
FIG . 4 illustrates a method in accordance with an embodi 

Aspects of the application address the above matters , and 40 ment d 10 ment herein . 
others . 

In one aspect , an ultrasound imaging system includes a DETAILED DESCRIPTION 
transducer array with a plurality of transducer elements 
configured to repeatedly emit in a predetermined pattern , a The following describes an approach for VFI vector 
first beamformer configured to beamform echo signals 45 velocity estimation based on a combination of TO or DTO 
received by the transducer array to produce a low resolution and SASB . In one instance , this approach allows for efficient 
line of data for each emission , and a first communication wireless transmission of low resolution ultrasound data 
interface configured to wirelessly transmit the low resolution along with a subsequent efficient estimation of velocities 
lines of data for each emission in series . The ultrasound therefrom . The approach is based on an autocorrelation 
imaging system further includes a second communication 50 approach , which requires a decreased amount of calculations 
interface configured to for each emission in series wirelessly with respect to cross - correlation . The approach makes it 
receive the transmitted low resolution lines of data , a second possible to have continuous data acquisition in the whole 
beamformer configured to beamform the received low reso - imaged area ; therefore , high and low velocities can be 
lution lines of data to produce high resolution ultrasound estimated at once with high precision and high frame rate . 
data , and a velocity processor configured to estimate vector 55 FIG . 1 schematically illustrates an example ultrasound 
velocity components from the high resolution ultrasound imaging system 100 . The imaging system 100 includes a 
data in a lateral direction and an axial using an autocorre probe 102 and console 104 . The probe 102 includes a probe 
lation algorithm . wireless communication interface ( “ communication inter 

In another aspect , a method includes transmitting an face " ) 106 , and the console 104 includes a console wireless 
ultrasound signal , receiving echoes generated in response to 60 communication interface ( “ communication interface " ) 108 . 
the transmitted ultrasound signal , beamforming the echoes , The communication interfaces 106 and 108 are configured to 
generating a low resolution line of data for each emission , wirelessly communicate over a wireless network 110 . 
and wirelessly transmitting the low resolution lines of data The probe 102 includes a transducer array 112 with a 
to another device . The method further includes wirelessly plurality of transducer elements 114 , which are configured to 
receiving the transmitted low resolution lines of data with 65 transmit ultrasound signals . The plurality of transducer 
the other device , beamforming the low resolution line of elements 114 are also configured to receive echo signals and 
data , generating high resolution ultrasound image data , and generate electrical signals indicative thereof . The echo sig 

rre 
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nals are produced in response to an interaction between the face 106 . Such control can be based on a current mode of 
ultrasound signals and the structure ( e . g . , flowing blood operation ( e . g . , B - mode , velocity , vector velocity estimation 
cells , organ cells , etc . ) . using TO ( e . g . , DTO ) with SASB ) . The probe 102 includes 

The transducer array 112 can be a one or two - dimensional a user interface ( UI ) 140 . The UI 140 may include an input 
( 1 - D or 2 - D ) array . Examples of 1 - D arrays include arrays 5 device ( e . g . , a button , a slider , a touch surface , etc . ) and / or 
with 8 , 16 , 32 , 64 , 96 , 128 , 512 , and / or other number of an output device ( e . g . , a visual and / or audible , etc . ) . 
elements . Examples of 2 - D arrays include square , rectangu The console 104 includes a second stage ( stage 2 ) beam 
lar , circular , irregular , row - column addressed and / or other former 124 . The second stage beamformer 124 is configured 
arrays . The transducer array 112 can be linear , curved , to successively process the low - resolution lines of data , 
phased , and / or other array . The transducer array 112 can be 10 producing high resolution images . Such processing includes 
fully populated or sparse and / or a combination thereof . applying weights to create a double - oscillating field in the 

Transmit circuitry 116 generates a set of pulses that are whole imaging region at once . The second stage beamformer 
conveyed to the transducer array 112 . The set of pulses 124 employs the SASB and / or other algorithms to create 
excites a set of the transducer elements 114 , which causes high resolution images . 
the elements 114 to emit ultrasound signals . Receive cir - 15 A velocity processor 130 is configured to process the 
cuitry 118 receives the electrical signals . The receive cir - beamformed data and determine velocity components of 
cuitry 118 may amplify , filter , convert analog signals to flowing structure . This includes processing the beamformed 
digital signals , etc . The transducer array 112 may have data to determine a velocity component in the depth direc 
separate transmit and receive elements , and / or a switch may tion and / or in one or two directions transverse to the depth 
switch between the transmit and receive circuitry 116 and 20 direction . As described in greater detail below , the velocity 
118 . processor 130 estimates vector velocities based on a TO or 

For directional transverse oscillation ( DTO ) , a focused DTO approach . 
beam is emitted and echoes are received by all of the display 136 displays the image and / or velocity infor 
transducer elements 114 . As described below , the echoes are mation . Such presentation can be in an interactive graphical 
beamformed using two apodized apertures separated by a 25 user interface ( GUI ) , which allows the user to selectively 
distance to create a lateral oscillation . A DTO approach is rotate , scale , and / or manipulate the displayed data . Such 
described in greater detail in international application serial interaction can be through a mouse or the like , and / or a 
number PCT / IB2015 / 051526 , filed Mar . 3 , 2015 , and keyboard or the like , touch - screen controls and / or the like , 
entitled “ ULTRASOUND IMAGING FLOW VECTOR and / or other known and / or approach for interacting with the 
VELOCITY ESTIMATION WITH DIRECTIONAL 30 GUI . 
TRANSVERSE OSCILLATION , ” which is incorporated The console 104 further includes a console controller 
herein by reference in its entirety . ( “ controller ) 138 , which is configured to control the com 

The probe 102 includes a first stage ( or stage 1 ) beam - munication interface 108 , the second stage beamformer 124 , 
former 120 . The first stage beamformer 120 is configured to and / or the velocity processor 130 . Such control can be based 
beamform the electrical signals for each emission using a 35 on a current mode of operation ( e . g . , B - mode , velocity , 
fixed transmit and receive focus for continuous data acqui - vector velocity estimation using TO ( e . g . , DTO ) with 
sition in the whole image area . In one instance , the first stage SASB ) . The console 104 includes a user interface ( UI ) 140 , 
beamformer 120 produces a single low - resolution line of which may include an input device ( e . g . , a button , a slider , 
data for each emission , which is transmitted serially by the a touch surface , etc . ) and / or an output device ( e . g . , a visual 
interface 106 over the network 110 to the interface 108 at a 40 and / or audible , etc . ) . 
data transfer rate commensurate with the IEEE 802 . 11ac It is to be appreciated that the beamformers 120 and 124 , 
( WiFi ) wireless networking standard . the velocity processor 130 , and / or other components of the 

For example , if 25 frames per second ( fps ) are used for system 100 can be implemented via a processor ( e . g . , a 
B - mode and the maximum frame rate for VFI is 480 fps at microprocessor , central processing unit ( CPU ) , graphics 
a depth of 10 cm , at full operational speed a data throughput 45 processing unit ( GPU ) , etc . ) executing one or more com 
of 320 megabits per second ( Mbps ) would be required . The puter readable instructions encoded or embedded on a 
IEEE 802 . 11ac ( WiFi ) wireless networking standard has a computer readable storage medium ( which excludes transi 
single - link throughput of at least 500 Mbps and a multi tory medium ) such as a physical memory device . The 
station throughput of at least 1 gigabit per second ( Gbps ) . In processor can additionally or alternatively execute computer 
general , the interface 106 can transmit the low - resolution 50 readable instructions carried by transitory medium such as a 
lines of data using any wireless networking standard having carrier wave , a signal , or other transitory medium . The 
a data transfer rate suitable for serial transmission of the fixed - focus first stage beamformer 120 can also be imple 
data . This includes , USB , Blue Tooth , cellular , etc . mented using simple analog circuitry to lower the power 

In one instance , the first stage beamformer 120 employs dissipated in the probe handle . 
an SASB algorithm to create the low - resolution lines of data . 55 An example of the velocity processor 130 is discussed 
An example of a suitable SASB algorithm is described in next in connection with FIG . 2 for a linear transducer array 
Kortbek , et al . , “ Synthetic aperture sequential beamform - 112 and a vessel 200 . Virtual apertures 202 and 204 are 
ing , ” in Proc . IEEE Ultrason . Symp . , 2008 , pp . 966 - 969 . created with virtual sources 206 and 208 emulated using the 
Another example of a suitable SASB algorithm is described fixed - focus emissions . The illustrated example expressly 
in Kortbek , et al . , “ Sequential beamforming for synthetic 60 shows a total of six virtual sources 206 and 208 , where each 
aperture imaging , ” Ultrasonics , vol . 53 , no . 1 , pp . 1 - 16 , of the virtual apertures 202 and 204 includes three of the 
2013 . Other algorithms , which create such low - resolution virtual sources ( i . e . , the virtual aperture 202 includes the 
lines of data , are also contemplated herein . virtual sources 206 , and the virtual aperture 204 includes the 

The probe 102 further includes a probe controller ( “ con - virtual sources 208 ) . The three virtual sources 206 , going 
troller ” ) 122 , which is configured to control the transmit 65 from left to right , respectively insonify regions 214 , 216 and 
circuitry 116 , the receive circuitry 118 , the stage 1 beam - 218 , and the three virtual sources 208 , going from left to 
former 120 , and / or the probe wireless communication inter - right , respectively insonify regions 220 , 222 and 224 . The 
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virtual apertures 202 and 204 are located in front of the quadrature signal required for the velocity estimation is 
transducer array 112 and are separated by a non - zero dis - determined as shown in EQUATION 2 : 
tance “ D . ” 

The first stage beamformer 120 beamforms the low y ( 1 , i ) = H { x ( n , i ) , Equation 2 : 
resolution lines of data using static focus points located in 5 where H identifies the Hilbert transform . A complex signal 
the same positions as the virtual sources 206 and 208 . That rsg is determined by combining the in - phase and quadrature 
is , for each emission , a low - resolution line of data is lateral beamformed signals as shown in Equation 3 : 
beamformed in receive using a fixed focus located in the P ' sq ( n , i ) = x { n , i ) + jy ( n , i ) , Equation 3 : corresponding virtual source position . In general , K ( an 
integer greater or equal to two ) emissions are used to create ate 10 where x ( n ; i ) is the real part and y ( n , i ) is the imaginary part . 
the high - resolution image . FIG . 2 shows at least K = 6 . For A lateral wavelength for the emission i is calculated as 
each emission , a low - resolution RF line is beamformed in shown in EQUATION 4 : 
receive using a fixed focus located in the virtual source 
position . The emissions are in a predetermined order and Equation 4 
continuously repeat , providing continuous data . Generally , 
2 - 4 emissions can be used for lower velocities , and 20 - 30 
emissions can be used for higher velocities . 

The second stage beamformer 124 successively processes 
the low - resolution lines of data , applying weights to create 20 IRsg ( f , 0 ) 12 
a double - oscillating field in the whole imaging region ( a 
region - of - interest ( ROI ) 210 ) at once . The wireless trans 
mission of the ultrasound data from the probe 102 to the where Rs ( f ) is a Fourier transform of the directional signal 
console 104 is enabled by the fact that only a single rsan ) along the lateral dimension n , N is a number of Fourier 
beamformed low - resolution line is transmitted for each 25 coefficients , f is a sample index in the Fourier domain , and 
emission , in contrast to transmitting in parallel the data from Aç is a lateral spatial sampling period . The lateral wave 
all the transducer elements . The weights weight the contri - length ?x can be averaged over a number of directional lines 
butions from the low - resolution lines to create the double to improve the variance of the estimate . 
oscillating field in the high resolution image . The virtual Two new signals are created as shown in EQUATIONS 5 
sources 206 and 208 can be placed behind the transducer 30 and 6 : 
array 112 to increase the extent of the ROI 210 and visualize ri ( n , i ) = rsq ( n , i ) + jrsquín , i ) , Equation 5 : 
regions close to the transducer 112 . 

Neglecting the B - mode sequence , the pulse repetition 
frequency for the flow emissions is referred to as fpow . A 
maximum effective frame rate for the velocity estimation is r2 ( n , i ) = rsq ( n , i ) - jrsghan , i ) . Equation 6 : therefore equal to fprf - efflow = ffow / K . For each frame , the 
vector velocities are estimated in the whole ROI 210 . where rsah denotes the Hilbert transform of the signal r . 
Furthermore , the approach can be extended to high frame along the axial dimension . From EQUATIONS 5 and 6 , 
rate VFI by calculating a new estimate for each emission in lag - 1 autocorrelation functions can be determined as shown 
a recursive manner , giving fortheflow = f , , flow . This approach * in EQUATIONS 7 and 8 : 
does not require any angle compensation of prior knowledge 
on the beam - to - flow angle . 

To estimate a velocity at a given point , the velocity Equation 7 
processor 130 computes a lateral signal at a corresponding a 
location in the high - resolution image . Signals from M 
( wherein M is a positive integer ) of the high - resolution 
images are used to estimate the velocities . A lateral signal Equation 8 can be determined anywhere in the ROI 210 . In the illus 
trated example , a set of lateral signals 212 at different depths 
are determined within the vessel 200 . Each lateral signal is * * 
a single directional signal ( or line of data ) for a depth of 
interest and is transverse to the propagation direction . Where In EQUATIONS 7 and 8 , the autocorrelation estimates are 
K = 6 , each line is constructed after 6 emissions . averaged over the number of emissions M and the number 

A wavelength of the lateral oscillation is determined of samples in the directional lines Ns along the axial direc 
based on EQUATION 1 : 55 tion . In addition , the autocorrelation estimates in EQUA 

TIONS 7 and 8 can be averaged over a number of directional 
lines to improve the variance of the estimate . The velocity 

Equation 1 processor 130 estimate the lateral and axial velocities 
respectively as shown in Equations 9 and 10 : 

and 

Roc ) - ww . him , brcm , i + 1 ) , i = 0 n = 0 

and 

M - 2N , 

R ? ( 1 ) = mN , " z?n , iyan , i + 1 ) . i = 0 n = 0 50 

dx = 

Equation 9 
Vx = 282T of 

where à is a axial wavelength , d is the depth , D is the 
distance between the receiving apertures . The signal x ( n , i ) 
is beamformed at the depth of interest in the direction 
transverse to the direction of propagation of the ultrasound 65 
beam , where n is a sample index along the lateral direction , 
and i is an emission index . 

arctan ( I { R1 ( 1 ) } R ? { R2 ( 1 ) } + I { R2 ( 1 ) } R { R1 ( 1 ) } } 
( R { R1 ( 1 ) } R { R2 ( 1 ) } - I { R1 ( 1 ) } I { R2 ( 1 ) } ) 
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and 

Vy = 274T prf 

arctan 

- continued At 410 , the low resolution ultrasound data is beamformed 
via a second stage beamformer to produce high resolution 
ultrasound data at the other device as described herein . 

Equation 10 At 412 , vector velocity values are determined from the 
5 high resolution ultrasound data at the other device as 

( I { R ( 1 ) } 9 { R2 ( 1 ) } - J { R2 ( 1 ) } 9 } { R1 ( 1 ) } } described herein . 
R { R1 ( 1 ) } R { R2 ( 1 ) } + I { R1 ( 1 ) } } { R2 ( 1 ) } } At 414 , an image and the vector velocity values are 

visually presented . 
The methods described herein may be implemented via 

where Thuf denotes the pulse repetition period , I denotes the 10 one or more processors executing one or more computer 
real part , and n denotes the imaginary part . readable instructions encoded or embodied on computer 
By using the approach described herein , the lateral wave - readable storage medium ( which excludes transitory 

length x can be estimated for all the depths directly from the medium ) such as physical memory which causes the one or 
beamformed data , and no prediction is needed prior to the more processors to carry out the various acts and / or other 
beamformation , making the approach self - calibrating . Fur - 15 functions and / or acts . Additionally , or alternatively , the one 
thermore , the approached described herein decouples the or more processors can execute instructions carried by 
lateral oscillation wavelength from the anodization function transitory medium such as a signal or carrier wave . 
maintaining a low bias for the velocity estimation along the The application has been described with reference to 

depths . Furthermore , the approach described herein only various embodiments . Modifications and alterations will 
requires storing one line of data at a time so there is a 2 20 occur to others upon reading the application . It is intended 

that the invention be construed as including all such modi reduction in the memory requirement for storing data rela fications and alterations , including insofar as they come tive to storing multiple lines of data . within the scope of the appended claims and the equivalents Furthermore , the approach described herein provides high thereof . the 
performance with a significant performance improvement in s 
terms of operative time relative to cross - correlation What is claimed is : approaches . More specifically , the autocorrelation approach 1 . An ultrasound imaging system , comprising : 
described herein requires only one accumulation and no flow a transducer array including a plurality of transducer 
angle estimation . The cross - correlation approach requires a elements configured to repeatedly emit in a predeter 
full cross - correlation of all permutations for each flow 30 mined pattern ; 
direction such that a signal with a length of N would require a first beamformer configured to beamform echo signals 
N accumulations times the number ( e . g . , 50 - 100 ) of flow received by the transducer array for each emission to 
directions ( e . g . , N * ( 50 - 100 ) calculations times the produce a single low resolution line of data for each 
approached described herein ) . As such , the approach emission ; 
described herein is a technological improvement . Due to the 35 a first communication interface configured to wirelessly 
reduced computational complexity , the approach also transmit the single low resolution lines of data for each 
enables the possibility to implement synthetic aperture vec emission in series ; 
tor flow imaging in general - purpose ultrasound scanners . a second communication interface configured to continu 

FIG . 3 schematically illustrates a variation of FIG . 1 in ously wirelessly receive the transmitted single low 
which the probe 102 and the console 104 interface via a 40 resolution lines of data ; 
hardwired connection 302 ( e . g . , a cable ) , and the console a second beamformer configured to successively beam 
104 wirelessly communicates the low resolution data to a form the received single low resolution lines of data to 
computing apparatus 304 , which includes the stage 2 beam produce high resolution ultrasound data ; and 
former 124 and the velocity processor 130 , which process a velocity processor configured to estimate vector velocity 
the low resolution data as described herein . In this instance , 45 components from the high resolution ultrasound data in 
the stage 1 beamformer 120 can be in the probe 102 and / or a lateral direction and an axial direction using an 
the console 104 . Where the stage 1 beamformer 120 is autocorrelation algorithm . 
implemented in the probe 102 ( e . g . , in a handle thereof ) , the 2 . The system of claim 1 , further comprising a probe , 
beamformer 120 can directly , wirelessly interface to the which includes the transducer array , the first beamformer , 
wireless network 110 and wirelessly communicate the low 50 and the first communication interface . 
resolution data directly to the computing apparatus 304 . 3 . The system of claim 2 , further comprising a console , 

FIG . 4 illustrates a method for estimating a velocity vector which includes the second communication interface , the 
using a combination of TO and SASB . second beamformer , and the velocity processor . 

It is to be understood that the following acts are provided 4 . The system of claim 1 , further comprising a probe and 
for explanatory purposes and are not limiting . As such , one 55 a console , which are in electrical communication via a 
or more of the acts may be omitted , one or more acts may hardwired path . 
be added , one or more acts may occur in a different order 5 . The system of claim 4 , further a computing device , 
( including simultaneously with another act ) , etc . which includes the second communication interface , the 
At 402 , an ultrasound signal is transmitted as described second beamformer , and the velocity processor . 

herein . 60 6 . The system of claim 1 , wherein the first communication 
At 404 , echoes are received and converted to electrical interface transmits the low resolution ultrasound data at a 

signals as described herein . rate less than 500 megabits per second . 
At 406 , the electrical signals are beamformed via a first 7 . The system of claim 1 , wherein the ultrasound imaging 

stage beamformer to produce low resolution ultrasound data system employs a combination of transverse oscillation and 
as described herein . 65 synthetic aperture sequential beamforming to produce to the 

At 408 , the low resolution ultrasound data is wirelessly low resolution ultrasound data , the high resolution ultra 
transmitted to another device as described herein . sound data , and the vector velocity estimates . 
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8 . The system of claim 1 , further comprising : 16 . The method of claim 11 , further comprising : 
a display configured to display an ultrasound image and beamforming the low resolution line of data correspond 

the vector velocity estimates . ing to at least two emissions . 
9 . The system of claim 1 , wherein the vector velocity 17 . The method of claim 16 , further comprising : 

components include an axial component and a transverse 5 beamforming the low resolution line of data correspond 
ing to a first set of emissions for determining a first component . velocity of interest , and beamforming the low resolu 10 . The system of claim 1 , wherein the velocity processor tion line of data corresponding to a second set of calculates the vector velocity components directly from the emissions for determining a second velocity of interest , 

high resolution ultrasound data without first determining a wherein the first set of emissions is fewer than the 
beam angle . second set of emissions , and the first velocity if lower 

11 . A method , comprising : than the second velocity . 
repeatedly emitting ultrasound signals in a predetermined 18 . The method of claim 11 , further comprising : 

pattern ; employing a combination of direct transverse oscillation 
receiving echoes generated in response to the transmitted 15 and synthetic aperture sequential beamforming to pro 

ultrasound signals ; duce to the low resolution ultrasound data , the high 
resolution ultrasound data , and the vector velocity beamforming the echoes , generating a single low resolu 

tion line of data for each emission ; estimates . 
wirelessly transmitting the single low resolution lines of 19 . The method of claim 11 , further comprising : 

data to another device ; displaying an ultrasound image and the vector velocity 
wirelessly receiving the transmitted single low resolution estimates . 

lines of data with the other device ; 20 . A non - transitory computer readable storage medium 
successively beamforming the single low resolution lines encoded with computer readable instructions , which , when 
of data , generating high resolution ultrasound image executed by a processor of a computing system , cause the 
data ; and processor to : 

25 estimating , using an autocorrelation algorithm , vector transmit , via a transducer array , ultrasound signals in a 
velocity components from the high resolution ultra predetermined pattern ; 
sound data . receive , via the transducer array , echoes generated in 

12 . The method of claim 11 , wherein the low resolution response to each transmission ; 
line of data is transmitted over at least one of IEEE 802 . 11 30 beamform the echoes for each transmission to generate a 
ac , USB , Blue Tooth , or cellular . single low resolution line of data for each transmission ; 

13 . The method of claim 12 , wherein the low resolution wirelessly transmit the single low resolution lines of data 
line of data is wirelessly transmitted from a probe of an to another device ; 

wirelessly receive the transmitted single low resolution ultrasound imaging device to a console of the ultrasound 
imaging device . lines of data with the other device ; 

14 . The method of claim 12 , wherein the low resolution successively beamform the single low resolution lines of 
line of data is transmitted from a console of an ultrasound data to generate high resolution ultrasound image data ; 

and imaging device to a computing system , which is not part of 
the ultrasound imaging device . estimate , using an autocorrelation algorithm , vector 

15 . The method of claim 11 , wherein the low resolution 10 velocity components from the high resolution ultra 
line of data is transmitted at a rate less than or equal to 500 sound data . 
megabits per second . 

20 
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